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Abstract 
 

 
In this paper it is shown that for both spatial lag and spatial autoregressive models 
with strongly connected weight matrices, maximum likelihood estimates of the 
spatial dependence parameter are necessarily biased downward. In addition, it is 
shown that same bias is present in general Moran tests of spatial dependency, so that 
positive dependencies will often fail to be detected when weight matrices are strongly 
connected. A simulated numerical example is presented to illustrate some of the 
practical consequences of these biases.  
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1. Introduction 
 
In a recent simulation study, Mizruchi and Neuman (2008) have shown that for spatial 
lag models with strongly connected (high density) weight matrices, there is often a severe 
downward bias in maximum-likelihood estimates of the spatial dependency parameter.1 
This same bias is also reported by Farber, Páez and Volz (2008) in their recent simulation 
study of the influence of network topology on tests of spatial dependencies. Hence the 
central purpose of this paper is to clarify the nature of this bias from an analytical 
perspective. In addition, it is shown that same bias is present in both spatial 
autoregressive models and in the more general Moran test of spatial dependency. In all 
cases this bias implies that significantly positive spatial dependencies will often fail to be 
detected when weight matrices are strongly connected.  
 
To establish these results, the analytical strategy will be to consider the extreme case of 
maximally connected weight matrices, and to obtain exact results for this case. The rest 
will then follow from simple continuity considerations. To avoid repetition, the analytical 
development of spatial regression models will focus on spatial lag models. Parallel results 
for spatial autoregressive models will simply be sketched. Hence to fix the ideas, we 
begin with the following a standard spatial lag model (SL) for n  spatial units: 
 
(1) 2, ~ (0, )ny Wy X N Iρ β ε ε σ= + +  
 
where ny R∈  is some variable of interest and ( 1)

1[1 , ,.., ] n k
n kX x x R × += ∈  represents a 

relevant set of k  explanatory variables, with 1 (1,..,1)n ′=  denoting the unit n -vector 
(corresponding to the intercept term in this linear model). [Throughout the following 
analysis it will always be assumed that X  has full column rank, 1k + , so that 1( )X X −′  
exists.]  The unknown parameters of the model include the vector, 0 1( , ,.., )kβ β β β ′=  of 
beta coefficients, the variance, 2σ , of each residual in ε , and the spatial dependence 
parameter, ρ , which is of primary interest in the present analysis. 
 
Also of major interest is the structure of the spatial weight matrix, W . For purposes of 
the present analysis, it is convenient to begin by characterizing these matrices in the 
following way. First we choose a fixed positive scalar, b , to serve as an upper bound on 
weight values. With respect to this bound, an n -square matrix, ( : , 1,.. )ijW w i j n= = , is 
designated as a weight matrix iff (i) 0iiw =  and (ii) 0 ijw b≤ ≤  for all , 1,..,i j n= . As 
usual, condition (i) specifies that dependencies are defined only between distinct spatial 
units. Condition (ii) can be thought of as a normalization condition the allows each 
weight, ijw , to be interpreted as the “degree of connectivity” between i  and j , where 

ijw b=  implies a maximal degree of connectivity. This is particularly appropriate for 

                                                 
1 I am indebted to a referee for pointing out that similar observations were made by Bao and Ullah (2007) 
with respect to the second order bias of these estimates in the context of a pure spatial lag model with 
circular weight matrices of varying degrees of connectivity. 
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applications of model (1) to social networks among n  agents. For the present, the bound  
b  only serves as a convenient conceptual device, and can be set equal to one without loss 
of generality. However, the question of appropriate matrix normalizations for the 
estimation of ρ  is of some importance, and will be addressed below.  
 
If the class of all n -square weight matrices is denoted by n n

n R ×⊂W (where the fixed 
scale parameter b  is taken to be implicit), then the relevant geometry of this set can be  
depicted for the 2n =  case as follows.  Observe that each matrix WnW ∈  is of the form 
 

(2)  12

21

0
0

w
W

w
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

 
and thus is fully characterized by the 2-vector 12 21( , )w w . Hence the entire class 2W  is 
seen to be equivalent to the points in the square, 2[0, ]b , shown below: 
 
 
 
 
 
Here the lower left hand corner corresponds to the minimally connected weight matrix, 

*W  with all zero components, and the upper right hand corner corresponds to the 
maximally connected weight matrix, *W ,2 with all off-diagonal elements equal to b . This 
depiction for the 2x2 case makes it clear that *W  and *W  are the two natural extreme 
weight matrices in Wn  for all n .3 Since *W  corresponds to complete statistical 
independence in model (1), attention has naturally focused on those weight matrices, 

WnW ∈ , that are “sufficiently close” to *W  to inherit all of its desirable large-sample 
properties (such as consistency and asymptotic normality of parameter estimates). Thus 
most of the literature has focused on those matrices in the lower left neighborhood shown 
in Figure 1.  
 
In this context, the distinguishing feature of the present analysis is that it focuses rather 
on the upper right neighborhood in Figure 1, which for the moment we loosely designate 
as “strongly connected” weight matrices.4 Our central objective is to show not only that 
such weight matrices fail to share the desirable properties of the independence case, but 
also to determine the exact nature of this failure. Of particular interest will be the severe 
downward bias in maximum likelihood estimates of the spatial dependency parameter, ρ .  

                                                 
2 This terminology is not to be confused with the graph-theoretical notion of “totally connected” which 
refers only to the presence of a nonzero links between all distinct node pairs. 
3 This can also be expressed in terms of the (cell-wise) matrix inequalities *

*W W W≤ ≤  for all WnW ∈  
4 Here it should be noted that maximally connected spatial weight matrices have been previously studied in 
a somewhat different context by Kelejian and Prucha (2002) who described them simply as models with 
“equal spatial weights” [see also Kelejian, Prucha and Yuzefovich (2006) and Baltagi (2006)]. 

Figure 1 here 
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To establish this result in a self-contained manner, it is convenient to begin with a 
detailed development of the maximum-likelihood estimation problem for the spatial lag 
model in Section 2 below. This is followed in Section 3 by an analysis of the maximally 
connected case, *W , in the upper right corner. The results for this case are extended by 
continuity in Section 4 to all matrices “sufficiently close” to *W  in an appropriate sense, 
and some numerical illustrations are given. In Section 5 it is shown that these results are 
essentially the same for spatial autoregressive models. Finally it is shown in Section 6 
that strong connectivity also has consequences for Moran diagnostic tests of spatial 
independence. 
 
2. Maximum Likelihood Estimation for SL Models 
 
Model (1) implies that y  is multinormally distributed, and in particular that for any given 
data, ( , )y X  the log likelihood function for parameters 2( , , )β σ ρ  takes the form:5 
 
(3) 2 2

2( , , | , ) ln( ) ln | det( ) |n
nL y X const I Wβ σ ρ σ ρ= − + −  

 

                                             ( ) ( )2
1

2 ( ) ( )n nI W y X I W y Xσ ρ β ρ β′− − − − −  
 
where nI  is the n-square identity matrix, and where all terms not involving the 
parameters are subsumed in const. As with all generalized linear models, one proceeds by 
first fixing the covariance parameters (in this case, ρ ) and maximizing the likelihood 
function in β  and 2σ  to produce the well-known closed form conditional estimates: 
 
(4) 1ˆ ( ) ( ) ( )sl nX X X I W yβ ρ ρ−′ ′= −  
 

(5) ( ) ( )2 ˆ ˆˆ ( ) (1/ ) ( ) ( ) ( ) ( )sl n sl n sln I W y X I W y Xσ ρ ρ β ρ ρ β ρ′= − − − −  

 
where the subscript “sl” denotes the SL model. These are then substituted into (3) to yield 
a reduced function designated as the concentrated likelihood function, slL , for ρ . After 
some simple cancelling of terms, this function takes the form: 
 
(6) 2ˆ( | , ) ln | det( ) | ( / 2) ln[ ( )]sl nL y X const I W nρ ρ σ ρ= + − −  
 
One then maximizes this function to obtain the maximum likelihood estimate, ˆnρ , of ρ  
and then substitutes this value into (4) and (5) to obtain corresponding maximum 
likelihood estimates, ˆ ˆ ˆ( )n sl nβ β ρ=  and 2 2 ˆˆ ˆ ( )n sl nσ σ ρ= , of β  and 2σ  respectively. 
However, our primary interest here is in ˆnρ  itself. 
 
                                                 
5 Most of the following development is quite standard, and can be found in many references including 
Anselin (1988) and Anselin and Bera (1998, section III.B). 
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To analyze the function, slL , one can make further reductions as follows [see also 
Anselin (1988, Section 12.1.1)]. First let  
 
(7) 1( )nM I X X X X−′ ′= −  
 
denote the orthogonal projection onto the complement of the span of X , so that by 
construction, M M ′= ,  
 
(8) 1( ) 0MX X X X X X X X X−′ ′= − = − =   , and 
 
(9) 1 1 1( ( ) )( ( ) ) ( )n n nMM I X X X X I X X X X I X X X X M− − −′ ′ ′ ′ ′ ′= − − = − =  
 
Then substitution of (4) and (7) into (5) yields the more compact form of the conditional 
variance estimate, 
 

(10) ( ) ( )2 1 1ˆ ( ) (1/ ) [ ( ) ]( ) [ ( ) ]( )sl n n n nn I X X X X I W y I X X X X I W yσ ρ ρ ρ− −′′ ′ ′ ′= − − − −  
 

                       ( ) ( )(1/ ) ( ) ( )n nn M I W y M I W yρ ρ′= − −  
 
                       ( )(1/ ) ( ) ( )n nn y I W M I W yρ ρ′ ′= − −  
 
This in turn allows the concentrated likelihood in (6) to be written as 
 
(11) ( | , ) ln | det( ) | ( / 2) ln[ ( ) ( ) ]sl n n nL y X const I W n y I W M I W yρ ρ ρ ρ′ ′= + − − − −  
 
where the term ( / 2) ln(1/ )n n−  has now been absorbed into the constant.  
 
