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Gaussian Process Regression (GPR) is a nonparametric technique that is capable of

yielding reliable out-of-sample predictions in the presence of highly nonlinear unknown

relationships between dependent and explanatory variables. But in terms of identifying

relevant explanatory variables, this method is far less explicit about questions of statisti-

cal significance. In contrast, more traditional spatial econometric models, such as spatial

autoregressive models or spatial error models, place rather strong prior restrictions on

the functional form of relationships, but allow direct inference with respect to explana-

tory variables. In this article, we attempt to combine the best of both techniques by aug-

menting GPR with a Bayesian Model Averaging (BMA) component that allows for the

identification of statistically relevant explanatory variables while retaining the predictive

performance of GPR. In particular, GPR-BMA yields a posterior probability interpreta-

tion of model-inclusion frequencies that provides a natural measure of the statistical rele-

vance of each variable. Moreover, while such frequencies offer no direct information

about the signs of local marginal effects, it is shown that partial derivatives based on the

mean GPR predictions do provide such information. We illustrate the additional insights

made possible by this approach by applying GPR-BMA to a benchmark BMA data set

involving potential determinants of cross-country economic growth. It is shown that

localized marginal effects based on partial derivatives of mean GPR predictions yield

additional insights into comparative growth effects across countries.

Introduction

Two of the most basic tasks of spatial statistical modeling are the explanation and prediction of

spatial phenomena. As with all statistical modeling, the methods for achieving these goals dif-

fer to a certain degree. In spatial analyses, the task of explanation has focused mainly on para-

metric statistical models, typically some form of spatial regression, where identification of key

variables can be accomplished by standard tests of hypotheses. But the need to specify prior
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functional forms in these models tends to diminish their value for out-of-sample predictions.

So the task of spatial prediction has focused on more flexible nonparametric approaches, typi-

cally local regression or stochastic interpolation methods.1 But the very flexibility of these

methods tends to impede the formal statistical identification of explanatory variables. Hence

the objective of this article is to propose one method for unifying these two tasks. In particular,

we combine a general form of stochastic interpolation known as Gaussian Process Regression

(GPR) together with Bayesian Model Averaging (BMA).

Before doing so, it must be stressed that there have been other attempts to achieve such a

unification. In the spatial literature, the work most closely related to our present GPR-BMA

approach has been the efforts of LeSage and Parent (2007) and LeSage and Fisher (2008) to

achieve more robust versions of the spatial errors model (SEM) and spatial autoregressive

model (SAR) by combining them with BMA within a Markov Chain Monte Carlo (MCMC)

framework.2 More recently, Bivand, G�omez-Rubio, and Rue (2014) have discussed the use of

the Integrated Laplace Approximation as a faster method to achieve marginal inference in spa-

tial BMA routines. These spatial model averaging extensions, SEM-BMA and SAR-BMA, can

in principle strengthen both the prediction and variable identification capabilities of spatial

regression, and thus provide the natural benchmark for evaluating our present approach.3

For variable identification in GPR models, it should be stressed that this task can be

accomplished in different ways. Perhaps the most widely known method is Automatic Rele-

vance Determination (ARD), first introduced by Neal (1996) and MacKay (1998). While this

method has great practical appeal, it offers little in the way of statistical identification of

explanatory variables. Hence our present approach draws most heavily on the work of Chen

and Wang (2010), who first employed BMA for both prediction and variable identification in

GPR models (applied to the nonspatial problem of spectrometer calibration). The key feature

of this approach is to allow uncertainties with respect to both relevant explanatory variables

and predictions to be treated explicitly. In particular, GPR-BMA yields a posterior probability

interpretation of simulated model-inclusion frequencies that provides a natural measure of the

statistical relevance of each variable.

Within this framework, the main contributions of the present article are to develop this

GPR-BMA model for spatial applications,4 and in particular to show how it can be extended to

analyze the localized marginal effects of spatial variables. The advantages of GPR-BMA for

spatial analysis are then demonstrated both in terms simulated and empirical data sets. Using

simulations, it will be shown that with essentially no prior knowledge of either functional

forms or the nature of possible unobserved spatial autocorrelation, GPR-BMA is able to pro-

duce both reliable predictions and accurate identifications of relevant spatial variables. In con-

trast, both SEM-BMA and SAR-BMA are shown to be particularly sensitive to specification

errors, even when spatial autocorrelation is captured exactly.

On the empirical side, we apply GPR-BMA to a data set that focuses on comparative eco-

nomic growth between countries (Sala-i-Martin 1997; Fernandez, Ley, and Steel 2001a), and

which has served as one of the standard benchmark data sets for BMA extensions of regression.

To capture possible spatial effects, we include the spatial information for each country. In this

context, it is shown that partial derivatives based on mean posterior GPR-BMA predictions

allow the marginal impacts of relevant variables on growth rates to be localized by country,

and used to draw comparative spatial inferences that are not available by more standard regres-

sion methods.
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To develop these results, we begin with a detailed development of the GPR-BMA model.

This is followed by selected simulation comparisons between GPR-BMA and the alternative

BMA extensions of spatial regression. Finally, we develop our empirical application of GPR-

BMA.

GPR with BMA

In this section, we develop our proposed methodological procedure for spatial data analysis.

This begins with a general development of Gaussian processes in a Bayesian setting that

focuses on GPR—which amounts to posterior prediction within this framework. This is fol-

lowed by a development of our BMA approach to GPR.

Gaussian process regression

To set the stage for our present analysis, we start with some random (response) variable, y,

which may depend on one or more components of a given vector, x ¼ ðx1; ::; xkÞ, of explana-

tory variables, written as y ¼ yðxÞ. If these explanatory variables are assumed to range over the

measurable subset, X � Rk, then this relationship can be formalized as a stochastic process,

fyðxÞ : x 2 Xg, on X . To study such relationships, the Bayesian strategy is to postulate a prior

distribution for this process with as little structure as possible, and then to focus on posterior

distributions of unobserved y-values derived from data observations. The most common

approach to constructing prior distributions for stochastic processes, fyðxÞ : x 2 X g, is to

adopt a Gaussian Process (GP) prior in which each finite subset of random variables,

fyðx1Þ; ::; yðxNÞg, is postulated to be multinormally distributed. In this way, the entire process

can be specified in terms of a mean function, lðxÞ, and covariance function, covðx; x0Þ,
x; x0 2 X , usually written more compactly as

yðxÞ � GP½lðxÞ; covðx; x0Þ� (1)

The simplest of these models assumes that the mean function is constant, and focuses pri-

marily on relationships between variables in terms of their covariances. In particular, it is most

commonly assumed that the mean function is zero, lðxÞ ¼ 0 ; x 2 X , and that the covariance

function has some specific parametric form, covðx; x0Þ ¼ cxðx; x0Þ, designated as the kernel

function for the process with (hyper)parameter vector, x. While there are many choices for ker-

nels, one of the simplest and most popular is the squared exponential kernel,

cxðx; x0Þ ¼ v exp 2
1

2s2
jjx2x0jj2

� �
¼ v exp 2

1

2s2

Xk

j¼1
ðxj2x0jÞ2

� �
(2)

which involves two (positive) parameters, x ¼ ðv; sÞ. Hence all covariances are assumed to be

positive, and to diminish as the (Euclidean) distance between explanatory vectors, x and x0,

increases. (Note also that to avoid scaling issues with components of Euclidean distance, all

variables are implicitly assumed to be standardized.) The practical implication of this Gaussian

process approach is that for each finite collection, X ¼ ðxi : i ¼ 1; ::;NÞ, of explanatory vectors

in X , the prior distribution of the associated random vector y ¼ yðXÞ ¼ ½yðxiÞ : i ¼ 1; ::;N� is

assumed to be multinormal:
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yðXÞ � N 0N; cxðX;XÞ½ � (3)

where 0N denotes the N-vector of zeros and the covariance matrix,

cxðX;XÞ ¼ ½cxðxi; xjÞ : i; j ¼ 1; ::;N�, is given by (2). Hence the entire process is defined by

only the two parameters, x ¼ ðv; sÞ. While many extensions of this Gaussian process prior are

possible that involve more parameters (as discussed further in the next section), our main

objective is to show that with only a minimum number of parameters one can capture a wide

range of complex nonlinear relationships.

Given this Gaussian process framework, the objective of GPR is to derive posterior predic-

tions about unobserved y values given observed values (data) at some subset of locations in X .

