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Abstract

City size distributions are known to be well approximated by power laws across many
countries. By far the most popular explanation for such power-law regularities is
in terms of random growth processes, where power laws arise asymptotically from
the assumption of iid growth rates among all cities within a given country. But
this assumption has additional consequences. Since all subsets of cities have the
same statistical properties, each subset must exhibit essentially the same power law.
Moreover, this common power law (CPL) property must hold regardless of the spatial
relations among cities. Using data from the US, this paper shows first that spatial
partitions of cities based on geographical proximity are significantly more consistent
with the CPL property than are random partitions. It is then shown that this significance
becomes even stronger when proximity among cities is measured in terms of trade
linkages rather than simple geographical distance. These results provide compelling
evidence that spatial relations between cities do indeed matter for city-size distributions.
Further analysis shows that these results hinge on the natural “spacing out” property
of city patterns in which larger cities tend to be widely spaced apart with smaller cities
organized around them.
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1 Introduction

City size distributions are known to be well approximated by power laws across a wide
range of countries. The most popular approach to explaining this regularity at present is
in terms of simple random growth processes (as in Gabaix [22]).1 Such processes have
been successfully incorporated in general equilibrium models that match actual city size
distributions well (e.g., Duranton [17] and Rossi-Hanseberg and Wright [45]). But even in
these more complex versions, power laws for city size distributions arise fundamentally
from the underlying assumption of common iid growth rates for all cities, which is well
known to have additional consequences. For if cities exhibit common iid growth rates,
then all (su�ciently large) subsets of these cities must exhibit power laws with the same
exponent. In particular, this common power law (CPL) property must hold regardless of the
particular spatial relations that exist among cities. So these random growth models suggest
that spatial relations among cities do not influence the distribution of city sizes.

However, there is a growing literature showing that space does indeed play a crucial
role in shaping the economic landscape we observe. At the global scale, there is a long
tradition in the international trade literature focusing on how trade frictions induced by
inter-country distances (among other factors) influence trade flows between countries.2 At
the urban scale, there has been a long tradition in the urban economics literature focusing on
how within-city spatial structure influences a variety of urban phenomena, including both
housing and land markets.3 Finally at the regional level, there is a small emerging literature
more closely related to the present analysis that focuses on how spatial separation influences
trade between cities and city growth, e.g., Donaldson [16], Duranton, Morrow and Turner
[18], Hering and Poncet [30] , Michaels [40], Redding and Sturm [44], Fajgelbaum and
Redding [20].

Taken together, these many research e↵orts suggest that the distribution of city sizes
may indeed be influenced by the spatial relations among these cities. To study this question,
we begin by postulating that the spatial organization and sizes of cities are linked by the
spacing-out property that larger cities tend to be widely spaced apart, with smaller cities

1It is well documented that power laws are good descriptors of city size distributions, especially in their
upper tails; see Rosenfeld et al. [46] and Ioannides and Skouras [34]. In particular, the random growth
processes proposed by Gabaix only imply power laws for the upper tails of their steady-state city size
distributions (see the discussion in Section 2.1). See Gabaix [23] for a survey on the extensive empirical
literature on city size distributions, as well as Eeckhout [19] for similar processes that generate log-normal
city size distributions.

2Such inter-country distances are indeed one of the most fundamental explanatory variables in all gravity-
type regression models. See Anderson and van Wincoop [6] for a survey of this extensive literature.

3See Anas, Arnott, and Small [5] for a survey of this substantial body of literature. More recent develop-
ments can be found in Lucas and Rossi-Hansberg [38] and Ahlfedlt, Redding, Sturm, and Wolf [1].
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grouped around these centers. For city landscapes that do exhibit this property, one might
expect to find similar size relations among the cities in each spatial grouping. This in turn
suggests that the CPL property above may indeed be stronger for such groupings than for
arbitrary groupings of cities. Given this line of reasoning, our main objectives are to develop
explicit tests of these hypotheses. Our first set of tests provide evidence that consistency
with the CPL property is significantly higher for even simple groupings of nearby cities
(without regard to the spacing-out property) than for arbitrary groupings of these cities.
Our second set of tests provide independent evidence for the spacing-out property itself,
without regard to the CPL property. Finally we combine certain aspects of these two lines
of investigation by replacing groupings of nearby cities in the CPL tests with appropriately
defined “economic regions” that are closer in spirit to our postulated spacing-out property.
Our test results here confirm that consistency with the CPL property is even higher for these
economic regions than for groupings of cities based on simple proximity relations as above.

With this brief overview, we now consider each of these testing procedures in more
detail. The data used for all tests is taken from the US in 2007. In particular, cities are
here defined to be Core Based Statistical Areas (CBSAs) [see Figure 7(a)].4 Using this
data, our first set of tests focus on spatial groupings of cities without regard to major cities
themselves. The question is whether groupings of nearby cities are more comparable in
terms of CPL than are arbitrary groupings of cities. For each number of possible groupings,
K , this is accomplished by selecting K cities at random and identifying the subsets of cities
closest to each of these K cities. Formally these subsets constitute a Voronoi K-partition in
which cities are spatially grouped in the sense that all cities in the same Voronoi region (or
cell) are closest to a common city. Power laws for the cities in each cell are then estimated
by log regressions of size against rank. As detailed in Section 2.2 below, it is convenient
to replace both log(rank) and log(size) by their smoother “upper average” versions which
facilitate comparisons of the upper tail structures of such distributions. In this context, the
level of agreement between power laws for each cell of cities is essentially determined by
comparing the similarity of slopes between these log regressions (as detailed in Section
2.3 below). Finally, by simulating random K-partitions of cities and carrying out the same
regression procedure, one can test whether there is significantly stronger agreement among
the power-laws of these K Voronoi regions than would be expected if they were simply
cells in a random K-partition of cities. With respect to these tests, our main result is to show
that our US data indeed exhibit stronger agreement with CPL among these Voronoi regions
over a broad range of K values.

4See the US O�ce of Management and Budget [61] for the definition of CBSA.
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This initial set of tests involve only a minimal concept of “space” and make no assertions
about the spacing-out property itself. But further analysis of the test results shows that a
key di↵erence between Voronoi partitions and arbitrary partitions relates to the placement
of largest cities among their cells. In particular, those Voronoi partitions exhibiting the
strongest agreement with the CPL property tend to be those in which the largest cities
appear in di↵erent cells, and are thus associated with the groupings of nearby cities. In this
sense, the present results can be said to establish an indirect link between the spacing-out
property and CPL property.

Our second set of tests pursue this line of reasoning further by asking whether this
separation property continues to be present in all Voronoi partitions versus random partitions.
If so, then this provides compelling evidence for the spacing-out property itself, without
regard to CPL. Such relationships are easily testable for, say, the r largest cities by simply
counting the number of cells containing at least one of these cities in a given Voronoi
K-partition, and comparing such counts with those of randomly generated K-partitions.
By simulating many such comparisons, one can then determine whether these r cities are
distributed over a significantly larger number of Voronoi cells than random cells. Our
results show that there is indeed a significant di↵erence.

But by their nature, these tests focus more on the separation between large cities than
on the clustering of smaller cities around them. Thus, to test this latter part of the spacing-
out property, we construct Voronoi partitions with reference cities that correspond to the
K largest cities rather than K randomly chosen cities. For these largest-city Voronoi K-
partitions, we then calculate the distance of each city to its reference city, and designate the
sum of these distances across all cities as the total distance measure for this K-partition.
If smaller cities are indeed clustered around the largest cities, then one would expect
total distances for these largest-city Voronoi K-partitions to be significantly smaller than
for similar Voronoi K-partitions with randomly selected reference cities. Our tests show
that this is indeed the case. Moreover, by using an alternative measure, total population-
weighted distance, in which the distance of a city to the reference city is weighted by the city
population, the results become even stronger. These results together with the spacing out of
the largest cities explain why Voronoi partitions tend to exhibit higher consistency with the
CPL property than their random counterparts. In particular, Voronoi cells containing the
largest cities tend also to contain substantial portions of their corresponding city clusters.

Finally, as mentioned above, we combine some of these ideas by replacing Voronoi K-
partitions in the CPL test with a set of “economic regions” based explicitly on a commodity-
flow interpretation of the spacing-out property. Essentially, each such economic region
consists of a large city together with other smaller cities for which the commodity inflows
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from this city are larger than from any other city other than from themselves.5 This
construction essentially mirrors the spacing-out property with distance replaced by trade
flows. The CPL property for the economic regions generated by the K largest cities is then
tested against random K-partitions for which the numbers of cities in each cell are the same
as those in each economic region. The results of these tests confirm that over a considerable
range of partition sizes, K, the CPL property is even more significant for these economic
regions (relative to their random counterparts) than for the simple groupings of nearby
cities above.

In relating these results to the existing literature, we note first that surprisingly few
empirical studies have examined the spacing patterns of cities in a systematic way, let alone
attempted to identify specific properties of such patterns.6 Thus the main contributions
of the present paper are to document the spacing-out property for city locations, and to
examine its relation to city-size distributions in terms of the CPL property.7 In reference to
the absence of such a relationship as implied by the iid growth-rate assumption in random
growth models, our first set of test results show that even modestly spatial groupings of
“nearby cities” exhibit significantly stronger CPL properties than arbitrary groupings. This
by itself would seem to provide compelling evidence that spatial relations among cities
do indeed matter. The more refined results in terms of economic regions only serve to
strengthen this conclusion. In this regard, the present paper is closely related to a series of
recent studies that document possible deviations from the assumption of iid growth rates,
including Desmet and Rappaport [13], Black and Henderson [9], Holmes and Lee [29],
Michaels, Rauch, and Redding [41], and Redding and Sturm [44]. One example particularly
relevant to our paper is the empirical study by Redding and Sturm [44] documenting the
e↵ect of the post World War II German separation on the growth of cities near the border.
Their results suggest that there was indeed a certain degree of dependence between the
growth rates of nearby cities in this region.

Second, beyond the validity of random growth hypotheses, our results have important
implications for a broader class of city-systems models. In particular, a number of structural
models have recently been developed to provide quantitative assessments of the determi-
nants of city size, including Desmet and Rossi-Hansberg [14], Behrens et al. [8], Allen and

5The trade flow data used here is based on the 2007 Commodity Flows Survey.
6The most closely related work in this respect appears to be that of Dobkins and Ioannides [15] and

Ioannides and Overman [33] who find mixed results regarding the role of space (distance among cities) in
influencing various city phenomena, such as size, growth, and emergence of cities.