Further reduction is possible by observing that if the eigenvalues of W  are denoted by 

( ) { : 1,.., }iW i nλ λ= = , then the corresponding eigenvalues of ( )nI Wρ−  are well known 
to be given by ( ) {1 : 1,.., }n iI W i nλ ρ ρλ− = − = . To avoid complications in the analysis to 
follow, it is convenient to restrict our attention to weight matrices, W , with real 
eigenvalues (which, most importantly, includes all W  which are either symmetric or are 
row normalizations of symmetric matrices). In addition, it will also be assumed that the 
maximum eigenvalue, max ( )Wλ , of W  is positive.6 (In particular this includes all nonzero 
symmetric weight matrices.) Hence we now restrict our attention to the subset: 
 
(12) Wn

+
max{ : ( ) , ( ) 0}WnW W is real and Wλ λ= ∈ >  

 

                                                 
6 This maximum eigenvalue is always nonnegative [Horn and Johnson (1985, Th.8.1.3)], but need not be 
positive even when  W  has positive elements. Even for 2n =  the matrix, [0 1;0 0 ]W = , has 

( ) {0, 0}Wλ = . 
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Given this subset, together with the fact that the determinant of any matrix is the product 
of its eigenvalues [Horn and Johnson (1985,Th.1.2.12)], it then follows that 
 
(13) det( ) (1 ) ln | det( ) | ln |1 |n i n iii

I W I Wρ ρλ ρ ρλ− = − ⇒ − = −∑∏  
 
as long as each term, 1 iρλ− , on the right hand side is nonzero. This of course requires 
further restrictions on ρ . To specify these conditions, we first note that since the trace of 
every matrix is the sum of its eigenvalues [Horn and Johnson (1985,Th.1.2.12)], it 
follows that 
 
 (14) ( ) 0i iii i

tr W wλ = = =∑ ∑  
 
for all WnW ∈ . But since max ( ) 0Wλ >  for all WnW +∈ , this in turn implies that min ( )Wλ , 
must be negative. These observations together imply that for any WnW +∈ , all terms, 
1 iρλ− , in (13) will be positive if the admissible values of ρ  are restricted to the open 
interval  
 
(15) ( )( ) ( )maxmin

1 1[ ] ,W WW λ λ=  

 
Hence we now restrict ρ  to the interval, [ ]W . Under this restriction, (13) allows (11) to 
be reduced to the explicit form, 
 
(16) ( | , ) ln |1 | ( / 2) ln[ ( ) ( ) ]sl i n ni

L y X const n y I W M I W yρ ρλ ρ ρ′ ′= + − − − −∑  
 
which is more readily analyzed (and computed).  
 
At this point one typically proceeds by observing that since ln | det( ) |nI Wρ− = −∞  on 
the boundaries of [ ]W , it is reasonable to assume that slL  has a well-defined 
differentiable maximum in the open interval [ ]W . This will be true as long as the second 
term in (16) is bounded above. To ensure this, it must of course be assumed that   
 
(17) ( ) 0nM I W yρ− ≠  for all [ ]Wρ ∈  
 
 To interpret this condition, observe that model (1) can be equivalently written as 
( )nI W y Xρ β ε− = + , where ( )nI W yρ−  represents the value of y  after spatial lag 
effects have been accounted for. If this variable is designated as the effective value of y , 
 

(18) ( ) ( )W ny I W yρ ρ= −   
 
in model (1), then as a parallel to classical regression, it is here assumed that for the given 
data vector, y , none of its effective values, { ( ) : [ ]}Wy Wρ ρ ∈  is perfectly fitted by X  
(i.e., lies in the span of X ).  We designate data sets ( , )y X  satisfying (17) as W-regular.  
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Notice that for 0ρ =  this implies the usual regularity condition that 0My ≠ . Data 
( , )y X  satisfying only this (classical regression) condition is simply said to be regular.  
 
 
3. Biased Estimation for the Maximally Connected Case in SL Models 
 
Given the simple form of the concentrated likelihood function, slL , in (16), one can 
proceed to search for a maximum, ˆnρ , in the interval [ ]W  (typically by standard line 
search procedures). However, it turns out that for the maximally connected case, 

* WnW +∈ , this maximization procedure is doomed to fail. Indeed, the main result of this 
section will be to show that even for regular data sets, slL  is always unbounded on *[ ]W .  
To establish this result, we begin by analyzing the properties of *W . First observe that 
since the n -square unit matrix is constructible as the outer product, 1 1n n′ , the maximally 
connected weight matrix, * WnW +∈ , can be written as: 
 

(19)  *

0
0

(1 1 )

0

n n n

b b
b

W b I
b

b b

⎛ ⎞
⎜ ⎟
⎜ ⎟′= ⋅ − =
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 

With this explicit form, the following result shows that the eigenvalues of *W  are 
computable in closed form:  
 

Lemma 1. For all 0b >  the eigenvalues of  *W  in (19) are given by 
 

(20) *( ) { ,.., , ( 1)}W b b b nλ = − − −  
 

where the eigenvalue, b− , has multiplicity 1n − . 
 
Proof:  It follows from Searle (1982, Section 12.3.d) that the eigenvalues of  
any matrix of the form 11A aI c ′= +  are given by 

 
(21) ( ) { ,..., , ( )}A a a a ncλ = +  
 

where a  has multiplicity 1n − . Hence the eigenvalues of   
 

(22) * (1 1 ) ( ) ( )1 1n n n n n nW b I b I b′ ′= ⋅ − = − +   
 
 are immediately seen to be those in (20).  
 
The second (and most important) property of maximally connected weight matrices is the 
following identity: 
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Lemma 2. If  M  is the orthogonal projection matrix in (7) associated with any 
data matrix, 1[1 , ,.., ]n kX x x= , for model (1) then,   

 
(23) * *M W b M W M⋅ = − ⋅ = ⋅  
 Proof:  Simply observe from (19) and (7) that 
 
(24) * 1( ( ) ) (1 1 )n n n nM W I X X X X b I−′ ′ ′⋅ = − ⋅ ⋅ −  
 
                       1 1[1 1 ( ) 1 1 ( ) ]n n n n nb I X X X X X X X X− −′ ′ ′ ′ ′ ′= ⋅ − − +  
 

But since 1[ ( ) ]X X X X X X−′ ′ =  and since 1n  is the first column of X , it follows 
in particular that 1[ ( ) ]1 1n nX X X X−′ ′ = . Hence we see that  

 
(25) * 1 1[1 1 1 1 ( ) ] [ ( ) ]n n n n n nM W b I X X X X b X X X X I b M− −′ ′ ′ ′ ′ ′⋅ = ⋅ − − + = ⋅ − = − ⋅  
 

Next observe that since 1 1[ ( ) ]1 1 1 1 [ ( ) ]n n n nX X X X X X X X− −′ ′ ′ ′ ′ ′= ⇒ = , it also 
follows that 

 
(26) * 1(1 1 ) ( ( ) )n n n nW M b I I X X X X−′ ′ ′⋅ = ⋅ − ⋅ −  
 
                         1 1[1 1 1 1 ( ) ( ) ]n n n n nb X X X X I X X X X− −′ ′ ′ ′ ′ ′= ⋅ − − +  
 
                         1[1 1 1 1 ( ) ]n n n n nb I X X X X−′ ′ ′ ′= ⋅ − − +  
 
                         1[ ( ) ]nb I X X X X b M−′ ′= ⋅ − + = − ⋅ . 
 
One useful consequence of this result is the following:  
 
 Lemma 3.  Every regular data set, ( , )y X , is *W -regular. 
 

Proof: First observe from Lemma 2, together with the symmetry of *W  and M , 
that for any *[ ]Wρ ∈  and data set ( , )y X , 

 
(27) * * * *( ) ( ) ( ) ( )n n ny I W M I W y y I W M MW yρ ρ ρ ρ′ ′ ′ ′− − = − −  
 
                        * * 2 * *( )y M MW W M W MW yρ ρ ρ′= − − +  
 
                         2 2( )y M bM bM b M yρ ρ ρ′= + + +  
 
                         2 2(1 2 )b b y Myρ ρ ′= + + ⋅  
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                         2(1 )b y Myρ ′= + ⋅  
 

But *[ ]Wρ ∈  then implies that 1/ bρ > −  and hence that 1 0bρ+ > . Thus *W -
regularity of ( , )y X  will follow if it can be shown that 0y My′ > . But since M  is 
an orthogonal project matrix and hence is positive semidefinite, it follows that 

0y My′ ≥  for all y , and moreover that 0 0y My My′ = ⇔ =  [Horn and Johnson 
(1985, p.400)]. Finally since the regularity of ( , )y X  implies that 0My ≠ , it must 
then be true that 0y My′ > , and thus that *W -regularity holds. 

 
With these properties, we are now ready to establish our main result, namely that slL  is 
unbounded on *[ ]W . In particular, we show that slL  increases without bound as ρ  
approaches the lower boundary of *[ ]W . To so, observe from (15) and (20) that this 
lower boundary point, *ρ , is given by 
 
(28) *

* min1/ ( ) 1/W bρ λ= = −   
 
With this definition we now have: 
 

Proposition 1.  If *W W=  in model (1), then for all regular data sets ( , )y X  and 
all decreasing sequences ( )mρ  in *[ ]W , with *limm mρ ρ→∞ = , 

 

(29) lim ( | , )m sl mL y Xρ→∞ = ∞  
 
Proof:  The strategy will be to use Lemmas 1 and 2 to show that the concentrated 
likelihood function in (16) is reducible to a simple analytical form for which the 
result is obvious. To do so, we first observe from Lemma 1 and the positivity of 
min {1 ( )}i i Wρλ−  on [ ]W  that for any *[ ]Wρ ∈  we must have7 

 
(30) ln |1 | ln(1 ) ( 1) ln[1 ( )] ln[1 ( 1)]i ii i

n b b nρλ ρλ ρ ρ− = − = − − − + − −∑ ∑  
 
                         ( 1) ln(1 ) ln[1 ( 1)]n b b nρ ρ= − + + − −  

 
 Moreover, we see from (27) above that  
 
(31) * * 2( / 2) ln[ ( ) ( ) ] ( / 2) ln[(1 ) ' ]n nn y I W M I W y n b y Myρ ρ ρ′ ′− − − = − +  
 
                              { ln(1 ) ( / 2) ln( ' )}n b n y Myρ= − + +  

 

                                                 
7 For the case of 1/( 1)b n= −  this result appears in section 2.5 of Kelejian and Prucha (2002). 
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Notice also from Lemma 3 that this log expression is well defined for all 
*[ ]Wρ ∈ . Hence by substituting (30) and (31) into (16) we obtain the following 

simple expression for the concentrated likelihood function, 
 
(32) ( | , ) {( 1) ln(1 ) ln[1 ( 1)]}slL y X const n b b nρ ρ ρ= + − + + − −  
 
                                              { ln(1 ) ( / 2) ln( ' )}n b n y Myρ− + +  
 
                                ln(1 ) ln[1 ( 1)]const b b nρ ρ= − + + − −  
 

where the term, ( / 2) ln( )n y My′ , not containing ρ  has again been absorbed in 
const. From here we need only observe that since * 1/ bρ = − , it follows that for 
any decreasing sequence ( )mρ  in *[ ]W , with *limm mρ ρ→∞ = , we must have 
 

(33) lim ( | , ) lim ln(1 ) lim ln[1 ( 1)]m sl m m m m mL y X const b b nρ ρ ρ→∞ →∞ →∞= − + + − −  
 
                                              * *ln(1 ) ln[1 ( 1)]const b b nρ ρ= − + + − −  
 
                                   ln(0) ln( )const n= − + = ∞  
 
 and the result is established.8 
 
Hence from a formal viewpoint, it may be concluded that no maximum likelihood 
estimator of ρ  exists for model (1) when *W W= .9 This somewhat surprising in view of 
the fact that existence of maximum likelihood estimators for model (1) is generally 
assumed to hold as long as WnW ∈  and [ ]Wρ ∈ . Moreover, it is interesting to note that 
from a practical viewpoint, such a failure would most likely not even be detected by 
standard software. Indeed, one would typically observe that the line-search algorithm has 
“converged” to some value of ρ  very close to *ρ .   
 