But here a new assumption is added, namely that observed values may themselves be subject

to measurement errors that are independent of the actual process itself. Following Rasmussen

and Williams (2006), we assume that for any realized value, yðxÞ, of the process at x 2 X , the

associated observed value, ~yðxÞ, is a random variable of the form:

~yðxÞ ¼ yðxÞ 1 Ex; Ex�
iid

Nð0;r2Þ (4)

In this context, the relevant prediction problem for our purposes can be formulated as fol-

lows. Given observed data, ð~y; ~XÞ ¼ fð~yi; ~xiÞ; i ¼ 1; ::; ng, with ~y ¼ ð~yi : i ¼ 1; ::; nÞ0 and
~X ¼ ð~xi : i ¼ 1; ::; nÞ � X , we seek to predict the unobserved value, yðxÞ, at x 2 X . To

develop this prediction problem statistically, observe first from (3) and (4) that ~y is multinor-

mally distributed as

~y � N 0n ; cxð ~X; ~XÞ1r2In

� �
(5)

Hence, by a second application of (3), it follows that the prior distribution of ðy; ~yÞ must be

jointly multinormally distributed as (see e.g., expression (2.21) in Rasmussen and Williams

2006),

y

~y

 !
� N

0

0n

 !
;

cxðx; xÞ cxðx; ~XÞ

cxð ~X; xÞ cxð ~X; ~XÞ1r2In

 !" #
(6)

Thus, by standard arguments (e.g., expression (A.6), p. 200 in Rasmussen and Williams

2006), one may conclude that the conditional distribution yðxÞ given ð~y; ~XÞ, is of the form

yjx; ~y; ~X � N Eðyjx; ~y; ~XÞ; varðyjx; ~y; ~XÞ
� �

(7)

where by definition,

Eðyjx; ~y; ~XÞ ¼ cxðx; ~XÞ ½cxð ~X; ~XÞ1r2In�21 ~y ; and (8)

varðyjx; ~y; ~XÞ ¼ cxðx; xÞ 2 cxðx; ~XÞ ½cxð ~X; ~XÞ1r2In�21cxð ~X; xÞ (9)

This is usually referred to as the predictive distribution of yðxÞ given observations, ð~y; ~XÞ.
From a spatial modeling perspective, this predictive distribution is closely related to the

method of geostatistical kriging (as discussed further in a more detailed version of this article,

Dearmon and Smith (2014).
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Up to this point, we have implicitly treated the parameters ðv; s;r2Þ as given. But in fact

they are unknown quantities to be determined. Given the distributional assumptions above, one

could employ empirical Bayesian estimation methods (as for example in Shi and Choi 2011,

Section 3.1). But for our present purposes, it is most useful to adopt a full Bayesian approach in

which all parameters are treated as random variables. This approach allows both parameter

estimation and variable selection to be carried out simultaneously. In particular, the standard

MCMC methods for Bayesian estimation allow model averaging methods to be used for both

variable selection and parameter estimation. For purposes of this article, we adopt the approach

developed in Chen and Wang (2010).5

First, to complete the full Bayesian specification of the model, we must postulate prior dis-

tributions for the vector of parameters,

u ¼ ðx;r2Þ ¼ ðv; s;r2Þ ¼ ðu1; u2; u3Þ (10)

Since these parameters are all required to be positive, we follow Chen and Wang (2010)

(see also Williams and Rasmussen 1996) by postulating that they are independently log nor-

mally distributed with reasonably diffuse priors, and in particular that

lnðu1Þ � Nð23; 9Þ ;

lnðu2Þ � Nð3; 9Þ ;

lnðu3Þ � Nð23; 9Þ

(11)

The prior for the length scale, u2, is specified with a much larger mean. This prior predis-

poses the explanatory variables to be considered irrelevant. However, it is well know that so

long as these prior distributions are independent and reasonably diffuse, their exact form will

have little effect on the results. So the choices in (11) are largely a matter of convenience. If

we now let pðzÞ denote a generic probability density for any random vector, z, then for z ¼ u,

the full (hyper)prior distribution of u can be written as

pðuÞ ¼
Y3

i¼1
pðuiÞ (12)

where each of the marginals, pðuiÞ, is a log normal density as in (11). Similarly, if we now let

z ¼ ~y, then the conditional distribution of ~y ¼ ~yð ~XÞ given u ¼ ðx;r2Þ is seen to be precisely

the multinormal distribution in (5). So if for notational simplicity, we let

Kuð ~XÞ ¼ cxð ~X; ~XÞ1r2In (13)

then the corresponding conditional density, pð~yj ~X; uÞ, is of the form

pð~yj ~X; uÞ ¼ ð2pÞ2n=2
det½Kuð ~XÞ�21=2

exp 2
1

2
~y0 Kuð ~XÞ21~y

� �
(14)

Finally, if we assume that u does not depend on ~X, that is, that pðuj ~XÞ ¼ pðuÞ, then the

desired posterior distribution of u given data ð~y; ~XÞ can be obtained from the standard identity

pðuj~y; ~XÞpð~yj ~XÞ ¼ pðu; ~yj ~XÞ ¼ pð~yj ~X; uÞpðuj ~XÞ ¼ pð~yj ~X; uÞpðuÞ (15)

by noting that since pð~yj ~XÞ does not involve u, we must have
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pðuj~y; ~XÞ / pð~yj ~X; uÞpðuÞ (16)

A this point, one could in principle apply MCMC methods to estimate the posterior distri-

bution of u as well as posterior distributions of predictions, yðxÞ, in (7). But our goal is to com-

bine such estimates with variable selection.

Model and variable selection in GPR

The above formulation of GPR has implicitly assumed that all explanatory variables,

x ¼ ðx1; ::; xkÞ, are relevant for describing variations in the response variable, y. But in most

practical situations (such as our economic growth application below), it is important to be able

to gauge which of these variables are most relevant. This is readily accomplished in standard

regression settings where mean predictions are modeled as explicit functions of x, and hence

where variable relevance can usually be tested directly in terms of associated parameters (such

as in the standard linear specification, EðyjxÞ ¼ b01Rk
j¼1bjxj). Even in the present GPR setting,

there are a number of parametric approaches that have been proposed. The most popular of

these is designated as ARD [see, e.g., MacKay (1995, 1998) and Neal (1996) together with the

discussions in Rasmussen and Williams (2006, Section 5.1) and Shi and Choi (2011, Section

4.3.1)]. This method proceeds by the extending covariance model in (2) to include individual s
parameters for each variable,

cxðx; x0Þ ¼ v exp 2
1

2

Xk

j¼1

ðxj2x0jÞ2

s2
j

" #
(17)

where in this case, u ¼ ðx;r2Þ ¼ ðv; s1; ::; sk;r2Þ. Here, it should be clear that for sufficiently

large values of sj the variable xj will have little influence on covariance and hence on y predic-

tions. Hence the usual ARD procedure is to standardize all variables for comparability, con-

struct estimates, ŝj, of sj by (empirical Bayes) maximum likelihood, and then determine some

threshold value, s0, for ŝj above which xj is deemed to be irrelevant for prediction.

BMA approach

In contrast to this variable-selection procedure using extended parameterizations of the covari-

ance kernel, our present approach essentially parameterizes “variable selection” itself. In par-

ticular, if we denote the presence or absence of each variable xj in a given model by the

indicator function, dj, with dj ¼ 1 if xj is present and dj ¼ 0 otherwise, then each model specifi-

cation is defined by the values of the model vector, d ¼ ðd1; ::; dkÞ. Here we omit the “null

model,” d ¼ 0k, and designate the set of possible values for d as the model space,

D ¼ f0; 1gk
20k. (This model-space approach to variable selection has a long history in Bayes-

ian analysis, going back at least at to the work of George and McCulloch (1993) in hierarchical

Bayesian regression.) With these definitions, one can now extend the set of model parameters,

u, to include this model vector, ðu; dÞ, and proceed to develop an appropriate prior distribution

for d on D. In the present case, since the parameter vector, u ¼ ðv; s;r2Þ, is seen from (2) and

(4) to be functionally independent of the choice of explanatory variables used (namely, d), we

can assume that the priors on u and d are statistically independent.6

To construct a prior distribution for d, we first decompose this distribution as follows. If

the size of each model, d ¼ ðd1; ::; dkÞ, is designated by q ¼ sðdÞ ¼
Xk

j¼1
dj, then by definition

each prior, pðdÞ, for d can be written as

Jacob Dearmon and Tony E. Smith Gaussian Process Regression and BMA

87



pðdÞ ¼ p½d; sðdÞ� ¼ pðd; qÞ ¼ pðdjqÞpðqÞ (18)

This decomposition is motivated by the fact that the size of each model is itself an impor-

tant feature. Indeed, all else being equal, smaller models are surely preferable to larger models

(Occam’s razor). So, it is reasonable to introduce some prior preference for smaller models.

Following Chen and Wang, we employ a truncated geometric distribution for q given by

pðqÞ ¼ k ð12kÞq21

12ð12kÞk
; q ¼ 1; ::; k (19)

where k 2 ð0; 1Þ. This family of distributions always places more weight on smaller values of

q, as is seen in Fig. 1 below for selected values of k with k ¼ 42. While Chen and Wang sug-

gest that the (hyper)parameter, k, be chosen by “tuning” the model (say with cross validation),

we simply selected the prior value, k ¼ 0:01, which only slightly favors smaller values of q, as

seen in the figure.

To complete the specification of pðdÞ we assume that pðdjqÞ is uniform on its domain. In

particular, if for each q ¼ 1; ::; k we let Dq ¼ fd 2 D : sðdÞ ¼ qg denote all models of size q,

then the definition of pðdÞ in (18) can be completed by setting

pðdjqÞ ¼ 1

jDqj
¼ q! ðk2qÞ!

k!
; d 2 Dq; q ¼ 1; ::; k (20)

With this prior, we can now extend the posterior distribution in (16) to

pðu; dj~y; ~XÞ / pð~yj ~X; u; dÞpðu; dÞ ¼ pð~yj ~X; u; dÞpðuÞpðdÞ (21)

Following Chen and Wang, this joint posterior is estimated by Gibbs sampling using the condi-

tional distributions,

pðujd; ~y; ~XÞ / pð~yj ~X; u; dÞpðuÞ; and (22)

pðdju; ~y; ~XÞ / pð~yj ~X; u; dÞpðdÞ (23)

We now consider each of these Gibbs steps in turn.

