# Towards Language-Based Cryptographic Proofs 

Gilles Barthe Benjamin Grégoire Romain Janvier Santiago Zanella Béguelin

RINRIA

INRIA Sophia Antipolis
INRIA-Microsoft Research Joint Centre
2007.10.04

In our opinion, many proofs in cryptography have become essentially unverifiable. Our field may be approaching a crisis of rigor M. Bellare and P. Rogaway, EuroCrypt 2006

## What's wrong with cryptographic proofs

## Increasing complexity in cryptographic proofs

## Unmanageable numbers of them appearing in articles

No one willing to verify boring, repetitive, handmade proofs

Subtle errors in supposedly peer-reviewed cryptographic proofs

## What's wrong with cryptographic proofs

Increasing complexity in cryptographic proofs $+$

Unmanageable numbers of them appearing in articles

No one willing to verify boring, repetitive, handmade proofs

Subtle errors in supposedly peer-reviewed cryptographic proofs

## What's wrong with cryptographic proofs

Increasing complexity in cryptographic proofs


Unmanageable numbers of them appearing in articles $+$

No one willing to verify boring, repetitive, handmade proofs

Subtle errors in supposedly peer-reviewed cryptographic proofs

## What's wrong with cryptographic proofs

Increasing complexity in cryptographic proofs


Unmanageable numbers of them appearing in articles $+$

No one willing to verify boring, repetitive, handmade proofs

Subtle errors in supposedly peer-reviewed cryptographic proofs

- In our opinion, many proofs in cryptography have become essentially unverifiable. Our field may be approaching a crisis of rigor
M. Bellare and P. Rogaway.
- Do we have a problem with cryptographic proofs? Yes, we do [...] We generate more proofs than we carefully verify (and as a consequence some of our published proofs are incorrect) S. Halevi
- Security proofs in cryptography may be organized as sequences of games [...] this can be a useful tool in taming the complexity of security proofs that might otherwise become so messy, complicated, and subtle as to be nearly impossible to verify
V. Shoup


## The game-playing technique

## The general idea

- Describe security using a game played between a challenger and an adversary. May be encoded as a program in a probabilistic programming language,
- Pick an initial game, transform it stepwise preserving (up to a negligible factor) or increasing the winning probability of the adversary,
- Bound this probability in the final game.
- Argue that the bound also holds for the initial game
- For all this, rely on a well-defined set of hypotheses (e.g. Decisional Diffie-Hellman) and properties of primitives (Ideal-cipher, one-way function)


## The game-playing technique

## The general idea

- Describe security using a game played between a challenger and an adversary. May be encoded as a program in a probabilistic programming language,
- Pick an initial game, transform it stepwise preserving (up to a negligible factor) or increasing the winning probability of the adversary,
- Bound this probability in the final game.
- Argue that the bound also holds for the initial game
- For all this, rely on a well-defined set of hypotheses (e.g. Decisional Diffie-Hellman) and properties of primitives (Ideal-cipher, one-way function)

Caveat: Game-playing doesn't substitute probabilistic reasoning but supplements it.

## Goals and rationale

Our objective is to build a certified tool for checking game-playing proofs, on top of a general purpose proof assistant (Coq)

- The tool provides independently checkable certificates that justify transitions between games
- Security goals, properties and hypotheses are explicit. The latter can be taken from a standard library.
- The "mundane" and "innovative" parts of the proofs can be justified formally in a unified formalism.

Disclaimer: we are (currently) not interested in

- Discovering the sequence of games,
- user interface


## A probabilistic While programming language

$$
\begin{aligned}
& \mathcal{C} \ni c \quad::=\text { skip } \\
& \mid x \leftarrow e \\
& \mid x \leftrightarrows \Delta \\
& \mid \text { while e do } c \\
& \mid \text { if } e \text { then } c_{1} \text { else } c_{2} \\
& \mid c 1 ; c 2 \\
& \mid x \leftarrow p\left(e_{1}, e_{2}, \ldots\right)
\end{aligned}
$$

Our semantics maps a command $c$ and an initial state $\sigma$ to the expected value operator over the distribution of states where the execution $c$ halts starting from $\sigma$

$$
\llbracket \cdot \rrbracket: \mathcal{C} \rightarrow \mathcal{S} \rightarrow(\mathcal{S} \rightarrow[0,1]) \rightarrow[0,1]
$$

Intuitevely,

$$
\llbracket c \rrbracket \sigma f=\sum_{\sigma^{\prime} \in \mathcal{S}} f\left(\sigma^{\prime}\right) \operatorname{Pr}\left[\langle c, \sigma\rangle \downarrow \sigma^{\prime}\right]
$$

Instead of defining the semantic function directly, we rely on a frame-based small-step semantics.