To gain further insights here, it is useful to illustrate this finding with a numerical 
example, as shown in Figure 2 below. This is taken from the numerical simulation 
example presented in Section 4 below (for a sample size of 50n = ). The “First Term” 
and “Second Term” shown in Figure 2 correspond, respectively, to the log-determinant 
expression (30) and the log-quadratic expression (31) in Proposition 1 above. Notice that 
the log-determinant term is always well behaved, since it is a sum of simple concave 
functions, ln(1 )iρλ− , on *[ ]W . Hence the “culprit” here is the log-quadratic term, which  
 
                                                 
8 Note that slL  is also unbounded at the upper boundary of *[ ]W , namely *

max* 1/ ( ) 1/[ ( 1)]W b nρ λ= = − . 

But since *( | , )slL y Xρ = −∞ , this is of little interest for maximum likelihood estimation. 
9 This failure of existence is an instance of the more general result of Arnold (1979, Th.3) regarding the 
non-existence of maximum-likelihood estimators for covariance parameters in linear models with 
exchangeably distributed errors. I am indebted to Federico Martellosio for pointing this out to me.  
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in the present case not only diverges to +∞  at *ρ , but does so at a faster rate than the 
corresponding divergence of the log-determinant to −∞ .  
 
 
 
 
Before examining the practical consequences of this result for strongly connected weight 
matrices, we give an alternative statement of Proposition 1 that will also prove useful for 
applications. Recall that our basic regularity assumption on data ( , )y X  was designed to 
avoid cases where some effective y -value, ( )Wy ρ  was perfectly fitted by the data, X , in 
model (1).  We now show that Proposition 1 results from the fact that for every data set 
( , )y X  in model (1), if *W W= , the X  must yield a perfect fit to the “effective” y -
value, * *( )

W
y ρ , on the lower boundary of *[ ]W . This fact depends critically on the 

presence of an intercept term in model (1) [as should already be apparent from the proof 
of Lemma 2]. Hence it is now convenient to make this intercept term explicit by rewriting 
model (1) as 
 
(34) 2

01 , ~ (0, )ny Wy X Nρ β β ε ε σ= + + +  
 
where 1[ ,.., ]kX x x=  and 1( ,.., )kβ β β ′= . For the particular case of *W  it then follows 
that for any choice of X , 
 
(35) *

01ny W y Xρ β β ε= + + +  
  
                *

0( ) 1n nI W y Xρ β β ε⇒ − = + +  
 
     * 0( ) 1nW

y Xρ β β ε⇒ = + +  
 
With this notation, recall from Lemma 3 and (17) that for any regular data set 
( , ) ( , [1 , ])ny X y X=  there exists no *[ ]Wρ ∈  such that the effective value * ( )

W
y ρ  is a 

perfect fit to X , i.e., such that 
 
(36)  * 0( ) ( )1 ( )nW

y Xρ β ρ β ρ= +  
 
for some choice of 0[ ( ), ( )]β ρ β ρ . But even when this is true, it turns out that condition 
(36) always fails at the lower boundary value, *ρ , of *[ ]W  as we now show:10 
 

 

                                                 
10 The following result is essentially contained in Theorem 1 of Kelejian, Prucha and Yuzefovich (2006), 
where it is employed to study the consistency properties of 2SLS estimation in the case of equal spatial 
weights. 

Figure 2 Here 
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Proposition 2.  If *W W=  in model (1), then for any data set ( , )y X , 
 
(37) * * 0 * *( ) ( ) 1 ( )nW

y Xρ β ρ β ρ= ⋅ +  
 
 where 0 *( ) 1n yβ ρ ′=  and *( ) 0β ρ = . 
 

Proof:  First recall from (28) that for any positive bound b , 
 

(38) *
* min1/ ( ) 1/ 0W bρ λ= = − <  

 
Hence it follows that, 
 

(39) *
*

* *( ) ( ) { ( 1/ )[ (1 1 )]}n n n n nW
y I W y I b b I yρ ρ ′= − = − − ⋅ −  

 
               [ (1 1 )] 1 1 (1 ) 1 0n n n n n n n nI I y y y X′ ′ ′= + − = = ⋅ + ⋅  
 
                          0 * *( ) 1 ( )n Xβ ρ β ρ= ⋅ +  

 
and the result is established.  
 

The advantage of viewing this result in terms of perfect fits is that it provides information 
about the bias of other parameter estimates. For when *ˆnρ ρ≈ , expression (37) suggests 

that one should have 0
ˆ 1n yβ ′≈  and ˆ 0jβ ≈  for all 1,..,j k= . Moreover, since a “perfect 

fit” necessarily implies zero variance of residuals, this in turn suggests that 2ˆ 0σ ≈ .11 We 
shall explore the practical consequences of these findings in the next section. 
 
4. Consequences for Strongly Connected Weight Matrices in SL Models 
 
The above results show that for the extreme case of maximally connected matrices, we 
can obtain an exact analytical formulation of the bias inherent in maximum likelihood 
estimation for spatial lag models. This in turn suggests that such bias should be inherited 
by matrices, WnW +∈  that are “close” to *W  in some appropriate sense. To do so, it is 
convenient to endow Wn

+  with a matrix norm that will allow some explicit measure of  
“closeness”. Here there are many choices. For example, the 1 -norm of any matrix 

( ) n n
ijA a R ×= ∈  is 

1
| |ijij

A a=∑ , and the 2 -norm (Euclidean norm) of  A  is 

( )1/ 2
2

2 ijij
A a= ∑ .12  However, for our present purposes, the following scaled version of 

the 1 -norm is useful for weight matrices, WnW +∈ , 

                                                 
11 These results illustrate the more general finding of Arnold (1979, p.196) regarding the inconsistency of 
standard parameter estimates for linear models with exchangeably distributed errors.  
12 Many other choices are illustrated in Horn and Johnson (1985, Section 5.6). 



 13

 (40) 1
*

1

1 1
( 1) ( 1) ( / )ij ijrc ij ijb n n n n

W
W w w b

W ⋅ − −= = =∑ ∑ .  

 
which we designate as the relative connectivity norm.13 If ( / )ijw b  denotes the relative 
connectivity between units (agents) i  and j , then this is simply the average of these 
relative connectivities over all distinct ( , )i j  pairs. In the case of binary matrices, 

WnW +∈ , this is easily seen to reduce to the graph-theoretic notion of average link 
density. Given this norm (or any other matrix norm), the induced distance between W  
and *W  is then given by  
 
(41) * 1 1

( 1) ( 1)| | [1 ( / )]ij ijij ijrc b n n n nW W w b w b⋅ − −− = − = −∑ ∑   

 
Next, we observe that up to this point the actual magnitude of ρ  has not been considered. 
All that has been asserted is that for any given weight matrix, W , these values must lie in 
the open interval [ ]W  of expression (15), and that this interval contains zero (so that both 
positive and negative values of ρ  are always possible.) But to gain further insight, it is 
useful to evaluate this interval in specific cases. In the numerical illustration below we 
shall use a sample size, 50n = . Hence, by setting the bound at 1b = , it follows from 
Lemma 1 that for the maximally connected matrix, *

50WW +∈ , we have *
min ( ) 1Wλ = −  

and *
max ( ) 49Wλ = . The corresponding bounds on ρ  for this case are thus seen to be 

 
(42) ( ) ( )1

491/ ,1/ ( 1) 1 , ( 1 , .02)b b nρ ∈ − − = − ≈ −  
 
which, from a practical viewpoint, is seen to offer little room for positive spatial 
dependencies at all. Since positive dependencies are by far the most interesting for practical 
applications, it is clear that a better choice of b  should be considered. Here the most 
natural choice is to set 1/( 1)b n= − , so that under this normalization we obtain 
 
(43) *

max ( ) ( 1) ( 1) /( 1) 1W b n n nλ = − = − − =  
 
This will ensure that the interval, [0,1) , of nonnegative ρ -values used for most 
applications actually lies in *[ ]W . For 50n =  we then have 
 
(44) ( ) ( )*[ ] 1/ , 1 ( 1) , 1 ( 49 ,1)W b n= − − − == −  
 

                                                 
13 Since every positive scaling of a norm yields another norm, the first equality shows that this is indeed a 
matrix norm. 
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One additional feature of this normalization that is particularly useful for the present 
analysis is that14  
 

(45) [0,1) [ ] WnW for all W +⊂ ∈  
 

So this same interval of ρ -values is available for every choice of WnW +∈ .15  
 
Given this normalization, the objective of this section is to extend the bias results for 
maximally connected weight matrices *W  in Proposition 1 to all weight matrices, 