7Giesen and Südekum [26] also use regional level data to examine city size distributions. However, their
focus is on testing whether Gibrat’s law holds in each subset of cities in Germany, and they do not test CPL
per se.
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Arkolakis [4], and Redding and Sturm [44]. But, these models have mostly attributed the
size of cities to various city-specific factors. For example, Desmet and Rossi-Hansberg [14]
postulate that city size is an implicit function of three city-specific factors (“e�ciency”,
“amenities”, and “frictions”). So all variations in city size are by construction absorbed into
these factors. In particular, there is no explicit notion of inter-city space in their model.
Rather cities are linked only by a free-mobility condition under general equilibrium. Thus
any possible mechanisms underlying the CPL and spacing-out properties identified by our
results are necessarily left unexplained by these models.

Third, this paper is also closely related to Behrens et al. [8] who formulate a spatial
economic model with trade costs between cities, and estimate this model using US data.
In this modeling context, regression results based on their estimates suggest that “spatial
friction” (in terms of the cost of trade between cities) does not significantly influence the
distribution of city sizes. However, it should be stressed that our present testing framework
is independent of any specific economic modeling assumptions. Thus the results obtained
here suggest that quantitative significance of spatial relations between cities on city-size
distributions remains to be captured by current structural models.8

Finally, our results suggest certain directions for extending current theories of city
systems. In particular, while these findings raise questions about the iid assumption, they
should not to be taken as rejection of the random growth approach itself. Indeed, there may
be ways to relax the iid assumption by allowing certain spatial dependencies among city
growth rates that continue to yield power laws in the upper tail.9 Also, the original results
of Gabaix [22, Proposition 2] suggest that it may be possible to “regionalize” such iid
assumptions in a manner more consistent with our findings. The current theoretical models
which most closely account for our results are those based on the central place theory,
dating back to the original work of Christaller [11]. The central tenets of this theory assert
that the heterogeneity of goods/industries together with the spatial extent of markets give
rise to hierarchies of cities, and thus to a diversity of city sizes. Along these lines, the recent
model by Hsu [31] based on micro-economic behavior exhibits the CPL property among
economic regions. However, his firm-entry model is highly stylized, and more realistic

8Note also that there is no clear correspondence between “spatial frictions” and “spatial patterns of
cites”. In fact it is possible to have spatial economic models in which the spatial pattern of cities is entirely
independent of spatial frictions in terms of (positive) transport costs between cities (e.g., Hsu [31]). So direct
comparisons between the e↵ects of spatial frictions and spatial patterns of cities on the distribution of city
sizes are at best problematic. Also see a more detailed discussion in the conclusion on several other recent
structural model that account for city size di↵erences.

9For example, the recent Markovian approaches to Kesten processes by Saporta [47] and Ghosh et al.
[25] might o↵er possible methods for allowing spatial dependence between growth rates in a random growth
process.
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general equilibrium models are desirable. We will discuss these issues in more detail in the
concluding remarks.

The rest of the paper is organized as follows. Section 2 introduces an estimation strategy
for CPL and define the goodness of fit of such an estimation. Section 3 conducts CPL tests
by comparing the goodness of fit under Voronoi partitions of cities with that under random
partitions. Section 4 examines the spacing-out property. Section 5 constructs economic
regions and conducts CPL tests by comparing the goodness of fit under economic regions
with that under random partitions. Section 6 concludes.

2 Methods for Analyzing Common Power Laws

Before developing these test results, it is convenient to begin with a number of method-
ological tools that will be used throughout. First we briefly consider the explicit class of
stochastic growth models known as Kesten processes. These will provide us with a way
of simulating processes with known asymptotic power laws that can be used to test our
methods. Next we introduce an upper-averaging method for estimating power-law expo-
nents that is particularly useful for our present purposes. Finally we develop the categorical
regression framework that will be used to compare the degrees of the similarities among
power laws across subsets of cities.

2.1 Kesten Processes

As first introduced into stochastic urban growth theory by Gabaix [22], Kesten processes
provide a simple class of stochastic growth models that exhibit asymptotic power laws
under fairly weak conditions. For a given a collection of cities, i = 1, . . . , n, if S it denotes
the size (population) of city i in time period t, then it is hypothesized that the city sizes
evolve over time according to a stochastic di↵erence equation of the form

S i,t+1 = �itS it + eit, i = 1, . . . , n ; t = 1, 2, . . . (1)

where (�it : i = 1, . . . , n, t = 1, 2, . . .) is a sequence of independently and identically
distributed (iid) nonnegative growth multipliers and (eit : i = 1, . . . , n, t = 1, 2, . . .) is a
sequence of small nonnegative growth increments. If in addition, it is assumed that these
two sequences are mutually independent, then (1) is said to define a Kesten process.10 Note

10These processes were first introduced by Kesten [35] as multivariate (matrix-valued) processes. More
accessible treatments of the univariate case can be found in Vervaat [54] and Goldie [28].
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that the individual processes for each city are essentially independent copies of one another,
and hence must exhibit the same asymptotic behavior. In particular, it can be shown that
under very general conditions there exists a limiting random variable, S , such that each city
process converges in distribution to S , i.e.,

lim
t!1

S it =d S , i = 1, . . . , n (2)

(where =d denotes equality in distribution). More importantly, if � denotes a representative
growth multiplier, and if there exists a positive exponent, , for which E(�) = 1, then
under very weak additional conditions, it can be shown that S satisfies an asymptotic power
law with exponent , i.e., that there exists a positive constant, c, such that,

lim
s!1

s Pr(S > s) = c , (3)

which is more conveniently written as

Pr(S > s) ⇡ c s� , s! 1 . (4)

So the city sizes in (1) can eventually be treated as independent random samples from a
distribution with this property. In our simulations of such processes, we shall assume that
growth multipliers, �, are log normally distributed, and in particular that ln(�) ⇠ N(µ, 1).
Here it can be shown (see Gabaix [22]) that the desired exponent, , is given by

 = �2µ (5)

for µ < 0. In addition, we assume that the small growth increments, e, are uniformly
distributed on [0, 0.01].

2.2 Upper Average Smoothing of Rank-Size Distributions

If a given set of cities is postulated to exhibit an asymptotic power law as in (4), and if
cities are ranked by size as s1 � s2 � · · · � sn so that i denotes the relevant rank of city i,
then a natural estimate of Pr(S > si) is given by the ratio (i/n). So by (4) we obtain the
following approximation,

i/n ⇡ Pr(S > si) ⇡ cs�i ) ln(i) ⇡ ln(cn) �  ln(si)

) ln(si) t b � (1/) ln(i) (6)
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where b = ln(cn)/. This motivates the standard log regression procedure for estimating 
based on “rank-size” data, [ln(i), ln(si)], i = 1, . . . , n. But as observed by many authors
(e.g., Gabaix and Ibragimov [24] and Nishiyama et al. [42]) this log regression tends to
underestimate the true value of . Several approaches have been proposed for correcting
this bias, including the “1/2” rule of Gabaix and Ibragimov [24] and the “trimming rule” of
Nishiyama et al. [42].

However our present objectives are somewhat di↵erent. Here we are primarily interested
in comparing similarities between the upper-tail properties of city size distributions for
di↵erent subsets of cities within a country. With this in mind, we start by smoothing the
usual rank-size data in a manner that emphasizes the upper tails of this data. In particular,
we transform the data [ln(i), ln(si)], i = 1, . . . , n, by taking upper averages to obtain new
data pairs, upper log rank, ULRi, and upper log size, ULS i, as defined respectively by

ULRi =
1
i

i
X

j=1
ln( j) , (7)

ULS i =
1
i

i
X

j=1
ln(s j) . (8)

These upper averages smooth the data in a manner that emphasizes the largest cities. The
theoretical and practical relevance of this transformation can be illustrated by the two plots
in Figure 1. In Figure 1(a) we have plotted the rank-size data, [ln(i), ln(si)], for the US as
blue circles, and have superimposed the corresponding upper-average data, [ULRi,ULS i],
as a red curve (with points connected by lines for visual clarity).

As is typical for such rank-size plots, log linearity is most evident in the upper tail
(largest cities) where the power law starts to emerge. In contrast, there is little indication of
such a power law in the lower tail (smallest cities) where values decrease dramatically. So
when ln(si) is regressed against ln(i), it should be clear that the regression line is “pulled
down” by these lower-tail values, and becomes too steep. As seen from expression (6), this
should result in an underestimation of . In contrast, the upper-average plot is not only
smoother, but is also shifted toward the upper tail where the power law is most evident. This
is reflected by the corresponding regression results, in which the US rank-size data yields
an estimated slope of ✓̂ = �1.219, with corresponding power exponent, ̂ = 1/✓̂ = 0.821,
while the US upper-average data yields the “flatter” slope estimate, ✓̂ = �1.059 , with
power exponent, ̂ = 0.944.
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Figure 1: City size distribution from Kesten process

As an additional comparison, we also include results for the “1/2” rule by Gabaix
and Ibragimov under which log rank, log(i), is replaced by log(i � 1

2) in the rank-size
regression, thus weighting larger cities more heavily in a manner analogous to our upper-
average approach.11 But since this weighting scheme is somewhat less extreme than
upper-averaging, the corresponding regression results yield a slope estimate, ✓̂ = �1.200,
with power exponent, ̂ = 0.833, larger than the standard estimate under the rank-size
regression but smaller than that under the upper-average regression. The Gabaix-Ibragimov
data, [log(si), log(i � 1

2)], is shown by the dashed curve in Figure 1(a) (again with points
connected by lines as in the upper-average data). From the plot, it is rather obvious that
the upper-average data is most successful in picking up the “power-law content” from the
entire distribution.