Sampling the u Posterior. If for each component, ui, of u ¼ ðu1; u2; u3Þ we now let u2i

denote the vector of all other components, then (12) allows us to write the conditional distribu-

tions for these components as

Figure 1. Selected values.
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pðuiju2i; d; ~y; ~XÞ ¼ pðujd; ~y; ~XÞ
pðu2ijd; ~y; ~XÞ

/ pðujd; ~y; ~XÞ / pð~yju; d; ~XÞpðuiÞpðu2iÞ

/ pð~yju; d; ~XÞpðuiÞ; i ¼ 1; 2; 3

(24)

Using these conditional distributions, one can in principle apply Gibbs sampling to approx-

imate samples from the posterior in (22). But such samples are notoriously autocorrelated and

cannot be treated as independent. This means that (in addition to the initial “burn in” samples)

only a small fraction of these Gibbs samples can actually be used for analysis. With this in

mind, we follow Chen and Wang by adopting an alternative approach designated as Hamilto-

nian Monte Carlo (HMC) (first introduced by Duane et al. (1987) and originally designated as

“Hybrid Monte Carlo”). This approach not only requires a much smaller set of burn-in samples

to reach the desired steady-state distribution (22), but can also be tuned to avoid autocorrelation

problems almost entirely. The key idea (as developed in the lucid paper by Neal 2010) is to

treat u ¼ ðu1; ::; ukÞ as the set of “position” variables in a discrete stochastic version of a k-

dimensional Hamiltonian dynamical system with corresponding “momentum” variables,

q ¼ ðq1; ::;qkÞ. Such HMC processes can be tuned to converge to the desired steady-state dis-

tribution (22), while at the same time allowing extra “degrees of freedom” provided by the

momentum variables, q. In particular, Neal (2010) shows how these momentum variables can

be made to produce successive samples with “wider spacing” that tend to reduce autocorrela-

tion effects.

Sampling the d Posterior. In sampling from the posterior distribution of the model vector,

d, we again follow Chen and Wang by employing a Metropolis-Hastings (M-H) algorithm with

birth-death transition probabilities (see also Denison, Mallick, and Smith 1998). Since our

method differs slightly from that of Chen and Wang, it is convenient to develop this procedure

in more detail. The objective is to construct a Markov chain that converges to the distribution,

pðdju; ~y; ~XÞ, in (23). The basic “birth-death” idea is to allow only Markov transitions that add

or subtract at most one variable from the current model. So if dq ¼ ðdq
1; ::; d

q
kÞ denotes a generic

model of size q, then the possible “births” consist of those models in Dq11 that differ from dq

by only one component, that is,

Dq11ðdqÞ ¼ dq11 2 Dq11 :
Xk

i¼1
jdq11

i 2d
q
i j ¼ 1

n o
; q ¼ 1; ::; k21 (25)

(where Dq11ðdqÞ ¼1 for q ¼ k). Similarly, the possible “deaths” consist of those models in

Dq21 that differ from dq in only one component, that is,

Dq21ðdqÞ ¼ dq21 2 Dq21 :
Xk

i¼1
jdq

i 2d
q21
i j ¼ 1

n o
; q ¼ 2; ::; k (26)

(where Dq21ðdqÞ ¼1 for q ¼ 1). With these definitions, the set of possible transitions, DðdqÞ,
from each model, dq, is of the form

DðdqÞ ¼ fdqg [ Dq11ðdqÞ [ Dq21ðdqÞ; q ¼ 1; ::; k (27)

If T denotes the transition matrix for the desired Markov chain, and if we let TðdjdqÞ
denote the corresponding transition probability from model dq to model d 2 DðdqÞ, then by the

general M-H algorithm, these transition probabilities are decomposed into the product of a
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proposal probability, prðdjdqÞ, and an acceptance probability, paðdjdqÞ, for each

d 2 DðdqÞ2fdqg as

TðdjdqÞ ¼ prðdjdqÞ paðdjdqÞ; (28)

so that the “no transition” case is given by,

TðdqjdqÞ ¼ 1 2
X

d2DðdqÞ2fdqgTðdjd
qÞ (29)

In our case, the proposal probabilities are based on proposed “births” or “deaths.” If we let

b denote a proposed birth event and d a proposed death event, then by assuming these events

are equally likely whenever both are possible, the appropriate birth-death probability distribu-

tion, pð� jdqÞ, can be defined as,

pðbjdqÞ ¼

1; q ¼ 1

1

2
; 1 < q < k

0; q ¼ k

; and

8>>><
>>>:

(30)

pðdjdqÞ ¼

0; q ¼ 1

1

2
; 1 < q < k

1; q ¼ k

8>>><
>>>:

(31)

so that by definition, pðbjdqÞ1pðdjdqÞ ¼ 1 for all q ¼ 1; ::; k. Given this birth-death process

(which can be equivalently viewed as a random walk on ½1; ::; k� with “reflecting barriers”), we

next define conditional proposal probabilities given birth or death events. First, if prðdjb; dqÞ
denotes the conditional probability of proposal, d 2 Dq11ðdqÞ, given a birth event, b, and if all

such proposals are taken to be equally likely, then since there are only k2q ways of switching

a “0” to “1” in dq, it follows that

prðdjb; dqÞ ¼ 1

jDq11ðdqÞj ¼
1

k2q
; d 2 Dq11ðdqÞ; q < k (32)

Similarly, if prðdjd; dqÞ denotes the conditional probability of proposal, d 2 Dq21ðdqÞ
given a death event, d, and if all such proposals are again taken to be equally likely, then since

there are only q ways of switching a “1” to “0” in dq, it also follows that

prðdjd; dqÞ ¼ 1

jDq21ðdqÞj ¼
1

q
; d 2 Dq21ðdqÞ; q > 1 (33)

With these conventions, the desired proposal distribution in our case is given by

prðdjdqÞ ¼
pðbjdqÞprðdjb; dqÞ; d 2 Dq11ðdqÞ

pðdjdqÞprðdjd; dqÞ; d 2 Dq21ðdqÞ

(
(34)

Finally, to ensure convergence to the posterior distribution, pðdju; ~y; ~XÞ, the desired accep-

tance probability distribution, pað�jdqÞ, for this M-H algorithm must necessarily be of the form
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paðdjdqÞ ¼
minf1; rðd; dqÞg ; d 2 Dq11ðdqÞ [ Dq21ðdqÞ

12
X

d2DðdqÞ2fdqgpaðdjdqÞ; d ¼ dq

8<
: (35)

where the appropriate acceptance ratio, rðd; dqÞ, is given by

rðd; dqÞ ¼ pðdju; ~y; ~XÞ
pðdqju; ~y; ~XÞ

� prðdqjdÞ
prðdjdqÞ ; d 2 Dq11ðdqÞ [ Dq21ðdqÞ (36)

As is shown in Supporting Information Appendix these ratios can be given the following opera-

tional form, where pðqÞ denotes the truncated geometric distribution in (19)

rðd; dqÞ ¼

pð~yjd; u; ~XÞ
pð~yjdq; u; ~XÞ

� pðq11Þ
pðqÞ �

pðdjdÞ
pðbjdqÞ ; d 2 Dq11ðdqÞ

pð~yjd; u; ~XÞ
pð~yjdq; u; ~XÞ

� pðq21Þ
pðqÞ �

pðbjdÞ
pðdjdqÞ ; d 2 Dq21ðdqÞ

8>>>><
>>>>:

(37)

Gibbs Sampling. The basic Gibbs sampling procedure outlined above was programmed in

MATLAB (and is described in more detail in the appendix of Dearmon and Smith (2014). The

M-H algorithm for sampling model vectors, d, forms the outer loop of this procedure, and the

HMC procedure for sampling parameter vectors, u, forms the inner loop. This structure allows

more efficient sampling, depending on whether new model vectors are chosen or not. Follow-

ing an initial burn-in phase, a post burn-in sequence, ½ðdi; uiÞ : i ¼ 1; ::;N�, is obtained for esti-

mating all additional properties of this Gaussian process model, as detailed below.