WnW +∈ , that are strongly connected in the sense that they are “sufficiently close” to *W  
in the relative connectivity norm.  To do so, it is convenient to introduce the following 
additional conventions. First, for any given WnW +∈  and data set ( , )y X  for model (1), 
we shall write the maximum likelihood estimator for ρ  as ˆ ( , )W y Xρ . As pointed out 
above, this estimator can fail to exist even when ( , )y X  is W -regular. But for weight 
matrices close to *W  (in relative connectivity), it should be clear that if ( , )y X  is W -
regular, then a differentiable maximum, ˆ ( , )W y Xρ , fails to exist only when slL  is 
unbounded at the lower boundary of [ ]W . In such cases, we simply set ˆ ( , )W y Xρ  equal to 
this lower boundary, so that ˆ ( , )W y Xρ  can be treated as a well-defined value for each W . 
Next, to quantify the possible bias of these estimates, it is convenient to focus only on the 
most important case of positive dependencies in model (1), i.e., 0ρ > , and to quantify 
various degrees of underestimation by inequalities of the form,  
 

(46) ˆ ( , ) /(1 )W y Xρ ρ α< +  
 
where parameter 0α >  can be interpreted as a bias factor. For example, a bias factor of 

1α =  would imply that ˆ ( , )W y Xρ  is less than half the true value of ρ . More generally, 
higher bias factors correspond to more severe underestimation of ρ . With these 
conventions, we now have the following consequence of Proposition 1: 
 

Proposition 3.  For any regular data set ( , )y X  with 3n ≥  and any given value, 

0 (0,1)ρ ∈ , of the spatial dependence parameter for model (1), there exists for 
each choice of bias factor, (0,1)α ∈ , a sufficiently small 0( , , , ) 0y Xε ε α ρ= >  
such that for all WnW +∈ ,  
 

(47)  *
0ˆ ( , ) /(1 )Wrc

W W y Xε ρ ρ α− < ⇒ < +  

 
                                                 
14 Expression (45) follows from the fact that * *

max max max0 ( ) ( ) 1 1/ ( ) 1W W W W Wλ λ λ≤ ≤ ⇒ ≤ = ⇒ ≥  [see 
Horn and Johnson (1985, Corollary 8.1.19)]. 
 
15  An alternative normalization that also shares this property is to set b  equal to the reciprocal of the 
smallest row or column sum, as proposed by Kelejian and Prucha (2008, Lemma 2). Though less standard 
than the present convention, this normalization has the advantage of being much easier to compute for large 
weight matrices.  
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Proof Sketch: The proof of this result is rather technical, and is deferred to the 
Appendix. But the basic idea is simple. Observe from Figure 2 that not only does 
the concentrated likelihood function, slL , diverge to +∞  at *ρ , but in fact its 
derivative is everywhere negative in *[ ]W . Hence, if we now write the 
concentrated likelihood function as, ( | , , )slL y X Wρ , to emphasize its dependence 
on W  [as well as data ( , )y X ], then the strategy of the proof is to show that the 
corresponding derivative, ( | , , )slL y X Wρ′ , with respect to ρ  is continuous in W  
at the point *W . Using this continuity property, it is then possible to show that for 
any choice of bias factor, α , when W  is sufficiently close to *W  [i.e., when ε  in 
(47) is sufficiently small], one can guarantee that ( | , , )slL y X Wρ′  will be negative 
for all [ ]Wρ ∈  with 0 /(1 )ρ ρ α≥ + , and thus that ( | , , )slL y X Wρ  can only 
achieve a maximum on *[ , /(1 ))ρ ρ α+ .   

  
In other words, for any degree of bias, 0α > , there is some threshold level of  “strong 
connectivity”, *W W ε− < , which is sufficient to ensure this degree of bias. The proof 
sketched above also shows (from the persistence of negative slopes) that under conditions 
of no spatial dependence (i.e, 0ρ = ) this null hypothesis will tend to be falsely rejected 
in favor of negative dependencies ( 0)ρ <  for strongly connected weight matrices. 
Moreover, in cases where such dependencies are indeed negative, the strength of these 
dependencies will tend to be overestimated. But as with all such continuity results, 
Proposition 3 still leaves open the question of how “strong” this connectivity must be in 
order to see a substantial effect. While such questions can only be answered definitively 
by extensive simulations, it is nonetheless possible to illustrate the potential significance 
of these results by means of a “typical” example.16 
 
Here we set 50n = , 2k = , and construct x -data 1 2( , )x x  by simulating two uniformly 
distributed random vectors, so that 50 1 2[1 , , ]X x x= . Model (1) was then parameterized 
with 0 1 2( , , ) (1,2,3)β β β β ′= =  and standard deviation 1σ = . Again for sake of 
illustration the single value, .5ρ = , was chosen to represent (substantial) positive spatial 
dependency in model (1). To analyze the effects of strong connectivity, only symmetric 
binary weight matrices were used in order to allow an average link density interpretation 
of the matrix norm in (40). A number of matrices, W , with different average link 
densities, (0,1)

rc
d W= ∈  were randomly sampled. In particular, the values 

{.30,.50,.80,.90,.95,.99}d ∈  were chosen for study. For each d  a matrix, ( ) Wd nW +∈ ,  

                                                 
16 This example is only meant to illustrate the practical consequences of the analytical results above. As 
mentioned in the introduction, more extensive and systematic simulations can be found in both Mizruchi 
and Neuman (2008) and Farber, S., A. Páez and E. Volz (2008). 
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was randomly sampled from the distribution independently assigning 1ijw =  with 
probability d  and 0ijw =  otherwise.17  
 
In order to make the results at different density levels more readily comparable, each 
matrix dW  was normalized in the same manner as *W , by dividing dW  by its maximum 
eigenvalue. This rescaling ensures that the positive values of ρ  in each simulated model 
are exactly the same, namely (0,1)ρ ∈ .18 For each of these matrices, 1000 y -vectors 
were then simulated for model (1), and corresponding maximum-likelihood estimates 

ˆ{ ( ) : 1,..,1000}d s sρ =  were computed.19 Perhaps the simplest way to summarize these 
results is to compare the sample mean values of ˆdρ  for each of these densities with the 
true value, .50ρ = , as in column 2 of Table 1 below.  
 
 
 
 
As expected, one sees underestimation in all cases, with steadily increasing severity for 
higher densities. For comparison, the maximally connected case, 1d = , has been added 
to show this extreme case is vastly worse than all others. But nonetheless, one can see the 
continuity properties in Proposition 3 at work. Underestimation becomes quite severe as 
connectivity density increases. Note also that in Table 1 the corresponding ρ -intervals, 
[ ]dW , in (15) above are given in column 4 (column 3 will be discussed below).  
 
To provide a fuller comparison, selected histograms of ˆ{ ( ) : 1,..,1000}d s sρ =  are shown 
for the cases .50,.80,.90,.99d =  in Figure 3 below.20 Here the true value, .50ρ = , is  
 
 
 
 
indicated by a bold arrow in each case to facilitate the visual comparison of these 
estimates. So at average link-density levels of at least 80% ( .80d ≥ ) there is a substantial 
downward bias in ρ  estimates. Another way to see this is to ask what fraction of these 
estimates are reported as significantly different from zero in the standard two-sided tests  
using asymptotic z-values.21  Here, for a true value of .50ρ = , only the upper 42% of 
sample estimates at .80d =  are significantly different from zero. When the density is 

                                                 
17 Note that density values, d , can only be approximated by this sampling procedure. However, repeated 
samples at each density level yielded variations that were too small to warrant reporting. In all cases the 
matrix, ( )dW  chosen had an average link density well within .01 of d . 
18 The normalization, 1/( 1) 1/ 49b n= − = , used above has the theoretical advantage of preserving all 
relative connectivity relationships. But the present scaling to unit maximum eigenvalues is a more typical 
normalization used in practice. For comparison, calculations were also done for the 1/ 49  scaling, and 
produced even more dramatic underestimation results than those presented here.  
19 The estimation was done in Matlab using a modified version of the LeSage (1999) suite of programs.  
20 Cases .30d =  and. .95d =  are, respectively, very similar to .50d =  and .90d = , and are omitted.  

 Table 1 Here 

 Figure 3 Here 
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increased to .90d =  this drops to less than 15%. Further investigations of such 
significance questions will be taken up in Section 5 below. 
 
Finally, it is of interest to recall from the discussion following Proposition 2 above that 
this underestimation of ρ  has consequences for the bias of other parameter estimates that 
are at least qualitatively predictable. While it is difficult to place magnitudes on the 
degree of these biases, they can at least be illustrated for the simulations of model (1) 
above. The mean estimates for all parameters are shown in Table 2 below (where the 
means for ρ̂  have been repeated from Table 1): 
 
 
                    
                                                             
  
Recall from Proposition 2 that for the “perfect fit” case in the last row of Table 2, one 
would predict an intercept coefficient, 0

ˆ 1n yβ ′≈ . In the present case, the mean value of 
1n y′  was about 351, which is in clear agreement with Table 2. Hence for strongly 
connected weight matrices this is seen to result in extreme overestimation of 0β  in the 
present case. It is also interesting to note that while the limiting estimates of 1 2( , )β β β ′=  
and 2σ  in Table 2 also agree with the zero values predicted by Proposition 2, these biases 
seem to disappear much more rapidly as link density decreases. However, it is worth 
noting that even a slight downward bias in 2σ̂  (and hence σ̂ ) can have potentially 
serious consequences for testing, where it can lead to erroneous significance of beta 
parameters.  
 
 
5. Extension to Spatial Autoregressive Models 
 
The results above demonstrate that strong connectivity of weight matrices can lead to 
severe bias in the estimation of spatial dependencies in spatial lag models. Hence it is 
natural to ask whether similar behavior is exhibited by spatial autoregressive models. Our 
main result here is to show that with respect to spatial dependence parameters, the results 
for these two models are essentially identical. To establish this, we begin by formulating 
this model and sketching the parallel maximum likelihood estimation problem for this 
case. As a parallel to model (1), the standard spatial autoregressive model (SAR)22 for n  
spatial units: 
 
(48) 2, , ~ (0, )ny X u u Wu N Iβ ρ ε ε σ= + = +  
 

                                                                                                                                                 
21 Note that for tests of positive ρ  it is theoretically more appropriate to consider a one-sided test ( 0ρ > ). 
But such results are not reported in standard spatial regression software. 
22 This is also known as the spatial errors model, to emphasize the spatial dependence among errors. 

