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Abstract

There exist a variety of tests for attraction and repulsion effects between
spatial point populations, most notably those involving either nearest-neighbor
or cell-count statistics. Diggle and Cox (1981) showed that for the nearest-
neighbor approach, a powerful test could be constructed using Kendall’s
rank correlation coefficient. In the present paper, this approach is ex-
tended to cell-count statistics in a manner paralleling the K-function ap-
proach of Lotwick and Silverman (1982). The advantage of the present
test is that, unlike nearest-neighbors, one can identify the spatial scales at
which repulsion or attraction are most significant. In addition, it avoids the
torus-wrapping restrictions implicit in the Monte Carlo testing procedure of
Lotwick and Silverman. Examples are developed to show that this testing
procedure can in fact identify both attraction and repulsion between the
same pair of point populations at different scales of analysis.

∗The author is indebted to Sergio Rey for helpful comments on an earlier draft of this paper.



1. Introduction

There currently exist a variety of tests for the presence of attraction and repul-
sion effects between spatial point populations, most notably those involving either
nearest-neighbor or cell-count statistics (as reviewed for example in Cressie, 1993,
section 8.6). The advantage of nearest-neighbor approaches is that it is often
possible to obtain exact (or at least asymptotic) distributions for certain test sta-
tistics under the null hypothesis of statistically independent populations. Most
notable here is the approach of Diggle and Cox (1981), who showed that a powerful
nearest-neighbor test of independence between two spatial point patterns could
be constructed using Kendall’s rank correlation coefficient. But by their very
nature, nearest-neighbor statistics yield only a local description of point-pattern
relationships. While it is theoretically possible to incorporate more global rela-
tionships by analyzing the joint distributions of say the first k nearest neighbors
of points, there is general agreement that more powerful approaches can be con-
structed in terms of the cross K-function developed by Ripley (1976,1977). Most
notable among these approaches is the Monte Carlo testing procedure developed
by Lotwick and Silverman (1982). As with all K-function methods, this testing
procedure yields a family of cell-count statistics at each scale specified by the
user, and hence allows comparative analysis of pattern relationships over a range
of relevant scales. However, (as discussed further below) this particular procedure
is only applicable to a limited range of situations, and also suffers from certain
theoretical problems that can lead to questionable results.
Hence the main objective of the present paper is to propose a testing procedure

that combines certain positive features of each of these approaches.

2. Review of Two Testing Procedures

To motivate this procedure, it is convenient to begin by considering each of
the above approaches in more detail. Consider a pair of point patterns Xj =
{xij = (x1ij, x2ij) ∈ S : i = 1, .., nj} , j = 1, 2 within some bounded region of the
plane, S ⊂ R2. Statistically, these patterns are treated as a realization of some
underlying bivariate point process on S. Each pattern Xj is thus a realization
of the associated marginal point process. In this context, patterns X1 and X2

are said to be independent if and only if these marginal processes are statistically
independent. To test for deviations from independence, we now consider each of
the above testing procedures in turn.
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2.1. Diggle-Cox Test

The procedure proposed by Diggle and Cox (1981) starts with the observation
that if these marginal processes are independent, and if the random variables, d1
and d2, denote the distance from a random point in S to the nearest point in
patterns X1 and X2, respectively, then d1 and d2 will also be independent random
variables. This independence property can then be tested in a number of ways.
A simple nonparametric approach that does not rely on the particular distance

values is Kendall’s rank-correlation coefficient, τ . In particular, if for a sample
of n random (uniformly distributed) reference points in S, we let Dj = (dkj :
k = 1, .., n) denote the corresponding distances from each reference point k to
the nearest point in pattern Xj , j = 1, 2 , and for any pair of these reference
points, k, h, let s(j)kh = sign (dkj − dhj) , j = 1, 2, and let skh = s

(1)
kh · s(2)kh , then

skh = 1(skh = −1) if and only if the ordering of nearest-neighbor distances to
patterns X1and X2 is the same (opposite) for points k and h [with ties in either
ordering being denoted by skh = 0]. In terms of these signed indices, Kendall’s τ
amounts to an appropriately scaled sum of signs:

τ(D1,D2) =

Pn−1
k=1

Pn
h=k+1 skhr³Pn−1

k=1

Pn
h=k+1 |s(1)kh |

´³Pn−1
k=1

Pn
h=k+1 |s(2)kh |

´ (2.1)

From a testing viewpoint, this statistic has the advantage of being asymptoti-
cally normally distributed under the null hypothesis of independence, with mean
zero and variance (Kendall, 1962, p.51):