But since the “true” exponent for the US is not known, this comparison leaves much to
be desired. What is needed is an example in which the true exponent is actually known. In
this way, the relative accuracy of these methods can be compared in a more meaningful
way. To do so, we have simulated a Kesten process that roughly approximates the US case.
In particular, we set n = 930 (as in our US data) and use (4) to construct a Kesten process
with power-law exponent,  = �1/✓ = 1/1.059 ' 0.944, based on the upper-average

11It is to be noted that while the Gabaix-Ibragimov approach is often adopted to estimate the power-law
exponent of the city size distribution (e.g., Behrens et al. [8]), this approach assumes that the city sizes follow
an exact Pareto distribution. But actual city size distributions at the national level are often more similar to
those obtained from simulated Kesten processes as in Figure 1(b) (see also Rossi-Hansberg and Wright [45]).
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estimate above.12 Starting from uniform city sizes, S i0 = 1 for all i = 1, . . . , n, the steady
state was approximated by iterating this process until the mean city sizes converged with
respect the criterion:

|S t � S t�1| < 0.0001 ⇥ S t (9)

where S t ⌘ 1
n
Pn

i=1 S it.13 The resulting (scaled) output, [ln(i), ln(si)], is shown by the blue
circles in Figure 1(b). Again the transformed upper-average data, [ULRi,ULS i], is plotted
in red. Here the rank-size regression again underestimates  with an estimated value of
̂ = 0.841 [= �1/✓̂ = 1/1.189]. The Gabaix-Ibragimov regression underestimates less,
with an estimated value of ̂ = 0.853, and again the upper-average regression comes closest
to the true value with an estimated value of ̂ = 0.909.

To gauge the robustness of this particular result, steady states were obtained for 1000
replications of the present Kesten process, and regressions were run for each replication
using the rank-size (R-S), Gabaix-Ibragimov (G-I) and upper-average (U-A) approaches.
In comparison to R-S/G-I estimates, the U-A estimates were closer to the true value
( = 0.944) in all but 31/43 of the 1000 cases. The average absolute errors over the 1000
simulations for the R-S, G-I and U-A estimates were 0.1324, 0.1207 and 0.0427, respec-
tively, i.e., the relative estimate errors for U-A versus R-S and versus G-I are 0.0427/0.1324
= 0.322 and 0.0427/0.1207 = 0.354, respectively. These results suggest that this upper-
average procedure does tend to yield more reliable estimates.14

Finally it is worth noting that if one is interested in the upper-tail properties of a
distribution, then it would seem that an obvious approach is simply to truncate the lower
tail. For example, a visual inspection of Figure 1(a) suggests that the distribution for US
cities could best be truncated by removing all ranks above say 600 (ULR600 ⇡ 6.40). But
for arbitrary subsets of cities (such as those considered throughout the present paper),
the systematic identification of “optimal” truncation points is not at all obvious.15 In
this light, the present upper-average approach provides a reasonably robust procedure for
approximating the upper-tail structure of arbitrary city-size distributions without the need

12Using expresssion (5), the growth multipliers, � , were simulated by taking independent draws of ln(�)
from the normal distribution, N(µ, 1) with µ = �/2 = �0.472.

13While condition (9) is only a necessary condition for a true steady-state, this approximation appears to
work reasonably well for our present purposes. Among the 1000 simulations generated below, the minimum
and the maximum numbers of iterations required to achieve condition (9) were 1002 and 19,821, respectively
(with an average of 3356 iterations).

14It should also be noted that the basic results do not change for alternative values of  < 1.0 [i.e., for those
 values where the power-law approximation, eq.(4), to the upper tail makes sense].

15However, if one hypothesizes that city size data is exactly Pareto distributed, then a reasonable optimal-
truncation approach has been proposed by Clauset et al. [12] in terms of maximum likelihood estimation. See
the introduction to Appendix B for further discussion of this approach.

10



to specify truncation points.16,17

2.3 A Categorical Regression Framework

As stated in the introduction, our main objective in this paper is to compare the values
of estimated power-law exponents for di↵erent subregions. So the smoothing achieved
by upper averaging has the additional advantage of sharpening these comparisons from
statistical perspectives.

It should be clear that many di↵erent summary statistics can in principle be used for
measuring the similarity between sets of slopes. But a particularly convenient approach
for our present purposes is based on categorical regression. To begin with, if for any given
set of regions, j = 1, . . . , m, we consider the null hypothesis that the slopes for these
regions are identical, then under this hypothesis, the upper-average plots should di↵er
only by their intercepts and not their slopes. So their common slope can be estimated
by a simple categorical regression with regional fixed e↵ects. To formalize this model,
observe first that if each region j contains n j cities, then for each city-region pair (i j : i =
1, . . . , n j, j = 1, . . . , m) one can use (7) and (8) to define the appropriate upper-average
rank and size variables as follows:

ULRi j =
1
i

i
X

h=1
ln(h) ⌘ ULRi , (10)

ULS i j =
1
i

i
X

h=1
ln(sh j) , (11)

where the identity, ULRi j ⌘ ULRi, follows from the fact that this quantity is the same for
all relevant j (i.e., all j with n j � i). Finally, if we let region 1 denote the choice of a
“reference” region and for each other region, j = 2, . . . , m, define the indicator variable, D j,
by D j(h) = 1 if h = j and zero otherwise, then the desired categorical regression model

16By the same reasoning, this upper-average approach may also be useful for cross-country comparisons.
17As a robustness check on our results for U-A data, we carried out all tests in Sections 3 and 5 below

using both G-I and R-S data as well. In this regard, the Voronoi results in Section 3 appear to be quite robust,
and the basic conclusions remain the same for all three data sets. However, there are some di↵erences for
the economic-region results in Section 5. In particular, the R-S data fails to capture any significant CPL
properties of economic-region partitions for K > 2. (As noted above, this may be due to the overemphasis of
R-S data on lower tail properties, which magnifies the bias of log linear regression estimates.) But di↵erences
between G-I and U-A are far less dramatic. While G-I places more emphasis on similarities between the mid
ranges of city-size distributions than does U-A, the basic conclusions regarding CPL properties are the same
for both data sets. See Appendix B for the details.
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takes the form,

ULS i j = ↵+ ✓ULRi +
m
X

h=2
�hD j(h) + "i j . (12)

Here it should be emphasized that this regression framework is used only to provide a
convenient least-squares framework for gauging how well the given regional data agrees
with the null hypothesis of a common slope. Since we are not concerned with the distribution
properties of coe�cient estimators in this nonparametric setting, there is no need to make
assumptions about the residuals, "i j. Hence, letting n =

Pm
j=1 n j, we simply adopt the Root

Mean Squared Errors (RMSE) statistic,

RMSE =

s

1
n

X

i, j
(ULS i j �[ULS i j)2 (13)

for this regression as an appropriate measure of goodness-of-fit,18 and employ this statistic
to construct a series of nonparametric tests (as detailed in Section 3 below).

To gauge how well this categorical regression procedure works using the U-A data,
[ULRi j,ULS i j] in (10) and (11) rather than the associated R-S data, [ln(i), ln(si j)], or G-I
data, [ln(i� 1

2), ln(si j)], we can employ simulated steady-state realizations from the Kesten
process above. In particular, if these realized cities are randomly partitioned into a given
number of subsets, then within the framework of Kesten processes, these subsets can be
viewed as random samples of di↵erent sizes from the same statistical population of cities.
This implies that their asymptotic power laws must be the same, and thus that the CPL
property must in fact be true for these subsets.

To evaluate how well the CPL property is being captured by these three possible
categorical regression approaches, we first simulate 1000 separate steady-state realizations
of the Kesten process under  = 0.944. For each realization, we then generate 1000
random 4-partitions of these 930 cities into disjoint subsets (subregions), j = 1, 2, 3, 4,
of fixed sizes (n1, n2, n3, n4). The specific subset sizes chosen for this analysis were
(n1, n2, n3, n4) = (182, 254, 261, 233) [which correspond to the four subregions shown in
Figure 3(a) of Section 3 below].

By applying the three categorical regression procedures to each of these random parti-
tions, one can compare how accurately each procedure captures the CPL property in terms
of its mean estimate of ̂ of the common power exponent,  = 0.944, (for this particular

18While similar measures could also be used here which reflect actual error magnitudes (such as mean
absolute errors), RMSE is by far the most commonly used measure of model accuracy in nonparametric
modeling. For recent illustrative applications in economics, see for example McMillen and Redfearn [39],
Kitamura et al. [36], and Ait-Sahalia and Duarte [2].
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Figure 2: Comparison of categorical regression bias

steady-state realization and partition size). By determining the resulting bias of the mean
estimate of ̂ from the true value  for each of the 1000 steady-state realizations, one can
then obtain frequency distributions of these values across the steady-state realizations for
each procedure. The bias distributions for the U-A and R-S/G-I procedures are compared
in Figure 2, where it is seen that the mean bias for the R-S, G-I, and U-A procedures
are respectively 0.1891, 0.1564, and 0.0999. So the mean bias of the R-S/G-I procedure
is about 90%/50% higher than that of the U-A procedure.19 These results suggest that
the upper-average approach continues to exhibit the best performance in this categorical
regression setting.20

3 Voronoi Regions and the Common Power Law

Our first set of tests compare the CPL properties of random groupings of nearby cities
versus purely random groupings. Here such random groupings of nearby cities are modeled
as the cells of a Voronoi K-partition in which K reference cities are selected at random,
and each cell, or Voronoi region, is defined by the set of cities closest to each reference
city.21 Let the number of cities in each cell, j = 1, . . . , K, be denoted by n j and the vector,

19Note that in principle one could also compare the overall fit of these three procedures in terms of their
mean RMSE values. But since the underlying data sets are modified by these methods themselves, such RMSE
values are not fully comparable. So while such a comparison again strongly favors the U-A procedure, these
results are not reported here.

20Again, the basic results remain the same for alternative choices of partition sizes.
21Here “closeness” is defined in terms of travel distance between cities (CBSAs). More precisely, we use

the shortest travel distances between the court houses of those counties contained in each CBSA.
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n(K) = (n j : j = 1, . . . , K), be designated as the size of the given partition. Then only
random partitions of the same size will be comparable with this partition. So this size
vector, n(K), defines the key parameters governing the tests to be constructed. As one
illustration of these parameters, Figure 3(a) displays an example of Voronoi K-partition
with K = 4 and with n(4) = (n1, n2, n3, n4) = (182, 254, 261, 233).

In this context, our basic null hypothesis, H0, is that the level of agreement of Voronoi
partitions with the CPL property is statistically indistinguishable from that of similarly
sized random partitions. As in Section 2.3, this level of agreement is measured in terms of
RMSE for the corresponding categorical regressions in expression (12) above.

For the Voronoi partition in Figure 3(a), the upper-average plots for these four Voronoi
regions are shown in Figure 4(a), where the colors of each plot correspond to the partition
colors in Figure 3(a).

