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A Queuing Network Model with Blocking: 
Analysis of Congested Patient Flows in Mental Health Systems 

 
 

ABSTRACT 
 
The downsizing and closing of state mental health institutions in Philadelphia in the 1990’s led to 
the development of a continuum care network of residential-based services. Although the 
diversity of care settings increased, congestion in facilities caused many patients to unnecessarily 
spend extra days in intensive facilities. This study applies a queuing network system with 
blocking to analyze such congestion processes. “Blocking” denotes situations where patients are 
turned away from accommodations to which they are referred, and are thus forced to remain in 
their present facilities until space becomes available. Both mathematical and simulation results 
are presented and compared. Although queuing models have been used in numerous healthcare 
studies, the inclusion of blocking is still rare. We found that, in Philadelphia, the shortage of a 
particular type of facilities may have created “upstream blocking”. Thus removal of such facility-
specific bottlenecks may be the most efficient way to reduce congestion in the system as a whole.  
 
 
KEYWORDS 
 
Open queuing network model, Blocking, Single node decomposition method, Simulation, Mental 
health system 
 
 



 3

1. INTRODUCTION 
 

During the past several decades, many U.S. states, including Pennsylvania, have 
downsized and/or closed state mental hospitals [1]. The intention behind this downsizing and/or 
closure was to provide mentally ill patients with more adequate care by replacing the state 
hospital function with a continuum care network which consists of the facilities with various 
levels of structure and support. In response, several types of less structured residential alternatives 
have been developed [2]. In Philadelphia, the state mental hospital was closed in 1990. Several 
structural changes have been observed since the closure. The three relevant changes are listed 
below.  
 
 Increase in the number of residential facilities: The budget allocation for the state hospital 

was redirected to increase existing residential facilities. By 1997, the number of residential 
beds had increased from around 450 to approximately 1,400.  

 Emergence of Supported Housing: A new type of community setting accommodation, 
“supported housing”, was created to provide housing to clients with basic self-care and 
medication management skills. Among the various community setting options, supported 
housing provides the least care. It is commonly an individual home visited by a mental 
healthcare specialist on a regular basis. About 400 supported housing units were created by 
1997.  

 Development of EAC Hospitals: To accommodate the acute hospital patients whose condition 
would not stabilize during the maximum of 30-day acute care period, extended acute care 
(EAC) beds were created in general hospitals to provide relatively intensive care for up to 90 
additional days. 

 
The Philadelphia mental health system has been the forefront of the movement [3]. Inflow and 
outflow of clients into the continuum care network is controlled by the centralized gate-keeping 
agency, Access to Alternative Services (AAS). However, planning frameworks are lacking to 
provide mental health system planners with information on how many, and which type of 
residential services are required to optimize the placement match. Despite the initial intention of 
providing the patients with adequate level of care, the data collected by AAS suggest that a 
certain proportion of the clients find the facilities that they were referred to are full, and they are 
forced to wait at their current, often unnecessarily intensive, care facilities. Table 1 shows the 
observed empirical waiting time at three main types of facilities obtained from the 1997-1999 
data.  
 

[INSERT TABLE 1] 
 
These clients unnecessarily “block” the current beds while waiting, preventing utilization by 
potential clients who require care at these facilities. This “blocking” phenomenon often generates 
some financial loss because the blocking clients are, in many cases, ready to move to a less 
intensive and hence less expensive facility. Hence, controlling the congestion in the existing 
mental health system is important not only from the clinical and human rights perspectives but 
also from the budgetary perspective for the mental health policy makers.  

Our model analyzes the congestion in the system by applying a queuing network model 
with blocking. Two performance indicators, the number of patients waiting to enter each type of 
facility in the system and the associated waiting time at the steady state, are derived in the steady-
state analysis. Queuing with blocking is a relatively new topic and most applications have been 
done in the engineering fields. To the author’s knowledge, an applied study of a blocking model 
in the mental health field has not been published. Moreover, we believe that this is the first study 
that introduced a queuing model as a tool to plan and manage resource allocation in a mental 
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health system. Traditionally, needs assessment strategies have been the major approach to mental 
health system planning1. In this approach, predicted needs level for defined geographical areas or 
gaps between needed and currently provided services are used to guide mental health resource 
allocation decisions.  A drawback of the needs assessment approach is its cross sectional nature 
that limits the ability of decision makers to examine interdependency among various components 
of the system concurrently and longitudinally (Peterson, 1987). The needs assessment approach 
can identify the proportion of clients who are in higher levels of care than needed among the 
resident population at the moment, and estimate the required number of beds at each level of care 
to place the currently served clients in their appropriate need level. However, the system in reality 
is not static; new clients are constantly arriving and consumer need level changes over time. What 
is desirable is a method that takes into account these dynamic factors in predicting required bed 
capacity.  In addition, because each setting is dependent on the behavior of the other settings, it is 
important to consider how changes in the capacity of one setting affect needs and utilization in 
another. The queuing approach introduced in our study addresses both drawbacks: First, queuing 
theory is fundamentally based on a Markov process which is inherently dynamic. Second, by 
introducing the “blocking” concept into a traditional infinite buffer network model (i.e., Jackson 
model), the degree of interdependencies between settings can be examined. Specifically, our 
model can project the relationship between capacities and unnecessary stays at various treatment 
facilities. Furthermore, the model can show service planners various relationships among the 
model parameters, for example, how unnecessary stays can be minimized by changing residential 
capacity as well as by other strategies to reduce clients’ length of stay (e.g., efficient discharge 
planning, increasing intensive case management support, etc.).  .  

Although the work presented here applies the basic blocking model and a simplified 
structure of the real-world mental health system in Philadelphia, future extensions of this work 
could lead to the development of service configurations that provide a better match between level 
of care and needs of consumers than those based on the current decision making practice. 
 