σ2 =
1

18
n(n− 1)(2 ∗ n+ 5) (2.2)

This not only provides a simple test of independence, but also provides one-
sided tests of attraction versus repulsion between the two point patterns. In
particular, if there is strong attraction between patterns, then for any random
location in S, the presence (absence) of nearby points in one pattern will tend
to imply the presence (absence) of nearby points in the other, so that the rank
correlation, τ(D1,D2), between nearest-neighbor distances should be significantly
positive. Similarly, if there is strong repulsion between patterns, then the presence
of nearby points in one pattern will tend to imply the absence of nearby points
in the other, and visa versa, so that τ(D1, D2), should be significantly negative.
Diggle and Cox (1981) have shown that for simulated bivariate point processes
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exhibiting either attraction or repulsion, this testing procedure is more powerful
than a range of selected competitors (including Rayleigh’s test, the Wilcoxon test
and a two-sample Kolmogorov-Smirnov test).
As a simple illustration of this test, consider the pair of point patterns illus-

trated in Figure 2.1 below, where pattern X1 corresponds to the dots, pattern
X2 corresponds to the circles, and region S is defined by the square boundary
shown. Here it seems clear that the these patterns are too much in agreement to
be consistent with independence. Hence one expects to find significant attraction.
However, closer inspection shows that the minimum spacing between these two

0 100 

Figure 2.1: A Two-Population Pattern

patterns is too large to be random. In fact these patterns were simulated by a
modified “simple inhibition process” (Diggle, 2003, section 5.6) in which Pattern
X1 is first generated randomly, and then Pattern X2 is generated by locating a
point randomly in the ring about each point in Pattern X1 with inner radius,
r1 = 5, and outer radius, r2 = 8. Rejection sampling is then used to ensure that
the distance from each X2 point to all points in X1 is at least 5. Hence there is
small-scale repulsion between these patterns at interpoint distances below 5, and
large-scale attraction at interpoint distances above 8. [As one concrete illustra-
tion, imagine that these points represent the individual locations of plant species
requiring similar soil conditions, but having incompatible root systems. Then
these species might tend to appear together, but with only those plants surviving
that have sufficient room to grow.]
To apply the Diggle-Cox Test here, an additional set of 200 reference points was

randomly generated, and the rank correlation between nearest-neighbor distance

4



rankings was computed to be τ(D1, D2) = −0.15839. This negative correlation is
highly significant, with P-value < .0001, and suggests that there is indeed small-
scale repulsion between these patterns. This result serves to illustrate both the
strength and weakness of the Diggel-Cox Test. For while this test is very powerful
for discerning small-scale relationships, its reliance on nearest-neighbor statistics
necessarily obscures relationships at larger scales. More generally it should be clear
that structural differentiation between point patterns at different scales cannot be
captured by any single statistic.

2.2. Lotwick-Silverman Test

As an alternative approach, Lotwick and Silverman (1982) proposed an application
of crossK-functions to analyze pattern relationships over a range of spatial scales.
In addition, they proposed a method for simulating a statistical population that
is roughly consistent with the null hypothesis of independence. But unlike the
simple hypothesis of “complete spatial randomness” used to test for clustering
versus uniformity in single point patterns, it is virtually impossible to simulate
exact independence between pairs of patterns without knowing their full marginal
distributions. Rather than estimating these unknown marginals, Lotwick and
Silverman attempt to preserve all marginal properties by considering only random
shifts of one pattern relative to the other. To avoid the obvious boundary problems
incurred in such a procedure, they assume that the boundary is rectangular (as
in Figure 2.1) and then wrap this rectangle on a torus (donut) to eliminate the
edges. One pattern can then be randomly shifted relative to the other on the
surface of this torus. For our present purposes, however, it is useful to develop
this process in terms of an equivalent version that is more easily seen graphically.
In particular, random shifts on a torus can be equivalently represented by creating
a mosaic of nine shifted copies of one pattern square, as shown in Figure 2.2 below,
and randomly locating a copy of the second pattern square inside the boundary
defined by the dotted lines.1 Here the pattern of dots (X1) in Figure 2.1 is used
for the mosaic, and a possible random location of the pattern of circles (X2) is
shown by the heavy-line box inside the admissible region defined by the dotted
lines.2 If we denote this mosaic as pattern eX1 (containing nine shifted copies
of pattern X1), then the key assumption of this approach is that the underlying

1For non-square rectangles, S, the dotted region continues to be defined by the centers of the
corner rectangles of the mosaic, as shown in Figure 2.1.