We define $\mathcal{D}_{A}=(A \rightarrow[0,1]) \rightarrow[0,1]$.
$\llbracket \cdot \rrbracket_{1}: \mathcal{C} \rightarrow \mathcal{S} \rightarrow \mathcal{D}_{\mathcal{S}}$ is the frame-based small-step semantics
$\llbracket \cdot \rrbracket_{n}: \mathcal{C} \rightarrow \mathcal{S} \rightarrow \mathcal{D}_{\mathcal{S}}$ is the $n$-unfold of $\llbracket \cdot \rrbracket_{1}$
$\llbracket \cdot \rrbracket: \mathcal{C} \rightarrow \mathcal{M} \rightarrow \mathcal{D}_{\mathcal{M}}$ is defined as the LUB of $\llbracket \cdot \rrbracket_{n}$, measuring the function on memories of final configurations reachable in at most $n$ steps.

$$
\llbracket c \rrbracket \mu f=\operatorname{lub}\left(\lambda n \cdot \llbracket c \rrbracket_{n} \mu f!\right)
$$

Where $f!\sigma^{\prime}$ takes the value of $f$ on the memory of $\sigma^{\prime}$ if it is a final configuration and 0 otherwise.

The least upper bound is guaranteed to exist and corresponds to the limit when restricted to monotone sequences.

Since $\llbracket c \rrbracket_{n} \mu!f$ is increasing, the semantics is well defined.

- Game-playing cryptographic proofs try to bound the winning probability of an adversary often by proving indistinguishability between a scheme and an ideal version of it. Program equivalence is key for this kind of proofs
- Our definition of program equivalence satisfies congruence properties that allow to relate two programs under different contexts.
- Although our definition is semantical, we derive syntactic criteria for deciding program equivalence and prove them correct wrt the semantical definition.


## Observational equivalence

## Definition (Indistinguishable functions)

We say that two functions $f, g: \mathcal{M} \rightarrow A$ are indistinguishable wrt a relation $R \subseteq \mathcal{M} \times \mathcal{M}$ and denote it as $f \simeq_{R} g$ iff

$$
\forall\left(\mu_{1}, \mu_{2}\right) \in R \cdot f \mu_{1}=g \mu_{2}
$$

## Definition (Observational equivalence)

Let $P, Q \subseteq \mathcal{M} \times \mathcal{M}$ be a PER over memories, we say that $c_{1}$ is observational equivalent to $c_{2}$ wrt to the input relation $P$ and the output relation $Q$ and denote it $c_{1} \simeq{ }_{P}^{Q} c_{2}$ iff,

$$
\begin{aligned}
& \forall\left(\mu_{1}, \mu_{2}\right) \in P ; f, g \in \mathcal{M} \rightarrow[0,1] . \\
& \quad f \simeq_{Q} g \Rightarrow \llbracket c_{1} \rrbracket \mu_{1} f=\llbracket c_{2} \rrbracket \mu_{2} g
\end{aligned}
$$

## Observational equivalence properties

$$
\begin{array}{cl}
\frac{c_{1} \simeq_{P}^{Q} c_{2}}{c_{2} \simeq_{P}^{Q} c_{1}} \text { sym } & \frac{c_{1} \simeq_{P}^{Q} c_{2} \quad c_{2} \simeq{ }_{P}^{Q} c_{3}}{c_{1} \simeq_{P}^{Q} c_{3}} \text { trans } \\
\frac{c_{1} \simeq Q}{Q} c_{2} \quad P^{\prime} \subseteq P \\
c_{1} \simeq_{P^{\prime}}^{Q} c_{2} & \text { str } \frac{c_{1} \simeq_{P}^{Q} c_{2} Q \subseteq Q^{\prime}}{c_{1} \simeq_{P}^{Q^{\prime}} c_{2}} \text { weak } \\
\frac{c_{1} \simeq_{P}^{Q} c_{1}^{\prime}}{c_{1} ; c_{2} c_{2} \simeq_{P}^{R} c_{1}^{\prime} ; c_{2}^{\prime}}{ }^{\prime} \\
\text { seq } \\
\frac{c_{1} \simeq_{P \mid e}^{Q} c_{1}^{\prime}}{} c_{2} \simeq_{P \mid-e}^{Q} c_{2}^{\prime} \llbracket e \rrbracket \simeq_{P} \llbracket e^{\prime} \rrbracket \\
\text { if } e \text { then } c_{1} \text { else } c_{2} \simeq_{P}^{Q} \text { if } e^{\prime} \text { then } c_{1}^{\prime} \text { else } c_{2}^{\prime} & \text { cond }
\end{array}
$$