 
2. METHODOLIGICAL BACKGROUND: THEORY AND APPLICATION 
 

Theoretically, “blocking” occurs when waiting spaces between stations are finite (i.e., 
finite buffers). The pioneering work of Hunt (1956) [4] examined a finite buffer between two 
stations. The model is based on Markov chains and has Poisson arrival rates and exponential 
service times. The methodology used in his model provides the “exact solutions”, and thus the 
probabilities of all possible states at the two stations are obtained. But as the number of stations 
and/or the number of servers becomes larger, the set of possible states increases dramatically and 
computations become far more complex. A methodology that approximates the solution was thus 
proposed to address this computational challenge. One of the most well-known approximation 
method decomposes a network into smaller subsystems, analyzes each subsystem in isolation, and 
uses the subsystem results to analyze the overall network. Hillier and Boling (1967) [6] is 
probably the first publication in this area. Since then, the method was further researched and 
extended by many publications [7, 8, 9, 10]. Our study fundamentally applies the decomposition 
algorithm introduced by Takahashi, Miyahara, and Hasegawa [7], which dealt with blocking in an 
open queuing network system with feed-forward flows and finite buffers between stations. Our 

                                                           
1 The methods of need assessment approach include epidemiological surveys, social indicator analysis, 
treatment utilization review, key informant interviews, and community opinion surveys (Rabkin, 1986). 
More recently, an individually based assessment approach has been explored, in which a panel of 
stakeholders prescribed service needs for groups of clients with similar levels of functioning (e.g., Leff, 
Mulkern, Lieberman, & Raab, 1994; Shern, Wilson, Ellis, Bartsch, & Coen, 1986; Srebnik, Uehara, & 
Smukler, 1998). 
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work, however, extends their model by modifying their single-server model to a multiple-server 
model. To author’s knowledge, the direct application of Takahashi, Miyahara, and Hasegawa [7] 
in the context of multiple servers is only found in Korporal, Ridder, Kloprogge, and Dekker 
(2000) [11], which analyzed the congestion level in a penitentiary system in the Netherlands.   

While there are numerous published healthcare studies that apply queuing theories, those 
analyzing a blocking mechanism are still rare. Four healthcare publications were found that 
involve analyses of blocking. El-Darzi, et al. (1998) [12] and Cohen, Hershey, and Weiss (1980) 
[13] are both simulation studies. El-Darzi, et al. [12] analyzed the congestion in geriatric patient 
flows in a U.K. hospital system. The model framework used in this study is similar to our mental 
facility system, with the exception that their system has a “tandem” structure as opposed to our 
“arbitrarily-linked” system (i.e., patients can skip stations). The other two articles, Hershey, 
Weiss, and Cohen (1981) [14] and Weiss and McClain (1987) [15] employ mathematical 
approaches in analyzing a blocking problem. However, neither of these methods could be directly 
applied to analyze congestion in the mental health system in Philadelphia. Hershey, Weiss, and 
Cohen [14] dealt with blocking in the same context as this paper, but blocking occurs only when 
entities enter a specific station (Unit 1), while other stations were assumed to have infinite 
waiting space in front of the stations. The methodology introduced by Weiss and McClain [15] 
may approximate the congestion in the Philadelphia mental health system with reasonable 
accuracy. However, their methodology does not utilize either blocking or the single-node 
decomposition approach that has advanced significantly since Hillier and Boling [6].  
 
 
3. MODEL FRAMEWORK 
 

Our system consists of three types of psychiatric institutions: extended acute hospitals (E), 
residential facilities (R), and supported housing (S). E is the most structured institution in the 
system with the patients who require follow-up care after being discharged from acute hospitals. 
R accommodates those clients who require basic daily living support with full-time monitoring, 
while S is the least structured institution in the system and provides clients with a minimum daily 
living support on a part-time basis. The accommodations outside the system are categorized into 
two groups: acute hospitals (A) and all other accommodations denoted as X. Station X is 
composed of various accommodations for psychiatric patients ranging from housing with family 
or friend houses to homeless shelters, jails, or even living on the streets. Figure 1 illustrates the 
three internal stations, two external stations, and the flows between these stations. As seen in the 
figure, patients have an overall tendency to flow from the most structured institution E, to the 
least structured institution, S in the system.  
 

[INSERT FIGURE 1] 
 

In the figure, there are two dotted backflows, (i) R→A and (ii) S→A. These flows reflect 
clients at R and S who experience relapse and hence flow backwards to acute hospitals. Under the 
current policy, most residential (R) and supported housing (S) clients keep their beds while 
temporarily receiving acute care in A, and thus effectively occupy two types of beds in the system. 
Clients at residential facilities and supported housing must give up their beds only if they are 
away for longer than a specified length of time (i.e., 30 days for residential facilities and 60 days 
for supported housing). The actual data shows that, among those who relapse and move from S or 
R to A, only a few patients per year are forced to give up their beds at S or R. In fact, these 
patients constitute less than 0.01% of total patients who leave S or R. Thus, these two backflows 
were omitted in the present study. As to the patients who occupied two beds temporarily at (R,A) 
or (S,A) and came back to their primary bed within the specified period, the model treated these 
patients as if they remained at R or S throughout the hospitalization. Since A exists outside the 
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system and is also considered to have an infinite number of beds (i.e., no resource constraints), 
capturing the temporal backflows and associated occupancies of acute beds adds nothing of 
significance to our analysis2.  

