A Canonical ${ }^{1}$ Locally Named Representation of Binding

Randy Pollack
LFCS, University of Edinburgh
Masahiko Sato
Graduate School of Informatics, Kyoto University

Version of September 3, 2009
${ }^{1} \boldsymbol{\alpha}$-equivalence is identity

Details of This Work

Isabelle theory files:
http://homepages.inf.ed.ac.uk/rpollack/export/SatoPollackSCSS09.tgz

Full paper on previous work (to appear in J. Symbolic Computation): http://homepages.inf.ed.ac.uk/rpollack/export/SatoPollack09.pdf

Workshop paper on current work: http://homepages.inf.ed.ac.uk/rpollack/export/SatoPollackSCSS09.pdf

See my web page for these slides and above papers

Outline

Introduction: Local Representations
Symbolic Expressions (sexpr)
Lambda Terms
Variable-Closed Sexprs
A Canonical Representation
Adequacy of the Representation
Examples
Conclusion

Outline

Introduction: Local Representations

Symbolic Expressions (sexpr)
Lambda Terms
Variable-Closed Sexprs
A Canonical Representation

Adequacy of the Representation

Examples
Conclusion

Local Representations

Syntactically distinct classes for (locally) bound variables vs (globally bound) "free" parameters. Different styles:

- Locally named: two species of names; name-carrying abstraction.
- McKinna/Pollack [TLCA 1993] formalized Pure Type System metatheory.
- Not canonical representation.
- Locally nameless: names for parameters, de Bruijn indices for locally bound variables.
- Ademir, Chargueraud, Pierce, Pollack and Weirich [POPL’08].
- Canonical representation.

This talk: make locally named representation canonical ...
... and do it abstractly.

Why Local Representations?

They are concrete:

- Close to informal usage.
- "Anything true can be proved."
- Relatively light infrastructure (compared to Twelf or nominal Isabelle).
- Can be used in intensional constructive logics (e.g. Coq).

Technically convenient:

- Correct terms are an inductively defined subset of a datatype.
- Constructors (incl. abstraction) are injective.
- Straightforward definitions by primitive recursion.
- Natural inversion principles.

Why Locally Named Representation?

Here I get onto religious ground.

- Locally nameless still has de Bruijn infelicity:
- Induction hypotheses have to be generalized.
- Technical issues such as opening an abstraction more complicated.
- Locally named is more beautiful than locally nameless.

Strengthened Induction and Inversion Necessary

- McKinna/Pollack [TLCA’93] [JAR 1999].
- Ademir, Chargueraud, Pierce, Pollack and Weirich [POPL’08]
- Urban and Pollack [WMM'07] Strong Induction Principles in the Locally Nameless Representation of Binders.

In this talk I ignore this issue: see above papers

We Will show:

- A canonical, locally named representation...
- . . . refining the representation of McKinna/Pollack (1993) ...
- . . . in substitution preserving isomorphism with nominal terms.
- The canonical choice of binding names is interesting and abstract.

Outline

Introduction: Local Representations

Symbolic Expressions (sexpr)

Lambda Terms

Variable-Closed Sexprs
A Canonical Representation

Adequacy of the Representation

Examples

Syntax of pre-terms

Names:

- Countable set \mathbb{V} of atoms used for local variables: x, y, z.
- Countable set \mathbb{X} of atoms, used for global parameters: X, Y, Z.
- Only relation needed on \mathbb{V}, \mathbb{X} is decidable equality.
- Nominal Isabelle atom types are convenient.

Symbolic Expressions (\mathbb{S}):

- Datatype of pre-terms (pure λ) ranged over by M, N, P, Q :

$$
M::=x|X| P \cdot Q \mid[x] M
$$

- Usual induction principles for this datatype.
- Name-carrying syntax.
- In general, may be other classes of variables, parameters and expressions
- e.g. types and terms in System F.