- Algebraic manipulations
- substitute $s_{1} \stackrel{\$}{\leftarrow}\{0,1\}^{n} ; s_{2} \leftarrow s_{1} \oplus t$ for

$$
s_{2} \stackrel{\Phi}{\leftarrow}\{0,1\}^{n} ; s_{1} \leftarrow s_{2} \oplus t
$$

- substitute $h_{1} \leftarrow g^{u_{1}} ; h_{2} \leftarrow h_{1}^{\mu_{2}}$ for $h_{1} \leftarrow g^{u_{1}} ; h_{2} \leftarrow g^{u_{1} u_{2}}$
- Code motion
- Constant propagation
- Dead-code elimination
- Inlining of procedure calls
- Equivalent-until-failure games
- Derandomization
- replace $x \stackrel{\Phi}{\stackrel{ }{ }} t ; c$ with $x \leftarrow v ; c$ where $v$ maximizes over $t$ the probability of a failure event


## IND-CPA security of an asymmetric encryption scheme

## Definition (Assymetric encryption scheme)

A triple of algorithms $(\mathcal{K}, \mathcal{E}, \mathcal{D})$
$\mathcal{K}_{\eta}:$ Coins $\rightarrow$ Key $\times$ Key
$\mathcal{E}:$ Key $\times$ Plaintext $\times$ Coins $\rightarrow$ Ciphertext
$\mathcal{D}:$ Key $\times$ Ciphertext $\rightarrow$ Plaintext

Key generation
Encryption
Decryption
where $\forall(p k, s k)=\mathcal{K}_{\eta}(r), m, \phi=\mathcal{E}(p k, m) \Rightarrow m=\mathcal{D}(s k, \phi)$
A game-playing proof of IND-CPA for an asymmetric encryption scheme begins with a game like

$$
\begin{aligned}
& (p k, s k) \leftarrow \mathcal{K}_{\eta}() ;\left(m_{0}, m_{1}\right) \leftarrow A_{1}(p k) ; \\
& b \stackrel{\Phi}{\leftarrow}\{0,1\} ; \phi \leftarrow \mathcal{E}\left(p k, m_{b}\right) ; \\
& \hat{b} \leftarrow A_{2}\left(m_{0}, m_{1}, p k, \phi\right)
\end{aligned}
$$

If the probability of the event $\hat{b}=b$ after the execution can be bound by a negligible function of $\eta$, the game is IND-CPA secure.

Theorem: $\forall$ polynomial adversaries $\mathcal{A}, \mathcal{A}^{\prime}$ (sharing state), if the DDH problem is hard for the chosen group family, then

$$
\begin{aligned}
& \text { ElGamal } \stackrel{\text { def }}{=} \\
& x \stackrel{\Phi}{\leftarrow}[0 . . \eta] ; \alpha \leftarrow \gamma^{x} ; \\
& \left(m_{0}, m_{1}\right) \leftarrow \mathcal{A}(\alpha) ; \\
& y \stackrel{\Phi}{\leftarrow}[0 . . \eta] ; \beta \leftarrow \gamma^{y} ; \\
& \delta \leftarrow \alpha^{y} ; \\
& \zeta \leftarrow \delta \times m_{0} ; \\
& d \leftarrow \mathcal{A}^{\prime}(\alpha, \beta, \zeta) ;
\end{aligned}
$$

$$
\approx_{[d=1]}^{\eta} \quad \begin{aligned}
& \text { EIGamal }_{1} \stackrel{\text { def }}{=} \\
& x \stackrel{\Phi}{\leftarrow}[0 . . \eta] ; \alpha \leftarrow \gamma^{x} ; \\
& \left(m_{0}, m_{1}\right) \leftarrow \mathcal{A}(\alpha) ; \\
& y \stackrel{\$}{\leftarrow}[0 . . \eta] ; \beta \leftarrow \gamma^{y} ; \\
& \delta \leftarrow \alpha^{y} ; \\
& \zeta \leftarrow \delta \times m_{1} ; \\
& d \leftarrow \mathcal{A}^{\prime}(\alpha, \beta, \zeta)
\end{aligned}
$$

DDH assumption: it's hard to distinguish $\left(\gamma^{x}, \gamma^{y}, \gamma^{x y}\right)$ from $\left(\gamma^{x}, \gamma^{y}, \gamma^{z}\right)(x, y, z$ uniformly sampled in $[0 . . \eta])$.