 Table 2 Here 
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where now the spatial dependence parameter, ρ , and spatial weight matrix, W , 
characterize possible spatial dependencies among the residuals rather than the dependent 
variable, y .23 If one solves for u  and writes this model in reduced form as 
 
(49) 1 2( ) , ~ (0, )n ny X I W N Iβ ρ ε ε σ−= + −  
 
then it becomes clear that ρ  and W  directly influence the covariance structure of the 
residuals, ε . Again y  is multinormally distributed, where the log likelihood function for 
parameters 2( , , )β σ ρ  in (3) now takes the form: 
 
(50) 2 2

2( , , | , ) ln( ) ln | det( ) |n
nL y X const I Wβ σ ρ σ ρ= − + −  

 

                                             2
1

2 ( ) ( ) ( )( )n ny X I W I W y Xσ β ρ ρ β′ ′− − − − −  
 
The parallel between (3) and (50) is even more clear when one solves for the conditional 
estimates of β  and 2σ  given ρ ,  
 
(51) 1ˆ ( ) [ ( ) ( ) ] ( ) ( )sar n n n nX I W I W X X I W I W yβ ρ ρ ρ ρ ρ−′ ′ ′ ′= − − − −  
 

(52) 2 ˆ ˆˆ ( ) (1/ )( ( )) ( ) ( )( ( ))sar sar n n sarn y X I W I W y Xσ ρ β ρ ρ ρ β ρ′ ′= − − − −  
 
and substitutes into (50) to obtain the concentrated likelihood function, sarL , for ρ . 
Again, after cancelling of terms, this function reduces to 
 
(53) 2ˆ( | , ) ln | det( ) | ( / 2) ln[ ( )]sar nL y X const I W nρ ρ σ ρ= + − −  
 
which is seen to be identical in form to (6).24 Hence these concentrated likelihood 
functions differ only with respect to their corresponding conditional variance estimates in 
(5) and (52). However, for the special case of maximally connected weight matrices, *W , 
it turns out that these conditional variance estimates are identical, as we now show. 
 
To do so, we begin with the following preliminary result on a certain class of orthogonal 
projections, which are exemplified by the key projection, 1( )X X X X−′ ′ , embodied in 
expression (7) for M .  If for any matrix, n kA R ×∈ , of full column rank k n≤  we now let 

1( )AP A A A A−′ ′=  denote the orthogonal projection of n kR ×  into the span of A  (so that by 
definition, AP A A= ) then we have the following useful condition for equality between 
such projections: 
 

                                                 
23 Although the spatial dependence parameter in this model acts on residuals rather than y , we choose to 
keep the same notation, ρ , in order to emphasize the parallels between these two models. 
24 In particular the constant terms, const, are also easily shown to be identical. 
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 Lemma 4. For any matrices, , n kA B R ×∈ , of full column rank, 
 
(54) A B AP P P B B= ⇔ =  
 

Proof:  Since BP B B= , it follows at once that A B A BP P P B P B B= ⇒ = = . So we 
need only show the converse. To do so, observe first that 
 

(55) 1 1[( ) ] [( ) ]A A A B BP B B P B B B B B B B B P P P− −′ ′ ′ ′= ⇒ = ⇒ =  
 
Moreover, it also follows that 
 

(56) 1 1( ) ( ) ( )AB P B A A A A B A A A A B− −′ ′ ′ ′= = =  
 

                1 1( ) ( ) | | | | | | | |B B B A A A A B B B B A A A A B− −′ ′ ′ ′ ′ ′ ′ ′⇒ = ⇒ = ⋅ ⋅  
 

     2| | | | | | 0A B B B A A′ ′ ′⇒ = ⋅ >  
 
and hence that A B′  is nonsingular. Thus by the first line of (56) we have 
 

(57) 1 1( ) ( ) ( ) ( )B B BP B B P A A A A B A A A A B P A A− −′ ′ ′ ′= ⇒ = ⇒ =  
 
where the last implication follows by post-multiplication of both sides by the 
inverse of the nonsingular matrix 1( ) ( )A A A B−′ ′ . Hence by the argument in (55) 
 

(58) B B A A A B AP A A P P P P P P= ⇒ = ⇒ =  
 
where here the last implication follows by taking transposes of both sides and 
using the symmetry of AP  and BP . Hence it be concluded from (55) and (58) that 
 

(59) A A B BP P P P= =  
 
and the result is established.  
 

With this result, we now have the following key identity between SL models (1) and 
SAR models (49) for the case of maximally connected weight matrices. 
 

Proposition 4.  If *W W=  in models (1) and (49), then the concentrated 
likelihood functions slL  and sarL  are identical for all *[ ]Wρ ∈ .            
 
Proof:  To establish this result, it is clear from (6) and (53) that it suffices to show 
that the conditional variance estimates in (10) and (52) are identical on *[ ]W . But 
if for notational convenience we now let  
 

(60) * (1 1 )n n n n nB I W I b Iρ ρ ρ ′= − = − −   
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[where 1/( 1)b n= −  is one possibility] then by the first line of (10), it follows that 
for the SL model (1), 
 

(61) ( ) ( )2 1 1ˆ ( ) (1/ ) [ ( ) ] [ ( ) ]sl n nn I X X X X B y I X X X X B yρ ρσ ρ − −′′ ′ ′ ′= − −   
 
             

21(1/ ) [ ( ) ]nn I X X X X B yρ
−′ ′= −  

 
             

2
(1/ ) ( )n Xn I P B yρ= −  

 
To compare this with the SAR model (49), observe from (51) that 
 

(62) 1 1ˆ ( ) ( ) [( ) ( )] ( )sar X B B X X B B y B X B X B X B yρ ρ ρ ρ ρ ρ ρ ρ ρβ ρ − −′ ′ ′ ′ ′ ′= =  
 
 and hence from (52) that  
 

(63) 2 ˆ ˆˆ ( ) (1/ )( ( )) ( ( ))sar sar sarn y X B B y Xρ ρσ ρ β ρ β ρ′ ′= − −
2ˆ(1/ ) ( ( ))sarn B y Xρ β ρ= −   

 
                        

21(1/ ) ( [( ) ( )] ( ) )n B y X B X B X B X B yρ ρ ρ ρ ρ ρ
−′ ′= −  

 
                        

21(1/ ) { ( )[( ) ( )] ( ) } )nn I B X B X B X B X B yρ ρ ρ ρ ρ
−′ ′= −  

 

                        
2

(1/ ) ( )n B Xn I P B y
ρ ρ= −  

 
In this form it is clear that the result will follow if it can be shown that  

 
(64) X B XP P

ρ
=   for all *[ ]Wρ ∈  

 
But since [1 , ]nX X=  and XP X X=  together imply that  1 1X n nP = , we must have 
 

(65) ( ) (1 1 ) ( 1 )1X X n n n X n n XP B X bP I X b P X bP Xρ ′ ′= − = −  
 
                            (1 1 ) (1 1 )n n n n nb X bX b I X B Xρ′ ′= − = − =  
 
 and may conclude from Lemma 4 that (64) holds for all *[ ]Wρ ∈ . 
 
Hence it follows at once from Proposition 4 that for maximally connected weight 
matrices, *W , it will always be true that the maximum likelihood estimates, ˆnρ , of ρ  in 
corresponding SL and SAR models are identical. This in turn implies that Proposition 1 
must hold in tact if the SL model in (1) is replaced by SAR model in (49).  Hence the 
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same type of continuity argument in Proposition 2 can be used to show that the spatial 
dependence parameter, ρ , in SAR models will be underestimated for strongly connected 
weight matrices.  
 
Rather than repeat such arguments here, we simply report the corresponding estimation 
results for the SAR model based on the same data X , parameters 2( , , )β σ ρ , and weight 
matrices, , {.30,.50,.80,.90,.95,.99,1.00}dW d ∈  used in Section 3 above. The results for 
ρ  are displayed in column 3 of Table 1 in that section and show that, as predicted by 
Proposition 4, these estimates converge to the same extreme value as d  approaches 
unity. However it is also clear that (at least in this particular example) the 
underestimation of ρ  is even more severe than for the SL model above.  
 
 
 
 
The results for other parameter estimates are shown in Table 3 above. Notice first that all 
mean beta estimates appear to be remarkably accurate – even in the maximally connected 
case. This is explained by the well known fact that for the SAR model, β̂  is always an 
unbiased estimator of β  for a correctly specified model, since 
 
(66) 1ˆ( | ) [ ( ) ( ) ] ( ) ( ) ( | )n n n nE X X I W I W X X I W I W E y Xβ ρ ρ ρ ρ−′ ′ ′ ′= − − − −  
 
                            1[ ( ) ( ) ] ( ) ( )n n n nX I W I W X X I W I W Xρ ρ ρ ρ β β−′ ′ ′ ′= − − − − =  
 
Notice also that there is some slight underestimation of residual variance, as in the case of 
SL models. This does not appear to be too severe (in the present example). But again, 
even slight underestimation of variance can lead to erroneous significant of beta 
parameters. Moreover, in the extreme case of maximal connectivity these estimates are in 
fact completely unstable, as can be seen by the dependency of β̂  on ρ̂  in the conditional 
beta estimator of (62) above. If we set  
 
(67) *

minˆ 1/ ( ) 1/n W bρ λ= = −   
 
in this extreme case, then 
 
(68) ˆ ( 1/ )[ (1 1 )] 1 1

n n n n n n nB I b b Iρ ′ ′= − − − =  
 
together with 1 1n n n′ =  implies that 
  
(69) 1 1

ˆ ˆ ˆ ˆ
ˆ ˆ( ) ( ) ( 1 1 ) 1 1

n n n nsar n n n n nX B B X X B B y X X X yρ ρ ρ ρβ ρ − −′ ′ ′ ′ ′ ′ ′ ′= =  
 
Hence if there is at least one explanatory variable other than the intercept (i.e., if 1k ≥ ) 
then the matrix, 1 1n nX X′ ′ , is singular and the inverse in (69) will not exist. In practice 

Table 3 Here 
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however, what typically happens is that estimation algorithms converge to values close to 
1/ b−  which will yield well-defined answers. In the case illustrated above, where 
1/(1/ 49) 49− = − , even values of -48.999 continue to produce reasonable looking 

estimates on average. 
 