Blocking at station i occurs when the patient out-flow from station i is hampered due to 
full occupancy at the immediate downstream station. There are two key characteristics of this 
process: (i) patients remain at station i even after completing their treatment, and (ii) these 
patients potentially block incoming patients to station i. In this paper, we define “blocking” as a 
situation where both of these characteristics are observed. Given that stations E, R and S have 
only a finite number of beds (and no other waiting space), blocking can occur at the flows E→R 
and R→S. Blocking will not occur if the immediate downstream station has an infinite capacity 
(either beds or other forms of waiting space). In our model, the only station assumed to have an 
unlimited number of beds is A, and the only station assumed to have unlimited waiting space is X. 
Accordingly, the paths E→X, R→X, and S→X are “blocking-free” flows in the model. The flows 
X→A, A→X are also “blocking-free” flows, but both X and A are external stations, and thus these 
flows are not modeled. There are four remaining flows in the model: A→E, A→R, X→R and 
X→S. When patients at A or X find R or S full, they must wait at the current location 
[characteristic (i) above is observed]. But doing so would not block anyone exiting the system, 
since A and X have infinite capacities [characteristic (ii) is not observed]. This type of congestion 
is analyzed in traditional queuing models, and thus is here designated as “classic congestion”. The 
following table summarizes the types of congestion associated with each flow in the model.  
 

[INSERT TABLE 2] 
 

In principle, patients arriving to any station in the system are treated equally regardless of 
the station of origin. This means that there is basically a single First-Come-First-Served (FCFS) 
queue at each station although the waiting location of the patients (blocked or unblocked) may 
vary.  
 
 
4. STEADY-STATE ANALYSIS 
 

In this section, we first provide a quick review of the standard queuing theory in our 
model framework but without considering blockings between stations. We will then explain how 
the standard algorithm needs to be modified in order to incorporate a blocking phenomenon. The 
derivation of the equations shown in the first subsection can be found in any basic queuing 
textbooks such as Gross and Harris (1998) [5], while the description of the blocking model is 
fundamentally based on Takahashi, Miyahara, and Hasegawa [7].  
 
I. Steady-state Analysis without Blocking 
 

As with most Markovian models, the present network queuing model exhibits long-run 
steady-state behavior (as long as inflows are compatible with system capacities). The analysis of 
such steady states thus provides a useful way of establishing long-run “performance indicators” 
                                                           

2 There few publications that analyze blocking with feedback flows. This is partly due to inappropriateness of 
simple of standard Poisson-arrival assumptions when feedback flows exist, as shown by Disney (1981) [16]. Another 
reason could be that the model potentially faces a “deadlock flow” problem. Deadlock refers to the situation in which 
entities at two or more stations block each other, and occurs only when feedback flows are allowed in the system. To 
the author’s knowledge, all existing articles make the simplifying assumption that deadlock is detected and resolved 
automatically by exchanging the entities between the stations. It should be noted, however, that deadlock could 
potentially violate the common assumption of a service discipline in a queuing model, “First Come First Served” [17].  
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for each station in the system. The two most commonly used performance indicators are mean 
length of queue and mean waiting time, while other indicators include the mean percentage of 
time that a station is full and the mean number of patients at a station. Essentially, these steady-
state performance indicators are obtained mathematically by equating the arrival and exit rates at 
each station. The three key input parameters used in the analysis are: (i) arrival rates (i.e., 
expected number of patients arriving at each station per unit of time, (ii) mean service time (i.e., 
expected length of time that a patient spends at each station), and (iii) and the number of servers 
(beds at each station). The latter two parameters determine the maximum service rate at the 
station (i.e., the service rate achieved when the station is full). If we denote daily service rate per 
bed at station i  by iµ , then the mean service time per bed is given by 1/ iµ . If we further denote 
the number of beds at station i  by ic , the service rate for that station is given by i ic µ . When only 

( )i in c<  beds are occupied, the service rate must be i in µ .  
In a queuing network model, while external arrival rates (for the arrivals from outside the 

system) are obtained from data, internal arrival rates (for the arrivals between stations) are 
obtained endogenously from external arrival rates and routing probabilities between (internal) 
stations (i.e., the fraction, ijr  of the patients departing from station i  who are directed to station j  
in any given unit of time).  

 
In general, the routing matrix is expressed as: 

 
EE ER ES EX

RE RR RS RX

SE SR SS SX

r r r r
r r r r
r r r r

 
 =  
  

R  ,  

 
where the vertical line separates flows with internal and external destinations. Referring to Figure 
1, the specific routing matrix for this model is seen to be of the form: 

 
0 0
0 0
0 0 0 1

ER EX

RS RX

r r
r r

 
 =  
  

R  . 

 
Given the routing probabilities ( , , , )ER RS EX RXr r r r  and external arrivals ( Ajλ  and Xjλ ,  

, ,j E R S= ), the internal and total arrival rates ( ): , ,j j E R S=λ  are generally obtained by solving 

the following system of  general traffic equations: 
 

1

m

j Aj Xj ij i
i

rλ λ λ λ
=

= + +∑  

 
where i  indicates any internal station from which patients flow directly to station j. Referring to 
Figure 1, it can be seen that the traffic equations for our system are: 

 
E AE

R AR XR ER E

S XS RS R

r
r

λ λ
λ λ λ λ
λ λ λ

=
= + +
= +

 (1)  
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In a traditional multi-server queuing network model without blocking (like an open 
Jackson network model), patients at a station arrive, receive services, and depart to the next 
station (if it is not full) or to infinite buffer space (if it is full). In such a system, the steady state of 
each station is analyzed in isolation without considering the impact of congestion at any particular 
station on the flows at other stations in the system [18, 19]. For mathematical convenience, total 
arrival rates are often assumed to follow Poisson distribution with mean λ  (so that inter-arrival 
times follow an exponential distribution with mean 1/λ )3. Similarly, mean service times are 
often assumed to follow an exponential distribution with mean 1/ µ . In this study, we also 
assumed that the total arrival rates follow Poisson distribution, while definition of “service time” 
and its distribution need to be modified in order to incorporate blocking into the model. These 
will be discussed in detail in the following subsection.  

Given the values for all input parameters ,i iλ µ , and numbers of beds, ic , at each station 
i , the expected steady-state queue length at station i in the case of no blocking is obtained by the 
following equation:  

 
-1-1

2
0 ! (1- ) ! (1- ) !

i i ii

i

n c cc
i i i i

i
n i i i i i

L
n c c=

 
= + 
 
∑ω ω ρω

ρ ρ
 (2) 

 
where /i i i=ω λ µ   and / 1i i ic= <ρ ω . 