Model probabilities and variable-inclusion probabilities

With regard to the general problem of model selection, one of the chief advantages of this

model-space approach is that it yields meaningful posterior probabilities for each candidate

model vector, d, given the observed data ð~y; ~XÞ. In particular, these model probabilities are

simply the marginal probabilities,

pðdj~y; ~XÞ ¼
ð

u

pðd; uj~y; ~XÞ du (38)

For estimation purposes, it is more convenient to write these probabilities as conditional

expectations over the entire space of parameter pairs, ðd; uÞ. In particular, if for each model da

2 D we let the indicator function, Iaðd; uÞ, be defined by

Iaðd; uÞ ¼
1; d ¼ da

0; d 6¼ da

(
(39)

then (38) can be equivalently written as a general integral of the form

pðdaj~y; ~XÞ ¼
ð
ðd;uÞ

Iaðd; uÞ pðd; uj~y; ~XÞðdd3 duÞ ¼ Eðd;uÞ½Iaðd; uÞ� (40)
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But since these are the steady-state probabilities for the (irreducible) Markov process with real-

izations, ½ðdi; uiÞ : i ¼ 1; ::;N�, the ergodic properties of such processes are well known to

imply that the sample average,

p̂ðdaj~y; ~XÞ ¼ 1

N

XN

i¼1
Iaðdi; uiÞ (41)

converges to pðdaj~y; ~XÞ with probability one. Moreover, since the number of occurrences of da

in the sample sequence, ½ðdi; uiÞ : i ¼ 1; ::;N�, is given by,

NðdaÞ ¼
XN

i¼1
Iaðdi; uiÞ (42)

it follows from (41) that for any model, d 2 D, this sample average is simply the fraction of d

occurrences, that is,

p̂ðdj~y; ~XÞ ¼ NðdÞ
N

(43)

Note also that (43) yields an estimate, d̂, of the most likely model based on observations,

ð~y; ~XÞ, namely

d̂ ¼ arg maxd2Dp̂ðdj~y; ~XÞ ¼ arg maxd2D
NðdÞ

N
(44)

In this context, one might be tempted to identify the “most relevant” explanatory variables in x

¼ ðx1; ::; xj; ::; xkÞ to be simply those appearing in this most likely model. But like the ARD

procedure mentioned above, this method provides no probabilistic measure of “relevance” for

each variable separately. However, in a manner similar to posterior likelihoods of models, we

can also define posterior likelihoods of individual variables as follows. If we denote the class

of models containing variable j by Dj ¼ fd 2 D : dj ¼ 1g, then in terms of model probabilities,

it follows that the probable membership of variable j in such candidate models must be given

by

pðdj ¼ 1j~y; ~XÞ ¼
X

d2Dj
pðdj~y; ~XÞ (45)

Moreover, we see from (41) that a consistent estimator of this inclusion probability for each

variable j is given by

p̂ðdj ¼ 1j~y; ~XÞ ¼
X

d2Dj
p̂ðdj~y; ~XÞ ¼

X
d2Dj

NðdÞ
N

(46)

Finally, since

Nj ¼
X

d2Dj
NðdÞ (47)

is by definition the number of occurrences of variable j in the models of sample sequence,

½ðdi; uiÞ : i ¼ 1; ::;N�, it follows as a parallel to (43) that this estimated inclusion probability is

simply the fraction of these occurrences,
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p̂ðdj ¼ 1j~y; ~XÞ ¼ Nj

N
(48)

These inclusion probabilities provide a natural measure of relevance for each variable

which (unlike P-values) is larger for more relevant variables. For example, if the estimated

inclusion probability for a given variable, j, is 0.95, then j must appear in 95% of the (post

burn-in) models “accepted” by the Metropolis-Hastings procedure above. So while there is no

formal “null hypothesis” being tested, this inclusion probability does indeed provide compel-

ling evidence for the relevance of variable j based on observations, ð~y; ~XÞ.

Prediction and marginal effects using BMA

One key difference between inclusion probabilities and standard tests of hypotheses for regres-

sion coefficients is that inclusion probabilities yield no direct information about whether the

contribution of a given explanatory variable tends to be positive or negative. In fact, when rela-

tions among variables are highly nonseparable (as in our examples below), both the magnitude

and direction of such contributions may exhibit substantial local variation. In view of these

possibilities, it is more appropriate to consider the local contributions of each component of

x ¼ ðx1; ::; xkÞ to predicted values of the response variable, yðxÞ. With this objective in mind,

we first employ the MCMC results above to develop posterior mean predictions of yðxÞ given ð~y;
~XÞ that parallel expression (8) above.

BMA Predictions. To obtain posterior mean predictions, one could in principle apply the

post burn-in sequence, ½ðdi; uiÞ : i ¼ 1; ::;N�, to estimate maximum a posteriori (MAP) values,

û ¼ ðx̂; r̂2Þ, of the parameters together with the most likely model, d̂, in (44) and use this pair

ðd̂; ûÞ to obtain a posterior version of the mean predictions in (8). In particular, if for any data

point, x ¼ ðx1; ::; xkÞ 2 X , we now denote the relevant data for each model, d 2 D, by

xðdÞ ¼ ðxj : dj ¼ 1Þ, and similarly, let ~XðdÞ ¼ ½~x1ðdÞ; ::; ~xnðdÞ�, then using (8) together with

(13), the MAP prediction of y given xðd̂Þ together with data, ½~y; ~Xðd̂Þ�, can be obtained as,

E½yjxðd̂Þ; ~y; ~Xðd̂Þ� ¼ cx̂ ½xðd̂Þ; ~Xðd̂Þ� fKû ½ ~Xðd̂Þ�g
21 ~y (49)

However, as is widely recognized, there is often more information in the underlying

MCMC sequence ½ðdi; uiÞ : i ¼ 1; ::;N� than is provided by this single MAP estimate. In partic-

ular, by averaging the mean predictions generated by each of the sample pairs, ðdi; uiÞ, the

resulting “ensemble” prediction is generally considered to be more robust. This is in fact the

essence of BMA.

So rather than using (49), we now construct BMA predictions of y (as first proposed by

Raftery, Madigan, and Hoeting 1997). To do so, recall first (from the “Gaussian process

regression” Section) that the spatial location of any prediction may or may not be part of the

candidate variables in x (let alone the reduced variable set, xðdÞ, for any model, d 2 D). But for

purposes of spatial prediction, it is useful to be explicit about the underlying set of locations,

l 2 L. For any given location, l, we now let xl ¼ ðxl1; ::; xlkÞ 2 X denote the vector of candidate

explanatory variables at l, and let yl denote the corresponding value of y to be predicted at l.

By replacing ðd̂; ûÞ in (49) with the pair, ðdi; uiÞ, the corresponding mean prediction for yl

given ðdi; uiÞ together with data ½~y; ~X� is then given by:
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E ½yljxl; ~y; ~X; di; ui � ¼ cxi
½xlðdiÞ; ~XðdiÞ� fKui

½ ~XðdiÞ�g21 ~y; i ¼ 1; ::;N (50)

In these terms, the corresponding BMA prediction of yl at location, l 2 L, is given by

Eðyljxl; ~y; ~XÞ ¼ 1

N

XN

i¼1
E½yljxl; ~y; ~X; di; ui� (51)

Note in particular that such mean predictions are equally well defined at data points

ð~yj; ~xjÞ; j ¼ 1; ::; n, and are given by

Eð~yjj~xj; ~y; ~XÞ ¼ 1

N

XN

i¼1
E½~yjj~xj; ~y; ~X; di; ui�

¼ 1

N

XN

i¼1
cxi
½~xjðdiÞ; ~XðdiÞ� fKui

½ ~XðdiÞ�g21 ~y

(52)

BMA Marginal Effects. Here, we again adopt a BMA approach to local marginal effects

at locations, l 2 L, by first considering these effects for each mean prediction in (50), and then

averaging such effects as in (51). Turning first to the mean predictions in (50) generated by a

given pair, ðdi; uiÞ, there are several issues that need to be addressed. First, there is the question

of how to treat components of xl that are excluded from model, di. One approach is simply to

ignore such cases by only calculating marginal effects for each explanatory variable, xlj, in

those models, di, with dij ¼ 1, and then averaging these effects. But for purposes of model

averaging, it is more appropriate to simply treat marginal effects as being identically zero for

excluded variables. (These two approaches are compared following expression (58) below.)

The second question is how to calculate local marginal effects for included variables. For sim-

plicity, we here treat all variables, xlj, as continuous, and thus define their marginal effects to

be simply the partial derivatives of mean predictions in (50) with respect to xlj.

With these preliminaries, we now define the marginal effect, MEljðdi; uiÞ, of explanatory

variable, j, in the ðdi; uiÞ-prediction at location, l, to be:

MEljðdi; uiÞ ¼
o

oxj
E ½yljxl; ~y; ~X; di; ui �; dij ¼ 1

0; dij ¼ 0

8><
>: (53)

For the case of dij ¼ 1, we may use (50) to obtain the following more explicit form7:

o

oxj
E ½yljxl; ~y; ~X; di; ui � ¼

o

oxj
cxi
½xlðdiÞ; ~XðdiÞ�

� 	
Kui
½ ~XðdiÞ�21 ~y (54)

Moreover, since partial derivatives of the squared exponential kernel in (2) are given by

o

oxj
cxðx; ~xÞ ¼

o

oxj
v expð2 1

2s2
jjx2~xjj2Þ

� �
¼ cxðx; ~xÞ½2

1

s2
ðxj2~xjÞ� (55)

it follows by letting xlðdiÞ ¼ xli and ~XðdiÞ ¼ ½~xi1; ::; ~xin� that the bracketed expression in (54)

can be given the following exact form
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o

oxj
cxi
½xlðdiÞ; ~XðdiÞ� ¼ ½ o

oxj
cxi
ðxli; ~xi1Þ; :::;

o

oxj
cxi
ðxli; ~xinÞ�

¼ 2
1

s2
i

½cxi
ðxli; ~xi1Þðxlij2~xi1jÞ; ::; cxi

ðxli; ~xinÞðxlij2~xinjÞ�
(56)

As in (51), the resulting BMA marginal effect, MElj, of explanatory variable, j, at location, l, is

simply the average of the values in (53) as given by

MElj ¼
1

N

XN

i¼1
MEljðdi; uiÞ (57)

Note finally that since all terms with dij ¼ 0 are zero, and since the number of models, di,

with dij ¼ 1 is precisely Nj in (47), this marginal effect can be equivalently written as

MElj ¼
1

N

X
i : dij¼1

MEljðdi; uiÞ
h i

¼ Nj

N

1

Nj

X
i : dij¼1

MEljðdi; uiÞ
� �

(58)

The expression in brackets is precisely the BMA marginal effect that would have been obtained

if only models involving variable j were included in the averaging. Hence the present version

simply “discounts” marginal effects by the inclusion probabilities in (48).