Occurrences of Names

- Occurrences of global names (parameters)
- $X \sharp A$ means " X does not occur syntactically in A ".
- Easily defined by structural recursion
- In nominal Isabelle, our \sharp corresponds to nominal freshness (also written \sharp).
- Free occurrences of Local Variables (LV)
- Defined by structural recursion.
- Respects intended scoping of abstraction.

$$
\begin{aligned}
\operatorname{LV}(X) & \triangleq\} \\
\operatorname{LV}(x) & \triangleq\{x\} \\
\operatorname{LV}(M \cdot N) & \triangleq \operatorname{LV}(M) \cup \operatorname{LV}(N) \\
\operatorname{LV}([x] M) & \triangleq \operatorname{LV}(M)-\{x\}
\end{aligned}
$$

Substitution, Concretely

- Concretely defined by structural recursion:

$$
\begin{array}{ll}
{[M / X] x} & =x \\
{[M / X] Y} & =\text { if } X=Y \text { then } M \text { else } Y \\
{[M / X] N \cdot N} & =([M / X] N) \cdot[M / X] N \\
{[M / X]([x] N)} & =[x][M / X] N
\end{array}
$$

- Deterministic: no choosing arbitrary names.
- Thus has natural properties; e.g.

$$
\begin{aligned}
& {[X / X] M=M .} \\
& X \sharp M \Longrightarrow[P / X] M=M .
\end{aligned}
$$

- Does not prevent capture, e.g. $[x / X][x] X=[x] x$.
- Will only be use in safe ways.
- Substitution is a B-algebra homomorophism; see Pollack and Sato (J. Symb. Comp.).

Not Substitution: a purely technical operation

- Used to fill a "hole" (free variable) created by going under a binder.
- Defined by structural recursion:

$$
\begin{array}{ll}
{[M / y] x} & =\text { if } y=x \text { then } M \text { else } x \\
{[M / y] X} & =X \\
{[M / y]([x] N)} & =[x] \text { (if } y=x \text { then } N \text { else }[M / y] N) \\
{[M / y] N_{1} \cdot N_{2}} & =\left([M / y] N_{1}\right) \cdot[M / y] N_{2}
\end{array}
$$

- Respects intended scope of binding.
- Does not prevent capture, e.g. $[x / y][x] y=[x] x$.
- Not a B-algebra homomorophism.
$L_{\text {Lambda Terms }}$

Outline

Introduction: Local Representations

Symbolic Expressions (sexpr)
Lambda Terms
Variable-Closed Sexprs
A Canonical Representation

Adequacy of the Representation

Examples
Conclusion

Overview: Symbolic expressions vs λ-terms

Sexprs do not faithfully represent λ-terms for two reasons.

1. Local variables may appear unbound in sexprs.

- ' x ' is an sexpr, but is not intended to represent any λ-term.
- Remark: ' X ' is an sexpr representing a λ-term with one (particular) global variable.
- The fix: select the set of sexprs with no unbound local variables. - Call this subset vclosed for variable closed. - Substitution is well-behaved on vclosed

2. Different sexprs in vclosed may represent the same λ-term.

Overview: Symbolic expressions vs λ-terms

Sexprs do not faithfully represent λ-terms for two reasons.

1. Local variables may appear unbound in sexprs.

- ' x ' is an sexpr, but is not intended to represent any λ-term.
- Remark: ' X ' is an sexpr representing a λ-term with one (particular) global variable.
- The fix: select the set of sexprs with no unbound local variables.
- Call this subset vclosed for variable closed.
- Substitution is well-behaved on vclosed .

2. Different sexprs in vclosed may represent the same λ-term.

Overview: Symbolic expressions vs λ-terms

Sexprs do not faithfully represent λ-terms for two reasons.

1. Local variables may appear unbound in sexprs.

- ' x ' is an sexpr, but is not intended to represent any λ-term.
- Remark: ' X ' is an sexpr representing a λ-term with one (particular) global variable.
- The fix: select the set of sexprs with no unbound local variables.
- Call this subset vclosed for variable closed.
- Substitution is well-behaved on vclosed .