(a) Voronoi partition (b) Random partition

Figure 3: An example of Voronoi 4-partition
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Figure 4: Upper-average distributions in Voronoi and random partitions

So to test the null hypothesis, H0, for a given level of K, we proceed in two stages. First
we generate M = 1000 random Voronoi K-partitions, v = 1, . . . , M. Associated with
each partition, v, is a given size vector, nv(K). So to estimate the distribution of RMSE
for random partitions of size nv(K) under H0, we generate 1000 random partitions of size
nv(K) and calculate RMSE for each. For the Voronoi 4-partition shown in Figure 3(a), an
example of random partition of the same size is shown in Figure 3(b), with corresponding
upper-average plots shown in Figure 4(b). As can be seen from this figure, the upper-average
plots di↵er from the Voronoi partition case mainly in the extreme upper tail, corresponding
to the largest cities. In particular, the four largest cities (New York, Los Angeles, Chicago
and Dallas) are contained in separate cells in the Voronoi partition shown in Figure 3(a),
while for the random partition shown in Figure 3(b), all the four cities are contained in
a single cell (the red region in the figure). As we shall see below, the locations of these
largest cities within a given partition play a crucial role in determining its agreement with
the CPL property.

If the RMSE level for partition v is denoted by RMSEv, and if the number of RMSE
values smaller than RMSEv is denoted by Mv, then the p-value for a one-sided nonparametric
test of H0 for partition v is given by22

pv =
Mv

N
, v = 1, . . . , M. (14)

22To be more precise, pv, estimates the probability of achieving an RMSE level as low as RMSEv if it were
true that partition v was in fact a typical random partition of size nv(K).
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For the Voronoi partition, v, with upper-average plots in Figure 4(a), the RMSE value
is RMSEv = 0.072, and for the same sized random partition in Figure 4(b), the value is
RMSE = 0.162. So this random partition exhibits less agreement with CPL than does
partition v. In fact, for this particular Voronoi partition, none of the RMSE values for the
corresponding 1000 random partitions fell below 0.072. So pv = 0 for this extreme case.

The results of these tests of H0 over the range of values, K = 2, . . . , 20, are shown in
Figure 5. Here the possible K values for Voronoi partitions are on the horizontal axis, and
the possible p-values for these tests are on the vertical axis. To interpret these results, let
us focus on the vertical slice at K = 4 in Figure 5. Recall that there are 1000 p-values
for K = 4, one for each of the Voronoi 4-partitions generated. Among this population of
p-values, the median value (on the red curve) is about 0.30, indicating that 50% of these
p-values are below 0.30. But if Voronoi partitions were indistinguishable from random
partitions as hypothesized under H0, then one would expect that only 30% of these p-values
would be at or below 0.30. More generally one can see from the corresponding percentile
points at the 5%, 10%, 50%, 90% and 95% levels that this distribution of p-values is
uniformly below what would be expected under H0. The most interesting case of course
involves p-values at or below 0.05 or 0.10. In this case 8.5% are below 0.05 and 17.5% are
below 0.10. Thus in both cases, there are 75% more “significant” results than would be
expected under H0. So for the case of K = 4, there is substantial evidence suggesting that
these Voronoi regions are exhibiting power laws that are more similar to one another than
would be expected for random regions of comparable sizes. Figure 5 shows that the results
become even more significant for larger values of K.

 10, 90% points

   Median
 5, 95% points

p-value
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Figure 5: Comparison of RMS Es between Voronoi and random partitions

One key distinction between Voronoi and random partitions contributing to these results
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is that the largest cities tend to be more separated by Voronoi partitions than random
partitions. This separation property will be established more formally in Section 4.1 below.
But for the present, the relation between CPL properties and separation of large cities can
be illustrated by focusing on the single significance level, ↵ = 0.05, in Figure 5. If for
each K we denote the set of (simulated) Voronoi K-partitions that are significant at this ↵
level by VK

↵ = {v : pv < ↵}, then we can measure the degree of large-city separation in
these partitions as follows. For each partition, v 2 VK

↵ , let NK
r (v) denote the number of

cells in partition v containing at least one of the top r cities [so that NK
2 (v) is the number

of cells in v containing either New York or Los Angeles]. Finally, if N K
r (↵) denotes the

average of these values over VK
↵ [so that 1  N

K
r (↵)  r], then the fraction, N

K
r (↵)/r, can

be viewed as measuring the degree of separation of the top r cities in VK
↵ . These degrees of

separation are plotted over a range of K values for r = 2, 3, 4 in Figure 6. So at K = 4, for
example, the degree of separation for r = 2 is seen to be 1.0, indicating that every partition
significant at the ↵ = 0.05 level (i.e., in V4

↵) places New York and Los Angeles in di↵erent
cells. Similarly, the degree of separation for r = 4, namely 0.78 ⇡ 3/4, indicates that the
top four cities are typically split among three of the four cells in these partitions. What
is most important for our present purposes is that these degrees of separation for r = 4
exhibit a sharp increase from K = 3 to K = 4, and continue to increase for larger K. This
echoes the decreasing contour for ↵ = 0.05 in Figure 5, and shows that the most significant
Voronoi partitions with respect to CPL (at this ↵ level) are indeed those achieving greater
separation, i.e., with these four cities almost always completely separated.23

23For completeness, it should also be noted that for K = 2, 3 the stronger significance of these partitions
again depends largely on the patterns of separation between the top four cities. For K = 2, it can be verified
by closer examination of the partitions in V2

↵ [and can also be seen roughly from Figure 1(a) ] that separations
in which New York is in one cell and (Los Angeles, Chicago, Dallas) are in the other will tend to yield very
similar upper-average curves for a considerable range of di↵erent Voronoi 2-partitions.
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Figure 6: Voronoi Separation of Major Cities

One can gain further insight here by considering the full range of city sizes. In particular,
since small cities are not only more numerous but also more ubiquitous, they tend to be
evenly distributed across cells in both Voronoi partitions and random partitions. Moreover,
since they exhibit less variation in size, one can expect di↵erences in size distributions
across cells to be most sensitive to the placement of the largest cities. Finally, since power
laws focus on the upper tails of these distributions (as reflected by our upper-averaging
procedure), one can expect that the more even spread of large cities across Voronoi-partition
cells will lead to more similar power laws than for random partitions.

This leads naturally to the question of why the largest cities should be more evenly
spread among the cells of Voronoi partitions. Here the most compelling reason seems to
be that these cities are in fact more widely separated in space, i.e., are consistent with the
first tenet of the spacing-out property. If so, then given the relative ubiquity of possible
reference cities throughout the US, Voronoi partitions would then seem more likely to
separate these largest cities than would random partitions of the same size. Such relations
are most evident for the four largest cities (New York, Los Angeles, Chicago and Dallas)
where Voronoi separation was evident in Figure 6 and where spatial separation is equally
evident in Figure 7. A more detailed analysis of these relations is given in the next section,
where tests are developed for both tenets of the spacing-out property.

4 The Spacing-Out Property of Cities

While Figure 6 suggests that those Voronoi partitions most consistent with the CPL property
tend to separate the largest cities of a country, there remains the question of whether such
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separation is exhibited by all Voronoi partitions. If so, then as suggested above, this would
provide strong evidence for the first tenet of the spacing-out property. In Section 4.1
below we develop a testing procedure that confirms the presence of such separation quite
independently from any considerations of the CPL property.

In addition, we show the spacing-out property also asserts that smaller cities tend to be
clustered around these larger centers. In Section 4.2 below we show that Voronoi partitions
generated by the largest cities do indeed exhibit significantly stronger accessibility to the
smaller cities in their cells than do Voronoi partitions generated by random cities. These
results thus provide further support for the spacing-out property itself.

4.1 Spatial Separation of the Largest Cities

Let U denote the relevant set of cities for a given country (so that |U | = 930 for the case
of US). For any given number, r, of the largest cities in U, and for any partition, v, of
U, let Nr(v) denote the number of partition cells of v containing at least one of these r
cities. If there is indeed substantial spacing between the largest cities in U, then we would
expect Nr(v) to be larger for Voronoi partitions than for random partitions of the same size.
For given values of r and K, we start by simulating M (= 1000) Voronoi K-partitions,
v = 1, . . . , M, as in Section 3, and summarize the above counts, Nr(v) , by the Voronoi
count vector,

Nr = [Nr(v) : v = 1, . . . , M] . (15)

For each of these Voronoi K-partitions, v, we again simulate M (= 1000) random K-
partitions, ! = 1, . . . , M, of the same size, nv(K). But rather than conducting separate
tests for each Voronoi partition, v, as in Section 3, we now construct a summary test using
appropriate mean values as follows.

First we write the random partitions for v as ordered pairs (v,!), ! = 1, . . . , M, to
indicate their size-dependency on v. In a manner paralleling Nr(v), we then let Nr(v,!)
denote the number of cells in random partition (v,!) that contain at least one of the r
largest cities in U. In these terms the count vectors,

Nr(!) = [Nr(v,!) : v = 1, . . . , M] , ! = 1, . . . , M (16)

can each be regarded as random-partition versions of the Voronoi count vector in (15),
where each component, Nr(v,!) , of Nr(!) is based on a random partition of the same
size as Voronoi partition, v. In this setting, our basic null hypothesis is essentially that the
Voronoi count vector, Nr is drawn from the same population as its random-partition versions
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in (16). But for operational simplicity, we focus only on the associated mean-counts, defined
for (15) and (16), respectively, by

Nr =
1
M

M
X

v=1
Nr(v) (17)

and

Nr(!) =
1
M

M
X

v=1
Nr(v,!) , ! = 1, . . . , M . (18)

In these terms, our explicit null hypothesis, H0, is that the Voronoi mean-count, Nr, is drawn
from the same population as its associated random mean-counts, Nr(!), ! = 1, . . . , M.24

If for the given set of simulated random partitions above, we now let M0 denote the number
of random mean-counts, Nr(!), larger than Nr, then the p-value, p0, for a one-sided test of
H0 is given [in a manner similar to (14)] by

p0 =
M0

M
. (19)

The p-values, p0, for such tests using the US data are given in Table 1 for the selected
numbers of largest cities, r = 2, . . . , 10, and partition sizes, K = 2, . . . , 10, 20. Here
significance levels, p0  0.01, p0  0.05, p0  0.10, are denoted respectively by  , G#
and #, with blanks denoting no significance.

