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Overview Type Reconstruction Algorithms

Highlights

Essential feature of many functional programming languages (ML,
Haskell, OCaml, etc.).

Automated type reconstruction is possible.
Substitution-based algorithms.

Intermittent constraint generation and constraint solving.
Constraint-based algorithms.

Two distinct phases: constraint generation and constraint solving.
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Overview Type Reconstruction Algorithms

Substitution-based Algorithms

Examples
Algorithm W, J by Milner, 1978.
Algorithm M by Leroy, 1993.
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Overview Type Reconstruction Algorithms

Substitution-based Algorithms

Machine-Certified Correctness Proof
Algorithm W in Coq, Isabelle/HOL [DM99, NN99, NN96].

Nominal verification of Algorithm W (in Isabelle/HOL) [UN09].
The formalization in Coq is not available online.
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Overview Type Reconstruction Algorithms

Constraint-based Frameworks/Algorithms

Examples
Wand’s algorithm [Wan87].
HM(X) [SOW97] by Sulzmann et al. 1999, Pottier and Rémy 2005
[PR05], Qualified types [Jon95].
Top quality error messages [Hee05].
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Overview Type Reconstruction Algorithms

Constraint-based Algorithms/Frameworks

Machine-Certified Correctness Proof
We know of no correctness proof of Wand’s type reconstruction
algorithm not verified in any theorem prover.

We want to verify our extension of Wand’s algorithm for
polymorphic let.
POPLMark challenge also aims at mechanizing meta-theory.
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Introduction Wand’s Algorithm

Terms and Constraint Syntax

Terms
τ ::= TyVar(x) | τ ′ → τ ′′

Atomic types (of the form TyVar x) are denoted by α, β, α′ etc.

Constraints

Constraint are of the form τ
c
=τ ′.
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Introduction Wand’s Algorithm

Substitution
A substitution (denoted by σ) maps type variables to types.

Unifier

We write σ |= (τ1
c
= τ2), if σ(τ1) = σ(τ2).

Most General Unifier
A unifier σ is the most general unifier(MGU) if for any other unifier
σ′′ there is a substitution σ′ such that σ ◦ σ′ ≈ σ′′.
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Introduction Wand’s Algorithm

Wand’s Algorithm

Let G denote a set of goals. And E a set of equations.
Input. A term M of Λ.

Initialization. Set E = ∅ and G = {(Γ,M, α0)}.

Loop Step. If G = ∅ then return E else choose a subgoal (Γ,M, τ)
from G and add to E and G new verification conditions and
subgoals by looking at the action table.
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Introduction Wand’s Algorithm

Wand’s Algorithm

Action Table

Case (Γ, x , τ ). Generate the equation τ c
= Γ(x).

Case (Γ,MN, τ ). Generate subgoals (Γ,M, τ ′ → τ ) and (Γ,N, τ ′).

Case (Γ, λx .M, τ ). Generate equation τ c
= τ ′ → τ ′′ and subgoal

([x : τ ′] :: Γ,M, τ ′′).
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Introduction Wand’s Algorithm

Wand’s Algorithm - Example

{(∅, λx .λy .λz.xz(yz), α0)}; {}
{((x : α1), λy .λz.xz(yz), α2)}; {α0

c
= α1 → α2}

{((x : α1, y : α3), λz.xz(yz), α4)}; {α2
c
= α3 → α4}

{((x : α1, y : α3, z : α5), xz(yz), α6)}; {α4
c
= α5 → α6}

{(((x : α1, z : α5), xz, α7 → α6), ((y : α3, z : α5), yz, α7))}; {}
{((x : α1), x , α8 → (α7 → α6)), ((z : α5), z, α8), ((y : α3, z : α5), yz, α7)}; {}
{(((z : α5), z, α8), ((y : α3, z : α5), yz, α7))}; {α1

c
= α8 → α7 → α6}

{((y : α3, z : α5), yz, α7)}; {α8
c
= α5}

{((y : α3), y , α9 → α7), ((z : α5), z, α9)}; {}
{((z : α5), z, α9)}; {α9 → α7

c
= α3}

∅; {α9
c
= α5}
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Introduction Wand’s Algorithm

