
Type Soundness of λ-calculus

with Shift/Reset and Let-Polymorphism

(Can we formalize “syntactic approach”

in Isabelle/HOL + Nominal package?)

Noriko Hirota and Kenichi Asai

Ochanomizu University

September 4, 2009

History

Aug. 2005 Type soundness of monomorphic λ-calculus with
shift/reset is formalized using Isabelle/HOL (without
Nominal package). Tried to extend it to cope with
let-polymorphism. But the α-renaming problem
appeared to be too difficult.

Nov. 2006 Continued efforts without good progress.

Feb. 2007 I found Nominal package! I changed whole the proof
accordingly, but the proof still did not complete.

late 2007 I found “Engineering Formal Metatheory” paper, and
encouraged my student to use it to prove type
soundness of our calculus.

Feb. 2008 The proof completed!

Feb. 2009 Resumed formalization with better Nominal package.

July 2009 Hit major(?) problem. (= this talk)

Special thanks to Christian Urban for numerous advice.

(Monomorphic) λ-calculus

Syntax M = x | λx .M | M@M

Types T = b | T → T

Typing rules Γ, x : T ⊢ x : T

Γ, x : T1 ⊢ M : T2

Γ ⊢ λx .M : T1 → T2

Γ ⊢ M1 : T1 → T2 Γ ⊢ M2 : T1

Γ ⊢ M1@M2 : T2

Soundness If ⊢ M : T , then M is a value, or there exists M ′

such that M reduces to M ′ and ⊢ M ′ : T .

Formalization If M is a closed program, we don’t encounter
α-renaming problem. Type soundness can be proved
using “syntactic approach” without using nominal
package.

(Monomorphic) λ-calculus with shift and reset

Syntax M = x | λx .M | M@M | Sk .M | 〈M〉

Types T = b | T1/α → T2/β

Typing rules Γ, x : T ; α ⊢ x : T ; α

Γ, x : T1; α ⊢ M : T2; β

Γ; δ ⊢ λx .M : T1/α → T2/β; δ

Γ, k : T/δ → α/δ; σ ⊢ M : σ; β

Γ;α ⊢ Sk .M : T ; β

Γ; δ ⊢ M1 : T1/α → T2/ǫ; β Γ; ǫ ⊢ M2 : T1; δ

Γ;α ⊢ M1@M2 : T2; β

Γ;σ ⊢ M : σ; T

Γ;α ⊢ 〈M〉 : T ; α

Soundness If ;α ⊢ M : T ; β, then M is a value or Sk .M without
surrounding reset, or there exists M ′ such that M

reduces to M ′ and ;α ⊢ M ′ : T ; β.

Formalization We can still assume that M is a closed program,
avoiding α-renaming problem. Type soundness can
be proved using “syntactic approach” without using
nominal package (3000 lines in Isabelle/HOL).

λ-calculus with let-polymorphism

Syntax M = x | λx .M | M@M | let x = M in M

Types T = α | b | T → T

Type scheme S = T | ∀α.S

Typing rules Γ, x : S ⊢ x : T S > T

Γ, x : T1 ⊢ M : T2

Γ ⊢ λx .M : T1 → T2

Γ ⊢ M1 : T1 → T2 Γ ⊢ M2 : T1

Γ ⊢ M1@M2 : T2

Γ ⊢ V : T1 Γ, x : close(Γ, T1) ⊢ M : T2

Γ ⊢ let x = V in M : T2

(employing value restriction)

Soundness If ⊢ M : T , then M is a value, or there exists M ′

such that M reduces to M ′ and ⊢ M ′ : T .

Overview of required lemmas

◮ weakening lemma:
If Γ ⊢ M : T and x free in M, then Γ, x : S ⊢ M : T .

◮ instantiation lemma:
If Γ ⊢ M : T , then σ(Γ) ⊢ M : σ(T).

◮ substitution lemma:
If Γ, x : ∀α.T ⊢ M : T ′ and Γ ⊢ V : T and α is fresh in Γ,
then Γ ⊢ M[x 7→ V] : T ′.

◮ subject reduction (preservation):
If Γ ⊢ M : T and M reduces to M ′, then Γ ⊢ M ′ : T .

◮ progress

Weakening of let is subtle

◮ typing rule for let:

Γ ⊢ V : T1 Γ, x : close(Γ, T1) ⊢ M : T2

Γ ⊢ let x = V in M : T2

◮ We have:

⊢ λx .x : α → α f : ∀α.α → α ⊢ f @f : β → β

⊢ let f = λx .x in f @f : β → β

but if we add y : α in the environment, close(y : α, α → α)
becomes monomorphic α → α, and the above expression no
longer type checks.