5 103 204 62 7 8 9

2

5

10

3
4

6
7
8
9

Table 1: The result of spatial separation test (US)

So for example, the symbol  in cell (2, 2) signifies that the mean number of cells in
Voronoi 2-partitions containing at least one of the 2 largest cities in the US is significantly

24As an alternative view of this hypothesis, observe that if one lets Nr(v, 0) = Nr(v) and considers the
matrix of counts Cr = [Nr(v,!) : v = 1, . . . , M,! = 0, 1, . . . , M], then H0 amounts to the hypothesis that
the mean of the first column of Cr is drawn from the same population as the means of the remaining columns.
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greater (at the 0.01 level) than would be expected if this were a random 2-partition. More-
over, since for r = 2, this significance level persists for all partition sizes up to K = 20, it
is evident that for Voronoi 2-partitions these two largest cities (New York and Los Angeles)
are almost never in the same cell of any such partition. This is hardly surprising, since
New York and Los Angeles are on opposite coasts. So the key point here is that random
partitions are not sensitive to “opposite coasts”, while Voronoi partitions most certainly are.
More generally this same degree of maximal significance is seen to persist up to the first
four largest cities (New York, Los Angeles, Chicago, and Dallas), which we have already
seen are spaced widely apart within the US. But when the fifth largest city (Philadelphia)
is included, its close proximity to New York makes such separation less likely. Moreover,
since the sixth largest city (Houston) is also close to Dallas, the significance of Voronoi
separation now disappears altogether. What is more interesting is the apparent resurgence
of significance when the seventh largest city (Miami) is included. Here again it is evident
from the map in Figure 7 that Miami is about as far away from the six largest cities as is
physically possible within continental US.

Boston (10)
New York (1)
Philadelphia (5)

Washington, DC (8)

Miami (7)
Houston (6)Dallas (4)

Los Angeles (2)

Chicago (3)

Atlanta (9)

Figure 7: Locations of Cities

So again, this separation e↵ect is strongly captured by our testing procedure. In
summary, these results do indeed support the spacing-out property of largest cities within
the US, and in particular, they echo the strong separation of the four largest cities seen in
the tests of Section 3 above. Notice also that the spacing between these largest four cities is
somewhat more uniform than the spacing between smaller cities. This is in part explained
by the the tendency of smaller cities to cluster around larger cities, as we examine further
in the next section.
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4.2 Concentration of Smaller Cities Around the Largest Cities

We now focus on the spatial distribution of smaller cities associated with that of the largest
cities studied in the previous section. For this purpose, we designate the (unique) Voronoi
K-partition generated by the K largest cites as the largest-city Voronoi K-partition. Our
objective is then to test whether these K largest cities are significantly more accessible to
all other cities in their cells than are the corresponding reference cities in random Voronoi
K-partitions (as in Section 3 above).

To formalize these concepts, we first identify the sets of cities in each partition cell. For
any Voronoi K-partition, let the set of all cities in each cell, i = 1, . . . , K, be denoted by
Ui (⇢ U), and let ui 2 Ui denote the reference city in this cell. If the distance from ui to
any city u 2 Ui is denoted by d(ui, u),25 then the total distance of all cities in U to their
reference cities in a given Voronoi K-partition is then given by

DK ⌘
K
X

i=1

X

u2Ui

d(ui, u) . (20)

With these definitions, if the largest K cities do indeed serve as cluster centers for those
smaller cities around them, then one should expect to observe values of DK for largest-city
Voronoi K-partitions that are smaller than the corresponding values, say eDK , for similarly
sized random Voronoi K-partitions. To test this assertion for a given value of K = 2, 3, . . .
, the appropriate null hypothesis, H0, is simply that DK and eDK come from the same
statistical population. By using the 1000 samples of random Voronoi K-partitions as in the
previous section, we can then compute the appropriate p-value for a one-sided the test of
H0 for this value of K.

Alternatively, it may be more appropriate to use accessibilities to city populations by
weighting each distance, d(ui, u), in eq. (20) by the population size, su, of city u 2 Ui .
Note however that since d(ui, ui) = 0 for each reference city, ui, the populations of the K
largest cities will automatically be excluded from the largest-city Voronoi K-partition. But
for random K-partitions, where these largest cities are generally not the reference cities,
these largest populations will often be included in total population-weighted distances.
Thus in order to focus on comparisons of accessibility to populations in smaller cities, it is
appropriate to exclude the K largest city populations from all such comparisons.26 To do

25Recall that our measure of distance, d(u, u0), between cities u and u0 was defined in footnote 21 above.
Note in particular that this (set) distance implies that the distance from any city to itself is zero, i.e., that
d(u, u) = 0.

26As will become clear below, this convention has the additional advantage of yielding a conservative test
of clustering around the largest cities. In particular, the inclusion of largest-city populations must necessarily
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so, if we now denote the set of K largest cities in U by UK , then for any given largest-city
Voronoi K-partition, the appropriate modification of DK above is now taken to be the total
population-weighted distance as defined by,

D⇤K ⌘
K
X

i=1

X

u2Ui�UK

sud(ui, u) . (21)

If the total population-weighted distance for a random K-partition is similarly denoted by
eD⇤K , then the appropriate null hypothesis, H⇤0, for this alternative test is now that D⇤K and
eD⇤K come from the same statistical population.

Since the largest-city Voronoi K-partition is unique for each K, the hypotheses, H0 and
H⇤0, are tested by simulating 1000 random Voronoi K-partitions and calculating appropriate
p-values (for one-sided tests) as the share of associated total distance values, eDK < DK ,
under H0, and the share of total population-weighted distance values, eD⇤K < D⇤K , under H⇤0,
respectively. The results of these tests are plotted in Figure 8 for K = 1, . . . , 20. Turning
first to H0 (plotted in red), the significance results for K = 3 and 4 reflect the strong
tendency in Voronoi separation for r = 3 and 4 in Table 1. Note that high p-value at K = 2
is expected. For since the largest two cities (New York and Los Angeles) are located on
opposite coasts, random pairs of reference cities will almost always have better overall
access to cities than these two. The subsequent rise in p-values at K = 5 and 6 echoes
the spatial separation results for r = 5 and 6 in Table 1. In particular, given the respective
closeness of Philadelphia to New York and Houston to Dallas, the addition of each of these
reference cities yields only a small increase in overall accessibility relative to randomly
chosen reference cities. Similarly, the improvement in accessibility when Miami is added
(K = 7), and deterioration when Washington, D.C. is added (K = 8) also reflect the cases
of r = 7 and 8 in Table 1. But overall, there is a discernible tendency of cities to exhibit
more clustering around the largest cities than around randomly selected reference cities.

This tendency is much more dramatic when population accessibilities are compared.
As shown by the blue curve in Figure 8, these results are uniformly more significant than
for the case of simple inter-city distances. Indeed, except for the “bi-coastal” case (K = 2)
and the “Houston next to Dallas” case (K = 6), these results are all strongly significant
(p ⌧ .05). Thus, the single most important conclusion here is that relative to randomly
selected reference cities, the largest cities in the US tend to exhibit significantly better
access to their surrounding city populations.

In relation to the results in Section 3 above, the spatial relations between smaller and

increase the total population-weighted distances for almost all random K-partitions.
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larger cities studied here show that the city subsets around the three or four largest cities are
roughly comparable to one another, each consisting of similarly sized cities. This in part
suggests why Voronoi partitions tend to exhibit higher consistency with the CPL property
than their random counterparts. In particular, those Voronoi cells containing the largest
cities tend also to contain substantial portions of their corresponding city clusters.
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Figure 8: Result of total-accessibility test

5 Economic Regions and the Common Power Law

Our final objective is to determine whether the CPL property is stronger when comparing
more economically meaningful regions. As mentioned in the Introduction, we here replace
simple distance proximities by commodity flow dependencies. Such dependencies are
based on the Commodity Flow Survey (CFS) for 2007. This data identifies total shipments
between 111 regions in the continental US, as defined by the CFS. In particular, 64 of these
regions are CFS-defined metropolitan areas, and the remaining 47 regions are either states
that do not overlap these metropolitan areas or “remainder of the state” regions including
those part of states outside the metro areas.27 Each CFS metropolitan area is either an
individual CBSA, or a Combined Statistical Area (CSA) consisting of multiple CBSAs.28

27The 47 regions correspond to the continental states excluding Rhode Island as it is completely contained
in a CFS-defined metro area, Boston-Worcester-Manchester.

28However, there is one case in which a single CBSA (Washington-Arlington-Alexandria) has been di-
vided into two CFS metropolitan areas [designated, respectively, as the Washington-Arlington-Alexandria
CBSA and the Washington-Baltimore-Northern Virginia CSA (Virginia part)]. In order to recon-
cile this CFS data with the set of CBSAs defining “cities” in the present paper, we have thus ag-
gregated these two CFS areas into a single Washington-Arlington-Alexandria metropolitan area (con-
sisting of three CBSAs, Washington-Arlington-Alexandria, Winchester and Culpeper). For the com-
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We start in Section 5.1 below by constructing an operational definition of economic
regions in terms of these commodity flow dependencies. In Section 5.2, we then test the
significance of the CPL property for these economic regions against comparable sets of
random partitions. In Section 5.3 these CPL test results are shown to be even stronger
than comparable results for the Voronoi partitions in Section 3. Finally in Section 5.4, we
develop an alternative method for comparing di↵erences in upper-average distributions
between economic regions and between their corresponding random partitions. In particular,
we construct a new measure of similarity of between upper-average distributions in terms
of the order-consistency properties of their ULS i levels across ranks, i. Here it is shown
that this measure can in many cases provide even sharper comparisons between power laws
across regions.

5.1 Economic Regions

If R denotes the set of all CFS regions, i = 1, . . . , 111, we first identify each region, i 2 R,
with its associated set of cities as follows. Let the set of all cities, U, be partitioned into
cells, {Ui : i 2 R}, so that u 2 Ui if and only if region i accounts for the largest population
share of city u. In the analysis to follow we refer to Ui as the set of cities for region i. For
convenience we then order regions in terms of their largest cities, so that by again letting
su denote the size of city u it follows that regions, i, j 2 R, will satisfy i < j if and only if
maxu2Ui su > maxu2U j su. Thus the first K regions will generally be associated with the K
largest cities in U.29 For each K (= 1, 2, . . .), the desired sets of K economic regions then
correspond essentially to the largest-city regions together with their associated economic
hinterlands.