6. Consequences for Moran Tests of Spatial Autocorrelation 
 
Aside from the above consequences for spatial regression models such as SL and SAR 
models, strong connectivity of weight matrices has broader implications for diagnostic  
analyses of spatial autocorrelation. This is most evident with respect to the single most 
widely used test for spatial autocorrelation, namely the Moran Test. In particular, suppose 
that one considers the null hypothesis of independence ( 0ρ = ), under which both SL and 
SAR models reduce to the standard linear model:  
 
(70) 2, (0, )ny X N Iβ ε ε σ= + ∼  
If one constructs the standard maximum-likelihood (OLS) estimates of β  under this 
hypothesis, 
 
(71) 1ˆ ( )X X X yβ −′ ′=  
 
and forms the corresponding vector of residual estimates: 
 
(72) ˆˆ ˆy y y Xε β= − = −        
           
then for any given candidate choice of a spatial weight matrix, W , the associated  Moran 
statistic, WI , is defined by [see for example Anselin (1988, Section 8.1.1)]: 
 

(73)  
ˆ ˆ
ˆ ˆW W
WI ε εα
ε ε
′

=
′

 

 
where the positive constant, 

1
/ /W ijij

n W n wα = = ∑ , plays no substantive role in the 

analysis to follow. This can be expressed in a more convenient form (again following 
Anselin) by noting from (71) and (72) that  
 
(74) 1 1ˆ ( ) [ ( ) ]ny X X X X y I X X X X y Myε − −′ ′ ′ ′= − = − =  
 
and hence from (9) that WI  can be equivalently written as 
 

(75) W W
y MWMyI

y My
α

′
=

′
 

 
Under the hypothesis of independence in (70), the mean and variance of WI  are well 
known to be [Anselin (1988, Section 8.1.1)]: 
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(76) ( )( )
( 1)

W
W

tr MWE I
n k
α

=
− +

 

 

(77) 
2 2

2( ) { ( ) ( ) [ ( )] }var( ) [ ( )]
[ ( 1)] [ ( 1)]

W
W W

tr MWMW tr MWMW tr MWI E I
n k n k

α ′ + +
= −

− + ⋅ − −
 

 
In this setting, our main result is to show that for maximally connected weight matrices, 

*W , this Moran statistic is degenerate.25 In particular it is completely concentrated at the 
mean, *( )

W
E I , and hence can never detect spatial autocorrelation. To establish this result, 

we first note from (75) that this statistic is only meaningful for data sets ( , )y X  with 
0y My′ ≠ . But since, 0 0y My My′ = ⇔ =  (as shown in the proof of Lemma 3 above), this 

is in turn equivalent to the condition that 0My ≠ . Hence, for purposes of this section we 
again assume regularity of ( , )y X . In addition, we employ the normalization convention, 

1/( 1)b n= − , for *W  so that *
max ( ) 1Wλ =  . Finally, for each regular data set, ( , )y X , we 

let * ( , )
W

I y X  denote the corresponding sample value of *W
I  in (75). With these 

conventions, we have the following result: 
 

Proposition 5. For all regular data sets ( , )y X , 
 

(78) * *( , ) ( )
W W

I y X E I=  
 
Proof: First observe that since *

1
1/( 1) ( 1)[1/( 1)]b n W n n n n= − ⇒ = − − = , it 

follows that   
 

(79) *
*

1
/ 1

W
n W n nα = = =  

 
and hence that the Moran statistic for this case reduces to 

 

(80) *

*

( , )
W

y MW yI y X
y My
′

=
′

 

 
Thus we see from Lemma 3 that 
 

(81) *

( ) 1 1( , )
1 1W

y bM y y MyI y X
y My n y My n

′ ′−
= = − ⋅ = −

′ ′− −
 

 

                                                 
25 This degeneracy is also an instance of the more general result in Arnold (1979, Th.5) for the class of 
invariant test statistics for linear models with exchangeably distributed errors. A more explicit version 
relating to the present case is given in Martellosio (2008, Props. 3.4 and 3.6). 
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and may conclude that *W
I  is indeed concentrated at a single value. To show that 

this value is precisely the mean, *( )
W

E I , under independence, we first note that 
since the trace of orthogonal projection (symmetric idempotent) matrix, M , is 
equal to the dimension of its image space [Searle (1982, Section 12.2)], and since 
the dimension of the complement of the span of X  is ( 1)n k− + , it follows that  
 

(82) ( ) ( 1)tr M n k= − +  
 
 This in turn implies from Lemma 3 that  

 

(83) * 1 ( 1)( ) ( ) ( )
1 1

n ktr MW tr bM tr M
n n

− +⎛ ⎞= − = − = −⎜ ⎟− −⎝ ⎠
 

 
and hence from (76) and (79) that 
 

(84) *

*( ) 1( )
( 1) 1W

tr MWE I
n k n

= = −
− + −

 

 
Thus the result follows from (81) and (84). 

 
As a consequence of Proposition 5, it follows that (with probability one)26 the realized 
value of  *W

I  is precisely its expected value under independence. Hence no evidence for 
spatial dependence can ever be detected in this extreme case. More generally, the same 
type of continuity argument used in Proposition 3 above shows that for weight matrices, 
W , that are sufficiently close to *W  [say in terms of the relative connectivity norm] it 
must be true that the possible values of WI  are concentrated close to the mean ( )WE I . So 
again this statistic should have little ability to detect spatial dependence.  
 
To make these ideas more concrete, we choose to focus on the standard z-test for Moran 
statistics found in most software. If the standard deviation of WI  under independence is 
denoted by 1/ 2( ) var( )W WI Iσ = , then it is well known [Cliff and Ord(1981, Section 8.5.1)] 
that the standardized z-value  
 

(85) ( )
( )

W W
W

W

I E IZ
Iσ

−
=  

 
is approximately distributed N(0,1) for large n . Hence one can use this distribution 
theory to test the hypothesis of spatial independence with respect to weight matrix W .27  

                                                 
26 It is a simple matter to show for any X , the set of y  with 0My =  has probability measure zero. 
27 It is worth noting here that the exact distribution of WI  under independence has been obtained by 
Tiefelsdorf and Boots (1995). However, most statistical packages rely on the asymptotic approximation 
above. 
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To study the behavior of this test for strongly connected weight matrices, we shall focus 
only on the simulation results in Section 3 above based on the SL model. Here it was 
assumed that .5ρ =  and hence that a substantial degree of positive spatial dependence is 
present. To determine whether this dependence can be detected by the Moran statistic for 
a given weight matrix, W , it suffices to compute ( , )WI y X  for simulated data sets from 
model (1), and then examine the frequency distribution of z-values, ( , )WZ y X , generated 
by this data. For a one-sided test of 0ρ >  at the .05α = , one need only count the 
fraction of z-values above 1.65zα =  to determine the power of this test to detect positive 
spatial dependence, given the true value .5ρ =  . For the 1000 simulated values at each 
link density level in Section 3 above, the resulting estimated power levels are shown in 
Table 4 below. 
 
 
  
 
Here it is clear that at link densities above .80 the distribution is so concentrated around 
the null mean, ( )WE I , that even a dependency level of .5ρ =  is detectable less than 10% 
of the time.28 It is also of interest to note that even though the distribution of WI  
concentrates at the null mean as link density approaches 1, the power levels do not appear 
to fall to zero in Table 4. The reason for this is that concentration of WI  values drives the 
variance in (76) to zero (as can easily be verified by the same calculations as for the 
mean in the proof of Proposition 529). Hence when WI  is highly concentrated, the 
standardized value, WZ , becomes unstable (as it approaches the limiting indeterminate 
values 0/0 for *W ).  
 
 
7. Concluding Remarks 
 
In this paper it has been shown that presence of strongly connected spatial weight 
matrices can introduce serious biases into both the estimation and testing of spatial 
autocorrelation. Hence one is led to ask whether there is any simple intuitive explanation 
for this. One possibility relates to the notion of “effective sample size”. It has long been 
observed that the presence of statistical dependencies essentially reduce the amount of 
information gained from each individual observation. For example, the observation of a 
sequence of perfectly correlated coin tosses will offer no more information than the 
observation of only the first toss, no matter how long the sequence is. Hence it can be 
argued that in so far as strong spatial connectivity reflects strong dependencies among 

                                                 
28 It is also of interest to note that the .054 value for density .99 is consistent with a limiting value of 

.05α =  for the maximally connected case, as implied by results of Martellosio (2008, Prop.3.5). 
29 Note in particular from Lemma 2 that for *W , * * 2( ) [( )( )] ( )tr MW MW tr bM bM b tr MM= − − =  

2 2( ) [ ( 1)] /( 1)b tr M n k n= = − + − . 

 Table 4 Here 
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units (or agents), there should be less statistical information available for estimation or 
tests of hypotheses. 
 
But while this argument has intuitive appeal, and is no doubt true to some extent, it fails 
to explain, for example, why maximum-likelihood methods should systematically 
underestimate the ρ  parameter in SL and SAR models. In this paper it has been shown 
that much can be learned by studying the extreme case of maximally connected weight 
matrices, *W . In particular, both concentrated likelihood functions and Moran statistics 
reduce to particularly simple forms in this case, and can be studied in detail. But even in 
this extreme case, the subtlety of the underestimation question above is underscored by 
the fact that quite different arguments were used to bound the values for each term in the 
concentrated log likelihood function. In particular, both the eigenvalue structure of *W  
and the relation of *W  to the regression projection operator, 1( )nI X X X X−′ ′− , were 
involved. So in some respects, these results serve to raise as many theoretical questions as 
they answer. 
 