## Semantic security of EIGamal encryption

Proof. (as a sequence of games)

$$
\begin{aligned}
& \text { EIGamal }_{0} \stackrel{\text { def }}{=} \\
& x \stackrel{\Phi}{\leftarrow}[0 . . \eta] ; \alpha \leftarrow \gamma^{x} \\
& \left(m_{0}, m_{1}\right) \leftarrow \mathcal{A}(\alpha) ; \\
& y \stackrel{\Phi}{\leftarrow}[0 . . \eta] ; \beta \leftarrow \gamma^{y} ; \\
& \delta \leftarrow \alpha^{y} ; \\
& \zeta \leftarrow \delta \times m_{0} ; \\
& d \leftarrow \mathcal{A}^{\prime}(\alpha, \beta, \zeta) ;
\end{aligned}
$$



DDH assumption: it's hard to distinguish $\left(\gamma^{x}, \gamma^{y}, \gamma^{x y}\right)$ from $\left(\gamma^{x}, \gamma^{y}, \gamma^{z}\right)(x, y, z$ uniformly sampled in $[0 . . \eta])$.
$\mathrm{DDH}_{1} \stackrel{\text { def }}{=}$
$x \stackrel{\$}{\leftrightarrows}[0 . . \eta] ; \alpha \leftarrow \gamma^{x}$
$y \stackrel{\$}{\leftarrow}[0 . . \eta] ; \beta \leftarrow \gamma^{y} ;$
$\delta \leftarrow \alpha^{y} ;$
$d \leftarrow \mathcal{B}(\alpha, \beta, \delta)$

apply DDH_assumption
Proof that $\mathcal{B}$ is polynomial if $\mathcal{A}$ and $\mathcal{A}^{\prime}$ are so

## Semantic security of EIGamal encryption

$$
\begin{aligned}
& \mathrm{DDH}_{r} \stackrel{\text { def }}{=} \\
& x \stackrel{\Phi}{\leftarrow}[0 . . \eta] ; \alpha \leftarrow \gamma^{x} ; \\
& y \stackrel{\Phi}{\leftarrow}[0 . . \eta] ; \beta \leftarrow \gamma^{y} ; \\
& z \stackrel{\Phi}{\leftarrow}[0 . . \eta] ; \delta \leftarrow \gamma^{z} ; \\
& d \leftarrow \mathcal{B}(\alpha, \beta, \delta)
\end{aligned}
$$

```
simplify
code_motion
simplify
inline B; simplify
```

ElGamalo
ElGamalo
x \$ [0..\eta]; \alpha\leftarrow
x \$ [0..\eta]; \alpha\leftarrow
(m0, m1)\leftarrow\mathcal{A}(\alpha);
(m0, m1)\leftarrow\mathcal{A}(\alpha);
y \$ [0..\eta]; \beta\leftarrow\mp@subsup{\gamma}{}{y};
y \$ [0..\eta]; \beta\leftarrow\mp@subsup{\gamma}{}{y};
z}$&[0..\eta];\delta\leftarrow\mp@subsup{\gamma}{}{z}
z}$\&[0..\eta];\delta\leftarrow\mp@subsup{\gamma}{}{z}
\zeta\leftarrow\delta\times mo;
\zeta\leftarrow\delta\times mo;
d}\leftarrow\mp@subsup{\mathcal{A}}{}{\prime}(\alpha,\beta,\zeta
d}\leftarrow\mp@subsup{\mathcal{A}}{}{\prime}(\alpha,\beta,\zeta

$$
\begin{aligned}
& \text { ElGamal }_{0}^{1} \stackrel{\text { def }}{=} \\
& x \stackrel{\$}{\leftarrow}[0 . . \eta] ; \alpha \leftarrow \gamma^{x} ; \\
& \left(m_{0}, m_{1}\right) \leftarrow \mathcal{A}(\alpha) ; \\
& y \stackrel{\$}{\leftarrow}[0 . . \eta] ; \beta \leftarrow \gamma^{y} ; \\
& z \stackrel{\$}{\leftarrow}[0 . . \eta] ; \delta \leftarrow \gamma^{z} ; \\
& \zeta \leftarrow \delta \times m_{0} ; \\
& d \leftarrow \mathcal{A}^{\prime}(\alpha, \beta, \zeta)
\end{aligned}
$$