Given this formal development of GPR-BMA models, we turn now to a systematic com-

parison of this approach with the alternative approaches outlined in the Introduction, namely,

the BMA versions of spatial regression models proposed by LeSage and Parent (2007).

Simulation study

As mentioned in the Introduction, the simple simulation models developed here are designed

specifically to focus on the role of functional nonseparabilities in comparing GPR-BMA with

SAR-BMA and SEM-BMA. To do so, it is appropriate to begin in the next section with a brief

description of these spatial regression models. This is followed by a specification of the

simulation models to be used, together with comparative simulation results focusing on

variable selection and marginal effect estimation.

SAR-BMA and SEM-BMA models

Following LeSage and Parent (2007), the standard SAR model takes the form

y ¼ qWy 1 a in1Xb 1 E; E � Nð0;r2InÞ (59)

where X ¼ ½xi : i ¼ 1; ::; k� is an n3k matrix of explanatory variables (as in the “Gaussian pro-

cess regression” Section above), and where in ¼ ð1; ::; 1Þ0 is a unit vector representing the inter-

cept term in the regression. The key new element here is the prior specification of an n-square

weight matrix, W, which is taken to summarize all spatial relations between sample locations,

i ¼ 1; ::; n. For purposes of analysis, the simultaneities among dependent values in y are typi-

cally removed by employing the reduced form:
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y ¼ ðIn2qWÞ21 ða in1Xb 1 E Þ; E � Nð0;r2InÞ (60)

In terms of this same notation, the standard SEM model is given by the equation system,

y ¼ a in1Xb 1 u; u ¼ qWu 1 E; E � Nð0;r2InÞ (61)

where simultaneities among residual values in u are similarly removed by employing the

reduced form:

y ¼ a in1Xb 1 ðIn2qWÞ21 E; E � Nð0;r2InÞ (62)

Note that (unlike LeSage and Parent) we use the same symbol, q, for the spatial autocorre-

lation parameter in both models (60) and (62) to emphasize the similarity in parameter sets,

ða; b; r; qÞ, between these models. Not surprisingly, this similarity simplifies extensions to a

Bayesian framework, since one can often employ common prior distributions for parameters in

both models. To facilitate BMA, LeSage and Parent follow many of the general conventions

proposed by Fernandez, Ley, and Steel (2001b). First of all (in a manner similar to our d vec-

tors in the “BMA approach” Section above), if the relevant class of candidate models, M, is

denoted by M, then each model, M 2M, is specified by a selection of variables (columns)

from X, denoted here by XM, with corresponding parameter vector, bM. The parameters a and

r together with the relevant spatial autocorrelation parameter, q, are estimated for each model,

and are given standard noninformative priors. In particular a uniform prior on [21,1] is

adopted for q in all simulations below. Only the priors on bM for each model M warrant further

discussion, since they utilize data information from XM. In particular, the prior on bM for SAR-

BMA models is assumed to be normal with mean vector, 0, and covariance matrix given by

gðX0MXMÞ21
, where (following the recommendation of Fernandez, Ley, and Steel 2001a) the

proportionality factor is given by g ¼ 1=maxfn; k2g, with k denoting the number of candidate

explanatory variables. As with our GPR-BMA model, all variables are here assumed to be

standardized, both to be consistent with the zero prior mean assumption on bM and to avoid

sensitivity to units in the associated covariance matrix. For SEM-BMA models, the prior on

bM is given a similar form, with XM replaced by ðIn2kWÞXM. In both cases, these covariances

are motivated by standard maximum-likelihood estimates of bM, and can thus be said to yield

natural “empirical Bayes” priors for bM.

Aside from the specification of priors, the other key difference between the implementa-

tion of SAR-BMA and SEM-BMA in LeSage and Parent 2007 and our implementation of

GPR-BMA in the “BMA approach” Section above is the method of estimating both model

probabilities and inclusion probabilities. Rather than appeal to asymptotic MCMC frequency

approximations as we have done, LeSage and Parent follow the original approach of Fernan-

dez, Ley, and Steel (2001a) by employing numerical integration to obtain direct approxima-

tions of the posterior marginal probabilities for each model. If we again let ð~y; ~XÞ denote the

relevant set of observed data as in the “Model and variable selection in GPR” Section above,

and let pðMj~y; ~XÞ denote the posterior marginal probability of model M given ð~y; ~XÞ, then the

corresponding estimated model probabilities, p̂ðMj~y; ~XÞ, are taken to be these numerical-

integration approximations. If for each variable, j, we also let Mj denote the set of models, M,

containing variable j, then as a parallel to expression (46) above, the relevant estimates of

inclusion probabilities for each variable j is given by
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p̂ðjj~y; ~XÞ ¼
X

M2Mj
p̂ðMj~y; ~XÞ (63)

As verified by Fernandez, Ley, and Steel (2001b), both the frequency and numerical-

integration approaches yield very similar results for sufficiently large MCMC sample sizes.

But since the posterior marginal calculations should in principle be somewhat more accurate,

they can be expected to give a slight “edge” to both SAR-BMA and SEM-BMA simulations

(based on the MATLAB routines of LeSage) over our asymptotic frequency approach for

GPR-BMA. This lends further weight to the marked superiority of GPR-BMA estimates as

exhibited by the simulations below.

Finally, with respect to local marginal effects, it follows from (62) that such effects are

constant across space for SEM and are given for all ij by oEðYijXÞ=oxij � bj. Thus, these

effects in SEM-BMA are simply Bayesian model averages of the estimates, b̂j, over all mod-

els.8 But as seen in (60), such effects are more complex for SAR. If bii
q denotes the i th diagonal

element of the matrix, Bq ¼ ðIn2qWÞ21
, then it can be shown (LeSage and Pace 2009, Section

2.7.1) that oEðYijXÞ=oxij ¼ bjb
ii
q, so that SAR-BMA estimates these effects as Bayesian model

averages of b̂jb
ii
q̂ over all models. However, it must be emphasized that since the multipliers,

bii
q̂ , are positive in almost all cases of interest, the signs of these effects tend to be constant

across space. In empirical settings where q̂ values are relatively constant across models, the

relative magnitudes, E½b̂jb
ii
q̂ �=E½b̂kbii

q̂ � � b̂j=b̂k, are also approximately constant and such

“local” effects actually exhibit little qualitative variation over space (as is evidenced by our

empirical application below).

Simulated model comparisons

We start with the following 3-variable instance of the SAR model in (60),

y ¼ ðIn2qWÞ21 ½3 in1 x114x222 x3 1 E�; E � Nð0;r2InÞ (64)

and corresponding instance of the SEM model in (62),

y ¼ 3 in1 x114x222 x3 1 ðIn2qWÞ21E; E � Nð0;r2InÞ (65)

where in both cases, X ¼ ðx1; x2; x3Þ, a ¼ 3, and b ¼ ð1; 4;22Þ0. In view of the linear separa-

bility of these specifications, we designate these benchmark models as the separable models.

Our main interest will be in the behavior of estimators when the actual functional form is not

separable. But before introducing such complexities, we first complete the parameter specifica-

tion of the basic models in (64) and (65). For all simulations in this section, we set the autocor-

relation parameter to q ¼ 0:5 (to ensure a substantial degree of spatial autocorrelation), and

choose a sample size, n ¼ 367, that is sufficiently large to avoid small-sample effects. In particu-

lar, the weight matrix, W, used here is a queen-contiguity matrix for Philadelphia census tracts

(normalized to have a maximum eigenvalue of one). Finally, the simulated values of ðx1; x2; x3Þ
are standardizations of independent samples drawn from Nð0; 1Þ, and the residual standard devia-

tion is set to be sufficiently small, r ¼ 0:1, to ensure that functional specifications of ðx1; x2; x3Þ
always dominate residual noise. In this setting, it is clear that both SAR and SAR-BMA should

do very well in estimating model (64), and similarly that both SEM and SEM-BMA should do

well for (65).