Wand’s Algorithm Example - Alternate View

{x : α1}
{α8→α7→α6

c
= α1}

` x : α8 → α7 → α6 {z : α5}
{α8

c
= α5}
`z : α8

{x : α1, z : α5}
{}
` xz : α7 → α6

{y : α3}
{α9→α7

c
= α3}

` y : α9 → α7 {z : α5}
{α9

c
= α5}
`z : α9

{y : α3, z : α5}
{}
` yz : α7

{x : α1, y : α3, z : α5}
{}
` xz(yz) : α6

{x : α1, y : α3}
{α4

c
= α5→α6}
` λz.xz(yz) : α4

{x : α1}
{α2

c
= α3→α4}
` λy.λz.xz(yz) : α2

{}
{α0

c
= α1→α2}
` λx.λy.λz.xz(yz) : α0
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Introduction Wand’s Algorithm

Example - Solution

α0
c
= α1 → α2

α2
c
= α3 → α4

α4
c
= α5 → α9

α1
c
= α8 → α7 → α9

α8
c
= α5

α9 → α7
c
= α3

α9
c
= α5

After unifying the above constraints,
α0 7→ (α5 → α7 → α6)→ (α5 → α7)→ (α5 → α6)
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Introduction Substitution

Finite maps in Coq

Representing substitutions
Substitution represented as a list of pairs, set of pairs, and normal
function.
We represent a substitution as a finite function.

Substitution as a finite map
Used the Coq’s finite maps library Coq.FSets.FMapInterface (ver.
8.1pl3).
Axiomatic presentation.
Provides no induction principle.
Forward reasoning is often required.
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Introduction Substitution

Substitution

Related Concepts
Substitution application to a type τ is defined as:

σ (TyVar(x))
def
= if 〈x , τ〉 ∈ σ then τ else TyVar(x)

σ (τ1 → τ2)
def
= σ(τ1)→ σ(τ2)

Application of a substitution to a constraint is defined similarly:

σ(τ1
c
= τ2)

def
= σ(τ1)

c
= σ(τ2)

Assumption: Idempotent substitution.
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Introduction Substitution

Substitution

Substitution Composition
Substitution composition definition using Coq’s finite maps is
delicate.
But the following theorem holds

Theorem 1 (Composition apply)

∀σ, σ′.∀τ.(σ ◦ σ′)τ = σ′(σ(τ))

Substitution representation determines the reasoning.
A list of pairs: 600 proof steps [DM99].
Finite maps: 100 proof steps.
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Correctness Proof Issues In Formalization

Wand’s Algorithm

Issues in formalization
Raise exceptions, but that’s not possible.

We choose an option type.

Freshness is now explicit.
The W-App rule now generates a constraint.
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Correctness Proof Issues In Formalization

Wand’s Algorithm

Issues in formalization
Raise exceptions, but that’s not possible.

We choose an option type.

search_type_env(x, Γ) = Some τ

Wand(Γ, x, n0) = (Some {Tvar(n0)
c
= τ}, n0 + 1)

(W-Var)

Wand(((x : Tvar(n0 + 1)) :: Γ),M, n0 + 2) = (Some C, n1)

Wand(Γ, λx.M, n0) = (Some {Tvar(n0)
c
= Tvar(n0 + 1)→ Tvar(n0 + 2)} ∪ C, n1)

(W-Abs)

Wand(Γ,M, n0 + 1) = (Some C′, n1) Wand(Γ,N, n1) = (Some C′′, n2)

Wand(Γ,MN, n0) = (Some {Tvar(n0 + 1)
c
= Tvar(n1)→ Tvar(n0)} ∪ C′ ∪ C′′, n2)

(W-App)
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Correctness Proof Issues In Formalization

Wand’s Algorithm

Issues in formalization
The W-App rule now generates a constraint.
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Correctness Proof Soundness and Completeness Proofs

Overview

Correctness is given w.r.t the Hindley-Milner type system:
〈x , τ〉 ∈ Γ is the leftmost binding of x in `

Γ B x : τ
(HM-Var)

(x , τ) :: Γ B M : τ ′

Γ B λx .M : τ → τ ′ (HM-Abs)

Γ B M : τ ′ → τ Γ B N : τ ′

Γ B MN : τ
(HM-App)
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Correctness Proof Soundness and Completeness Proofs

Soundness Proof

Informally

If Wand’s algorithm returns a unifiable constraint set, then there is a
Hindley-Milner proof.

