
A Certified Interpreter for ML with
Structural Polymorphism

Jacques Garrigue

Nagoya University

http://www.math.nagoya-u.ac.jp/~garrigue/papers/

What’s in OCaml’s type system

– Core ML with relaxed value restriction

– Recursive types

– Polymorphic objects and variants

– Structural subtyping (with variance annotations)

– Modules and applicative functors

– Private types: private datatypes, rows and

abbreviations

– Recursive modules . . .
1

What are the guarantees?

Proved before (by many)

– Type soundness and principality of type inference for various
subsets (by hand).

– Mechanical proof of type soundness for the core part:
OCaml-Light project (without the relaxed value restriction).

What I have done in Coq over the last 2 years

– A certified interpreter for ML with structural polymorphism.

– Includes type soundness and principality of inference.

– Covers polymorphic objects and variants, with recursion.

– Mechanization is based on “Engineering formal metatheory”.

2

Structural polymorphism

A typing framework for polymorphic variants and records.

– Faithful description of the core of OCaml.

– Polymorphism is described by local constraints.

– Constraints are kept in a recursive kinding

environment.

– Constraints are abstract, and constraint domains with

their δ-rules can be defined independently.

3

Types and kinds

Types are mixed with kinds in a mutually recursive way.

T ::= α type variable
| T → T function type

σ ::= ∀ᾱ.K . T polytypes
K ::= ∅ | K, α :: κ kinding environment
κ ::= • | (C;R) kind
R ::= {a : T , . . .} relation set

Type judgments contain both a type and a kinding

environment.

K;E ` e : T

4

Example: polymorphic variants

Kinds have the form (L, U ;R), such that L ⊂ U .

Number(5) : α :: ({Number},L; {Number : int}) . α

l2 = [Number(5), Face(”King”)]
l2 : α :: ({Number , Face},L; {Number : int , Face : string}) . α list

length = function Nil() → 0 | Cons(a, l) → 1 + length l
length : α :: (∅, {Nil , Cons}; {Nil : unit , Cons : β × α}) . α → int

length ′ = function Nil() → 0 | Cons(l) → 1 + length l
length ′ : α :: (∅, {Nil , Cons}; {Nil : unit , Cons : α}) . α → int

f l = length l + length2 l
f : α :: (∅, {Nil , Cons}; {Nil : unit , Cons : β × α, Cons : α}) . α → int

5

Typing rules

Variable
K, K0 ` θ : K dom(θ) ⊂ B

K;E, x : ∀B.K0 . T ` x : θ(T)

Abstraction
K;E, x : T ` e : T ′

K;E ` fun x → e : T → T ′

Application
K;E ` e1 : T → T ′ K;E ` e2 : T

K;E ` e1 e2 : T ′

Generalize
K;E ` e : T B ∩ FVK(E) = ∅
K|B;E ` e : ∀B.K|B . T

Let
K;E ` e1 : σ K;E, x : σ ` e2 : T

K;E ` let x = e1 in e2 : T

Constant
K0 ` θ : K type(c) = K0 . T

K;E ` c : θ(T)

K0 ` θ : K iff α :: κ ∈ K0 implies θ(α) :: κ′ ∈ K and κ′ |= θ(κ)

6

Engineering formal metatheory

Aydemir, Charguéraud, Pierce, Pollack, Weirich [POPL08]

Soundness for various type systems (F≤, ML, CoC).

Two main ideas to avoid renaming:

– Locally nameless definitions
Use de-bruijn indices inside terms and types,
but named variables for environments.

– Co-finite quantification
Variables local to a branch are quantified universally.
This allows reuse of derivations in different contexts.

Formalization is not always intuitive, but streamlines proofs of type
soundness.

7

Typing rules (co-finite)

Variable

K ` T̄ :: κ̄T̄

K;E, x : κ̄ . T1 ` x : T T̄
1

Abstraction
∀x 6∈ L K;E, x : T ` ex : T ′

K;E ` λe : T → T ′

Application
K;E ` e1 : T → T ′ K;E ` e2 : T

K;E ` e1 e2 : T ′

Generalize
∀ᾱ /∈ L K, ᾱ :: κ̄ᾱ;E ` e : T

K;E ` e : κ̄ . T

Let ∀x 6∈ L
K;E ` e1 : σ K;E, x : σ ` ex

2 : T

K;E ` let e1 in e2 : T

Constant

K ` T̄ :: κ̄T̄ Tconst(c) = κ̄ . T1

K;E ` c : T T̄
1

K ` α :: κ when α :: κ′ ∈ K and κ′ |= κ
K ` T :: • always

8

Soundness results

Started from Engineering formal metatheory ML proof,
with many modifications to accomodate mutual recursion.
No renaming needed for soundness!

Lemma preservation : ∀ K E e e’ T,
K ; E |= e ~: T →
e --> e’ →
K ; E |= e’ ~: T.

Lemma progress : ∀ K e T,
K ; empty |= e ~: T →
value e ∨ exists e’, e --> e’.