In the equation, /( )i i i ic=ρ λ µ  is known as the “traffic intensity” at station i. The case 
1i >ρ  represents a situation where the mean arrival rate, iλ , is larger than the maximum service 

rate, i ic µ , at station i . Under this circumstance, the queue increases without bound over time, 
and a steady-state cannot be achieved. Thus, / 1i i ic= <ρ ω , is essentially the stability condition 
for equation (2) to hold. 

The expected waiting time to enter station i at steady-state is obtained by applying Little’s 
formula [21], Wi =Li /λi, as; 
 

-1-1

2
0 ! (1- ) ! (1- ) !

i i ii

i

n c cc
i i i i

i
n i i i i i i

W
n c c=

 
= + 
 
∑ω ω ρω

ρ ρ λ
 (3) 

 
 
II. Steady-state Analysis with Blocking 
 

When there is no buffer between stations (so that potential blocking exists), congestion at 
any particular station could potentially affect congestion levels at all upstream stations. Thus the 
Jackson approach needs to be modified to capture such interactions between stations. This can be 
accomplished by introducing the concept of “effective service time” [7]. To be more specific, 
suppose there are only two stations, i  and 1i + , linked in tandem. Then patients at station 

1i + always depart system (to an infinite space) and never face blocking. Hence for any inflow to 
1i + , the steady state for this station can be solved using the traditional Jackson type approach. 

Since blocking at station i is caused by congestion at station 1i + , the impact of this blocking can 
be analyzed by using “effective service time” rather than “service time”. The effective service 
time is comprised of two types of service times, namely, “treatment time” and “blocked (or 
maintenance) time”. Treatment time is the time between admission to station i and referral to 
                                                           
3 Burke’s theorem [20, 21] assures that internal and total arrival rates follow Poisson distribution as long as external 
arrival are assumed to follow Poisson distribution and there is no feedback flows in the system.  
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station 1i + . Note that treatment time is equal to service time if no blocking exists. Blocked time 
represents the time between referral to station 1i + and physical exit from station i and is thus 
equivalent to the waiting time to enter station 1i + . As stated earlier, waiting time at station 

1i + is one of the performance indicators obtained from the steady-state analysis of station 1i + . 
Therefore, the congestion impact of station 1i + is captured in the analysis of station i through 
effective service time. Figure 2 shows the relationship between the two stations. Here the waiting 
(or blocked) time to enter station 1i +  is seen to be part of the effective service time from station 
i’s perspective.  

For mathematical convenience, we assume here that effective service times follow an 
exponential distribution4. The mean effective service time at station i (i = E, R) is henceforth 
denoted by 1/ iµ , where by definition 1/ iµ  consists of the mean treatment time, 1/ iµ , plus the 
mean waiting time, 1iW +  to enter station 1i + . The steady state for station i is then analyzed by 
applying equations (2) and (3), where the effective service time, ( ) 11/ 1/i i iW += +  µ µ , replaces 
1/ iµ . Accordingly, any tandem network system is solved sequentially from station 1i +  to station 
i . Figure 1 however shows that in our system only fraction of the patients (riX) at stations 

,i E R= leave the system after treatment without facing any wait. Hence the more general 
effective service time at stations ,i E R=  are thus given by the convex combination of effective 
waiting times as:  

 
1/ (1/ ) (1/ )i iX i ij i j

j
r r Wµ µ µ= + +∑  

where j represents those stations downstream from i  with limited capacities. 
 

[INSERT FIGURE 2] 
 
For E and R, the above equation respectively becomes: 
 

1/ (1/ ) (1/ )E EX E ER E Rr r Wµ µ µ= + + , and (4) 
1/ (1/ ) (1/ )R RX R RS R Sr r Wµ µ µ= + +  (5) 

 
Thus, equations (2) and (3) are applied to obtain steady-state mean queue lengths and waiting 
times in terms of effective service times. The number of patients waiting at station i to enter 
station j at steady state ( ijL ) is then given by: 

 
( )/ ( , )

( , , )
ij j ij j

ij ij j

L L i A X

L r L i E R S

λ λ = =


= =
   (6) 

 
 
 
The expected waiting time for arriving patients at immediate upstream stations should be the 
same regardless of the patient’s station origin. This is because all new patients are treated FCFS 
as if they formed a single queue upon arrival. 

                                                           
4 More generally effective service time can be modeled using an Erlang distribution. However, as observed 
by Perros [23], it is common practice to approximate effective service time distributions by the simpler 
exponential model.  
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Consequently, the steady state of every station in the system can be solved individually. The 
method is thus known as the “single node decomposition” approximation [6].   

It should be noted that this analysis treats the waiting space to enter a particular station as 
infinite when analyzing the steady state of that station. In the two-station example above, this 
means that the number of patients waiting to enter station 1i + can be bigger than the number of 
beds at station i. When analyzing station 1i + , the beds at station i play the role of “waiting 
space”. The most congested scenario for station 1i + is where all at station i are occupied by 
patients waiting to be admitted to station 1i + . In this scenario, no additional patient can enter 
station i , so that the maximum number of waiting patients is equal to the number of beds at 
station i. Therefore, it should be clear that our assumption only holds when the total number of 
beds at adjacent upstream stations is large enough to accommodate the steady-state number of 
waiting patients. The results of the numerical simulation below will indicate that our assumption 
does hold for the case studied here. However, an important direction for extending the present 
model would be to relax this assumption.  

In summary, steady state of each station is analyzed using this single node decomposition 
method, and the overall model can be described in succinct terms by the standard notational 
shorthand, M/M/C/∞/FCFS. The notations respectively represent Markov arrival and departure 
(thus Poisson arrival rates and exponential service times) processes, a fixed number of servers 
(beds), an infinite capacity (waiting space), and the FCFS queuing discipline. The algorithm to 
solve the steady state of the system is outlined in Figure 3.  