2The pattern of circles in this box is not shown.
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Figure 2.2: Mosaic for Random Shifts

marginal point processes are sufficiently homogeneous (stationary) across space to
ensure that pattern eX1 is a good statistical representative of marginal process 1
over this larger region.3 If so, then one can treat the realization, X2, of process 2
as being randomly embedded inside this larger realization, eX1, of process 1. This
not only yields independent joint realizations of the marginal processes, but also
avoids many of the usual boundary problems by allowing comparisons of points
in X2 with points in eX1 beyond its borders.
By sampling many random locations of X2, one can in principle compute any

type of test statistic for each sample, and thereby build up sampling distributions
of these statistics. As mentioned above, Lotwick and Silverman employ sample
estimates of Ripley’s crossK-function in order to capture relationships at different
scales. For our present purposes, it is enough to say that for each distance, r > 0,
the estimated cross K-function value, bK12(r), is proportional to the fraction of
point pairs (x1i, x2j) from the respective patterns, X1 and X2, that are within
distance r of each other. If this fraction is “larger than expected” at distance r
under independence, then this suggests that there is some degree of attraction
between members of X1 and X2 at scale r. Similarly, if they are “lower than
expected” under independence, then there is some degree of repulsion at this
scale.
To make these ideas precise, we first define bK12(r) for any two patterns X1 and

3More precisely it is assumed that these marginal processes are invariant under rigid motions
of the plane.
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X2 as follows. If I (E) denotes the indicator function for event, E, [I(E) = 1 if E
is true and zero otherwise], and if we drop the constant factor of proportionality,4

then we may set

bK12(r) =
1

n1n2

Xn1

i=1

Xn2

j=1
I (kx1i − x2jk ≤ r) (2.3)

Here r is restricted to be no greater than half the width of the square S, say r(S).5

Within this range, disks of radius r about any point in the randomly located small
pattern X2 must lie totally inside the mosaic pattern eX1 (and hence exhibit no
overlap on the torus).
Given this statistic, one can then estimate its sampling distribution under the

null hypothesis of independence by computing its value for a number of random-
shift simulations. First, for each simulation, s = 1, .., N , let the points of the
randomly shifted X2 pattern be denoted by X

(s)
2 = {x(s)2j : j = 1, .., n2}. Next

observe that for each point x1j in X1 there are exactly nine copies of x1j in eX1. It
should also be clear from Figure 2.2 that for each disk of radius r ≤ r(S) about
any point x(s)2j ∈ X

(s)
2 , there is at most one copy of eachX1 point that is inside this

disk. Hence if we now consider all pairs of points
³ex1i, x(s)2j ´with x

(s)
2j ∈ X

(s)
2 and

with ex1i denoting the copy of x1i ∈ X1 in eX1 that is closest to x
(s)
2j , then in terms

of these pairs, the relevant K-function values for each simulation, s = 1, .., N , are
given by

bK(s)
12 (r) =

1

n1n2

Xn1

i=1

Xn2

j=1
I
³°°°ex1i − x

(s)
2j

°°° ≤ r
´

, 0 < r ≤ r(S) (2.4)

Thus bK(s)
12 (r) is again the fraction of those (relevant) pairs from each pattern

that are within distance r of each other.6 This is mathematically equivalent to

4The proportionality factor here is simply the area of region R. Note that while the averaging
factor, 1/(n1n2), could also be dropped here, it is kept in order to facilitate the interpretation
of the statistic.

5More generally, if S is a rectangular box with length, l, and width, w, then the maximum
radius is defined to be r(S) = min(l/2, w/2).

6The advantage of this definition is that it preserves the original pattern sizes n1 and n2.
However, one could also define bK(s)

12 (r) directly in terms of the two patterns eX1 and X
(s)
2 as

bK(s)
12 (r) =

1en1n2 Xen1
i=1

Xn2

j=1
I
³°°°ex1i − x

(s)
2j

°°° ≤ r
´
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the values obtained by shifts on the torus, but allows a somewhat simpler two-
dimensional interpretation.
Finally, recalling that the initialX2 pattern is precisely the “non-shifted” copy,

X
(0)
2 , lying on the center square of the mosaic, we may now compute the observed

cross K-function values, bK(0)
12 (r), by simply extending (2.4) to the case s = 0.

