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Abstract

The diffusion of new product or technical innovation over space is here
modeled as an event-based process in which the likelihood of the next
adopter being in region r is influenced by two factors: (i) the potential
interactions of individuals in r with current adopters in neighboring re-
gions, and (ii) all other attributes of individuals in r that may influence
their adoption propensity. The first factor is characterized by a logit model
reflecting the likelihood of adoption due to spatial contacts with previous
adopters, and the second by a logit model reflecting the likelihood of adop-
tion due to other intrinsic effects. The resulting spatial diffusion process is
then assumed to be driven by a probabilistic mixture of the two. A number
of formal properties of this model are analyzed, including its asymptotic
behavior. But the main analytical focus is on statistical estimation of pa-
rameters. Here it is shown that standard maximum-likelihood estimates
require large sample sizes to achieve reasonable results. Two estimation
approaches are developed which yield more sensible results for small sample
sizes. These results are applied to a small data set involving the adoption of
a new Internet grocery-shopping service by consumers in the Philadelphia
metropolitan area.



1. Introduction

A variety of behavioral phenomena involve some form of diffusion behavior, rang-
ing from epidemics of communicable diseases to the spread of gossip [Rogers
(1995)]. The present paper is concerned specifically with how the spatial dif-
fusion of new-product adoptions may be influenced by communications with pre-
vious adopters. In the marketing literature there is a long history of efforts to
model such phenomena. This work [summarized for example in Mahajan, et al.
(1990)] has focused mainly on the temporal aspects of innovation diffusion stem-
ming from the original differential-equation approach of Bass (1969). However,
our present focus is on the spatial aspects of such processes: if word-of-mouth
communication is in fact a significant component of adoption behavior, then one
should be able to detect this in terms of the spatial proximity of current adopters
to previous adopters. Spatial models of innovation diffusion date from the work of
Hägerstrand (1967), as summarized (along with its many extensions) in Morrill,
et al. (1988). The most relevant extension of Hägerstrand’s work for our present
purposes is the model proposed by Haining (1983). This model focuses on adop-
tions at the individual level within a discrete-time framework, where the current
probability of adoption by any individual is taken to be a logistic function of
proximities to previous adopters (defined as negative exponentials of distances).
A more recent model of individual adoption behavior by Strang and Tuma (1993)
incorporates spatial and temporal components in a more explicit manner. Here
it is postulated that at each point of (continuous) time, the instantaneous rate of
adoption for individuals depends both on their “intrinsic” rate of adoption and
their “infectious” rate of adoption. The first is assumed to depend linearly on
relevant attributes of the individual, and the second to depend linearly on factors
affecting the individual’s likelihood of contacts with previous adopters.
The present model combines elements of each of these approaches. Like Hain-

ing, we characterize adoptions as a discrete sequence of events rather than points
in a time continuum.1 We also employ logit models of adoption probabilities.
In this context, we develop explicit models of both the “intrinsic” factors and
“contact” factors influencing adoptions, as in Strang and Tuma. But rather than
focusing on the specific locations of individuals, we choose to aggregate individual
locations into spatial regions (zip code areas, census tracts, etc.) that are more

1However Haining does introduce certain time effects by allowing the model parameters to
differ from period to period. In contrast, the present model focuses solely on the sequence of
adoption events, and not when they occur.
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commensurate with most available data sets. In this context it is assumed that
the likelihood of the next adopter being in region r is influenced by two factors: (i)
the potential interactions of individuals in r with current adopters in neighboring
regions, and (ii) all other attributes of individuals in r that may influence their
adoption propensity. The first factor is characterized by a logit model reflecting
the likelihood of adoption due to spatial contacts with previous adopters, and the
second by a logit model reflecting the likelihood of adoption due to other intrinsic
effects. The resulting spatial diffusion process is then assumed to be driven by a
probabilistic mixture of the two.2

A number of formal properties of this model are analyzed. First it is shown
that this model exhibits strong stochastic convergence to a unique steady state.
Moreover, this steady state turns out to be expressible as an explicit function
of the model parameters, thus providing additional useful information both for
estimation purposes and for a fuller behavioral understanding of the model itself.
Our subsequent analysis focuses on the statistical estimation of parameters. Here
it is shown that standard maximum-likelihood estimates can be badly behaved,
and require large sample sizes to achieve reasonable results. Two alternative ap-
proaches are developed. The first draws on general mixture-distribution results to
construct an EM estimation algorithm that avoids many of the problems inherent
in the direct maximum-likelihood approach. The second is a Bayesian approach
that first smoothes the problem by postulating prior distributions for parameters,
and then estimates parameter values as the mode of their joint posterior distrib-
ution given the observed data. Both approaches are shown to yield more sensible
results for small sample sizes. This is particularly important in situations where
interest focuses on the early stages of an adoption process.
The paper begins in section 2 below with a formal development of the model.