Even more important are questions relating to the practical consequences of these results. 
While the single simulation example presented here is very suggestive, it can provide no 
definitive guidelines for applications. Hence the actual severity of these biases can only 
be determined by more extensive and systematic simulation studies, as already begun by 
Mizruchi and Neuman (2008) and Farber, Páez and Volz (2008). 
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APPENDIX: Proof of Proposition 3  
 
As stated in the proof sketch for Proposition 3, our strategy will be to establish negativity of 
the concentrated likelihood derivative with respect to ρ  on a given interval in [ ]W . For 
purposes of analysis, we now drop the SL model subscript and write the concentrated 
likelihood function as ( | , )WL y Xρ , so that by (16),30 and the positivity of min {1 ( )}i i Wρλ−  
on [ ]W , it follows that for all [ ]Wρ ∈ , 
 
(A.1) 

1
( | , ) ln(1 ) ( / 2) ln[ ( ) ( ) ]n

W i n ni
L y X const n y I W M I W yρ ρλ ρ ρ

=
′ ′= + − − − −∑  

 
Since we are only interested in nonnegative feasible ρ -values for each weight matrix, 
W , it is convenient to define this interval as 
 
(A.2) max[ ] { [ ] : 0} [0,1/ ( ) )W W Wρ ρ λ+ = ∈ ≥ =  
 
In these terms, the relevant domain, D , for the function, ( | , )WL y Xρ , with arguments 
( , )Wρ  is given by 
 
(A.3) {( , ) : [ ] , }Wn n

nD W R R W Wρ ρ× +
+= ∈ × ∈ ∈   

 
[where the data ( , )y X  in (A.1) is taken to be fixed]. Our interest then focuses on the 
partial derivative of this function with respect to ρ , which we write as 
 

(A.4) 
1

( / )[ ( ) ( ) ]( | , ) ( / 2)
(1 ) ( ) ( )

n i n n
W i

i n n

y I W M I W yL y X n
y I W M I W y

λ ρ ρ ρρ
ρλ ρ ρ=

′ ′∂ ∂ − −′ = − −
′ ′− − −∑  

 
To analyze this function, observe first that since, 
 
(A.5) 2( ) ( ) ] [ 2 ][ n ny I W M I W y y My y MWy y W MWyρ ρρ ρ ρ ρ∂ ∂

∂ ∂′ ′ ′ ′ ′ ′− − = − +  
 
                                                               2 2y MWy y W MWyρ′ ′ ′= − +  
 
                                                               2[ ]y W MWy y MWyρ ′ ′ ′= −  
 
and since (9) together with the symmetry of M  implies both31  
 
(A.6) 2( ) 0y W MWy y W MMWy MWy MWy MWy′ ′ ′ ′ ′= = = ≥   , and 
 

                                                 
30 Expressions such as (16) refer to the text, in contrast to Appendix expressions such as (A.16). 
31 Here the vector norm x  is simply Euclidean norm, which is of course identical to the matrix norm 

2
A  applied to 1n×  matrices. 
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(A.7) 2( ) ( ) ( ) ( ) ( ) 0n n n n ny I W M I W y y I W MM I W y M I W yρ ρ ρ ρ ρ′ ′ ′ ′− − = − − = − ≥  
 
it follows that (A.4) reduces to 
 

(A.8) 
2

2 1

( )( | , ) ( )
[1 ( )]( )

n i
w i

in

y MWy MWy WL y X n
WM I W y

ρ λρ
ρλρ =

′ − ⋅
′ = −

−−
∑  

 
where the notation, ( )i Wλ , now reflects the dependence of these eigenvalues on W . We 
are interested in the continuity properties of this function with respect to weight matrices, 
W , in the neighborhood of *W . But, as with the concentrated likelihood function itself, it 
is clear from (A.8) that for any W , the function, ( | , )WL y X′ ⋅ , is only well defined if 

( ) 0nM I W yρ− >  for all [ ]Wρ +∈ . In Lemma 3 it was shown that every regular data 

set ( , )y X  is *W -regular, and hence that positivity is ensured for the case *W W= . Thus 
part of the continuity argument to follow will be to show that this positivity property is 
necessarily inherited by all W  sufficiently close to *W , and moreover that for regular 
data sets, ( , )y X , the values ( )nM I W yρ−  are uniformly bounded away from zero on 

some neighborhood of *W .  Thus it may be assumed for the moment that ( | , )WL y X′ ⋅  is 
well defined. To establish W -continuity of this function at *W ,32 it is convenient to 
consider each term separately by letting 
 

(A.9) 
2

2( | , ) ( )
( )W

n

y MWy MWy
U y X n

M I W y
ρ

ρ
ρ

′ − ⋅
=

−
 

 
and  
 

(A.10) 
1

( )( | , )
[1 ( )]

n i
W i

i

WV y X
W

λρ
ρλ=

= −
−∑  

 
be the associated component functions defined on D . Hence W -continuity of WL  at *W  
will be implied by W -continuity of both WU  and .WV  at *W . But for WV  in particular, 
W -continuity follows from well known results. Since [ ] [ ]W Wρ +∈ ⊂  for all WnW +∈ , it 
follows that ( | , )WV y Wρ  is always well defined on D , and hence that W -continuity of 
this function is guaranteed by continuity of each eigenvalue function, ( )i Wλ . But this 
follows at once from the results of Horn and Johnson (1985, Appendix D), where it is 
shown that the roots of polynomials are continuous functions of their coefficients (in this 

                                                 
32 By W -continuity of a function ( )Wf ρ  at W  we mean that for any sequence ( )mW  in Wn

+ , 

lim lim ( | ) ( | )m m m mW W f W f Wρ ρ
→∞ →∞

= ⇒ =  for each [ ]Wρ ∈ . The function ( )Wf ρ  is then said to be 

W -continuous if W -continuity holds at every point, WnW +∈ . 
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case the components, ijw , of W ).33  However, as mentioned above, W -continuity of 

( | , )WU y Xρ  is complicated by the need to ensure that ( )nM I W yρ−  remains positive. 
Hence it is convenient to focus on the component function 
 
(A.11) ( | , )g W y X y MWy′=   
 
in the numerator of ( | , )WU y Xρ , with domain Wn

+ . The reason for this choice can be 
seen by expanding the denominator of ( | , )WU y Xρ  as: 
 
(A.12) 2( ) ( ) ( )nM I W y y M MW M MW yρ ρ ρ′ ′− = − −  
 
                                         22 ( ) ( )y My y MWy MWy MWyρ ρ′ ′ ′= + +  
 
                                         2 222 ( | , )My g W y X MWyρ ρ= − +    
 
Since the first term is positive for regular data ( , )y X  and since the last term is always 
nonnegative, it follows that if ( | , ) 0g W y X ≤ , then the second term will be nonnegative 
for all [ ]Wρ +∈  and hence that  
 

(A.13)  2 2( ) 0nM I W y Myρ− ≥ >  
 

Thus nonpositivity of ( | , )g W y X  will guarantee that ( )nM I W yρ−  is uniformly 
bounded away from zero for [ ]Wρ +∈ , and hence that ( | , )WU y Xρ  is well defined. 
Moreover, if it can be established that ( | , )g W y X  is actually negative, then by (A.9) it 
will also follow that ( | , )WU y Xρ  is negative for all [ ]Wρ +∈  – which will help to 
establish not only W -continuity *W , but also the desired negativity of ( | , )WL y X′ ⋅  on 
appropriate intervals. To specify these intervals, we now fix some “true” spatial 
dependence value, 0 (0,1)ρ ∈ , in Model (1), and for each bias factor, 0α > , let  
 

(A.14) 0 /(1 )αρ ρ α= +  
 
denote the bound on underestimation in expression (47) of Proposition 3. Then our first 
objective is to establish conditions on W  that will ensure negativity of ( , )Wg y X  for all 

[ ]Wρ +∈ with αρ ρ≥ . 
To do so, recall first from Lemma 2 [and the scaling 1/( 1)b n= − ] that  
 
                                                 
33 At this point it is also worth noting that in both establishing continuity and drawing inferences based on 
continuity, it will make no difference which norm in being used. Indeed, since every n -square matrix norm 
is a vector norm on n nR × , and since all vector norms on a finite-dimensional space are topologically 
equivalent [Horn and Johnson (1985, Corollary 5.4.6)], questions of convergence are independent of the 
choice of norms. Only the “sizes” of neighborhoods will differ.  
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(A.15) *
*( , )

1W

y Myg y X y MW y by My
n
′

′ ′= = − = −
−

 

 
which is always negative for regular data ( , )y X . Hence noting that for any WnW +∈ , 
 
(A.16) * *( , ) ( , ) | ( , ) ( , ) |W WW W

g y X g y X g y X g y X≤ + −  
 

                                *| |
1

y My y MWy y MW y
n
′

′ ′= − + −
−

 

 
it follows that ( , )Wg y X  will also be negative if the second term is sufficiently small. But  
by the Cauchy-Schwarz inequality 
 
(A.17) * * *| | | ( ) | ( )y MWy y MW y y M W W y y M W W y′ ′ ′− = − ≤ ⋅ −  
 
Moreover, by the submultiplicative property of the matrix norm 

2
A ,34  

 
(A.18) * * *

22 2
( ) ( )M W W y M W W y M W W y− ≤ − ⋅ ≤ ⋅ − ⋅  

 
and by the norm inequality, 

2 1
A A≤  [Horn and Johnson (1985, p.315)] and the 

definition of the relative connectivity norm,
rc

W , in expression (40), 
 
(A.19) * * * *

2 1 1 rc
W W W W W W W− ≤ − = ⋅ −  

 
Hence combining (A.17) through (A.19) together with the fact that 
 
(A.20) * *

1
( 1) /( 1)ijij

W w n n n n= = − − =∑  

 
we see that  
 
(A.21)  2* *

2
| |

rc
y MWy y MW y n y M W W′ ′− ≤ −  

 
Hence for any 0ε >    
 
(A.22) ( )2* *

2
| |

rc
W W y MWy y MW y n y Mε ε′ ′− < ⇒ − <  

                                                 
34 See Horn and Johnson (1985, section 5.6). Recall also from footnote 21 that by convention, 

2
y y= . 
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which implies at once that ( , )Wg y X  is W -continuous at *W . More important is the fact 
that for sufficiently small 0ε > , ( , )Wg y X  will be negative. In particular, from (A.16) 
and (A.22) it suffices to require that 
 

(A.23) ( )2

2
0

1
y Myn y M
n

ε
′

− <
−

 

 
Hence if we now let 
 

(A.24) 1 1 2

2

( , )
( 1)

y Myy X
y M n n

ε ε
′

= =
⋅ −

 

 
then it must follow that  
 
(A.25) *

1 ( , ) 0Wrc
W W g y Xε− < ⇒ <  

 
Thus ( , )Wg y X  is negative for W  closer to *W  than 1ε .  This in turn implies that (A.13) 
holds, and thus ensures that ( | , )WU y Xρ  is well defined for all [ ]Wρ +∈ . More 
importantly, it then follows from (A.9) that 
 
(A.26)   *

1 ( , , ) 0Wrc
W W U y Xε ρ− < ⇒ <  for all [ ]Wρ +∈ .   