The question is then whether this value is typical of the population defined by the
sample values { bK(s)

12 (r) : s = 1, .., n}. To answer this question, one may simply
rank these values and determine whether or not bK(0)

12 (r) is an extreme value in
this ranking. More precisely, if bK(0)

12 (r) were just another random-shift sample,
then the probability that it would be at least the mth biggest in this list of N +1
values is simply m/(N + 1). This is precisely the P-value for a one-sided test of
independence against the alternative hypothesis of “attraction” between patterns,
which we now designate as the attraction P-value, Patt(r). For example, if N = 99

and say m = 4 then the chance of getting a value as large as bK(0)
12 (r) is estimated

to be Patt(r) = 4/100 = .04, providing evidence of significant attraction between
these patterns at scale r. Similarly, if m = 96, then by reversing the tests and
considering a one sided test of independence again the alternative hypothesis of
“repulsion”, one would obtain a repulsion P-value of Prep(r) = 1 − Patt(r) =
1− .96 = .04, thus indicating significant repulsion at scale r.
To see how this works in the example of Figure 2.1 above, a series of N = 999

simulations produced attraction P-values at selected distance, r, between 0 and 30
[< 50 = r(S) in Figure 2.1].7 These P-values are plotted in Figure 2.3 below. Here
the lower dashed line denotes significant attraction P-values (below .05). Similarly
the upper dashed line denotes attraction P-values above .95, corresponding to
significant repulsion P-values (below .05). As with the Diggle-Cox test, this test
shows significant small-scale repulsion. But now one identify the scale at which
this repulsion occurs, namely at distances around 5. Equally important is the fact
that significant attraction can now be observed for distances starting at around
8. So this testing procedure clearly yields more information about the overall

where ex1i is now an arbitrary element of the mosaic eX1. It can readily be verified that all values
in this summation are zero except those appearing in expression (2.4). Hence this definition
differs from (2.4) only by the proportionality factor n1/en1 = 1/9.

7At this point it should be emphasized that each set of simulated values will of course produce
slightly different results. However for simulations of the order of 1000 samples, the variation
between sample runs turns out to be minimal, with essentially the same regions of significance.
This is true of all subsequent simulations in this paper. Hence the sampling standard adopted
is N = 999, and the instances shown are taken to be typical representatives.
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Figure 2.3: P-Values for the Lotwick-Silverman Test

structural relation between these patterns, and in this case turns out to reflect
the underlying probability model with remarkable accuracy.
However, this random-shift (or torus-wrapping) procedure is not without its

drawbacks. As Diggle (2003, section 1.3) observes, the juxtaposition of rectangu-
lar regions in a mosaic can sometimes create unintended structure in the point
patterns. This is well illustrated by a second data set involving patterns of both
healthy and diseased myrtle trees shown in Figure 2.4 below.8 Here, healthy myr-

 

0 98

Figure 2.4: Healthy and Diseased Myrtles

tles are shown by circles and diseased myrtles are shown by dots. It is evident

8This data is also taken from Diggle, and is part of a larger data set available on his web
site: http://www.maths.lancs.ac.uk/~diggle/pointpatterns/Datasets.
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from the figure that diseased trees tend to occur in clumps (suggesting perhaps
that there is some local contagion in the spread of this disease). Hence one would
expect to find some degree of repulsion between these point patterns. However,
an analysis of this data using the Lotwick-Silverman test (again with N = 999)
produced the results shown in Figure 2.5 below. Here there is no evidence of
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Figure 2.5: Random-Shift Analysis of Myrtles

significant repulsion. Part of the reason for this can be seen by examining the
mosaic generated by this pattern, as shown in Figure 2.6 below. Here only the
the diseased trees are shown. First notice from Figure 2.4 above that many of the

Figure 2.6: Mosaic for Myrtles

diseased clumps of trees happen to be near the border of region S. In Figure 2.6
this is seen to have the effect of a creating a number of larger clumps (such as those
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circles in the figure). Hence the mosaic pattern of diseased trees tends to look
even more “clumply” than the original pattern. This has the effect of increasing
the clumpiness of point counts for random shifts, thus making the clumpiness of
the original point counts look less significant. This example thus serves to show
that while torus-wrapping can in principle eliminate certain boundary problems,
it can also have the effect of creating new ones.