To introduce nonseparabilities into these models, we preserve all spatial autocorrelation

specifications, but alter the functional form of ðx1; x2; x3Þ as follows9:
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y ¼ ðIn2qWÞ21 ½3 in1 x1 � ð4x222 x3Þ1 E�; E � Nð0;r2InÞ (66)

y ¼ 3 in1 x1 � ð4x222 x3Þ1 ðIn2qWÞ21E; E � Nð0;r2InÞ (67)

This seemingly “innocent” change serves to highlight the main objective of the present analy-

sis. In particular, it should be clear that the effective sign of x1 now depends on the sign of

4x222x3, and similarly that the effective signs of both x2 and x3 depend on that of x1. So, a key

feature of these nonseparable models is that the direction of influence of each x-variable on y

depends on the values of other x-variables. This we refer to as a localized marginal effect

(LME) which, in principle, can be quite different from the average marginal effect (AME).

Thus, it should be clear that any attempt to approximate such nonseparabilities by appropriate

choices of (constant) coefficients, b, in Xb is bound to fail. Even more important is the fact

that such “compromise” approximations may often be so close to zero that the explanatory var-

iables are rendered statistically and quantitatively insignificant. This is in fact a main conclu-

sion of our simulation results.

But before presenting these results, it is important to observe that models (66) and (67)

can of course be well estimated by simply extending the linear-in-parameters specifications in

(64) and (65) to include first-order interaction effects. In particular, since the expres-

sion x1ð4x222x3Þ ¼ 4x1x222x1x3 is an instance of the 6-parameter specification,

b1x11 b2x21 b3x31b4x1x21b5x1x3 1b6x2x3, standard estimates of models (60) and (62)

with X extended to Z ¼ ðX; x1x2; x1x3; x2x3Þ, can easily identify the two significant parameters,

b4 and b5. More generally, such parametric specifications can in principle be extended to cap-

ture almost any degree of interaction complexity. But such heavily parameterized (“saturated”)

models are not only costly in terms of data requirements, they are also notoriously prone to

over-fitting data. These points serve to underscore our emphasis on the ability of GPR-BMA to

identify highly complex relations with remarkably few parameters. Finally, to gauge the effec-

tiveness of each method in identifying the true explanatory variables, ðx1; x2; x3Þ, three irrele-

vant variables ðz1; z2; z3Þ, are also constructed as standardizations of independent samples from

Nð0; 1Þ, and added to each simulation.

Simulation results

Results are displayed in Table 1 as a series of two panels: SAR is the top panel, SEM the bot-

tom panel. Each panel is divided into two general sections corresponding to the separable and

nonseparable cases, respectively. The first two columns of each panel display the relevant true

values for each model, and the remaining columns contain the comparative results to be dis-

cussed below.

But before doing so, it is important to re-emphasize that we have made certain assumptions

that are particularly favorable to SAR-BMA and SEM-BMA. Of these assumptions, the most

significant are that the data generating processes are precisely of the SAR and SEM forms, and

in particular, that the researcher has chosen the correct spatial weights matrix in each case. In

contrast, none of these assumptions are made by GPR-BMA. Indeed, except for the choice of a

generic kernel function such as (2), GPR-BMA is essentially driven by the data itself.10 As we

will show, the results of GPR-BMA are thus more robust in situations where the researcher

faces both specification and model uncertainty.

With respect to variable inclusion probabilities (VIP) for separable cases, GPR-BMA per-

forms as well or better than the traditional methods in essentially every case (the only
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exception being the irrelevant variable, z1, with inclusion probability slightly higher than for

SAR-BMA, but still very small). Turning to the nonseparable cases, we see a much more dra-

matic difference in performance. Here, (as predicted) both SAR-BMA and SEM-BMA are seen

to have great difficulty identifying any of the statistically relevant explanatory variables (where

only the inclusion probability for variable, x1, under SAR-BMA is noticeably better than those

of the irrelevant variables). In contrast, the performance of GPR-BMA is quite striking, with

essentially perfect identification of relevant variables and exclusion of irrelevant variables.

Turning next to marginal effects, we first calculated SAR and SEM coefficient estimates

for each model identified by the BMA routine (as in footnote 8 above). These estimates were in

turn used to calculate LMEs for each model (which are by definition constant for SEM, and

thus the same as AMEs). For SAR, these localized effects were used together with model inclu-

sion probabilities to calculate AMEs. While such effects are not strictly part of SAR-BMA and

SEM-BMA as formulated by LeSage and Parent, they appear to provide a reasonable basis of

comparison with GPR-BMA.

For the separable cases, the AMEs for GPR-BMA are seen to be remarkably comparable

with those of SAR-BMA and SEM-BMA, even though none of the true model structure is

assumed in GPR-BMA. To compare AME for nonseparable cases, it should first be noted that

all true AMEs for the simulated model are necessarily close to zero (Column 10, both panels)

since marginals are linear in the standardized X variables, with sample means close to zero.

Moreover, since the uniformly low VIP for both SAR-BMA and SEM-BMA tend to shrink

their marginals toward zero,11 our simulation choice actually tends to favor these models in

terms of AME. So, it is remarkable that GPR-BMA still does better than either in most cases

(Column 14, both panels).

Turning next to LMEs, we here measure performance in terms of overall goodness of fit

[using Root Mean Squared Error (RMSE)] at the individual observation level. For separable

cases, where true marginals are precisely from the given SAR and SEM specifications, we do

indeed see a somewhat better performance for their BMA versions against GPR-BMA, espe-

cially for the SAR model where local marginals are directly influenced by ðIn2q̂WÞ21
[as in

(64) above]. However, for all nonseparable cases, GPR-BMA is seen to yield a dramatic

improvement over both SAR-BMA and SEM-BMA (in the LME-RMSE columns). As men-

tioned above, this is largely due to the frequent sign changes in LME for the nonseparable

case, which cannot be captured by either of these models. It is here that the real strength of

GPR-BMA is most evident.

Finally, we note that for this particular nonseparable model in which the true AME values

are close to zero, it is difficult to gauge the effectiveness of AME in summarizing the direc-

tional effects of variables deemed relevant by GPR-BMA. So to check such effects, we have

added two columns to the nonseparable case summarizing the percentages of correct LME

signs at the individual observation level. Here, we see that for the relevant variables,

ðx1; x2; x3Þ, these estimated signs are extremely reliable for GPR-BMA, thus suggesting that

AME signs will continue to provide a good summary measure of directional influences in those

cases where true AME values are substantially different from zero.

In summary, the single most important result of these simulated comparisons is to under-

score the robust performance of GPR-BMA in all cases. Even though there is no attempt to

capture either the conditional mean specifications or spatial autocorrelation structures of the

models simulated, GPR-BMA identifies the statistically relevant set of variables with striking

regularity. Moreover, its performance is strongest in precisely those cases where specification
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errors tend to degrade the performance of more parametric models such as SAR-BMA and

SEM-BMA. While these results may at first glance appear “too good to be true,” they serve to

underscore the main difference between global parametric and local nonparametric approaches.

By focusing primarily on local information around each location, the latter approach is able to

discern changing relationships with a remarkable degree of reliability. Finally, it should also be

added that BMA seems to work especially well in this setting. In particular, it effectively

dampens variations in these local relationships over the many alternative candidate models in

M.12

Empirical application: Predictors of economic growth

In this final section, we apply GPR-BMA to a real data set to highlight how well this technique

performs in practice. Here, we use a standard BMA benchmark data set focusing on economic

growth (Sala-i-Martin 1997; Fernandez, Ley, and Steel 2001a,b), which includes 42 candidate

explanatory variables for each of 72 countries. To capture possible spatial effects, we include

the spatial information (absolute latitude13 and longitude) of each country. As one such exam-

ple, it has been claimed by Sachs (2001) and others that technology diffuses more readily

across the same latitude than the same longitude. Such assertions can be tested within the pres-

ent framework (as shown below).

Since OLS-BMA is most often used in conjunction with this data set, we provide OLS-

BMA estimates alongside results produced by the spatial techniques of SAR-BMA and SEM-

BMA.14 Using OLS-BMA as a benchmark for comparison, GPR-BMA was calibrated to have

a prior expected model size equal to the estimated average model size of OLS-BMA. In partic-

ular, since expected model size is given by the sum of inclusion probabilities for all variables

½EðqÞ ¼ EðRk
j¼1djÞ ¼ Rk

j¼1EðdjÞ ¼ Rk
j¼1pðdj ¼ 1Þ�, this realized sum for OLS-BMA (� 10:4)

is taken as the mean of the prior distribution for q in expression (19) and is used to solve

numerically for k, yielding a value of k � 0:089 (as shown in Fig. 1 above).15 The resulting

VIP for all BMA techniques are shown in the first four columns of Table 2 below [where the

OLS-BMA estimates are calculated using MATLAB code from Koop, Poirier and Tobias

(2007)]. The first two rows include spatial variables, and the remaining rows are ordered by

inclusion probabilities under GPR-BMA.

Observe first that there is strong agreement between the sets of inclusion probabilities,

with an overall correlation of greater than 80% between GPR-BMA and each of the remaining

methods. In particular, these methods are in general agreement as to the most important varia-

bles (with inclusion probabilities above 0.90), with the single exception of Non-Equipment

Investment. Here, the inclusion probability under GPR-BMA (0.948) is more than twice that of

any other model. Further investigation suggests that there are collinearities between Equipment

Investment and Non-Equipment Investment (depending on which other explanatory variables

are present). Moreover, since the linear specification used in the other three models is well

known to be more sensitive to such collinearities than GPR, this could well be the main source

of the difference.

