
Strong Induction Principles
in the Locally Nameless

Representation of Binders
(Work in Progress)

Christian Urban, TU Munich
Randy Pollack, LFCS Edinburgh

Edinburgh, 29. May 2007 – p.1 (1/1)

Outline
“Once upon a time” the contenders in the
POPLmark Challenge always made the claim
that their approach to binding is the best and
all the others are really, really horrible.
Jeremy Avigad asked me recently “...what was this
POPLmark scandal about?”

Now, general techniques and tools (like Ott)
seem to emerge that are independent of the
representation of binders.

I will show that a nominal technique can be
used in the locally nameless representation.
I did/do not know anything about locally nameless representation
(Randy, Xavier, Arthur, James, Stephanie. . .).

Edinburgh, 29. May 2007 – p.2 (1/1)

Strong Induction Principles
Strong induction principles are designed to (only)
deal with the variable convention in proofs.

Substitution Lemma: If x 6� y and x 62 FV (L), thenM [x := N ℄[y := L℄ �M [y := L℄[x := N [y := L℄℄.
Proving the case �z:M1: “...By the variable convention we may
assume that z 6� x; y and z is not free inN;L.”

(nominal induct M avoiding: x y N L rule: lam.induct)

Then in the lambda-case one can assume thatz # (x; y;N; L) holds.

Strong induction principles are used all over the
place in nominal verifications.

Edinburgh, 29. May 2007 – p.3 (1/1)

Strong Rule Inductions
Strong induction principles derived for structural
and rule inductions.

Weakening Lemma:
If � ` t : T , valid� 0 and � � � 0, then � 0 ` t : T .

(nominal induct � t T avoiding: � 0 rule: typing.strong induct)

Then in the typing rule for lambdas, one can
assume that x # � 0 holds.
The main point of the strong induction principles:
one does not prove the lemma for all binders, but
only for some which satisfy additional freshness-
constraints (our take on the variable convention).

Edinburgh, 29. May 2007 – p.4 (1/1)

An Interesting Relation
As far as I know, in the literature the
variable convention concerns binders only.

Crary, however, describes rules, and$
for equivalence-checking:s + p t + q � ` p$ q : tbase� ` s, t : tbasex # (�; s; t) (x; T1) ::� ` App s (Varx), App t (Varx) : T2� ` s, t : T1 ! T2

valid� (x; T) 2 �� ` Varx$ Varx : T� ` p$ q : T1 ! T2 � ` s, t : T1� ` App p s$ App q t : T2

valid�� ` s, t : tunit valid�� ` Constn$ Constn : tbase

Edinburgh, 29. May 2007 – p.5 (1/3)

An Interesting Relation
As far as I know, in the literature the
variable convention concerns binders only.

Crary, however, describes rules, and$
for equivalence-checking:s + p t + q � ` p$ q : tbase� ` s, t : tbasex # (�; s; t) (x; T1) ::� ` App s (Varx), App t (Varx) : T2� ` s, t : T1 ! T2

valid� (x; T) 2 �� ` Varx$ Varx : T� ` p$ q : T1 ! T2 � ` s, t : T1� ` App p s$ App q t : T2

valid�� ` s, t : tunit valid�� ` Constn$ Constn : tbase

Edinburgh, 29. May 2007 – p.5 (2/3)

An Interesting Relation
As far as I know, in the literature the
variable convention concerns binders only.

Crary, however, describes rules, and$
for equivalence-checking:s + p t + q � ` p$ q : tbase� ` s, t : tbasex # (�; s; t) (x; T1) ::� ` App s (Varx), App t (Varx) : T2� ` s, t : T1 ! T2

valid� (x; T) 2 �� ` Varx$ Varx : T� ` p$ q : T1 ! T2 � ` s, t : T1� ` App p s$ App q t : T2

valid�� ` s, t : tunit valid�� ` Constn$ Constn : tbase
. . . and proves monotonicity (kind of weakening) in a logical
relation proof:

If � ` s, t : T , valid� 0 and � � � 0, then � 0 ` s, t : T
and
if � ` s$ t : T , valid� 0 and � � � 0, then � 0 ` s$ t : T .