3. A Combined Testing Procedure

Given these preliminary observations, we now consider a new testing procedure
which is designed to combine certain positive features of both the Diggle-Cox test
and the Lotwick-Silverman test. As in Diggle-Cox, this procedure starts with the
generation of a random set of reference points with respect to which both patterns
X1 and X2 can be described in a symmetric way. But rather than recording
nearest-neighbor distances, the present procedure focuses on cell counts over a
range of distance values as in Lotwick-Silverman. Hence rather than looking at
rank correlations between nearest-neighbor pairs, this approach looks at the rank
correlations between cell-count pairs at each relevant distance. These correlations
constitute the basic test statistics for the procedure.
The most difficult part of any testing procedure for analyzing relationships

between point patterns is to formulate a null hypothesis of “no relationship” that
can be tested without additional prior knowledge about the underlying processes
generating these patterns. Here we adopt a less ambitious approach than that of
Lotwick and Silverman. Rather than attempt to simulate full statistical indepen-
dence between these patterns, we focus on a conditionalized framework in which
the set of n1+n2 joint locations for all points is assumed to be fixed. In this more
restrictive setting, our hypothesis of “no relationship” is simply that pattern X1

is equally likely to occupy any n1-element subset of these locations (or equiva-
lently, that pattern X2 is equally likely to occupy any complementary subset of
size n2). One can easily simulate the sampling distribution of rank correlations,
τ , under this hypothesis by determining τ for a number of randomly relabelled
pattern pairs. If the observed rank correlation is “higher than expected” under
this distribution (so that cell-count rankings are similar for each pattern), then it
can be inferred that these points tend to appear together, i.e., that there is signif-
icant attraction between patterns. Similarly, if the rank correlation is “lower than
expected” then it may be inferred that these points tend not to appear together,
and hence that there is significant repulsion between patterns.
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Before specifying this procedure in detail, it is important to emphasize that the
procedure itself is not a formal test of statistical independence between patterns
X1 and X2. In particular, the null hypothesis above makes no attempt to preserve
the marginal distributions of each pattern. So for example, if it is known that
the marginal process generating X1 tends to produce significantly more clustering
than the X2 process, and if it is desirable to preserve these properties in testing
independence between X1 and X2, then the present procedure is not appropriate.
However, if one is simply interested in whether points in X1 tend to be closer
to (or further from) points in X2 than would be expected if the patterns were
unrelated, then the term “unrelated” can be given useful operational meanings
other than “statistical independence”. A key advantage of the present approach
is that it requires no prior knowledge of how these patterns were generated. Other
advantages (and limitations) will be discussed in the applications below. But first
we develop this testing procedure in more detail.

3.1. Steps of the Procedure

Given two point patterns, Xj = {xij = (x1ij, x2ij) ∈ S : i = 1, .., nj} , j = 1, 2 in
a bounded region of the plane, S ⊂ R2, the steps of the testing procedure can be
outlined as follows:
(i) First generate a set of n randomly sampled reference points, Z = {zi =

(z1i, z2i) ∈ S : i = 1, .., n}, as in Diggle-Cox. [In the applications below, n is
typically chosen to be roughly the same size as the joint pattern, i.e., n ≈ n1+n2.]
(ii) Next select a set of reference distances (or radii), R = {r1 < r2 <

· · · < rk}, as in Lotwick-Silverman. [To minimize boundary effects, the maximum
distance, rk, is typically not more than half the maximum interpoint distance
between X1 and X2.]9

(iii) For each distance, r ∈ R, and reference point, zi ∈ Z, count the number
of points from pattern Xj within distance r of zi, i.e., calculate

Cij(r) =
Xni

t=1
I (kxtj − zik ≤ r) (3.1)

and let the n-vector of these cell counts for each pattern j = 1, 2 be denoted
by Cj(r) = [Cij(r) : i = 1, .., n]. [These cell-count profiles will form the basis of
comparison between patterns X1 andX2 (with respect to Z) at each scale r.]

9It should be noted at this point that the “non-overlapping” restriction on r for torus wrap-
pings is no longer relevant in the present procedure. Indeed, it will be seen below that this
procedure can in principle detect significant attraction and/or repulsion at distances well be-
yond “half the maximum interpoint distance”.
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(iv) As in (2.1) above, calculate the rank correlation between C1(r) and C2(r)
and set

τ 0r = τ [C1(r), C2(r)] , r ∈ R (3.2)

(v) To test whether τ 0r is significantly positive or negative, simulate N new
pattern pairs by randomly switching their labels. To do so, let the combined
pattern, X = {x1, .., xn1 , .., xn1+n2} be defined by xi = xi1 for i = 1, .., n1, and xi =
xi−n1,2 for i = n1 + 1, .., n1 + n2, and construct s = 1, .., N random permutations,