 
[INSERT FIGURE 3] 

 
 

5. DATA SOURCES, DATA, PARAMETER VALUES AND ESTIMATES 
 

Several administrative data files from the State and the County Office of Mental Health 
(OMH) were integrated to construct individually based histories of extended acute care (EAC) 
hospital and residential service use. The files contain data on dates and sources of referrals, dates 
of admission and discharge, and placement decisions. The integrated data consists of two data 
files maintained by the Access to Alternative Services (AAS), a centralized gate-keeping system 
that manages client entries to the institutional and publicly funded residential system in 
Philadelphia. In addition, the Center for Mental Health Policy and Services Research (CMHPSR), 
Department of Psychiatry, School of Medicine, University of Pennsylvania has access to 
Medicaid claims records that were used to gather data on general hospital admissions and 
discharges. The analysis involved both residential service utilization and placement referral data 
for public seriously mentally ill clients in Philadelphia from 1997 to 1999. The numbers of beds 
at each station were obtained from the OMH residential directory, and were validated by 
interviews with AAS staff. 

The mean service times were obtained from the length-of-stay (LOS) data. The service 
times at community setting facilities (R and S), however, required estimation. The data for these 
two types of facilities revealed that a large share of patients had not exited from these facilities, 
thereby creating truncated LOS data. The reasons for this appear to be that many facilities are 
relatively new, and that the most community-setting facilities (especially supported housing) have 
been developed with an intention to provide the patients with a long-term care. The method of 
survival analysis was employed to estimate the service times at each of the community setting 
facilities. In particular, the commercial statistical software package, STATA (StataCorp, 2001, 
ver.7), was used for the analyses, and exponential survival distributions were employed (in a 
manner consistent with the exponential distributions in both the mathematical and simulation 
analyses).  
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A total of 1,415 observations were used for the survival analysis of station R, of which 
806 were censored at the end of 1999. The estimate of the service rate, µ, and the summary of the 
survival regression results are presented in Table 3. The hypothesis of zero time effect was 
rejected (with P-value 0.0001< ). The average daily service rate at station R was estimated to be 
0.001, which in turn indicates that the average service time per patient is about  893 (=1/0.00112) 
days.  

 
[INSERT TABLE 3] 

 
There were 368 observations for the survival analysis of station S, of which 258 were 

censored at the end of 1999. The estimate of µ and the summary of the survival information are 
shown in Table 4. As seen from the table, the hypothesis of zero time effect was again rejected 
(with P-value 0.0001< ). The estimated service rate is much smaller (0.0004) compared to that 
for the residential facilities. The mean service time per patient was thus estimated to be 2500 
(=1/0.0004) days.  
 

[INSERT TABLE 4] 
 

The external arrival rates were estimated using both referral and actual admission data 
(the data indicated that a substantial number of patients referred to R or to S from X reneged from 
the queues). Henceforth we let *

ijλ  denote the admission rate from i to j, and denote the associated 

total arrival rate at station i by *
iλ . The corresponding referral rates are denoted without star, i.e., 

ijλ  and iλ . As shown in Table 5 below, about 48% of patients referred to R from X were actually 
admitted to R, while the corresponding percentage of patients referred to S was even lower (26%). 
Although the reasons for reneging are not discernible from the data, one can speculate from the 
results of the following steady-state analyses that the expected long wait may discourage patients 
from staying in the queue. In addition, the conditions of some patients may have improved while 
they were waiting, thus removing the need for further treatment.  

The routing matrix estimated from the above data is the following: 
 

0 0.252 0 0.748
0 0 0.057 0.943
0 0 0 1

R
 
 =  
  

 

 
By solving equations (1) using both referral and admission rates from outside the system, 

we obtained the internal and total arrival rates at each station. The total referral rates to the 
stations were 0.674Eλ = , 2.175Rλ = , and 0.446Sλ = , while total admission rates were 

* 0.674Eλ = (unchanged), * 1.313Rλ = , and * 0.165Sλ = . The internal referral and admission rates 
are presented in Table 5, together with other input parameters used in the steady-state analyses.  

 
[INSERT TABLE 5] 

 
 

6. RESULTS OF MATHEMATICAL ANALYSIS 
 

The case with no reneging was investigated first. Thus, all the patients at X who were 
referred to R or to S were assumed to enter the stations without reneging from the queue. In this 
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scenario, the traffic intensity at S turned out to be ρS = λS/(cSµS) = 2.800 > 1. This implies that, if 
all referred patients stay in the queue until they are admitted by S, there will be more patients 
arriving than exiting. In this situation, the queue becomes unbounded with time and the mean 
length of queue and the mean waiting time cannot be calculated. The result supports the argument 
that the number of supported housing beds needs to be increased for the system to be stabilized.  

For station R, the traffic intensity was also above 1 [ρR=λR/(cRµR) = 1.611]. If all referred 
patients stay in the queue until they are admitted by R, the queue will become longer without limit. 
As for the effective service time, 1/ Rµ , which would be larger than 1/µR for any positive queue at 
station S, the traffic intensity is expected to be even higher. Hence the number of residential 
facilities must be increased if policy makers intend to accommodate all patients referred to 
residential facilities.  