In case of the extensionality rule, one needs the fact that x is
fresh for � 0 (otherwise one has to rename).

Edinburgh, 29. May 2007 – p.5 (3/3)

VC-Compatibility
You can indeed use a variable convention
for x in:x # (�; s; t) (x; T1) ::� ` App s (Varx), App t (Varx) : T2� ` s, t : T1 ! T2
The reason is that x cannot appear freely
in the conclusion of this rule.

We identified conditions for when the
variable convention is safe to use
(described later on). These conditions also
apply to non-binders.

Edinburgh, 29. May 2007 – p.6 (1/1)

Locally Nameless
The lambda-calculus in the locally
nameless approach:

llam = Var stringj Bnd natj App llam llamj Lam llam

Has nice properties: e.g. represents
alpha-equivalence classes in a canonical
way; but needs a well-formed predicate

. . . is a favourite with some people (not
really with me, but this is not the point!!!)

Edinburgh, 29. May 2007 – p.7 (1/1)

Typing Relation in LN
Typing-rules in the locally nameless
approach are specified as:(x :T) 2 � valid �� ` Varx : T � ` t1 : T1 ! T2 � ` t2 : T1� ` App t1 t2 : T2x # t fx :T1g [� ` tf0 Varxg : T2� ` Lam t : T1 ! T2

valid ? x # � valid �

valid fx :Tg [�

tf0 Varxg stands for “replacing” the 0-index with Varx

Edinburgh, 29. May 2007 – p.8 (1/1)

Proof of Weakeningx # t fx :T1g [� ` tf0 Varxg : T2� ` Lam t : T1 ! T2
If �1` t :T then 8�2: valid �2 ^ �1��2)�2` t :T

We know:

We have to show:

x # t8�2: valid�2^fx :T 0g[�1��2) �2` tf0 Varxg :T

8�2: valid �2 ^ �1��2) �2`Lam t :T 0!T

Edinburgh, 29. May 2007 – p.9 (1/6)

Proof of Weakeningx # t fx :T1g [� ` tf0 Varxg : T2� ` Lam t : T1 ! T2
If �1` t :T then 8�2: valid �2 ^ �1��2)�2` t :T

We know:

We have to show:

x # t

valid �2 ^ �1��2

8�2: valid�2^fx :T 0g[�1��2) �2` tf0 Varxg :T

�2 ` Lam t :T 0!T
Edinburgh, 29. May 2007 – p.9 (2/6)

Proof of Weakeningx # t fx :T1g [� ` tf0 Varxg : T2� ` Lam t : T1 ! T2
If �1` t :T then 8�2: valid �2 ^ �1��2)�2` t :T

We know:

We have to show:

x # t

valid �2 ^ �1��2

8�2: valid�2^fx :T 0g[�1 � �2) �2` tf0 Varxg :T

�2 ` Lam t :T 0!T
Edinburgh, 29. May 2007 – p.9 (3/6)

Proof of Weakeningx # t fx :T1g [� ` tf0 Varxg : T2� ` Lam t : T1 ! T2
If �1` t :T then 8�2: valid �2 ^ �1��2)�2` t :T

We know:

We have to show:

x # t

valid �2 ^ �1��2

8�2: valid�2^fx :T 0g[�1 � �2) �2` tf0 Varxg :T�2 7! fx :T 0g[�2

�2 ` Lam t :T 0!T
Edinburgh, 29. May 2007 – p.9 (4/6)

Proof of Weakeningx # t fx :T1g [� ` tf0 Varxg : T2� ` Lam t : T1 ! T2
If �1` t :T then 8�2: valid �2 ^ �1��2)�2` t :T

We know:

We have to show:

x # t

valid �2 ^ �1��2

8�2: valid�2^fx :T 0g[�1 � �2) �2` tf0 Varxg :T�2 7! fx :T 0g[�2

�2 ` Lam t :T 0!T
) fx :T 0g[�1 � fx :T 0g [�2

Edinburgh, 29. May 2007 – p.9 (5/6)

Proof of Weakeningx # t fx :T1g [� ` tf0 Varxg : T2� ` Lam t : T1 ! T2
If �1` t :T then 8�2: valid �2 ^ �1��2)�2` t :T

We know:

We have to show:

x # t

valid �2 ^ �1��2

8�2: valid�2^fx :T 0g[�1 � �2) �2` tf0 Varxg :T�2 7! fx :T 0g[�2

�2 ` Lam t :T 0!T
) fx :T 0g[�1 � fx :T 0g [�2

valid fx :T 0g[�2 ???

Edinburgh, 29. May 2007 – p.9 (6/6)

Existing Solutions
McKinna-Pollack introduce `s8x: x # �) fx : T1g [� `s tf0 Var xg : T2� `s Lam t : T1 ! T2
They show ` , `s and then prove:

If �1 `s t :T then 8�2:valid�2 ^ �1��2) �2 ` t :T .

Charguéraud et al introduce `8x =2 L: fx : T1g [� `s tf0 Var xg : T2� `s Lam t : T1 ! T2

where L is a (finite) list of names
Edinburgh, 29. May 2007 – p.10 (1/2)

Existing Solutions
McKinna-Pollack introduce `s8x: x # �) fx : T1g [� `s tf0 Var xg : T2� `s Lam t : T1 ! T2
They show ` , `s and then prove:

If �1 `s t :T then 8�2:valid�2 ^ �1��2) �2 ` t :T .

Charguéraud et al introduce `8x =2 L: fx : T1g [� `s tf0 Var xg : T2� `s Lam t : T1 ! T2

where L is a (finite) list of names

Some Problems:

It is fair to say that it is still unclear to
come up with `s and ` in the general
case.

(Related) One likes to be sure to that`s and ` are equivalent to `. It is
annoying to prove this by hand.

Edinburgh, 29. May 2007 – p.10 (2/2)

Our Approach
We stay with ` and derive a strong
induction principle for it (automatically!).

Conditions that allow us to do this:

VC-Compatibility:

the relation needs to be equivariant,
i.e.� ` t : T) (���) ` (��t) : (��T)

what is strengthened must not be in
the support of the concl. of the rulex # t fx : T1g [� ` tf0 Varxg : T2� ` Lam t : T1 ! T2

Edinburgh, 29. May 2007 – p.11 (1/1)

Our Conditions
What happens when you violate the
conditions?

or, in other words

Can the variable-convention lead you into
trouble?

Edinburgh, 29. May 2007 – p.12 (1/3)

Our Conditions
What happens when you violate the
conditions?

or, in other words

Can the variable-convention lead you into
trouble?

Yes!x 7! [℄; xt1 t2 7! [℄; t1 t2t 7! xs; t0�x:t 7! x ::xs; t0
bind [℄ t = t

bind (x ::xs) t = �x:(bind xs t)

Edinburgh, 29. May 2007 – p.12 (2/3)

Our Conditions
What happens when you violate the
conditions?

or, in other words

Can the variable-convention lead you into
trouble?

Yes!x 7! [℄; xt1 t2 7! [℄; t1 t2t 7! xs; t0�x:t 7! x ::xs; t0
bind [℄ t = t

bind (x ::xs) t = �x:(bind xs t)
You can show:

If t 7! xs; t0 then t =� bindxs t0.