(1, .., n1, n1 + 1, ..n1 + n2)→ (πs1, .., πsn1, πs,n1+1, .., πs,n1+n2) (3.3)

of the integers {1, .., n1+n2}. The corresponding random-pattern pair,(Xs1, Xs2),
for each permutation s is then given by

Xs1 = {xπsi : i = 1, .., n1}
(3.4)

Xs2 = {xπsi : i = n1 + 1, .., n1 + n2}
(vi) Now replace the observed patterns (X1, X2) with each pair of randomly

permuted patterns (Xs1,Xs2), and repeat steps (iii) and (iv) to obtain a set of
rank-correlation coefficients {τ sr : s = 1, .., N} at each distance r ∈ R.
(vii) Finally, to construct the desired P-values for the “no relationship” test

at each distance r , let mr denote the number of τ -values in {τ sr : s = 1, .., N}
that are greater than τ 0r, and let m0r denote the number that are equal to τ 0r.
The appropriate attraction P-value is then defined as follows:10

Patt(r) =
mr + (m0r/2)

N + 1
(3.5)

and the corresponding repulsion P-value is defined by Prep(r) = 1−Patt(r). These
P-values can then be plotted as in Figures 2.3 and 2.5 above.

3.2. Test Applications

The ultimate value of any testing procedure depends on how well it behaves in
practice. Since the main objective of the present test is to reveal structural differ-
entiation between pattern relationships at different scales, the best way to gage its
effectiveness is to apply it to a range of data sets that may exhibit such structural
variations. We begin with the examples above, and then consider one application
to a larger urban data set.
10The value in the numerator has the effect of treating each τ -value tied with τ0r as being

“half above” and “half below” τ0r in the overall ranking of τ -values.
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3.2.1. The Simulated Model with Small-Scale Repulsion and Large-
Scale Attraction

Recall that first pair of patterns above was generated from a simple probabilistic
model exhibiting both small-scale repulsion and large-scale attraction. In view
of the simplicity of this model, one could in principle attempt to estimate the
power of this test to reject the “no relationship” hypothesis at a selected range
of r1 and r2 values. But such power calculations would tell us little about the
ability of this test to capture overall structural variations in pattern relationships
at different scales. Hence we choose rather to simply examine the P-value plots
obtained for selected cases (as in Figures 2.3 and 2.5 above), and ask whether the
attraction and repulsion relationships exhibited seem reasonable. In the present
case, we focus on the specific instance of this model (r1 = 5 and r2 = 8) used to
illustrate the Diggle-Cox and Lotwick-Silverman tests above. Here we again use
n = 200 reference points (as section 2.1) and a range of reference distances, r,
between 1 and 30 (as in section 2.2). The results for a sample of N = 999 random
permutations are shown in Figure 3.1 below. As with the Lotwick-Silverman test,
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Figure 3.1: P-Values for the Patterns in Figure 2.1

we again see significant repulsion at distances around r1 = 5 and attraction and
distances beyond r2 = 8.
However there are some differences. Notice first that repulsion is not significant

at very small distances (r = 1, 2) even though there must be significant repulsion
at these scales for the model itself. The reason this is not picked up relates to
the density of the process simulated. For n1 = n2 = 100, it turns out that there
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are no reference points with cell counts above one at these small scales, so that
there is no chance for any agreement between cell counts except for zero cell
counts. This has the effect of making all cell profiles for random patterns look
negatively correlated, so that the negative correlation for the observed pattern
is not significant. So at very small scales relative to average point spacing, the
present test can be misleading.
At the other extreme, notice that unlike Lotwick-Silverman, significant at-

traction persists out to r = 30. Moreover, simulations show that this attraction
continues to be significant well beyond the usual upper limit of “half the maxi-
mum interpoint distance”. The key reason for this is that each point of pattern
X2 in the present model is by construction close to at least one point in X1 (with
distance not exceeding 8). This has the effect of producing a relatively uniform
population mix at large scales. But random relabeling of these populations will
tend to exhibit some clumps at these scales, so that even for cell counts including
most of the points in the combined pattern, the present model continues to exhibit
agreement between cell-count profiles that is statistically significant.