$$
\begin{aligned}
& \text { ElGamal }^{2} \stackrel{\text { def }}{=} \\
& x \stackrel{\$}{\leftarrow}[0 . . \eta] ; \alpha \leftarrow \gamma^{x} ; \\
& \left(m_{0}, m_{1}\right) \leftarrow \mathcal{A}(\alpha) ; \\
& y \stackrel{\$}{\leftarrow}[0 . . \eta] ; \beta \leftarrow \gamma^{y} ; \\
& z \stackrel{\$}{\leftarrow}[0 . . \eta] ; \zeta \leftarrow \gamma^{z} ; \\
& d \leftarrow \mathcal{A}^{\prime}(\alpha, \beta, \zeta)
\end{aligned}
$$

simplify_head 6
simplify_tail
apply mult_pad

$$
\text { mult_pad : } \forall a, b, c, d \cdot\left(a \stackrel{\$}{\leftarrow}[0 . . \eta] ; b \leftarrow \gamma^{a} ; c \leftarrow b \times d\right) \simeq_{c}\left(a \stackrel{\$}{\leftarrow}[0 . . \eta] ; c \leftarrow \gamma^{a}\right)
$$

Thus, we have
$\mathrm{EIGamal}_{0} \simeq \mathrm{DDH}_{I} \approx_{[d=1]}^{\eta} \mathrm{DDH}_{r} \simeq \mathrm{EIGamal}_{0}^{1} \simeq \mathrm{EIGamal}^{2}$
which implies that

$$
\text { ElGamal }_{0} \approx_{[d=1]}^{\eta} \text { ElGamal }^{2}
$$

Symetrically, EIGamal ${ }_{1} \approx_{[d=1]}^{\eta}$ EIGamal $^{2}$ and therefore

$$
\text { EIGamal }_{0} \approx_{[d=1]}^{\eta} \text { EIGamal }_{1}
$$

Q.E.D.

So far, formalized in Coq (20k lines)

- Semantics of a probabilistic programming language
- Theory of program equivalence
- Reflective tactics for performing common transformations
- A proof of EIGamal IND-CPA security
- A significant part of the proof of OAEP IND-CPA security
- Preliminary asymptotic version of the PRP/PRF switching lemma

Disclaimer

- Semantics of groups and bitstrings is axiomatized
- For the time being, we (almost) avoid complexity issues
- We do not have a complete proof of OAEP semantic security

Prospective applications

- computational soundness of an information flow type system.
- verification of randomized algorithms in general

$$
\begin{aligned}
\operatorname{Adv}{ }_{G}^{A} \stackrel{\text { def }}{=} & \left|\operatorname{Pr}\left[G_{A}^{b} \rightarrow b\right]-\frac{1}{2}\right| \\
= & \left|\operatorname{Pr}\left[G_{A}^{b} \rightarrow b \wedge b=0\right]+\operatorname{Pr}\left[G_{A}^{b} \rightarrow b \wedge b=1\right]-\frac{1}{2}\right| \\
= & \mid \operatorname{Pr}\left[G_{A}^{b} \rightarrow b \mid b=0\right] \operatorname{Pr}[b=0]+ \\
& \left.\quad \operatorname{Pr}\left[G_{A}^{b} \rightarrow b \mid b=1\right] \operatorname{Pr}[b=1]-\frac{1}{2} \right\rvert\, \\
= & \left|\operatorname{Pr}\left[G_{A}^{0} \rightarrow 0\right] \frac{1}{2}+\operatorname{Pr}\left[G_{A}^{1} \rightarrow 1\right] \frac{1}{2}-\frac{1}{2}\right| \\
= & \left|\left(1-\operatorname{Pr}\left[G_{A}^{0} \rightarrow 1\right]\right) \frac{1}{2}+\operatorname{Pr}\left[G_{A}^{1} \rightarrow 1\right] \frac{1}{2}-\frac{1}{2}\right| \\
= & \frac{1}{2}\left|\operatorname{Pr}\left[G_{A}^{0} \rightarrow 1\right]-\operatorname{Pr}\left[G_{A}^{1} \rightarrow 1\right]\right|
\end{aligned}
$$