◮ We actually need:

Γ ⊢ V : T1 Γ, x : close(Γ|V , T1) ⊢ M : T2

Γ ⊢ let x = V in M : T2

Substitution lemma gets difficult

For let case:

◮ From assumption, we have:

Γ′ ⊢ U : T3 Γ′, y : close(Γ′|U , T3) ⊢ M : T2

Γ′ ⊢ let y = U in M : T2

where Γ′ = Γ, x : ∀α.T1

◮ from induction hypothesis, we have:

Γ ⊢ U[x 7→ V] : T3, Γ, y : close(Γ′|U , T3) ⊢ M[x 7→ V] : T2

for Γ ⊢ V : T1.

◮ we have to show:

Γ ⊢ U[x 7→ V] : T3 Γ, y : close(Γ|U[x 7→V], T3) ⊢ M[x 7→ V] : T2

Γ ⊢ (let y = U in M)[x 7→ V] : T2

Can we prove:

from
Γ, y : close(Γ′|U , T3) ⊢ M[x 7→ V] : T2

the following

Γ, y : close(Γ|U[x 7→V], T3) ⊢ M[x 7→ V] : T2

possibly using the lemma:

If Γ, y : S ⊢ M : T2 and S ′ > S , then Γ, y : S ′ ⊢ M : T2.

◮ But it seems the first > below does not hold in general:

close(Γ|U[x 7→V], T3) 6> close(Γ|U , T3) > close(Γ′|U , T3)

◮ What if Γ(z) contains type variables that have to be
generalized in T3, where z is a free variable of V ?

Another α-renaming problem other than binders?

Typing rule for let:

Γ ⊢ V : T1 Γ, x : close(Γ, T1) ⊢ M : T2

Γ ⊢ let x = V in M : T2

◮ Type variables that appear in Γ ⊢ V : T1 should be fresh.

◮ They can be substituted consistently.

◮ This is another instance of “variable convention.”

◮ But no binders are used here.

Another typing rule for let

◮ old:
Γ ⊢ V : T1 Γ, x : close(Γ, T1) ⊢ M : T2

Γ ⊢ let x = V in M : T2

◮ new:

(∀T1.S > T1 ⇒ Γ ⊢ V : T1) Γ, x : S ⊢ M : T2

Γ ⊢ let x = V in M : T2

Instantiation lemma gets difficult

If Γ ⊢ M : T , then σ(Γ) ⊢ M : σ(T).

For let case:

◮ From assumption, we have:

(∀T1.S > T1 ⇒ Γ ⊢ V : T1) Γ, x : S ⊢ M : T2

Γ ⊢ let x = V in M : T2

◮ from induction hypothesis, we have:

∀T1.S > T1 ⇒ σ(Γ) ⊢ V : σ(T1) σ(Γ, x : S) ⊢ M : σ(T2)

◮ we have to show:

(∀T ′

1.σ(S) > T ′

1 ⇒ σ(Γ) ⊢ V : T ′

1) σ(Γ), x : σ(S) ⊢ M : σ(T2)

σ(Γ) ⊢ let x = V in M : σ(T2)

Can we prove:

from
∀T1.S > T1 ⇒ σ(Γ) ⊢ V : σ(T1)

the following

∀T ′

1.σ(S) > T ′

1 ⇒ σ(Γ) ⊢ V : T ′

1 ?

◮ Assume σ(S) > T ′

1. I.e., pick any σ′ such that σ′(σ(S)) = T ′

1.

◮ If we can swap σ and σ′, we have σ(σ′(S)) = T ′

1 and hence
σ(S) > T ′

1 = σ(σ′(S)).

◮ If σ is a bijection, we have S > σ′(S).

◮ Then, from assumption (where T1 = σ′(S)), we have
σ(Γ) ⊢ V : σ(σ′(S)) as desired.

Can we swap σ and σ
′?

No.

◮ To prove the goal:

∀T ′

1.σ(S) > T ′

1 ⇒ σ(Γ) ⊢ V : T ′

1

we have to consider all T ′

1, i.e., all σ′.

◮ We cannot assume that the chosen σ′ is disjoint from σ.

To make σ′ and σ disjoint, we need to weaken the typing rule for
let:

(∀T1 6∈ L.S > T1 ⇒ Γ ⊢ V : T1) Γ, x : S ⊢ M : T2

Γ ⊢ let x = V in M : T2

Summary

“Engineering Formal Metatheory” approach in Coq:

◮ It went just fine.

◮ Treatment of mutual recursion was not clear.

◮ The choice of L did not go automatically.

Isabelle/HOL with Nominal package:

◮ Simple and fits well to intuition.

◮ In the α-renaming problem, there appears to be more than
just binders.

Should I continue the proof?

◮ Formally proven at least in Coq.

◮ I do not have anyone expert in my building.

◮ (And writing proof scripts spoils my health.)

	Title
	History
	Type soundness
	Proof
	Summary