3.2.2. The Healthy and Diseased Myrtles Patterns

Recall from Figure 2.4 that there appeared to be some significant clumpiness of
diseased trees that was not be picked up by the Lotwick-Silverman test (Figure
2.5). When the present test was applied with N = 999 random permutations, the
results yielded the P-value plot shown in Figure 3.2 below. Here it is clear that
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Figure 3.2: P-Value Plot for Myrtles
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while the results are similar to Lotwick-Silverman for small distances (r ≤ 5),
they are dramatically different for all larger distances. Here there is now signif-
icant repulsion at larger scales which is consistent with the clumpiness observed
visually. As in the example above, this repulsion continues to be significant at
scales approaching the full width of region S, and again suggests that this testing
procedure may be less sensitive to boundary effects than Lotwick-Silverman.
This example also serves to illustrate an important feature of the present con-

ditional testing framework. By fixing the set of point locations, this hypothesis
excludes all other locations for pattern points. This has some advantages, but
also some weaknesses. On the positive side, it avoids the need for any boundary
restrictions (such as the “rectangularity” restriction implicit in torus-wrapping
schemes). More generally, it assumes only that pattern points in X1 can occur
everywhere that points in X2 can occur, and visa versa. Suppose for example that
the “holes” shown by dashed lines in Figure 3.3 below are rocky areas where no
trees can grow. Then by considering only random permutations of “viable” tree

 

0 98

Figure 3.3: Holes in the Myrtle Landscape

locations, this test avoids all potentially non-viable locations such as rocky areas.
On the other hand, if these blank areas turn out to be equally well suited for

trees, then their presence surely indicates some degree of attraction between these
populations. In the present case, since every diseased myrtle was presumably
once a healthy myrtle, there must surely be some degree of attraction between
these populations that is not being accounted for. Hence in this type of condi-
tioned framework, it is important to keep in mind the types of relevant locational
variation that may be excluded.
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3.2.3. Supermarkets and Convenience Stores in Philadelphia

Our final example involves the locations of grocery stores in the city of Philadel-
phia. The key question here relates to the locational pattern of larger stores
(supermarkets) versus smaller (convenience) stores. Since there is no absolute
distinction between supermarkets and convenience stores, the present populations
were defined simply in terms of floor space. Stores of at least 5000 sq.ft. were clas-
sified as “supermarkets” and those of less than 5000 sq.ft. were classified as “con-
venience stores”.11 In Figure 3.4 below the locations of supermarkets (n1 = 174)
are shown by dots, and the locations of convenience stores (n2 = 284) are shown
by circles. The enlarged portion shows the denser area of stores near the center

 

Figure 3.4: Supermarkets and Convenience Stores in Philadelphia

of Philadelphia. Here supermarkets are seen to be reasonably well mixed with
convenience stores, except for a few noticeable clumps (in West Philadelphia and
in Northeast Philadelphia). A random pattern of n = 400 reference points was
generated, and a test with N = 999 random permutations produced the P-value
plot shown in Figure 3.5 below, for a set of reference distances up to about one
mile. Here there appears to be some significant repulsion between these store
types at distances of around 1000 feet and significant attraction at about twice
that distance.
Before attempting to interpret these results, it is important to observe that

11In Philadelphia the two major covenience-store chains are Wawa and 7 Eleven. Since the
largest of these stores is just below 5000 sq.ft., this size was used as the dividing line.
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Figure 3.5: P-Value Plot with Purely Random Reference Points

in the present case we actually have additional information about “viable” store
locations. In particular, the location of grocery stores is obviously influenced by
the population distribution. Moreover, since population data is readily available,
it is appropriate to consider ways of using this information. While it would in
principle be possible to broaden the range of potential store locations by postu-
lating that likely locations are proportional to population density, this approach
is hampered by other considerations influencing store locations (such as zoning
restrictions and locations of major roads).
However, such restrictions do not apply to the reference point distribution.

Here one can consider randomly selected “customers” as the relevant reference
points, and ask how many supermarkets and/or conveniences stores are within
various distances of these customers. This not only yields more meaningful ref-
erence points from a behavioral viewpoint, but also has the statistical advantage
of generating higher reference-point densities in areas where there are likely to be
more stores. This second approach was operationalized by sampling n = 400 ref-
erence points from a probability distribution proportional to Philadelphia census-
tract population densities, as shown in the center of Figure 3.6 below. The sample
produced is shown on the right hand side, and the original pure random sample is
shown on the left. Notice that the new reference points tend to be relatively less
concentrated in those areas with lower population density, as seen for example at
the southern tip of Philadelphia where population densities are very low.
The test above was rerun for N = 999 random permutations using these new

reference points, and produced the P-value plot shown in Figure 3.7 below. Here
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Random Points Pop Distribution New Points