Our Statement
∀Γ,∀M,∀σ, ∀n,∀n′,∀C.
Wand(Γ,M,n) = (Some C, n′) ∧ unify C = Some σ

⇒ ` σ(Γ)BHM M : σ(τ)

Wand’s Statement

∀σ.σ |= (E ,G)⇒` σ(Γ0)BHM M0 : σ(τ0)
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Correctness Proof Soundness and Completeness Proofs

Completeness Proof

Informally

If there is a Hindley-Milner proof (that a term has some type), then Wand’s
algorithm returns a solvable constraint set that will return the given type.

Our Statement
∀Γ′, ∀M, ∀τ.
` Γ′ BHM M : τ
⇒ ∀Γ, ∀n.(∃σ. σ(Γ) = Γ′) ∧ fresh_env n Γ
⇒ ∀C, ∀n′.Wand(Γ,M, n) = (Some C, n′) ∧
∃σ′.unify C = Some σ′

⇒ ∃σ′′.(σ′ ◦ σ′′)(Tvar(n)) = τ ∧
(σ′ ◦ σ′′)(Γ) = Γ′

Wand’s Statement
` ΓBHM M0 : τ ⇒ (∃ρ. ρ |= (E ,G) ∧ Γ = ρΓ0 ∧ τ = ρτ0)
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Correctness Proof Soundness and Completeness Proofs

Modeling MGU

The most general unifier (MGU) is often a first-order unification
algorithm over simple type terms.

In machine checked correctness proofs, the MGU is modeled as a
set of four axioms:

(i) mgu σ (τ1
c
=τ2)⇒ σ(τ1) = σ(τ2)

(ii) mgu σ (τ1
c
=τ2) ∧ σ′(τ1) = σ′(τ2)⇒ ∃σ′′.σ′ ≈ σ ◦ σ′′

(iii) mgu σ (τ1
c
=τ2)⇒ FTVS (σ) ⊆ FVC (τ1

c
=τ2)

(iv) σ(τ1) = σ(τ2)⇒ ∃σ′. mgu σ′(τ1
c
=τ2)
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Correctness Proof Soundness and Completeness Proofs

MGU Axioms

Old Axioms
(i) mgu σ (τ1

c
=τ2)⇒ σ(τ1) = σ(τ2)

(ii) mgu σ (τ1
c
=τ2) ∧ σ′(τ1) = σ′(τ2)⇒ ∃δ.σ′ ≈ σ ◦ δ

(iii) mgu σ (τ1
c
=τ2)⇒ FTVS (σ) ⊆ FVC (τ1

c
=τ2)

(iv) σ(τ1) = σ(τ2)⇒ ∃σ′. mgu σ′(τ1
c
=τ2)

New Generalized Axioms

(i) unify C = Some σ ⇒ σ |= C
(ii) (unify C = Some σ ∧ σ′ |= C)⇒ ∃σ′′. σ′ ≈ σ ◦ σ′′

(iii) unify C = Some σ ⇒ FTVS(σ) ⊆ FVC (C)
(iv) σ |= C ⇒ ∃σ′. unify C = Some σ′
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Correctness Proof Soundness and Completeness Proofs

Functional Induction in Coq

Axioms proved in Coq [KC09].
Important first step in proof of the axioms.
Requires an induction principle generated before.

functional induction (f x1 x2 x3 .. xn) is a short
form for induction x1 x2 x3 ...xn f(x1 ... xn)
using id, where id is the induction principle for f .

functional induction (unify c) induction c
(unify c) using unif_ind.
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(unify c) using unif_ind.
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Conclusions and Future Work

Conclusions and Future Work

Used Coq’s finite maps library to represent substitution.
MGU is not axiomatized in our verification.
Completeness is work in progress, but so far 8000 lines of Coq
tactics and specification.
The final goal is to have a machine certified correctness proof of
our extension of Wand’s algorithm to polymorphic let.
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