 
Hence it only remains to be shown that if W  sufficiently close to *W  then ( | , )WV y Xρ  
is also nonpositive for all αρ ρ≥ .  To do so we again start in a manner similar to (A.16) 
by looking at perturbations of ( | , )WV y Xρ  around * ( | , )

W
V y Xρ . To do so, observe first 

from the continuity of each eigenvalue function, ( )i Wλ , that for any 0e >  there is some 

2 ( ) 0eε >  such that 
 
(A.27) * *

2 ( ) | ( ) ( ) | , 1,..,i irc
W W e W W e i nε λ λ− < ⇒ − < =  

 
                                     *( ) ( ) , | | , 1,..,i i i iW W e e e i nλ λ⇒ = + < =  
 
Notice moreover that without loss of generality we may assume that 2 ( )ε ⋅  is an increasing 
function [so that smaller values of e  are associated with smaller values of 2 ( )eε ]. 
Condition (A.27) in turn implies from Lemma 1 together with 1/( 1)b n= −  that for 

*
2 ( )

rc
W W eε− <  we must have, 

 

(A.28) ( )
*

*1

( )( | , )
1 ( )

n i i
W i

i i

W eV y X
W e

λρ
ρ λ=

+
= −

− +∑  
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( )

1

1

[ 1/( 1)] 1
1 [ 1/( 1)] 1 (1 )

n i n
i

i n

n e e
n e eρ ρ

−

=

− − + +
= − −

− − − + − +∑  

 

                                   1

1

1 ( 1) 1
( 1 ) ( 1) (1 )

n i n
i

i n

n e e
n n e eρ ρ ρ ρ

−

=

− − +
= −

− + − − − −∑  

 
 
Note that when *W W=  so that 0ie e≡ =  this reduces to the expression, 
( 1) /( 1 ) 1/(1 )n n ρ ρ− − + − − , which is clearly negative for *[ ]Wρ +∈  and 3n ≥ . So 
negativity of ( | , )WV y Xρ  should continue to hold for e  sufficiently small. To determine 
an explicit bound on e , observe first that each term of the summation in (A.28) can be 
written as a function of the form ( ) (1 ) /( )f x ax b cx= − − . But one can readily verify by 
differentiating ( )f x  that  
 
(A.29) 2( ) ( ) /( )f x c ab b cx′ = − −      
 
By evaluating the numerator of (A.29) in terms of (A.28) we have  
 
(A.30) 2( 1) ( 1)( 1 ) ( 1) 0c ab n n n nρ ρ− = − − − − + = − − <  
 
so that each term 1,.., 1i n= −  is seen to be decreasing in ie . Hence we can bound these 
expressions above in terms of e  by observing that 
 

(A.31) 1 ( 1) 1 ( 1)( )
( 1 ) ( 1) ( 1 ) ( 1) ( )

i
i

i

n e n ee e
n n e n n eρ ρ ρ ρ

− − − − −
− ≤ ⇒ ≤

− + − − − + − − −
 

 

                                                                   1 ( 1)
( 1 ) ( 1)

n e
n n eρ ρ

+ −
=

− + + −
 

 
Similarly, the last term in (A.28) [ignoring the minus sign in front] can also be written in 
the same form, where in this case, 1, 1 ,a b cρ ρ= − = − =  imply that 
 
(A.32) ( 1)(1 ) 1 0c ab ρ ρ− = − − − = >   
 
so that the last term is increasing in ne , and can be bounded below in terms of e  by 
observing that 
 

(A.33) 1 1 ( ) 1
(1 ) (1 ) ( ) (1 )

n
n

n

e e ee e
e e eρ ρ ρ ρ ρ ρ

+ + − −
− ≤ ⇒ ≥ =

− − − − − − +
 

 
By applying these inequalities to (A.28), we now have 
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(A.34) 1

1

1 ( 1) 1( | , )
( 1 ) ( 1) (1 )

n
W i

n e eV y X
n n e e

ρ
ρ ρ ρ ρ

−

=

+ − −
≤ −

− + + − − +∑  

 

                                 1 ( 1) 1( 1)
( 1 ) ( 1) (1 )

n e en
n n e eρ ρ ρ ρ

+ − −
= − −

− + + − − +
 

 
Hence it remains to find a value of e  sufficient small to ensure the right hand side is 
negative. To do so, observe that 35  
 

(A.35) 1 ( 1) 1( 1) 0
( 1 ) ( 1) (1 )

n e en
n n e eρ ρ ρ ρ

+ − −
− − <

− + + − − +
 

 

                 1 ( 1) 1( 1)
( 1 ) ( 1) (1 )

n e en
n n e eρ ρ ρ ρ

+ − −
⇔ − <

− + + − − +
 

 
                 {( 1)(1 ( 1) )} ((1 ) ) {( 1 ) ( 1) }(1 )n n e e n n e eρ ρ ρ ρ⇔ − + − ⋅ − + < − + + − −  
 
Notice that the bracketed factors on each side are by far the largest. Hence we focus on 
values of e  that will yield the desired inequality for these terms: 
 
(A.36) ( 1)(1 ( 1) ) ( 1 ) ( 1)n n e n n eρ ρ− + − < − + + −  
                  2[( 1) ( 1) ] ( 1 ) ( 1)n n e n nρ ρ ρ⇔ − − − < − + − − =  
 

                  
( 1)( 1 )

e
n n

ρ
ρ

⇔ <
− − −

 

 
Similarly for the remaining two factors, it follows that 
 

(A.37)  (1 ) 1
1

e e e ρρ ρ
ρ

− + < − ⇔ <
+

 

 
But since 
 

(A.38) 
( 1)( 1 ) 1n n

ρ ρ
ρ ρ

<
− − − +

 

 
for 3n ≥ , it follows that (A.35) will hold for e  satisfying (A.36). Hence if we now set 
                                                 
35 The last line of the argument in (A.35) assumes that (1 ) 0eρ ρ− + > . But for [ ]Wρ

+
∈  we must have 

*

max max0 1 ( ) 1 [ ( ) ] 1 (1 )n nW W e eρλ ρ λ ρ< − = − + = − + . Also, by footnote 7 in the text we must have 
* *

max max( ) ( ) 0nW W W W eλ λ≤ ⇒ ≤ ⇒ ≤ . Hence, 0 1 (1 (1 ) (1 ) | |) n nne e eρ ρ ρ ρ ρ< − + = − − = − +  
(1 ) eρ ρ≤ − + . 
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(A.39) ( )
( 1)( 1 )

e
n n

ρρ
ρ

=
− − −

 

 
then it follows from (A.27) that  
 
(A.40) *

2[ ( )] ( | , ) 0Wrc
W W e V y Xε ρ ρ− < ⇒ <  

 
To complete the argument, observe that since 2 ( )ε ⋅  was chosen to be increasing and since 

( )e ⋅  is increasing for 0ρ > , it follows that for all [ ]Wρ +∈ , 
 
(A.41) 2 2[ ( )] [ ( )]e eα αρ ρ ε ρ ε ρ≥ ⇒ ≤  
 
Hence if we now let 0( , , , )y Xε ε α ρ=  in Proposition 3 be defined by 
 
(A.42) 1 2min{ , [ ( )]}e αε ε ε ρ=  
 
then by (A.40) it follows that  
 
(A.43) * ( | , ) 0 [ ]Wrc

W W V y X for all W with αε ρ ρ ρ ρ+− < ⇒ < ∈ ≥  

 
Finally, (A.43) together with (A.26) and (A.8) through (A.10) are seen to imply that 
 
(A.44) * ( | , ) 0 [ ]Wrc

W W L y X for all W with αε ρ ρ ρ ρ+′− < ⇒ < ∈ ≥  

 
and the result is established. 
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Figures for the Text: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 1. 2x2 Weight Matrices  
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Figure 2. Concentrated Likelihood Function for W* 
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d = 0.50 d = 0.80

d = 0.90 d = 0.99
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Figure 3. Histograms of Rho Estimates 
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Tables for the Text: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Av. Link  
 Density 

Mean ρ̂  for   
SL models 

 Mean ρ̂ for     
SAR models 

  ρ -Interval 

      .30      0.481       0.195    (-2.49 , 1) 
      .50      0.454      -0.038    (-3.51 , 1) 
      .80      0.369      -0.801    (-6.31 , 1) 
      .90      0.168      -1.880    (-9.02 , 1) 
      .95      0.033      -2.281    (- 10.7, 1) 
      .99     -0.830      -6.363    (- 18.9, 1) 
     1.00   -48.999    -48.999    (-49.0 , 1) 

 

Table 1. Mean Estimates of Rho 

Av. Link  
  Density 

Mean ρ̂  
 (ρ = .5)  

 Mean ˆ
0β  

  0(β = 1)  
Mean ˆ

1β  

1(β = 2)  
Mean ˆ

2β  

2(β = 3)  
Mean ˆ 2σ  

2(σ = 1)  
      .30      0.481      1.138         1.978           3.003 0.92887 
      .50      0.454      1.336        1.946          2.9973 0.92644 
      .80      0.369      1.942         1.922          3.0143 0.91802 
      .90      0.168      3.384         1.944          2.9201 0.91908 
      .95      0.033      4.302         1.985          2.9209 0.90547 
      .99     -0.830    10.330         1.994           3.012 0.89564 
     1.00   -48.999  351.020       .00004   .00006 3.8e-010 

 

Table 2. Mean Values of Parameter Estimates for the SL Model 

Av. Link  
  Density 

Mean ρ̂  
 (ρ = .5)  

 Mean ˆ
0β  

  0(β = 1)  
Mean ˆ

1β  

1(β = 2)  
Mean ˆ

2β  

2(β = 3)  
Mean ˆ 2σ  

2(σ = 1)  
      .30     0.195    1.064          2.010          2.939    0.937 
      .50    -0.038    1.040          1.960    2.958    0.933 
      .80    -0.801    0.956          2.039    2.039    0.904 
      .90    -1.880    0.997         2.011    3.006    0.864 
      .95    -2.281    0.998          1.994    3.037    0.823 
      .99    -6.363    1.047          1.945          3.032    0.706 
     1.00   -48.999    1.025    1.985    2.999    0.159 

 

Table 3. Mean Values of Parameter Estimates for the SAR Model 
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Av. Link  
 Density 

  Sample
   Mean 

 Null 
Mean 

  Power 
(ρ = .5)

.30   0.0416    -0.0182    0.383 

.50  -0.0046    -0.0183     0.137 

.80  -0.0152    -0.0184    0.091 

.90  -0.0190    -0.0187    0.059 

.95  -0.0187    -0.0189    0.055 

.99  -0.0201    -0.0190    0.054 
 

Table 4. Power of Moran for a Test at ρ = .5   
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