Turning next to the spatial variables, absolute latitude, and longitude, it is clear that neither

is a relevant predictor of economic growth in the present data set. These values for absolute lat-

itude provide little support for the Sachs (2001) hypothesis. Similar insignificance was obtained

when absolute latitude was replaced by latitude (results not shown). For this latter specification,

note also from the form of the squared exponential kernel in (2) that the presence of both
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latitude and longitude should, in principle, capture any effects of squared Euclidean (decimal-

degree) distances on covariance. So for GPR-BMA in particular, these low inclusion probabil-

ities suggest that there is little in the way of spatial dependency among these national economic

growth rates (after controlling for the other explanatory variables).

Average marginal effects

To compare the AMEs of variables in GPR-BMA with those of SAR-BMA, SEM-BMA, and

OLS-BMA, we calculate these values using the same procedures outlined for the simulation

studies above (where the treatment of OLS-BMA in terms of beta estimates is identical to that

for SEM-BMA). The estimated AME for each variable is shown in the last four columns of

Table 2, where it is again seen that the results for all models are quite similar. This similarity is

even stronger when one considers the influence of VIP on marginal effects [as seen for GPR-

BMA in expression (53) above]. In particular, differences in AMEs between these methods are

often the result of corresponding differences between their associated VIP.

As one example, recall that for Non-Equipment Investment the inclusion probability under

GPR-BMA is roughly twice that under OLS-BMA. So, given that the AME of this variable in

GPR-BMA is also roughly twice that in OLS-BMA, one can conclude that the AME restricted

to those models where Non-Equipment Investment is present are actually quite similar for these

two methods. The same argument holds for comparisons with SAR-BMA and SEM-BMA as

well. Note finally that the strong agreement in signs of AMEs among all models suggests that

for GPR-BMA in particular, these estimates should provide reliable indicators of the average

direction of marginal effects for all relevant variables.

Local marginal effects

While AMEs under GPR-BMA are similar to those under the other models, it is possible to

probe deeper with GPR-BMA. For unlike many regression-based models, where the marginal

effects of variables are hypothesized to be constant across space, one can “drill down” with

GPR-BMA and examine marginal effects at different data locations, such as countries in the

present case. Moreover, such local results can, in principle, reveal structural relations between

marginal effects and other variables that are not readily accessible by other models. A partial

exception here is SAR-BMA, where local marginal effects are to some degree meaningful.16

While in many empirical contexts both the signs and ratios of such effects among variables are

approximately constant across space, it is nonetheless of interest to compare them with those of

GPR-BMA, as is done in Table 3 below. In particular, we now consider differences between

the marginal effects of Equipment Investment and Non-Equipment Investment across countries,

as displayed in Table 3 (where the marginal effects of Equipment Investment are shown in

descending order).

Turning first to Equipment Investment, we see from the GPR-BMA results that the highest

marginal effects on economic growth are exhibited by less developed countries (such as Came-

roon) and the lowest marginal effects by more developed countries (such as the United States).

In contrast, these LMEs for SAR-BMA are virtually constant across countries. Closer inspec-

tion shows that this is due to the weak level of spatial dependence estimated by SAR-BMA

(with a model-averaged q̂ of only 0.04). So while LMEs are indeed present, it is evident that

they not attributable to spatial-feedback relations, as hypothesized by SAR-BMA. Rather, they

appear to be related to the overall level of economic development in each country, as revealed

by the GPR-BMA results.
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Table 3. Marginal Effect of Equipment and Nonequipment Investment by Country

GPR-BMA SAR-BMA GPR-BMA SAR-BMA

Eq.

Inv.

NE

Inv.

Eq.

Inv.

NE

Inv.

Eq.

Inv.

NE

Inv.

Eq.

Inv.

NE

Inv.

Malawi 0.222 0.094 0.193 0.014 Brazil 0.154 0.054 0.193 0.014

Cameroon 0.212 0.091 0.193 0.014 Algeria 0.153 0.012 0.193 0.014

Tanzania 0.211 0.081 0.193 0.014 Panama 0.153 0.040 0.193 0.014

Kenya 0.210 0.059 0.193 0.014 Chile 0.151 0.057 0.193 0.014

Nigeria 0.210 0.079 0.193 0.014 Mexico 0.148 0.047 0.193 0.014

Ethiopia 0.209 0.115 0.193 0.014 India 0.147 0.040 0.193 0.014

Madagascar 0.207 0.107 0.193 0.014 Costa Rica 0.146 0.042 0.193 0.014

Uganda 0.206 0.105 0.193 0.014 Argentina 0.144 0.068 0.193 0.014

Zaire 0.205 0.105 0.193 0.014 Taiwan 0.142 0.044 0.193 0.014

Zimbabwe 0.200 0.067 0.193 0.014 Portugal 0.142 0.038 0.193 0.014

Ghana 0.200 0.090 0.193 0.014 Uruguay 0.140 0.055 0.193 0.014

Congo 0.199 0.052 0.193 0.014 Venezuela 0.137 0.041 0.193 0.014

Senegal 0.195 0.085 0.193 0.014 Spain 0.135 0.032 0.193 0.014

Zambia 0.186 0.007 0.193 0.014 Cyprus 0.130 0.002 0.193 0.014

Philippines 0.186 0.084 0.193 0.014 Greece 0.127 20.001 0.193 0.014

Pakistan 0.185 0.070 0.193 0.014 United

Kingdom

0.126 0.038 0.193 0.014

Haiti 0.182 0.102 0.193 0.014 South Korea 0.126 0.039 0.193 0.014

Thailand 0.175 0.061 0.193 0.014 Ireland 0.125 0.008 0.193 0.014

Morocco 0.174 0.075 0.193 0.014 Hong Kong 0.122 0.044 0.193 0.014

Bolivia 0.172 0.066 0.193 0.014 Italy 0.119 0.009 0.193 0.014

Honduras 0.171 0.056 0.193 0.014 Denmark 0.116 0.018 0.193 0.014

Tunisia 0.170 0.063 0.193 0.014 Belgium 0.113 0.005 0.193 0.014

Sri Lanka 0.169 0.064 0.193 0.014 Australia 0.112 0.007 0.193 0.014

El Salvador 0.167 0.082 0.193 0.014 Sweden 0.112 20.002 0.193 0.014

Turkey 0.167 0.052 0.193 0.014 Austria 0.110 0.040 0.193 0.014

Paraguay 0.165 0.082 0.193 0.014 Canada 0.109 0.022 0.193 0.014

Guatemala 0.165 0.054 0.193 0.014 Israel 0.108 0.017 0.193 0.014

Dominican

Republic

0.165 0.064 0.193 0.014 Germany 0.107 20.004 0.193 0.014

Peru 0.164 0.073 0.193 0.014 Netherlands 0.107 0.004 0.193 0.014

Nicaragua 0.164 0.048 0.193 0.014 United States 0.106 0.022 0.193 0.014

Botswana 0.164 0.046 0.193 0.014 France 0.105 0.004 0.193 0.014

Jordan 0.162 0.044 0.193 0.014 Switzerland 0.105 20.002 0.193 0.014

Malaysia 0.160 0.023 0.193 0.014 Norway 0.102 20.004 0.193 0.014

Colombia 0.159 0.059 0.193 0.014 Finland 0.097 20.020 0.193 0.014

Jamaica 0.155 0.045 0.193 0.014 Japan 0.083 20.001 0.193 0.014

Ecuador 0.155 0.027 0.193 0.014 Singapore 0.069 0.023 0.193 0.014
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Using these marginal results one can discern an interesting relation between Equipment

Investment and Non-Equipment Investment by plotting their marginal effects against corre-

sponding investment levels for each country, as shown in Fig. 2 (where circles and stars are

used to represent marginal effects Equipment Investment and Non-Equipment Investment,

respectively).

Here, the negative slopes of both sets of values suggest that both types of investments

exhibit diminishing returns with respect to their marginal effects on economic growth. In addi-

tion, this plot also suggests that economic growth is more sensitive to changes in Equipment

Investment than other types of investment. Both of these observations are easily quantified by

regressing marginal effects on investment levels together with a categorical investment-type

variable and interaction term. These regression results (not reported) show that both observa-

tions above are strongly supported, and in particular, that the response slope for Equipment

Investment is indeed much steeper than that for other investments (as seen graphically by the

regression lines plotted in Fig. 2). In summary, such results serve to illustrate how GPR-BMA

can be used to address a wide range of questions not accessible by more standard regression-

based approaches.

Concluding remarks

The objective of this article has been to develop Gaussian Process Regression with Bayesian

Model Averaging (GPR-BMA) as an alternative tool for spatial data analysis. This method

combines the predictive capabilities of nonparametric methods with many of the more explana-

tory capabilities of parametric methods. Here, our main effort has been to show by means of

selected simulation studies that this method can serve as a powerful exploratory tool when little

is known about the underlying structural relations governing spatial processes. Our specific

strategy has been to focus on the simplest types of nonseparable relations beyond the range of

standard exploratory linear regression specifications, and to show that with only a minimum

number of parameters, GPR-BMA is able to identify not only the relevant variables governing

such relations, but also the local marginal effects of such variables.