2. Different sexprs in vclosed may represent the same λ-term.

- ' $[x] x$ ' and ' $[y] y$ '; not canonical.
- Show that it is an adequate representation of λ-terms.

Overview: Symbolic expressions vs λ-terms

Sexprs do not faithfully represent λ-terms for two reasons.

1. Local variables may appear unbound in sexprs.

- ' x ' is an sexpr, but is not intended to represent any λ-term.
- Remark: ' X ' is an sexpr representing a λ-term with one (particular) global variable.
- The fix: select the set of sexprs with no unbound local variables.
- Call this subset vclosed for variable closed.
- Substitution is well-behaved on vclosed .

2. Different sexprs in vclosed may represent the same λ-term.

- ' $[x] x$ ' and ' $[y] y$ '; not canonical.
- The fix: select a canonical subset of vclosed.
- Show that it is an adequate representation of λ-terms.

Variable-Closed Sexprs

A predicate meaning "no free variables".
$\overline{v c l o s e d ~ X} \quad \frac{\text { vclosed } M \text { vclosed } N}{v c l o s e d ~ M \cdot N} \quad \frac{\text { vclosed } M}{\text { vclosed }[x][x / X] M}$

- An abstraction is vclosed when....
- Every parameter is vclosed and no variable is vclosed.
- 'vclosed M ' is provably equivalent to ' $\operatorname{LV}(M)=\{ \}$ '.
- Thus vclosed is intuitively correct.
- Use vclosed induction instead of sexpr structural induction...
- ... no case for unbound variables.

Variable-Closed and Substitution

- Operations $[M / X] N$ and $[M / x] N$ are capture free on vclosed .
- vclosed is trivially closed under substitution:

$$
\text { vclosed } M \wedge \text { vclosed } N \Longrightarrow \text { vclosed }[M / X] N
$$

- Think of vclosed as a "weak typing judgement".
- vclosed terms behave well for substitution, just as well-typed terms behave well for computation.

Remark: The vclosed representation has been used for a big formalisation of type theory [McKinna/Pollack, TLCA'93].

- Remember: vclosed representation not canonical.

A Canonical Representation

- Consider again the vclosed rules:
$\overline{v c l o s e d ~ X} \quad \frac{\text { vclosed } M \quad \text { vclosed } N}{v c l o s e d ~} M \cdot N \quad \frac{\text { vclosed } M}{\text { vclosed }[x][x / X] M}$

Local variable ' x ' not determined in the rule for abstraction.

- To define a canonical subset \mathbb{L}_{F}, choose ' x ' deterministically:

$$
\overline{X: \mathbb{L}_{\mathrm{F}}} \quad \frac{M: \mathbb{L}_{\mathrm{F}} \quad N: \mathbb{L}_{\mathrm{F}}}{M \cdot N: \mathbb{L}_{\mathrm{F}}} \quad \frac{M: \mathbb{L}_{\mathrm{F}} \quad x=\mathrm{F}_{X}(M)}{[x][x / X] M: \mathbb{L}_{\mathrm{F}}}
$$

parameterized by a height function $\mathrm{F}: \mathbb{X} \times \mathbb{S} \rightarrow \mathbb{V}$.

- Clearly $M: \mathbb{L}_{\mathrm{F}} \Longrightarrow$ vclosed M, so substitution is capture free.
- Not obvious that \mathbb{L}_{F} is closed under substitution.
- Still to do: specify F such that \mathbb{L}_{F} well behaved.