These ideas can be made more precise terms of commodity-flow dependencies as
follows. If for any regions, i, j 2 R, we let fi j denote the commodity flow (in dollar value)
from region i to region j, then the (commodity) flow dependency, �i j 2 [0, 1), of region j on
region i is taken to be the fraction of the total commodity-inflow to j that comes from i, i.e.,

�i j ⌘
fi j

P

k2R fk j
, (22)

plete list of the CFS metropolitan areas, refer to the website of the US Department of Transportation:
http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/commodity flow survey/2007/ metropoli-
tan areas/index.html.

29In particular, the largest cities in the first K = 20 regions (used in the analysis below) match the largest 20
cities in U, with the two exceptions of Los Angeles-Long Beach-Santa Ana (second largest) and Riverside-San
Bernardino-Ontario (14th largest) that belong to the same CFS region.
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where in particular, � j j is designated as the self-flow dependency of region j. For any
given set of K “central” regions, one can then generate appropriate economic hinterlands
by simply assigning every other region in R to its largest supplier among these K regions.
But the definition of “central” regions themselves is more subtle. Here it might seem
natural to simply choose the first K regions, i.e., with the largest cities. But this ignores the
relative flow dependencies among these regions. For example, while Philadelphia is the
fifth largest city, it exhibits a strong flow dependency on New York (�1,5 = 0.119). This
suggests that in central-region systems with K � 5, it might be more appropriate to treat
Philadelphia as part of the New York hinterland. More generally, the notion of “centrality”
itself appears to involve a tradeo↵ between flow dependencies and largest-city sizes. To
make this tradeo↵ explicit, we now parameterize possible collections of K central regions
in terms of the maximum allowable flow dependency between any pair of central regions,
designated as their threshold-dependency level, � 2 (0, 1). For any given values of � and
K, we then define the appropriate set of central regions, R�,K , to be the first K regions,
j 2 R, with no flow dependencies on larger regions that are higher than either � or their
own self-flow dependency, � j j.30,31 To be more precise, if we now let R⇤j = {i 2 R : i < j}
denote the set of regions with larger maximum city size than region, j, then membership in
R�,K ⌘ { jm : m = 1, . . . , K} ⇢ R is defined by j1 = 1 and for all m = 2, . . . , K by

jm = arg min

8

>

>

<

>

>

:

j > jm�1 : max
i2R⇤j
�i j  min{�, � j j}

9

>

>

=

>

>

;

. (23)

In essense, central regions, R�,K , constitute the set of K largest regions exhibiting no
mutual flow dependencies stronger than �. Note however that parameters, K and �, are
by no means independent. In particular, for su�ciently small values of �, only K = 1
is possible, i.e., the entire country is in the economic hinterland of New York. However,

30Note that one could in principle require the first condition to hold for all other regions rather than
simply larger regions. However, there are exceptions where smaller regions are the largest suppliers of
larger regions, especially when the smaller region is a major transshipment point (such as a port) or a border
region. The most important instance for our purposes is Houston ( j = 6), which is a major supplier of
Dallas ( j = 4). For example at the � = 0.05 level, it can be seen from Table 3 in the Appendix that
�4,6 = 0.036 < � < 0.055 = �6,4, which would exclude Dallas as a central region for this level of �. So to
avoid such exceptional cases, we apply this condition only to larger regions. But it should also be noted here
that such di�culties are in part due to the fact that CFS data does not distinguish transshipment points from
origin and destination points, thus tending to overestimate outflows originating at transshipment points.

31Note also that while the second condition is reasonable, it is actually only binding for one CFS region. In
particular, San Diego-Carlsbad-San Marcos imports 36.4% from Los Angeles-Long Beach-Riverside, while
its domestic supply (self-flow dependency) accounts for only 29.9%. But since San Diego-Carlsbad-San
Marcos hardly constitutes an economic center comparable to Los Angeles-Long Beach-Riverside, this creates
no problem for the present analysis.
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for first 20 regions in R considered in the present analysis, all relevant numbers of central
regions, 2  K  20, are possible for threshold-dependency levels, � � 0.05. Finally,
it should be clear that even in this most relevant range, the set of central regions, R�,K ,
can be quite di↵erent from the first K regions in R. These di↵erences are of course most
dramatic for small �. In the case of � = 0.05, for example, four of the ten largest regions
(Philadelphia, Miami, Washington DC, and Boston) are all excluded by their strong flow
dependencies on New York. Additional details and examples can be found in the Appendix,
where all flow dependencies among the first 20 regions in R are depicted in Table 3.

Given this definition of central regions, R�,K , we can now define the associated system of
economic regions, E�,K , as follows. For each central region, j 2 R�,K , let the corresponding
economic region, E j, consist of all regions in R for which region j is the largest supplier,
i.e.,

E j ⌘
(

i 2 R : j = arg max
r2R�,K

�ri

)

. (24)

This automatically generates a K-partition of U under threshold-dependency level, �,

E�,K ⌘
n

E j : j 2 R�,K
o

, (25)

which we now designate as the economic-region K-partition for �.
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Figure 9: Economic regions for selected values of � and K

These economic-region partitions are illustrated by the examples in Figure 9 for selected
combinations of � and K. Here each colored cell represents the geographical coverage of
a single city in U. Those cities of the same color all belong to a single economic region.
In particular, panel (a) shows the economic-region 4-partition, E0.1,4, that happens to be
the same for all � 2 [0.037, 1.0]. Here the corresponding central regions, R�,4, consist of
the four largest cities (New York, Los Angeles, Chicago and Dallas). Notice the strong
resemblance between these four economic regions and Voronoi 4-partition in Figure 3(a).

5.2 Test of the CPL Property

To test the significance of the CPL property for the economic regions, we constructed
economic-region partitions, E�,K , for selected values of (�, K), and (as in Section 3)
generated 1000 random partitions of similar sizes for each case.32 The relevant range of
significant results are shown in Table 2, where each cell contains the p-value (p0) for a

32The values of � used were (i) 0.05 to 0.15 in increments of 0.01, and (ii) 0.20 to 1.00 in increments of
0.10. The values of K used were K = 2, . . . , 20. Note also that while it is possible to consider values � < 0.05
in some cases, these flow dependency thresholds are so low that the resulting economic regions tend exhibit
little spatial cohesion whatsoever.
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one-sided test of H0 given that particular (�, K) pair.33 As in Table 1, significance levels,
p0  0.01, p0  0.05, p0  0.10, are denoted respectively by  , G# and #, with blanks
denoting no significance. To interpret these results, we first note that since the four largest
cities are highly independent of one another in terms of commodity flows (as shown in Table
3 of the Appendix), the economic-region partitions, E�,K , are the same for all � � 0.05
when K  4.34 Thus the test results shown in the first three columns continue to hold for
all � � 0.12, as indicated in the table. In particular, the economic-region partitions for
both K = 3 and 4 are significantly more consistent with the CPL property than random
partitions regardless of mutual flow-dependency considerations.35 (The insignificance of
CPL for the K = 2 case will be discussed in Section 5.3 below.)

To examine these results in more detail, it is instructive to compare the upper-average
distributions of economic-region partitions with representative random partitions of the
same size. The upper-average distributions of E�,K for K = 4 (and all � � 0.05) are
shown in panel (a) of Figure 10. To represent random partitions of the same size, we use
the random partition with median RMSE value, as shown in panel (b). As in the Voronoi
4-partition example of Figure 4 in Section 3, the distinction between observed and random
partitions is again seen to be most pronounced in the upper tails of the distributions. Note
in particular that for the largest 100 cities (i.e., up to ULRi = 3.64), the upper-average
distributions for these four economic regions do not cross one another, while many such
crossings occur in the corresponding random partition.36

33The only significant cases not shown (namely with � = 0.06, 0.07 and K � 18 ), all include single-city
regions for which power laws are not meaningful.

34To be more precise, R�,4 consists of the largest four cities for all � > 0.037, while Dallas will be contained
in Los Angeles region for �  0.037. Similarly, R�,3 consists of the largest three cities for all � > 0.029, while
Chicago will be contained in New York region for �  0.029. Refer to Table 3 in the Appendix for these
threshold levels of �.

35Notice that even under di↵erent values of threshold-dependency levels, say, � and �0, the economic-region
partitions are identical, i.e., E�,K = E�0,K , if the set of central regions are identical, i.e., R�,K = R�0,K .

36Such comparisons will be made more explicit in Section 5.4 below.

29



53 4 62 7

0.05
0.06
0.07
0.08
0.09
0.10
0.11

Table 2: Result of CPL test for economic regions

 11

 12

 13

 14

 15

 16

 17

 18

 0  1  2  3  4  5  0  1  2  3  4  5

(a) Actual (b) Random median 

New York
Los Angeles

Chicago
Dallas

Figure 10: Upper-average distributions under (�, K) = (0.1, 4)

For K � 5, the CPL property continues to be significant until either Philadelphia
(the 5th largest) or Atlanta (the 9th largest) is added as a central region. As mentioned
above, Philadelphia belongs to the hinterland of New York when �  0.119, but forms its
own economic region at all higher values of �. Similarly, Atlanta belongs to the Chicago
hinterland for �  0.032 , but forms its own economic region at all higher levels. The
presence or absence of these two cities appear to be the major factors governing the pattern
of significance levels for K � 5 in Table 2.

The “Atlanta e↵ect” can be illustrated by the case, (�, K) = (0.05, 6), shown in Figure
9(b), which is relatively close to the K = 4 case but no longer exhibits any significant
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consistency with the CPL property. To understand this dramatic di↵erence, note first that the
six central cities include the four largest cities together with Houston and Atlanta.37 Here
both Philadelphia and Miami now belong to the New York region, even though Philadelphia
is larger than Houston, and Miami is larger than Atlanta. Notice also that the New York
region for this case is about a half its size under K = 4 in Figure 9(a), where the southern
half is now taken by Atlanta except for the isolated city of Miami. As a consequence, there
are too few small cities in the economic region of New York to sustain the CPL property
with other economic regions. As seen in Figure 11, this is reflected in the upper-average
distribution of the New York region, which now exhibits strong concavity in the lower tail
compared to that shown in Figure 10(a) for (�, K) = (0.1, 4).
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Figure 11: Upper-average distributions under (�, K) = (0.05, 6)

Next, the “Philadelphia e↵ect” is well illustrated by the case, (�, K) = (0.12, 5), in
Figure 9(c). Notice that the coverage of the Philadelphia region is very limited.38 As a
consequence, the upper-average distribution of this region di↵ers markedly from those
of other regions, as seen in Figure 12. This in turn deteriorates the strength of the CPL
property seen at lower levels of �.