As noted in the “Simulated model comparisons” Section above, it is in principle possible

to construct sufficiently elaborate specifications of parametric regressions that will also identify
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the particular nonseparable relationships used here, or indeed almost any type of relationship.

But it must be stressed that the introduction of such “contingent interaction” parameters

requires large sample sizes and tends to suffer from over-fitting problems. Alternatively, one

can capture such relationships by directly parameterizing local marginal effects themselves, as

in local linear regression methods such as Geographically Weighted Regression. But while

such “nonparametric” methods are indeed better able to capture local variations in relation-

ships, they do so by in fact introducing a host of local regression parameters that are highly sus-

ceptible to collinearity problems (not to mention the need for exogenously specified bandwidth

parameters that are essential for spatially weighted regressions).17 Moreover, the focus of these

models on local effects of variables tends to ignore the possible global relations among them.18

So, the main result of our simulations is to show that by modeling covariance relations rather

than conditional means, the simple version of GPR-BMA developed here is able to identify

complex relationships with only three model parameters. This is in part explained by the gen-

eral robustness properties of BMA. But as we have seen in both SAR-BMA and SEM-BMA,

such model averaging by itself may not be very effective when unmodeled nonseparabilities

are present. So, an important part of the explanation for the success of present GPR-BMA

model appears to be the ability of the squared-exponential covariance kernel in GPR to capture

both global and local interactions in terms of its scale and bandwidth parameters, v and s.

This ability to capture both global and locaractions has a wide range of applications in

empirical analyses, as in our economic growth example. Here, we saw that GPR-BMA was not

only able to capture global determinants of economic growth in a manner similar to SAR-

BMA, SEM-BMA, and OLS-BMA, but was also able to delve deeper. In particular, the LMEs

of investment estimated by GPR-BMA (across countries) were used to obtain evidence for

diminishing returns to investment, and in particular, for stronger diminishing returns with

respect to equipment investment.

But in spite of these advantages, it must also be emphasized that the parsimonious parame-

terization of the present GPR-BMA model is only made possible by the underlying assump-

tions of zero means together with both stationarity and isotropy of the covariance kernel.

While the zero-mean and isotropy assumptions have been mollified to a certain degree by the

use of standardized variables, it is nonetheless of interest to consider extensions of the present

model that avoid the need for such artificial standardizations. For example, as we have already

seen in expression (17) above, extended parameterizations are possible in which individual

bandwidths are assigned to each parameter. In addition, it is possible to relax the zero mean

assumption by internally estimating a constant mean, lðxÞ ¼ l, in expression (1) or even by

modeling means as parameterized functions of x (as for example in Section 2.7 of Rasmussen

and Williams 2006). But a key point to bear in mind here is that the important conditional

means in expression (8) are much less sensitive to such specifications that the overall Gaussian

process itself.

Perhaps the most interesting extensions of the present model are in terms of possible relax-

ations of the covariance stationarity assumption (which cannot be mollified by any simple

standardization procedures). A number of extensions along these lines have been proposed that

amount to partitioning space into regions that are approximately stationary, and patching

together appropriate covariance kernels for each region. The most recent contribution along

these lines appears to be the work of Konomi, Sang, and Mallick (2013), in which regression-

tree methods are used for adaptively partitioning space, and in which covariance kernels are
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constructed using the “full approximation” method of Sang and Huang (2012). Adaptations of

such schemes to the present GPR-BMA framework will be explored in subsequent work.

In addition to these structural assumptions, the single strongest limitation of the present

GPR-BMA model is the scaling of its computation time with respect to the number of observa-

tions. This is an active area of research where a variety of methods having been proposed over

the past few years. Generally speaking, most approaches recommend some type of data reduc-

tion technique (see Cornford, Csat�o, and Opper (2005) for an early example). Solutions range

from direct subsampling of the data itself to more sophisticated constructions of “best repre-

sentative” virtual data set (as compared in detail by Chalupka, Williams, and Murray 2013).

Alternative approaches have been proposed that involve lower dimensional approximations to

covariance kernels, as in the recent the “random projection” method of Banerjee, Dunson, and

Tokdar (2013). But for our purposes, data reduction methods have the advantage of allowing

our BMA methods to be preserved intact.

In conclusion, while much work remains to be done in this burgeoning field, our own next

steps will be to explore methods for increasing the computational efficiency GPR-BMA in a

manner that broadens its range of applications. Our particular focus will be on richer covari-

ance structures that can capture both anisotropic and nonstationary phenomena. For example,

by relaxing the present isotropy assumption and using different length scales for latitude and

longitude, we can in principle sharpen our test of Sach’s (2001) hypothesis discussed in the

empirical applications section. Such extensions will be reported in a subsequent paper.

Notes

1 For an overview of nonparametric inductive approaches to spatial data analysis, see for example, Gahe-

gan (2000).

2 For an overview of alternative “filtering” approaches to spatial regression, see Getis and Griffith

(2002).

3 A number of local regression approaches are also capable of both prediction and variable identification

(Brunsdon, Fotheringham, and Charlton 1996; McMillen 1996). However, due to space limitations, a

systematic comparison with these nonparametric methods is deferred to a subsequent paper.

4 As discussed in BMA approach Section below, our present formulation differs slightly from Chen and

Wang (2010) in terms of model sampling.

5 For alternative approach using Monte Carlo methods in the context of spatial kriging with location

uncertainty, see Gabrosek and Cressie (2002).

6 As pointed out by Chen and Wang, this independence assumption greatly simplifies the MCMC analy-

sis to follow. In particular, if covariance functions such as (17) are used, then the parameter vector

uessentially changes dimension with each model. This requires more complex reversible-jump methods

(Green 1995) that tend to be computationally intensive. So as stated previously, our objective is to

show that even without such refinements, the present GPR-BMA procedure performs remarkably well.

7 Note that in principle it is also possible to analyze marginal effects on Eðyljxl; ~y; ~X; di; uiÞ with respect

to changes in explanatory variables, ~xsj, at data locations, s. In this context, it can be seen that the

inverse Kui
½ ~XðdiÞ�21

, in (54) plays a role similar to the “indirect effects” induced by the inverse

ðIn2qWÞ21
in (60) below for the SAR model (as brought to our attention by a referee, and developed

in detail by LeSage and Pace 2009, Section 2.7.1). However, we shall not pursue such indirect marginal

effects in this article.

8 Here, it is important to note that average parameter values are not directly available in the LeSage and

Parent formulation of SAR-BMA and SEM-BMA (where such information is integrated out to con-

struct posterior model probabilities). Thus, it was necessary to augment their approach to obtain such

information. The strategy used here was first to calculate parameter estimates by running SAR
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(respectively, SEM) for each model found by SAR-BMA (respectively, SEM-BMA), and then to aver-

age these estimates across models weighted by their posterior model probabilities.

9 Note that expressions such as x1 � x2 for vectors are implicitly component-wise (Hadamard) products.

10 However, as with all Bayesian methods, GPR-BMA does require prior specifications of certain param-

eters: in this case, the hyperparameters in (11) and the tuning parameter, k ¼ 0:01, in (19). In addition,

certain computational conventions are used: here including a “jitter” of size 0.02 added to r in (5) for

numerical stability of inverses, as well as MCMC conventions such as our burn-in threshold of 500

iterations.

11 Low VIPs for the full set of explanatory variables imply that the null model (intercept only) is very

frequent, and has all zero marginals by definition.

12 For brevity’s sake, we do not pursue questions of out-of-sample performance in this article. Else-

where, we have addressed the issue of out-of-sample prediction where we have found that GPR-BMA

generates very accurate out-of-sample forecasts even when faced with highly nonlinear (and

unknown) relationships. A full discussion of the out-of-sample performance of GPR-BMA is available

from the authors.

13 Fernandez, Ley, and Steel (2001a,b) and Sala-i-Martin (1997) use absolute latitude to distinguish

between tropic and temperate zones. We follow their approach to maintain consistency with previous

research.

14 The spatial weights matrix, W, used for both SAR-BMA and SEM-BMA, was here taken to be a stand-

ard contiguity matrix between countries (normalized to have unit maximum eigenvalue).

15 We initialize the first model vector based on the length scales produced by ARD. In particular, we

include the first 10 variables based on the shortest (and hence relatively most important) length scales.

We further parameterize the model by selecting a “jitter” of 1 3 1026 (for numerical stability) and a

burn-in of 1,000.

16 As mentioned in the SAR-BMA and SEM-BMA models Section, local differences of marginal effects

among locations, i, are here embodied in a spatial multiplier, bii
q, reflecting all feedback effects at i

resulting from the spatial relations implicit in both W and q (as detailed in LeSage and Pace 2009, Sec-

tion 2.7.1).

17 Due to space limitations, a systematic comparison between GPR-BMA and Geographically Weighted

Regression is deferred to a subsequent paper.

18 While there are indeed “mixed” versions of such models that incorporate both global (parametric) and

local (nonparametric) specifications (as detailed, e.g., in Wei and Qi 2012; Mei, Wang, and Zhang

2006; and in Chapter 3 of Fotheringham, Brunsdon, and Charlton 2002), such models involve a prior

partitioning of these variable types, so that no variable is treated both globally and locally.
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