Lemma value_irreducible : ∀ e e’,
value e → ~(e --> e’).

9

Extent of changes

Need simultaneous substitutions rather than iterated.

As a consequence, freshness of sequences of variables (ᾱ /∈ L) is
insufficient, and we need disjointness conditions (L1 ∩ L2 = ∅).

Also added a framework for constants and δ-rules.

Overall size just doubled, with no significant jump in complexity.

This does not include:

Additions to the metatheory, with tactics for finite set inclusion,
disjointness, etc... (1300 lines)

Domain proofs, for concrete constraints and constants. (800)

10

Constraint domain proofs

Instantiation of the framework to a constraint domain results in the
following “dialog”. This was done for the domain of polymorphic
variants and records.

Module Cstr. (* Define constraints *) End Cstr.
Module Const. (* Constants and arities *) End Const.
Module Sound1 := MkSound(Cstr)(Const).
Import Sound1 Infra Defs.

Module Delta. (* Constant types and delta-rules *) End Delta.
Module Sound2 := Mk2(Delta).
Import Sound2 JudgInfra Judge.

Module SndHyp. (* Domain proofs *) End SndHyp.
Module Soundness := Mk3(SndHyp).

11

Adding a non-structural rule

Kind GC
FVK(E, T) ∩ dom(K′) = ∅
K, K′;E ` e : T
K;E ` e : T

cofinite Kind GC
∀ᾱ 6∈ L

K, ᾱ :: κ̄ᾱ;E `GC e : T
K;E `GC e : T

– Formalizes the intuition that kinds not appearing in either E or
T are not relevant to the typing judgment.

– Good for modularity.

– Not derivable in the original type system, as all kinds used in a
derivation must be in K from the beginning.

– Again, the co-finite version is implicit.

12

Working with Kind GC

Framework proofs are still easy (induction on derivations), but
domain proofs become much harder (inversion no longer works).

One would like to prove the following lemma:

K;E `GC e : T ⇒ ∃K′, K, K′;E ` e : T

I got completely stuck in the co-finite system, as co-finite
quantification in Generalize does not commute with Kind GC.

I could finally prove it in more than 1300 lines, including
renaming lemmas for both terms and types.

Afterwards, I realized that I only needed canonicization of proofs,
which is only 100 lines, as it does not require renaming.

13

Type inference

Type inference is done in the usual ML way:

– W-like algorithm relying on type unification.

– All functions return both a normalized substitution

and an updated kinding environment.

– Statements of inductive theorems become much more

complex.

– Simpler statements as corrolary.

– Renaming lemmas are needed.

14

Unification

Formal proofs in LCF by Paulson as early as 1985.

Here we also need to handle the kinding environment, making the
algorithm much more complicated.

Rather than θ is more general than θ′ (∃θ1, θ′ = θ1 ◦ θ) used the
simpler θ′ extends θ (θ′ ◦ θ = θ′). They are equivalent when θ is
idempotent.

900 lines for definitions and soundness, thanks to an induction
lemma exploiting symmetries. 1000 more lines for completeness,
with a large part for termination.

15

Type inference

For core ML, W’s correctness was proved about 10 years ago, both
in Isabelle and Coq.

The original paper on type inference structural polymorphism
contained only proofs about unification.

The practical type inference alorithm is very complex, due to
subtleties of generalize.

Both soundness and principality require renaming. Soundness of
generalize renames type variables twice!

More than 3000 lines of proof, with lots of lemmas about free
variables.

16

Type inference (let case)

generalize(K, E, T , L) =
let A = FVK(E) and B = FVK(T) in
let K′ = K|A in let ᾱ :: κ̄ = K′|B in
let {ᾱ′} = B \ (A ∪ {ᾱ}) in let κ̄′ = map (λ .•) ᾱ′ in
〈(K|A, K′|L), [ᾱᾱ′](κ̄κ̄′ . T)〉

typinf(K, E, let e1 in e2, T , θ, L) =
let α = fresh(L) in
match typinf(K, E, e1, α, θ, L ∪ {α}) with
| 〈K′, θ′, L′〉 ⇒

let 〈K′′, σ〉 = generalize(θ′(K′), θ′(E), θ′(T), θ′(dom(K))) in
let x = fresh(dom(E) ∪ FV(e1) ∪ FV(e2)) in
typinf(K′′, (E, x : σ), ex

2, T , θ′, L′)
| 〈〉 ⇒ 〈〉

17

Properties of type inference

Soundness
typinf ′(E, e) = 〈K, T 〉 → FV(E) = ∅ → K;E ` e : T

typinf(K, E, e, T, θ, L) = 〈K′, θ′, L′〉 →
dom(θ) ∩ dom(K) = ∅ → FV(θ, K, E, T) ⊂ L →
θ′(K′); θ′(E) ` e : θ′(T) ∧ θ′ v θ ∧ K ` θ′ : θ′(K′) ∧
dom(θ′) ∩ dom(K′) = ∅ ∧ FV(θ′, K′, E) ∪ L ⊂ L′