37To be more precise, the same 6-partition as depicted in Figure 9(b) is obtained for all � 2 (0.037, 0.052].
In particular, among the central cities in R0.05,6, Dallas would belong to the hinterland of Los Angeles for

�  0.037, while Miami (which is larger population size than Atlanta) belongs to the hinterland of New York
for �  0.052, but would join R�,6 for � > 0.052 in place of Atlanta.

38Notice also that the set of five central cities is identical for all � � 0.12, since the threshold-dependency,
�, is relevant only for the selection of the central cities.
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Figure 12: Upper-average distributions under (�, K) = (0.12, 5)

Thus, while the case of K = 4 yields strong consistency with the CPL property across
all values of � , the above examples show that for larger values of K, the addition of
economic regions with smaller central cities tends to increase the variation among upper-
average distributions, leading to a deterioration of the CPL property. However, it should
also be noted that this deterioration may in part be due to our partition-based definition of
economic regions. In reality such regions tend to overlap, and may even form hierarchical
relations. For example, rather than requiring Philadelphia to form a separate region at higher
levels of commodity-flow dependency, it may be more appropriate to treat Philadelphia as a
subcenter within the New York region. Along these lines, it has been shown by Akamatsu
et al. [3] (using the same data as ours) that such hierarchical economic regions yield even
stronger support for the CPL property (as discussed further in the Conclusions).

5.3 Comparison with Voronoi Partitions

It is also of interest to compare these CPL results with those obtained in Section 3 for
the simpler case of Voronoi partitions. This comparison is shown in Figure 13, where the
5% and 10% bands for Voronoi partitions in Figure 5 are here reproduced (in green and
blue, respectively). The significance levels (p-values) for economic-region partitions with
� = 0.1 and K = 2, . . . , 20 are then superimposed (in red) on these bands (where the gray
band can be ignored for the moment). Before comparing the more significant results, we
begin by noting the conspicuous lack of significance for economic regions at the K = 2
level, in contrast to the Voronoi results. Closer examination of this case shows that while
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Figure 13: CPL Comparisons of Economic-Region and Voronoi Partitions

many Voronoi 2-partitions tend to split the country evenly between New York and Los
Angeles (given the higher density of possible reference-city pairs on the two coasts), the
economic-region 2-partition case is actually somewhat more random. In particular, those
cities in the third major economic region, Chicago, are split quite randomly according to
which flow dependency on New York or Los Angeles is the larger one, leading to less
spatial coherence of these two regions. In contrast, the similarities between these three
major regions are fully reflected at the K = 3 level, leading to results comparable to
the top 5% of Voronoi cases. Moreover, for the most important cases of K = 4 through
6 (as discussed above) there is far stronger consistency with the CPL property than for
comparable Voronoi cases. In particular, the p-values here are actually below the 1% band
(not shown), indicating that the CPL property is more significant for these economic-region
partitions than for 99% of the 1000 randomly generated Voronoi partitions.

However, one may ask whether these results might not be improved by using largest-city
Voronoi partitions rather than random choices. So as one final comparison, the p-values
for the K largest-city Voronoi partitions, K = 2, . . . , 20, are shown by the gray band
in Figure 13. Surprisingly these results are never more than weakly significant, and in
addition, are nowhere close to the top 10% of the randomly generated Voronoi partitions.
Recall from Figure 8 however that in terms of the spacing-out property, these largest-
city Voronoi partitions exhibit significantly higher population accessibility (lower total
population-weighted distances) than do random Voronoi partitions. Moreover, they also
tend to exhibit higher population accessibility than economic-region partitions for any given
K. In particular, when largest-city Voronoi partitions share the same reference cities as
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Figure 14: The largest-city Voronoi 4-partition

economic-region partitions (as for example when � = 0.1 and K  4) then by construction
they must exhibit higher population accessibility.39

But given the stronger CPL properties of economic-region partitions, it is of interest to
ask how these two types of partitions di↵er when their reference cities consist of the same
largest cities. In general terms, since the cells of both partitions tend to include those cities
closest to each largest city, the major di↵erences are near the boundaries of each cell. A
closer look at the data indicates that for those major cities relatively far from any of the K
largest cities (i.e., those near the regional boundaries), their largest trade partners are often
not the closest of the K largest cities. This can be illustrated for K = 4 by a comparison
of the economic-region partition (for � = 0.1) in Figure 9(a) with the largest-city Voronoi
partition shown in Figure 14. For example, while Miami is closest to Dallas [i.e., is in the
green region of Figure 14], its largest flow dependency is on New York [i.e., is in the red
region of Figure 9(a)]. Similarly, St. Louis is closest to Chicago [i.e., is in the magenta
region of Figure 14], but again with largest flow dependency on New York [i.e., is also in
the red region of Figure 9(a)]. These observations suggest that in terms of the CPL property
itself, perhaps a trade-linkage interpretation of the spacing-out property would be more
appropriate than our present geographical version.

5.4 Order-Consistency of Upper-Average Distributions

Recall from the example in Figure 10 that a distinguishing feature of economic-region
partitions exhibiting significant CPL properties is that their upper-average distributions
appear to be more “parallel” than those of comparable random partitions. This e↵ect can

39Since each non-reference city in a Voronoi partition must always be assigned to its closest reference city,
it follows by definition that both distance sums in (20) and population-weighted distance sums in (21) are
necessarily minimal with respect to the given set of reference cities.
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Figure 15: Categorical Regression Example

be described more formally in terms of the order consistency among these upper-average
distributions, i.e., the order consistency among the ULS i values at each rank value i. As we
now show, this type of consistency is far more stable for economic-region partitions than
for random partitions as shown below.

To do so, we begin by observing that if all upper-average curves for a given regional
partition were perfectly parallel (and thus were exactly consistent with the CPL property)
then the vertical ordering of ULS values at each rank value would necessarily agree
with their common ordering predicted by the categorical regression used to test this CPL
property. So the simplest way to measure overall order consistency is to compare these
orderings at each rank value with the common predicted ordering. A stylized version of
such comparisons is shown in Figure 15, where only two sets of “red” and “blue” cities
are shown, each consisting of four cities (so that comparisons can be made at all four rank
values, i = 1, 2, 3, 4). Here the red and blue lines correspond to the results of the categorical
regression (which by construction yields that pair of parallel lines minimizing the overall
sum of squared errors for both sets of cities). So the ULS values for blue cities are here
predicted to be above those for red cities at every rank. This is seen to be true at ranks
i = 3, 4, but not true at ranks i = 1, 2. So of the possible comparisons that can be made
in this case, one can say that the degree of order consistency is 50%. However, for much
larger examples, it is more convenient to focus on inconsistencies, which tend to be fewer
in number and to exhibit wider relative variations. Thus in the present example, the degree
of order inconsistency is also 50%. This is essentially the test statistic we seek to construct.
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To formalize these ideas for a given number of partition cells, K, let the set of cities
in each partition cell, k = 1, . . . , K, be designated as the kth city set, Uk, of size |Uk|
(in a manner paralleling Section 5.1 above). Thus in the example of Figure 15 there are
two city sets of equal size, |U1| = 4 = |U2|. But more generally, these sets will be of
di↵erent sizes. So for each city rank, i, the only city sets, Uk, for which this rank is
meaningful are those for which |Uk| � i. If this collection of city sets is now denoted by
UK(i) = {k 2 {1, . . . , K} : |Uk| � i}, then the relevant ordering of ULS i values involves
only those city sets in UK(i). With this in mind, recall next from Section 2.3 that city sets,
k, now constitute the appropriate “regions”, j, in expression (12), so that ULS ik denotes the
relevant ULS i value for each city set, k 2 UK(i). In these terms the i-rank, ri(k), of city
set, k 2 UK(i), is given by the number of such city sets with ULS i values no larger than
that of k, i.e., by

ri(k) =
�

�

�{` 2 UK(i) : ULS ik  ULS i`}
�

�

� (26)

so that the city set with highest ULS i value has rank one (assuming no ties). This in turn
yields the desired i-rank ordering,

ri(k)  ri(`) , ULS ik � ULS i` (27)

for all k, ` 2 UK(i) and i = 1, . . . , n (= |U | ).
Given these definitions, our main objective is to compare each ordering in (27) with the

common ordering generated by the categorical regression for partition, K. To do so, recall
from expression (12) that if (for convenience) we now set �1 = �̂1 = 0 for the reference
region, k = 1, then the predicted values, [ULS ik, in this regression are given by

[ULS ik = ↵̂+ ✓̂ULRi +
m
X

h=1
�̂hD j(h) = (↵̂+ ✓̂ULRi ) + �̂k . (28)

Thus the ordering of these predicted values reduces to the identity,

[ULS ik �[ULS i` , �̂k � �̂` (29)

which is seen to be independent of i. This in turn yields regression ranks,

r̂(k) = |{` = 1, . . . , K : �̂k  �̂`}| (30)
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which generate the desired regression-rank ordering,

r̂(k)  r̂(`) ,[ULS ik �[ULS i`, (31)

for all k, ` 2 UK(i) and i = 1, . . . , n.
Finally, to determine the degree of inconsistency between this regression-rank ordering

and each i-rank ordering in (27), note first that since we are primarily interested in com-
parisons of these orderings in the upper-tail (where CPL properties are most critical), it is
not essential to consider all possible i-rank orderings. In particular, for any given cut-o↵
level, I  n, one may choose to consider only the I top ranked cities, i = 1, . . . , I. (In the
analysis to follow, we set I = 100.) Next observe that if for each i  I and k 2 UK(i) we
let Ri(k) = {` 2 UK(i) : ` > k}, then the total number of distinct comparisons to be made
is given by NK(I) =

PI
i=1
P

k2UK(i) |Ri(k)|. Moreover, observe that for any ` 2 Ri(k), a
disagreement occurs between the orderings of ri and r̂ if and only if the signed di↵erences,
sgn[ri(k) � ri(`)] and sgn[r̂(k) � r̂(`)], are not equal (including possible zeros).40 So if we
let �(x, y) = 1, sgn(x) , sgn(y) , and �(x, y) = 0 otherwise, then the desired degree of
order inconsistency is given by the following fraction of disagreements,

�K(I) ⌘
1

NK(I)

I
X

i=1

X

k2UK(i)

X

`2Ri(k)

�(ri(k) � ri(`), r̂(k) � r̂(`)) . (32)

Note in particular that � = 0 if the upper-average distributions of partition cells never cross
one another.