The case with reneging patients was analyzed next using the actual admission rates from 
X to R or to S. The results are summarized in Table 6. The steady-state analysis of station S with 
the admission rate ( *

RSλ = 0.075) revealed that the traffic intensity was below 1, but as high as 
0.988. The mean queue length and the mean waiting time to enter S were 60 patients ( SL = 60) 
and about a year ( SW =366), respectively, and the station would be full about 72% of the time 
( Pr[ ]S Sn c≥  = 0.722). Reflecting this year-long wait, the effective service time at station R was 
calculated to be 914 days [1/ (1/ ) (1/ )R RX R RS R Sr r Wµ µ µ= + + = 0.943 ⋅ 893 + 0.057 ⋅ (893+366) = 
914]. The steady-state analysis of station R showed that the impact brought about by this increase 
in the mean time of bed occupancy (from 893 days to 914 days) would be drastic. Without 
blocking, the total number of patients waiting to enter R would be only 11 patients, as compared 
to 179 waiting patients in the case of blocking. The waiting times also showed a considerable 
difference. Without blocking, the mean waiting time is 9 days, as opposed to 136 days in the case 
of blocking. The station would be full more than 80% of the time instead of 32%. The impact of 
blocking on station E turned out to be even more significant. The mean time of bed occupancy at 
E increased from 60 days (1/ Eµ ) to 94 days [1/ (1/ ) (1/ )E EX E ER E Rr r Wµ µ µ= + + = 0.748 ⋅ 60 + 
0.252 ⋅ (60+136) = 94] in the case of blocking. The results showed that, without blocking, an 
average of less than patient would be waiting to enter E for more than a day, while about 140 
patients would be waiting more than 200 days in the case of blocking. The station would be full 
more than 94% of the time. The above results lead to our primary finding, that is, in Philadelphia, 
the shortage of supported housing has created “upstream blocking” of patients at both extended 
acute hospitals and residential facilities. Thus, allocating more resources to increase supported 
housing beds would be the most cost-efficient way to reduce congestion in the system as a whole.  

 
 [INSERT TABLE 6] 

 
A comparison between the empirical observations (Table 1) and the analytical results 

shows that the empirical congestion is much less serious at all stations. There are two possible 
explanations for this discrepancy. First, the empirical system may be in the process of reaching 
the steady state. In this case, if capacities and arrival/service rates remain the same, the system 
congestion would intensify in the future, resulting in serious congestion at all stations in the 
steady states. AAS reports that the congestion at the two bottom stations, R and S have been 
intensified in recent years, which triggered the increase in the number of beds at these facilities. If 
this is the case,  

Secondly, our analysis used the external arrival rates obtained from 1997-1999 data. 
While this data was assumed to be representative, it was later discovered from AAS that the 
arrival rates to community type institutions (i.e., residential facilities and supported housing) have 
been increasing since 1995 in parallel to the expansion of the number of the beds at these 
facilities. This is primarily because fewer patients renege from the queue when they learn that the 
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waiting time or the queue is shorter. This suggests that the arrival rates to these facilities prior to 
1997 were smaller. Thus, the empirically observed waiting times are more likely to be 
comparable to analytical results based on parameter values with smaller arrival rates and 
capacities.  
 
 
7. SCENARIO/SENSITIVITY ANALYSES AND PARAMETER ESTIMATION ISSUES  

 
The results of the steady-state analysis indicated that, while congestion at supported 

housing is serious, the number of patients waiting to enter R and S and the associated waiting 
times are marginal if the bottleneck at supported housing does not exist. Therefore, we 
investigated how effectively the increase in the number of supported housing bed could reduce 
the steady-state congestion level in the system. Note that increasing other types of beds would 
intensify the congestion at supported housing, which, in turn, would aggravate the blockages at 
all upstream stations. 

Figures 4-6 show the effect of increasing the number of supported housing beds on the 
congestion at each station. All the figures show a significant and sharp drop in mean queue 
lengths at the steady state. Similar dramatic decreases were observed for waiting times at each 
station. 

 
[INSERT FIGURES 4, 5, and 6] 

 
A sensitivity analysis was conducted to examine the magnitude of impacts resulting from 

different mean service (treatment) times at S. Sensitivity analysis was considered to be 
particularly relevant here because of possible biases in the estimated parameter values. As 
explained earlier, the mean service times at R and S were estimated using survival analysis under 
the assumption of exponential distributions. However, it is possible that this distribution does not 
accurately reflect the actual service time distribution. In particular, our survival analysis indicated 
that the services times for a substantial percentage (about 70%) of supported housing residents 
were censored, thus introducing considerable uncertainty into the estimates of services times at S. 
The following figures show how queue lengths at R and S vary with different values of mean 
service time at S. Not surprisingly, these figures indicate that queue lengths are quite sensitive to 
mean service times. This indicates that further empirical investigation of actual service time 
distributions is essential for establishing more reliable indicators of performance.  

 
[INSERT FIGURES 7 and 8] 

 
It should also be noted that the arrival rate estimates used in this study are somewhat 

biased. Our steady-state results in the previous section are based on the admission rates to R and 
S and do not include those patients who were referred to the facilities but reneged from the 
waiting lists5 . Hence the arrival rates corresponding to the “true demand” are likely to be 
somewhat higher. Whether the referral rates reflect true demand or not is another issue. It is 
likely that referral rates depend on the congestion levels of those facilities to which patients are 
being referred. Referring physicians (or gatekeepers) may be more inclined to refer patients when 
the relevant facilities have vacancies. Thus one may conjecture that the arrival rates reflecting 
“true demand” lie somewhere between these referral and admission rates.  
 
 

                                                           
5 The system did not support the steady state when we used the referral rates to R and S as the arrival rates.    
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8. SIMULATION ANALYSIS 
 

While simplified mathematical models are very useful for long-run (steady-state) 
analyses of performance indicators, simulation models are essential for the analysis of short-term 
transient system performance. In conjunction with the theoretical model above, we have 
conducted a simulation study for two purposes; (i) to investigate the transient behavior of the 
system, and (ii) to test the robustness of our mathematical model. The input parameters for the 
study are those used in the mathematical analysis where the admission rates are used as arrival 
rates. The parameters are summarized in the following table.  