Principality

K;E ` e : T → FV(E) = ∅ →
∃K′T ′, typinf ′(E, e) = 〈K′, T ′〉 ∧ ∃θ, T = θ(T ′) ∧ K′ ` θ : K

K;E ` e : θ(T) → K ` θ(E1) ≤ E → θ v θ1 → K1 ` θ : K →
dom(θ1) ∩ dom(K1) = ∅ → dom(θ) ∪ FV(θ1, K1, E1, T) ⊂ L →
∃K′θ′L′, typinf(K1, E1, e, T, θ1, L) = 〈K′, θ′, L′〉 ∧
∃θ′′, θθ′′ v θ′ ∧ K′ ` θθ′′ : K ∧ dom(θ′′) ⊂ L′ \ L

18

Interpreter

Defined a stack based abstract machine.
Since variables are de Bruijn indices, we can use terms as code.

Theorem eval_sound_rec :
∀ (h:nat) (fl:list frame) (benv args:list clos) K t T,

closed_n (length benv) t ->
K ; E |= stack2trm (app2trm (inst t benv) args) fl ~: T ->
K ; E |= res2trm (eval fenv h benv args t fl) ~: T.

Theorem eval_complete : ∀ K t t’ T,
K ; E |= t ~: T ->
clos_refl_trans_1n _ red t t’ -> value t’ ->
∃h : nat,∃cl : clos,

eval fenv h [] [] t [] = Result 0 cl ∧ t’ = clos2trm cl.

19

Impact of locally nameless and co-finite

Since local and global variables are distinct, many definitions must
be duplicated, and we need lemmas to connect them.

– This is particularly painful for kinding environments, as they are
recursive.

– Yet having to handle explicitly names of bound type variables
would probably be even more painful.

Co-finite approach seems to be always a boon. Even for type
inference, only few proofs use renaming lemmas:

– principality only requires term variable renaming once.

– soundness requires both term and type variables renaming, not
surprising since we build a co-finite proof from a finite one.

20

Dependent types in values

They are used in the “engineering metatheory” framework only
when generating fresh variables:

Lemma var_fresh : ∀ L : vars, { x : var | x 6∈ L }.
I used dependent types in values in one other place: all kinds are
valid and coherent by construction.

– A bit more complexity in
domain proofs.

– But a big win since this
property is kept by sub-
stitution.

Record ckind : Set := Kind {
kcstr : Cstr.cstr;
kvalid : Cstr.valid kcstr;
krel : list (Cstr.attr×typ);
kcoherent : coherent kcstr krel }.

Also attempted to use dependent types for schemes (enforcing that
they are well-formed), but dropped them as it made proofs about
the type inference algorithm more complex.

21

What’s wrong?

Some proofs are still much bigger than expected: eval complete,
type inference, . . .

– The value predicate is complex, as it handles constant arity.
It might have been better to define constants as n-ary
constructors from the start.
This would require writing the induction principles by hand;
already done for closures.

– Using functions to represent algorithms is dirty.
In some cases, adding input-output inductive relations helped,
but in general it does not change the proof size significantly.

– Still wondering...

22

Using the algorithm

Once the framework is instantiated, one can extract the type
inference algorithm to ocaml, and run it.

(* This example is equivalent to the ocaml term [fun x -> ‘A0 x] *)
typinf1 (Coq_trm_cst (Const.Coq_tag (Variables.var_of_nat O)));;
- : (var * kind) list * typ =
([(1, None);

(2,
Some
{kind_cstr = {cstr_low = {0}; cstr_high = None};
kind_rel = Cons (Pair (0, Coq_typ_fvar 1), Nil)})],

Coq_typ_arrow (Coq_typ_fvar 1, Coq_typ_fvar 2))

23

A more complete example

let rev_append =
recf (abs (abs (abs
(matches [0;1] [abs (bvar 1);

abs(apps(bvar 3)[sub 1 (bvar 0);cons(sub 0 (bvar 0))(bvar 1)]);
bvar 1])))) ;;

val rev_append : trm = ...
typinf2 Nil rev_append;;
- : (var * kind) list * typ = (* using pretty printer *)
([(10, <Ksum, {}, {0; 1}, {0 => tv 15; 1 => tv 34}>);

(29, <Ksum, {1}, any, {1 => tv 26}>);
(34, <Kprod, {1; 0}, any, {0 => tv 30; 1 => tv 10}>); (30, any);
(26, <Kprod, {}, {0; 1}, {0 => tv 30; 1 => tv 29}>); (15, any)],
tv 10 @> tv 29 @> tv 29)

24

Conclusion

– Formalized completely structural polymorphism.

– Proved not only type soundness, but also soundness and
principality of inference, and correctness of evaluation through
an abstract machine.

– First step towards a certified reference implementation of
OCaml. Next step might be type constructors and the relaxed
value restriction.

– The techniques in Engineering formal metatheory proved useful,
but had to redo the automation.

– Extractable proof scripts at
http://www.math.nagoya-u.ac.jp/~garrigue/papers/

25