Edinburgh, 29. May 2007 – p.12 (3/3)

A Faulty Lemmax 7! [℄; xt1 t2 7! [℄; t1 t2t 7! xs; t0�x:t 7! x ::xs; t0

bind [℄ t = t

bind (x ::xs) t = �x:(bind xs t)

If t 7! x :: xs; t0 and x2FV (t0) then alsox2FV (bind xs t0).
The faulty proof: using the variable convention you
unbind a term to a list of distinct names

Two counter-examples�x:�x:x 7! [x; x℄; x�y:�z:z 7! [y; y℄; y

Edinburgh, 29. May 2007 – p.13 (1/1)

Some Problems
The proofs that use the strong induction
principles in the nominal approach should
also work in the locally nameless approach.
For a number of proofs in the “locally
nameless wild” the strong induction
principles are of no help.

Knowing that ` , `s , ` is still
needed in several instances. (There is no
infrastructure available that could help
you with such proofs.)

Edinburgh, 29. May 2007 – p.14 (1/1)

Conclusions
Without modification a nominal technique
applied to the locally nameless
representation of binders.

The strong induction principles are
derived automatically in N and NL.

We have conditions for when this possible
(unbind is vc-incompatible).

Bonus: A conjecture – the cofinite rules of
Charguéraud et al can be derived
automatically provided the rules are
variable-convention compatible.

Edinburgh, 29. May 2007 – p.15 (1/1)

Bonus: Strip
Locally-nameless version:

Varx 7! Varx
App t1 t2 7! App t1 t2x # t tf0 Varxg 7! t0

Lam t 7! t0
The version according to Charguéraud et al8x =2 L: tf0 Varxg 7! t0

Lam t 7! t0

The relation strip in nominal:x 7! xt1 t2 7! t1 t2t 7! t0�x:t 7! t0

Edinburgh, 29. May 2007 – p.16 (1/3)

Bonus: Strip
Locally-nameless version:

Varx 7! Varx
App t1 t2 7! App t1 t2x # t tf0 Varxg 7! t0

Lam t 7! t0
The version according to Charguéraud et al8x =2 L: tf0 Varxg 7! t0

Lam t 7! t0

Edinburgh, 29. May 2007 – p.16 (2/3)

Bonus: Strip
Locally-nameless version:

Varx 7! Varx
App t1 t2 7! App t1 t2x # t tf0 Varxg 7! t0

Lam t 7! t0
The version according to Charguéraud et al8x =2 L: tf0 Varxg 7! t0

Lam t 7! t0

Lam (Bnd 0) 7! Varx but Lam (Bnd 0) 67! Varx

Edinburgh, 29. May 2007 – p.16 (3/3)

	�egin {tabular}{@{hspace {-2mm}}c@{}} �ontsize {20}{22}usefont {T1}{ptm}{b}{n}Strong Induction Principles\[-2mm] �ontsize {20}{22}usefont {T1}{ptm}{b}{n}in the Locally Nameless\[-2mm] �ontsize {20}{22}usefont {T1}{ptm}{b}{n}Representation of Binders\
ormalsize (Work in Progress)\[-3mm]
end {tabular}
	�egin {tabular}{@{}c@{}}Outlineend {tabular}
	�egin {tabular}{@{}c@{}}Strong Induction Principlesend {tabular}
	�egin {tabular}{@{}c@{}}Strong Rule Inductionsend {tabular}
	�egin {tabular}{@{}c@{}}An Interesting Relationend {tabular}
	�egin {tabular}{@{}c@{}}VC-Compatibilityend {tabular}
	�egin {tabular}{@{}c@{}}Locally Namelessend {tabular}
	Typing Relation in LN
	Proof of Weakening
	�egin {tabular}{@{}c@{}}Existing Solutionsend {tabular}
	�egin {tabular}{@{}c@{}}Our Approachend {tabular}
	Our Conditions
	A Faulty Lemma
	�egin {tabular}{@{}c@{}}Some Problemsend {tabular}
	�egin {tabular}{@{}c@{}}Conclusionsend {tabular}
	�egin {tabular}{@{}c@{}}Bonus: Stripend {tabular}