 
 [INSERT TABLE 7] 

 
The commercial simulation software, ARENA, was used for the study. The length of the 

simulation was taken to be 150,000 days (i.e., 410 years). Here it was observed that a “warm-up” 
period of 10,000 days (27 years) was sufficient to negate any effects of initial conditions used for 
the study. ARENA computes batch means6, creates 95% confidence intervals, and reports the 
“half width” of these intervals7. It then conducts a statistical test of independence between the 
adjacent batch means. In particular, it tests whether the correlation (Corr) of two adjacent batch 
means is zero. If this test fails at the 0.05 level, ARENA signifies this by writing “Corr” in the 
“half width” column8.  

Table 8 summarizes the results of the simulation analysis. The steady states resulting 
from this analysis produced results that are almost identical to those of the corresponding steady 
states for the mathematical model above – with the exception of the performance indicators for 
station E. The half-width columns and the Figure A1 in Appendix together indicate that the queue 
at E exhibits the strongest degree of autocorrelation. The reason for this appears to be due mainly 
to the fact that station E is furthest upstream, and hence is most affected by downstream 
congestion. This may indicate that the steady-state performance indicators obtained from the 
mathematical model for station E are less useful than for stations further down stream. Although 
Table 8 also indicates the correlation in the queue at R to enter S, such trend could not be 
observed in the plot (Figure A2 in Appendix). 
 

[INSERT TABLE 8] 
 
 

9.  CONCLUSIONS AND DIRECTIONS FOR FURTHER RESEARCH 
 

In this study, congestion levels in the Philadelphia mental health system were analyzed 
using a queuing network model with blocking. The model focused on blocking phenomena 

                                                           
6 For mean waiting-time statistics, observations are initially grouped into batches of size 16, and the 
corresponding batch means are computed. When the number of batches reaches 40, adjacent pairs are 
combined to create 20 larger batches and the means are recomputed. From this point on, the process 
continues with batches of size 32. For mean queue-length statistics the procedure is the same, where 
observations of queue length are made at every quarter of a time unit (such as four times a year).  
7 The confidence interval is calculated from the t-distribution as 1,.025n

sx t
n−± , where x  is the sample 

mean, s is the sample standard deviation, n is the number of batches, and the second term is the “half 
width” of the interval where 1,.025nt −  is the critical point from Student’s t distribution with 1n −  degree of 
freedom.   
8 The data collected during the warm-up period are not used to calculate the confidence intervals [24]. 
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between three types of mental facilities, namely, extended acute hospitals, residential facilities 
and supported housing. In addition, the flows entering the system from both acute hospitals (i.e., 
general hospitals) and the community at large were examined. Our study is new in two aspects: 
(i) This is the first application of queueing with blocking to analyze the congestion in a mental 
health system; (ii) We propose this queueing approach for the first time as an alternative to the 
conventional needs assessment used by planners for purposes of mental health resources 
allocation. Our queuing approach addresses the drawbacks that are inherent to the needs 
assessment approach by introducing a dynamic model to replace a static model, and also 
capturing interdependencies between the various treatment settings.    

Our model was analyzed both in terms of derived steady states and numerical simulations. 
Both of these analyses showed that for the parameters estimates used, all types of facilities in the 
system experience serious congestion in the resulting steady states. Perhaps the single most 
important finding is that, in contrast to popular perception, system congestion is not always a 
simple cumulative effect of shortages across all facility types. In the Philadelphia case, the model 
suggests that system-wide congestion is due primarily to shortages in one specific facility type, 
namely, supported housing. Here the shortage of supported housing in Philadelphia has created 
“upstream blocking” of patients at both extended acute hospitals and residential facilities. From a 
policy viewpoint, this analysis suggests that removal of such facility-specific bottlenecks may 
often be the most cost-efficient way to reduce congestion in the system as a whole. A second 
important finding is that current congestion levels in the Philadelphia system appear to be 
significantly lower than those predicted by the model at steady state. Hence the model suggests 
that congestion levels in this system may continue to increase for some time. In fact, it has been 
reported that congestion levels in the Philadelphia metal health system have increased across the 
board in recent years, leading to increases in the number of beds at various community type 
facilities.  

However it should be emphasized that the analysis presented here is only a first attempt at 
modeling this complex system. Thus the conclusions above should be regarded as tentative at best. 
For example, the gap between observed congestion and the results of our study may in part be due 
to our assumption of constant arrival rates based on 1997-1999 data. In fact, AAS findings 
indicate that both arrival rates at residential facilities and supported housing have been increasing 
since 1995, implying that the arrival rates to these facilities prior to 1997 were smaller. Hence the 
steady-state congestion levels predicted by our model may in fact be too high. 

This suggests that one important direction for extending the present model would be to 
allow parameters such as arrival rates to change over time. For example, reneging behavior can in 
fact be viewed as changes in arrival rates as a response to queue lengths. As mentioned in section 
7 above, there may also be a change in referral rates by physicians (or gatekeepers) in response to 
changing vacancy rates. While such interaction effects are often difficult to model formally, they 
are easily introduced into simulation models. In addition, simulation study is much less restrictive 
in terms of the probability distributions that can be employed to characterize both arrival and 
service patterns. Hence to achieve more realistic models of system behavior, our future work will 
focus more heavily on simulation.  