Notation

- Define

$$
\operatorname{abs}_{X}(M) \triangleq\left[\mathrm{F}_{X}(M)\right]\left[\mathrm{F}_{X}(M) / X\right] M
$$

Abstraction rule can now be written more abstractly.

$$
\frac{}{X: \mathbb{L}_{\mathrm{F}}} \quad \frac{M: \mathbb{L}_{\mathrm{F}} \quad N: \mathbb{L}_{\mathrm{F}}}{M \cdot N: \mathbb{L}_{\mathrm{F}}} \quad \frac{M: \mathbb{L}_{\mathrm{F}}}{\operatorname{abs}_{X}(M): \mathbb{L}_{\mathrm{F}}}
$$

- Everything is now parameterised by a height function F, so drop the explicit subscript.

A Good Height Function

- Interpret \mathbb{V} as \mathbb{N}.
- $\mathrm{H}: \mathbb{X} \times \mathbb{S} \rightarrow \mathbb{N}$ defined by structural recursion:

$$
\begin{aligned}
\mathrm{H}_{X}(Y) & \triangleq \begin{cases}1 & \text { if } X=Y \\
0 & \text { if } X \neq Y\end{cases} \\
\mathrm{H}_{X}(x) & \triangleq 0 \\
\mathrm{H}_{X}(M \cdot N) & \triangleq \max \left(\mathrm{H}_{X}(M), \mathrm{H}_{X}(N)\right) \\
\mathrm{H}_{X}([X] M) & \triangleq \begin{cases}\mathrm{H}_{X}(M) & \text { if } \mathrm{H}_{X}(M)=0 \text { or } \mathrm{H}_{X}(M)>x \\
x+1 & \text { otherwise }\end{cases}
\end{aligned}
$$

- \mathbb{L}_{H} is isomorphic to nominal lambda terms.
- This is too concrete; what properties are really needed?

Three Properties of Good $\mathrm{F}: \mathbb{X} \times \mathbb{S} \rightarrow \mathbb{V}$

(HE) F is equivariant:

$$
M: \mathbb{L} \Longrightarrow \mathrm{F}_{X}(M)=\mathrm{F}_{[\pi] X}([\pi] M)
$$

(HP) F is preserved by substitution:

$$
M: \mathbb{L} \wedge Q: \mathbb{L} \wedge X \neq Y \wedge X \sharp Q \Longrightarrow \mathrm{~F}_{X}(M)=\mathrm{F}_{X}([Q / Y] M) .
$$

(HF) $\mathrm{F}_{X}(M)$ does not occur in binding position on any path from the root of M to any occurrence of X in M.

$$
M: \mathbb{L} \Longrightarrow \mathrm{F}_{X}(M) \notin \mathrm{E}_{X}(M)
$$

where $\mathrm{E}_{X}(M): \mathbb{X} \times \mathbb{S} \rightarrow(\mathbb{V}$ set $)$ is defined:

$$
\begin{aligned}
\mathrm{E}_{X}(\alpha) & \triangleq\} \quad \text { if } \alpha \text { is atomic } \\
\mathrm{E}_{X}(M \cdot N) & \triangleq \mathrm{E}_{X}(M) \cup \mathrm{E}_{X}(N) \\
\mathrm{E}_{X}([x] M) & \triangleq \begin{cases}\} & \text { if } X \sharp M \\
\{x\} \cup \mathrm{E}_{X}(M) & \text { otherwise }\end{cases}
\end{aligned}
$$

Consistency and Independence of Goodness

- (HE), (HP) and (HF) are consistent: H is good.
- (HE), (HP) and (HF) are independent: no two imply the third.
- Proof by examples

Now develop a theory of good F sufficient to prove adequacy of the representation.

Many interesting properties follow from goodness of F :

- \mathbb{L} is equivariant: $M: \mathbb{L} \Leftrightarrow[\pi] M: \mathbb{L}$
- Height lemma:
$\mathrm{F}_{X}(M) \notin \operatorname{LV}(M) \Longrightarrow \forall N: \mathbb{L} .\left[N / \mathrm{F}_{X}(M)\right]\left[\mathrm{F}_{X}(M) / X\right] M=[N / X] M$.
See most recent paper on my webpage.