Figure 3.6: Reference Points for Philadelphia

it is apparent that the significant repulsion and attraction seen with respect to
the random reference points at distances below 2500 has disappeared. While
there are still some strong fluctuations in P-values at these distances, they are far
less extreme than in the purely random case. In addition, there now appears to
be significant repulsion at a distance of one mile (reflecting the types of clumps
observed in Figure 3.4 above). Simulations at larger scales show that in fact both
tests find significant repulsion in the one-mile to two-mile range. Hence the main
purpose of the present example is to point out the dramatic differences that can
occur at smaller distances.
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Figure 3.7: P-Values for Population-Generated Reference Points
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A key reason for this difference can be seen by again considering those random
reference points at the southern tip of Philadelphia, where there is little population
and no stores. Though the scale is not shown on the map in Figure 3.4, the width
of the enlarged box is approximately 10 miles. So it should be clear that there
are no stores with 2500 feet of any of these points. More generally, all purely
random reference points falling in very low population areas will tend to have
zero cell counts for both supermarkets and convenience stores at these distance
ranges. Since these null pairs are considered as “ties” in the rank-correlation
measure, τ , they are essentially dropped from consideration. In view of the large
number of such occurrences at these distance ranges, the rank-correlation value for
the purely random case is in fact determined by a much smaller set of reference
points than in the population-sensitive case. Statistically this has the effect of
increasing the variation of τ , thus tending to produce more extreme values. Hence
the significance results for random reference points at these scales are largely an
artifact of the “holes” in the store-location pattern, and at the very least, are
more difficult to interpret than those for the population-sensitive case.
While it is difficult to draw any general conclusions based on this example

alone, it nonetheless serves as a useful “cautionary tale” in constructing tests
of this type. The key point here is that it is vital to use as much additional
information about the given point patterns as is possible.

4. Concluding Remarks

The purpose of this paper has been to propose a combination of the Diggle-Cox and
Lotwick-Silverman tests for analyzing attraction-repulsion relationships between
patterns at different scales. While the examples above suggest that this method
has promise, they of course offer no definitive conclusions.
It should be noted that a number of variations on this general testing scheme

are possible. First, while the use of rank-correlation to compare cell-count profiles
has the advantage of being independent of relevant point densities, one could
also accomplish this by looking at product-moment correlations, or even mean
cell-counts normalized by density estimates, as is typically done in K-function
statistics. Moreover, rather than using purely random reference points, one could
consider a number of conditional randomization schemes that are meaningful even
when no additional information (such as population densities) is available. For
example, one could in principle avoid oversampling in empty regions by rejection-
sampling schemes in which only those reference points “sufficiently close” to at
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least one pattern point are kept. Even for the pattern points themselves, one
could in principle develop a number of resampling schemes other than random
relabeling. For example, when no other reference distributions are available, one
could use the empirical distribution defined by the combined point pattern as a
basis for bootstrap resampling procedures.
It should also be recognized that attraction-repulsion comparisons are only

one type of inter-pattern relationship that can be quantified. For example the
use of circular cell counts implicitly assumes that pattern relationships are inde-
pendent of direction, i.e., are isotropic in nature. Hence, as an extension of the
present attraction-repulsion comparisons, one could ask whether these differ with
respect to direction as well as scale. In addition, there are a host of other rele-
vant comparisons that can be made directly in terms of marginal distributions,
such as the relative clustering or dispersion within each pattern. With respect
to the present testing procedure, it would be particularly desirable to develop
testable null hypotheses that preserve at least some of this marginal information
while at the same time avoiding the creation of unintended structure, such as that
encountered in the Lotwick-Silverman test.
Finally it should be noted that the analysis above has been developed entirely

in terms of global attraction and repulsion between point patterns. This naturally
raises the question as to whether it is meaningful to consider local attraction
and repulsion between patterns. One simple answer is that the relevant region
S can always be partitioned into subregions, (S1, .., Sk), and the present analysis
carried out in each subregion (provided that they are not too small to allow
meaningful rank correlations). But perhaps a more interesting question relates
to whether or not it meaningful to define pointwise attraction and repulsion,
in a manner paralleling standard measures of local versus global clustering and
dispersion within a single point pattern. Here the answer appears to be somewhat
more problematic. For example, if a given pair of cell counts [Ci1(r), Ci2(r)] are
both zero, then one may ask whether or not this similarity of values indicates
“local attraction” at the point zi ∈ Z. Rather than ponder such philosophical
issues, the view taken here is that the properties of “attraction” and “repulsion”
are essentially statements about whether points in each pattern tend to occur
together or not. In so far as such tendencies are only detectable by comparing
patterns at many locations, these properties would seem to be global by their very
nature.
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