Finally, it should be pointed out that the results presented here suggest that transient 
behavior may in fact be more important than steady-state behavior for mental health systems. In 
particular, the severe autocorrelation observed at upstream stations suggest that steady states may 
not even be meaningful within a practical time frame. Hence such findings serve to reinforce the 
need for more detailed simulation studies of mental health systems. 
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Table 1. Summary of Empirically Observed Congestion 

 
Destination Average Waiting Days 

Extended Acute Hospitals 23 
Residential Facilities 33 
Supported Housing 105 

Source: OMH community residential rehabilitation reporting system. Housing Corporation Annual Report. 
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Table 2. Flows in the System and Congestion Types 

 
Flow Cause of 

Congestion 
Station Facing 

Congestion Characteristics Congestion Type 

A to E E is full 
A to R R is full 

A (i) only Classic congestion 

E to R R is full E 
R to S S is full R (i) and (ii) Blocking 

E to X 
R to X 
S to X 

Not Applicable Not Applicable None No congestion 

X to R R is full 
X to S S is full 

X (i) only Classic congestion 
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Table 3.  Service Time Estimate for Station R 

 
The Model Fit 
Prob > chi2      0.0001<  

 
  

Parameter Estimate Std. Error Confidence Interval 
µ (service rate) .00112 .00003 .0011 to .0012 
Median 617.6466 18.2283 581.9190 to 653.3742 

 
Percentiles of Survival Distribution 
Survival .25 .50 .75 .95 
Time 1235.29 617.65 256.35 45.71 
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Table 4.  Service Time Estimate for Station S 

 
The Model Fit 
Prob > chi2      0.0001<  

 
  

Parameter Estimate Std. Error Confidence Interval 
µ (service rate) .00040 .00004 .0003 to .0005 
Median 1719.95021 173.16541 1380.5460 to 2069.3544 

 
Percentiles of Survival Distribution 
Survival .25 .50 .75 .95 
Time 3439.90 1719.95 713.84 127.28 
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Table 5. Input Parameters for Steady-State Analysis 

 
Station Parameter Values Description 

Eλ = AEλ  0.674 External arrival rate from A to E 

Ec  64 Number of beds at E E 

1/ Rµ  60 Mean treatment time (days) at E 

ARλ  0.337 External arrival (= referral) rate from A to R  

XRλ  1.668 Arrival (= referral) rate from X to R 
*
XRλ  0.806 Admission rate from X to R 

ERλ  0.170 Arrival (= referral) rate from E to R 

Rc  1206 Number of beds at R 

R 

1/ Rµ
 893 Mean treatment time at R 

Estimated using survival analysis 

XSλ  0.342 Arrival (= referral) rate from X to S 
*
XSλ  0.090 Admission rate from X to S 

RSλ  0.124 Arrival (= referral) rate from R to S 
*
RSλ  0.075 Admission rate from R to S 

1/ Sµ  2500 Mean treatment time at S 
Estimated using survival analysis 

S 

Sc  416 Number of beds at S 
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Table 6. Outputs of Steady-State Analyses 

 

Station Performance Indicator Mean 
Traffic 

Intensity 
( )ρi  

Pr( )i in c≥  

EL  The queue length to enter E 137 (< 1) 
E 

EW  The waiting time to enter E (days) 203 (< 1) 
0.993  

(0.630) 
0.936 

(0.0001) 

ARL  The queue length for the flow A→R 46 (3) 

ERL  The queue length for the flow E→R 23 (1) 

XRL  The queue length for the flow X→R 110 (7) 

RL  The queue length to enter R 179 (11) 
R 

RW  The waiting time to enter R (days) 136 (9) 

0.995  
(0.972) 

0.811 
(0.315) 

RSL  The queue length for the flow A→R 27 

XSL  The queue length for the flow A→R 33 

SL  The queue length to enter S 60 S 

SW  The waiting time to enter S (days) 366 

0.988 0.722 

Note: The numbers in parentheses present the results of “no blocking” scenarios.  
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Table 7. Input Parameters for Simulation Analysis 

 
Station Parameter Values Description 

Eλ = AEλ  0.674 External arrival rate from A to E 

Ec  64 Number of beds at E E 

1/ Rµ  60 Mean treatment time (days) at E 

ARλ  0.337 External arrival (= referral) rate from A to R  
*
XRλ  0.806 Admission rate from X to R 

Rc  1206 Number of beds at R 

1/ Rµ
 893 Mean treatment time at R 

Estimated using survival analysis 
*
XSλ  0.090 Admission rate from X to S 

1/ Sµ  2500 Mean treatment time at S 
Estimated using survival analysis 

R 

Sc  416 Number of beds at S 
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Table 8. Summary of Simulation Results 
 

Station Statistic Average Half Width Minimum Maximum 

AEL  237.68 Corr 0.00 598.00 
E 

AEW  352.07 Corr 0.00 865.99 

ARL  46.33 0.78 19.00 81.00 

XRL  110.04 0.24 97.00 477.00 

ERL  23.25 0.33 7.00 39.00 

ARW  136.66 1.11 91.76 84.54 

XRW  135.43 1.00 89.59 186.63 

R 

ERW  136.13 1.08 93.24 184.22 

XSL  32.63 0.02 26.00 208.00 

RSL  28.28 Corr 7.00 56.00 

XSW  359.72 12.42 169.42 570.36 
S 

RSW  369.59 9.74 165.43 582.17 
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Figure 1. In-flows and Out-flows between Stations 
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Figure 2. Tandem Two-Station System with No Buffer 
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Figure 3. Algorithm to obtain Steady-States with Blocking 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Analysis of station E: Obtain EL  and EW  by applying (2) and (3) in terms of the 
effective service time expressed in (5). Station E receives patients only from A. Thus, 

E AEL L= .  

Analysis of station S: Obtain SL  and SW  by applying (2) and (3). The patients at 
station S leave the system without waiting. Thus, 1/ 1/S S=µ µ . The queue length at 
each station is obtained by applying (6) as ( )/iS S iS SL L= λ λ , where ,i X R= . RSL is 
the steady-state number of blocked patients at R to S.  

Analysis of station R: Obtain RL  and RW  by solving (2) and (3) in terms of the 
effective service time expressed in (4). The queue at each station is obtained by 
applying (6) as ( )/iR R iR RL L= λ λ , where , ,i A X E= . ERL  is the number of blocked 
patients at E waiting to enter R.  

Input to the next stage: SW  

Input to the next stage: RW  
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Figure 6.  Congestion at Station S 
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Figure A1.  Queue Length A→E 

Figure A2.  Queue Length R→S 