To employ �K(I) as a test statistic for a given K-partition, here we consider only the top
100 cities (I = 100) and compute �K(100) for this partition.41 Our null hypothesis, H0, is
again that this value is not statistically distinguishable from those values, e�K(100), derived
from random K-partitions of the same size (as in Section 5.2 above). To construct a one-
sided test of H0, we again sample 1000 random K-partitions of the same size, and estimate
the p-value for this test by the fraction ofe�K(100) values smaller than �K(100). The results
of these tests for the relevant range of partition sizes, K = 2, . . . , 7, and commodity-flow
thresholds, � 2 [0.05, 0.13], are shown in the left panel of Figure 16.42 For purposes of
comparison, the ratios of the actual �K(100) values to the medians, �K(100), of their
corresponding random �-values are shown in the right panel.

40Recall that the sign function is defined by sgn(x) = �1, 0, 1 i↵ x < 0, x = 0, x > 0.
41Essentially the same results are obtained under di↵erent values of I.
42These tests were actually conducted for � 2 [0.05, 1.00], but none of the curves show significant change

beyond � = 0.13.
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Figure 16: Consistency in the orders of upper-average distributions across partition cells

From these p-value results, it is clear that all K = 2, . . . , 5 are extremely significant for
� 2 [0.05, 0.11], and that K = 6 is also significant (at the 0.05 level) for � 2 [0.06, 0.11]. For
example, Figure 10 shows that �4(100) = 0 for � = 0.10,43 where in all Figures 10 through
12, the rank value, I = 100, corresponds to upper log rank value, ULR100 ' 3.64. The
sharp increase in significance for K = 6 at � = 0.06 corresponds precisely to the “Atlanta
e↵ect” described in Section 5.2 above, and similarly, the sharp decrease in significance for
K = 5 and 6 at � = 0.12 corresponds to the “Philadelphia e↵ect”. So, aside from these
special e↵ects, it should be clear that those K-partitions of economic regions exhibiting the
strongest CPL properties in Section 5.2 above also exhibit the strongest order-consistency
properties with respect to their upper-average distributions. But, the result under K = 2
indicates that the order-consistency test captures certain aspects of similarity among upper-
average distributions not captured by the CPL test in Section 5.2. In particular, although the
CPL property was not significant at K = 2 in terms of the test in Section 5.2, the economic
regions of the largest two cities still exhibit a similarity in city size distributions in terms of
the order-consistency.44

6 Conclusions

In this paper we have examined the question of whether spatial relations among cities may
influence the distribution of city sizes. Specifically, we have tested the implication of iid

43More generally, �K(100) = 0 for K = 2, 3, 4 at all values � 2 [0.05, 0.13] , and �5(100) = 0 at values
� 2 [0.05, 0.11].

44In fact, the upper-average distributions of economic regions do not cross at the relevant ranks under
K = 2 and 3, i.e., �2(I) = �3(I) = 0 for all I � 1.
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random growth processes that a CPL must hold across arbitrary subsets of cities, regardless
of their spatial relations. Using CBSA data from the US, we have shown that this CPL
property is in fact much stronger for spatial groupings of nearby cities (as determined by
Voronoi partitions) than for random groupings of cities. In addition, we conjectured that
such spatial groupings are characterized by the spacing-out property that larger cities tend
to be widely spaced, with smaller cities grouped around these centers. Our second series
of results found (independently of any CPL considerations) that there is strong evidence
for this spacing-out property in the US. We then combined certain aspects of these results
by replacing Voronoi groupings of nearby cities with economic regions that reflect the
spacing-out property among cities in terms of commodity-flow relations rather than simple
spatial proximity. Our final set of results confirm that the CPL property is even stronger for
these economic regions.

With respect to current theories of city systems, our present results appear to be best
accounted for by central place theory.45 As mentioned in the introduction, the model of
Hsu [31] yields an explicit CPL property among economic regions under certain regularity
conditions. Moreover, while this firm-entry model is highly stylized, it has been shown
by Akamatsu et al. [3] that the basic results of this model continue to hold in the more
general new economic geography versions of central place models à la Fujita et al. [21]
and Tabuchi and Thisse [49]. In particular, these general equilibrium models continue to
exhibit the same structural features of central place theory, namely numerous industries
with heterogeneous degrees of scale economies and numerous locations from which agents
choose to live and work.46

Finally, we suggest an empirical extension for the identification of economic regions.
One key feature of central place models is the hierarchical nesting of market areas, and
the above-mentioned central place models actually exhibit CPL property across these
hierarchies. Recall that our present testing schemes involve only simple partitions of city
sets when constructing economic regions. However, our results (as illustrated for example
by the “Philadelphia e↵ect”) suggest that hierarchical systems of nested regions may in
many cases be more appropriate. Along these lines, the paper by Akamatsu et al. [3] above
proposes a hierarchical partitioning scheme inspired by the central place models. Here

45It should be noted here that Behrens, Duranton and Robert-Nicoud [7] have recently shown that talent
heterogeneity among cities can lead to Zip’s law (under certain additional conditions). But, since there is no
notion of inter-city space in their model, this cannot be said to account for our findings.

46In a related work, Brackman et al. [10] have shown that the observed diversity of city sizes can to some
degree be reproduced by introducing negative externalities of agglomeration into the standard multiple-region
NEG model of Krugman [37]. However, such negative externalities cannot account for either the CPL or
spacing-out properties. The key di↵erence of their model from central place models is the presence of only a
single industry group, which precludes any central place hierarchy.
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each economic region is further partitioned into economic subregions based on intraregional
commodity flows. In this setting it is shown (using the same data as ours) that such a nested
structure exhibits strong CPL properties between economic regions and their subregions
(such as between the New York and Philadelphia regions).

A Flow-Dependency Levels among the 20 Largest-city CFS
Regions

This Appendix includes further details on flow dependencies among the first 20 regions in
R. These dependencies are shown in Table 3, where flow dependency, �i j, corresponds to
the cell in row i and column j. Here the colored cells (both blue and red) identify all flow
dependencies, �i j > 0.05, which thus exclude the associated column region, j, from central
region systems with � = 0.05 that contain row region i. In particular, the red cells identify
all flow dependencies, �i j > 0.10, so that these column regions, j, are also excluded from
central region systems with � = 0.10 that contain row region i.
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B CPL Test under G-I and R-S data

In this section, we redo the CPL tests in Sections 3 and 5 using both G-I and R-S data for
purposes of comparison with the U-A data adopted in those sections. In particular, since
G-I represents an alternative weighting scheme for the upper tails of city size distributions,
tests based on G-I data serve as a natural robustness check for our U-A results.

Before doing so however, it is of interest to note that if the upper tail of the US city-size
distribution is hypothesized to follow an exact Pareto distribution, then alternative testing
procedures could in principle be constructed using the optimal truncation approach of
Clauset et al. [12]. These authors employ maximum likelihood estimation together with
Kolmogorov-Smirnov (KS) distance to determine that truncation point which yields a best
fit to the upper tail. For the US case, these KS distances are plotted at each potential cuto↵
rank (between 2 and 930) in Figure 17. As is clear from the figure, the optimal trucation in
this case is unambiguously at the 916th rank, yielding ̂ = 0.841 under the G-I regression.
But, since this value di↵ers from the untruncated estimate (̂ = 0.833) by less than 1%, the
optimal truncation for this US data amounts essentially to no truncation at all. Thus, the
CPL tests under G-I and R-S data below will be conducted without truncation.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  100  200  300  400  500  600  700  800  900  1000

Kolmogorov-Smirnov
distance

Cutoff rank

916th

Figure 17: Optimal truncation under Pareto distribution

B.1 Voronoi versus Random Partitions

In this section, we conduct the CPL test in Section 3 using G-I and R-S data. Panels (a) and
(b) in Figure 18 are parallel versions of Figure 5 using G-I and R-S data, respectively. As in
Figure 5, one can see from the corresponding percentile points at the 5%, 10%, 50%, 90%
and 95% levels that the distribution of p-values is uniformly below what would be expected
under H0. Thus, the basic conclusion remains the same under both the G-I and R-S data.
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Figure 18: Summary of the CPL test

The most noticeable di↵erence from Figure 5 under the U-A data is that for both the G-I
and R-S data there are now a substantially larger number of Voronoi partitions exhibiting
significant CPL property (both at the .05 and .10 levels) for small values of K. This can be
explained by the fact that when the number of partition cells (K) is small, the upper tails for
each partition cell under U-A are relatively more sensitive to the allocations of the largest
cities among cells. Hence, the CPL property is relatively less pronounced under U-A for
small K.

B.2 Economic-Regions versus Random Partitions

In a similar manner, we now repeat the CPL tests in Section 5 for both the G-I and R-S
data (with parameter values � = 0.05, . . . , 0.12 and K = 2, . . . , 8). The results paralleling
Table 2 for the G-I data are shown in Table 4. Here again the basic conclusion of Section5
remains the same.

53 4 62 7

0.05
0.06
0.07
0.08
0.09
0.10
0.11

8

0.12

Table 4: Result of the CPL test under G-I data
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The most distinctive di↵erence is the case of K = 2 for which the CPL property was
not significant under the U-A data. Recall from the discussion in Section 5.2 that the upper
tails of the city size distributions in the New York and Los Angles regions did not exhibit
significant CPL due mainly to the fact that the largest cities in the third largest economic
region, Chicago, have been rather randomly allocated to these two regions. But the lower
tails of the city size distributions for these regions happen to be fairly similar, as can be seen
from the R-S and U-A distributions of the New York and Los Angeles regions in Figure 19.
Hence, given that G-I is relative more sensitive to lower tails than U-A, the CPL property is
now seen to be significant (at the .01 level) under G-I. The results for K � 3 under G-I data
are similar to those under U-A.
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Figure 19: R-S and U-A distributions for K = 2

Turning finally to the R-S data, the test results show that (for all �) economic regions
now exhibit a significant CPL property for K = 2, but none for larger values of K (so that
in terms of Table 4, the first column is again all black dots with blanks everywhere else).
The explanation here is due to the even more extreme emphasis of R-S on the lower tails of
city-size distributions, which happen to yield a strong CPL property for the K = 2 case in
Figure 19(a), but which also ignore the upper tail properties that are so crucial for power
laws in general.
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