Outline

Introduction：Local Representations

Symbolic Expressions（sexpr）

Lambda Terms

Variable－Closed Sexprs
A Canonical Representation

Adequacy of the Representation

Examples

Isomorphism with Nominal Lambda Terms

- Done formally in Isabelle.
- A, B, C range over nominal terms.
- Define a representation function by "primitive recursion":

$$
\begin{aligned}
!X & \triangleq X \\
!(A \cdot B) & \triangleq!A \cdot!B \\
![X] A & \triangleq \operatorname{abs}_{X}(!A)
\end{aligned}
$$

- Need (HE) (F equivariant), to show ! is a function.
- Assuming F is good, ! is an isomorphic function that preserves substitution:

$$
\begin{array}{cl}
M: \mathbb{L} \Longrightarrow \exists A!A=M & !\text { is surjective } \\
!A=!B \Longrightarrow A=B & \text { ! is injective, } \\
!(A[X::=B])=[!B / X]!A & \text { ! respects substitution. }
\end{array}
$$

A Converse: Is Goodness of F Required?

- In this direction we assume ! is a substitution preserving isomorphism and have to prove F is good.
- Still working on this.

Outline

Introduction: Local Representations

Symbolic Expressions (sexpr)

Lambda Terms

Variable-Closed Sexprs

A Canonical Representation

Adequacy of the Representation

Examples

Example: β-reduction

$$
\begin{gathered}
\frac{[x] P: \mathbb{L} \quad N: \mathbb{L}}{([x] P) \cdot N \rightarrow[N / x] P}(\beta) \\
\frac{M_{1} \rightarrow M_{2} N: \mathbb{L}}{M_{1} \cdot N \rightarrow M_{2} \cdot N} \quad \frac{M: \mathbb{L} \quad N_{1} \rightarrow N_{2}}{M \cdot N_{1} \rightarrow M \cdot N_{2}} \\
\frac{M \rightarrow N}{\operatorname{abs}_{X}(M) \rightarrow \operatorname{abs}_{X}(N)}
\end{gathered}
$$

- Note rule (ξ)!
- High level notation abs_(_) hides details.
$-\rightarrow$ is well behaved, e.g.
- \rightarrow is equivariant.
- $M \rightarrow N$ implies $M: \mathbb{L}$ and $N: \mathbb{L}$.

Example: Simple Type Assignment

- Let S,T range over simple types.
- A type context, $\boldsymbol{\Gamma}$, is a set of pairs (X, T) such that no two different pairs have the same first component.

$$
\frac{(X, T) \in \boldsymbol{\Gamma}}{\Gamma \vdash X: T} \quad \frac{\Gamma \vdash M: S \rightarrow T \quad \Gamma \vdash M: S}{\Gamma \vdash M \cdot N: T}
$$

$$
\frac{\Gamma \cup(X, S) \vdash M: T}{\Gamma \vdash \operatorname{abs}_{X}(M): S \rightarrow T}
$$

- Type assignment is equivariant.
- 「トM:T $\Longrightarrow M: \mathbb{L}$.
- To prove weakening of \vdash we must derive a strengthened induction principle, as usual.
- Nominal Isabelle can do this automatically.

Outline

Introduction：Local Representations

Symbolic Expressions（sexpr）

Lambda Terms

Variable－Closed Sexprs
A Canonical Representation

Adequacy of the Representation

Examples
Conclusion
$4 \square>4$ 司 >4 三 >4 三 $>$ ㄹ

Conclusion

- Canonical name-carrying representation of binding.
- Well formed terms: inductively defined subset of a datatype.
- All definitions by structural recursion.
- All constructors injective.
- More beautiful than [McKinna/Pollack, TLCA'93] ...
- ... ours is canonical.
- More beautiful than locally nameless [Ayedemir et al., POPL’08]
- ... name carrying, no indexes.
- Light infrastructure.
- Formalisable in intensional constructive logic in a few days.
- Large scale use still requires infrastructure.
- Nominal Isabelle package provides some free automation.