The steady-state properties of this model are then studied in section 3, and meth-
ods for estimation are given in section 4 Finally, in section 5, these results are
applied to a small data set involving the adoption of a new Internet grocery-
shopping service by consumers in the Philadelphia metropolitan area.

2Mixture models have been applied to a wide range of phenomena, as exemplified by the
many applications in McLachlan (2000). With particular reference to economic modeling, (e.g.,
brand choice and market segmentation), see also the many applications discussed in Wedel and
Kamakura (2000, chapters 6 and 7).
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2. The Basic Model

Consider the diffusion of information about an economic innovation (new prod-
uct or technology) within a system of spatial regions, r ∈ R = {1, .., R ≥ 2}.
Adoption of this innovation by individuals within the system can be modeled
as realizations, {rn : n = 0, 1, .., N}, of an event-based adoption process, where
rn ∈ R denotes the region in which the nth adoption of the innovation occurs.3

In particular, the initial event r0 identifies the region where adoption first oc-
curs. If pn(r |r0, r1, .., rn−1 ) denotes probability that the nth adoption occurs in
region r, given the current history (r0, r1, .., rn−1) of the process, then this stochas-
tic process is completely specified by the sequence of conditional probabilities (pn,
n = 1, .., N), together with an initial distribution, p0(r), specifying the probability
that the initial adoption occurs in region r.
This initial probability can depend on a number of relevant factors (xr1, .., xrJ)

which are intrinsic to the individuals in region r and serve to distinguish them
from individuals in other regions. Such factors may for example include various
income and age attributes of the population in r. Other relevant factors may of
course include local advertising and media information about the innovation itself.
If p0(i) denotes the probability that individual i in region r is the first adopter,
then we postulate that this intrinsic probability of adoption is the same for all
individuals in region r, and is proportional to an exponential function of these
regional factors for r, i.e., is of the form

p0(i) = α0 exp
³XJ

j=1
βjxrj

´
, i ∈ r (2.1)

where the coefficients, β0, β1, .., βJ are assumed to be common to all regions, and
where α0 is an undetermined multiplier. It then follows that the corresponding
regional event probability, p0(r), is of the form

p0(r) = α0
X

i∈r
exp

³XJ

j=1
βjxrj

´
= α0Mr exp

³XJ

j=1
βjxrj

´
(2.2)

where Mr denotes the population size of region r. Using the normalization condi-
tion

P
r∈R p0(r) = 1, we may solve for α0 and rewrite p0(r) more explicitly as a

3As mentioned in the introduction, this event-based approach focuses only on the location
of the next adoption, and not on the time at which it occurs. A possible temporal extension is
mentioned briefly in the Concluding Remarks.
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weighted logit model :

p0(r) =
Mr exp

³PJ
j=1 βjxrj

´
P

s∈RMs exp
³PJ

j=1 βjxsj
´ , r ∈ R (2.3)

Turning next to the conditional probabilities for all subsequent adoption events,
n = 1, .., N , it is postulated that in addition to the above factors,4 such adoptions
may be due to a direct contact with previous adopters. To model such contacts,
let pc(i|j) denote the probability that a contact by some adopter j is made with
some individual i. If i ∈ r and j ∈ s, then we postulate that this probability is
proportional to a decreasing exponential function of the contact cost, csr, from
region s to r, so that

pc(i|j) = α exp (−θcsr) , i ∈ r, j ∈ s, r, s ∈ R (2.4)

for some multiplier, α, and nonnegative exponent, θ, common to all regions. Note
that as in (2.1) above, one could in principle consider a linear combination of
potentially relevant types of contact costs here, with coefficient vector θ reflecting
the relative importance of each type of cost. But to analyze sensitivity to contact
costs in the simplest possible way, we choose here to restrict θ to a single “cost-
sensitivity” parameter.5

The regional event probability, pc(r|j), corresponding to (2.4) is then given by

pc(r|j) =
X

i∈r
pc(i|j) = αMr exp (−θcsr) , (2.5)

which together with the normalization condition,
P

r∈R pc(r|j) = 1, allows one to
solve for α and write pc also as a weighted logit model:

pc(r|j) = Mr exp (−θcsr)P
v∈RMv exp (−θcsv) , j ∈ s, r ∈ R (2.6)

4At this point it should be noted that the regional factors relevant for the first adopter in
(2.3) are here assumed to be the same for all subsequent adopters. Hence this model ignores
any special features of “early adopters” versus “late adopters”

5This “cost sensitivity” interpretation of θ involves two implicit assumptions, namely that
(i) higher contact costs tend to impede contacts, and (ii) contacts with previous adopters have
a positive influence on potential adopters. These two assumptions are difficult to separate in
practice. For example, if adopters tend to be dissatisfied with the product, then higher contact
levels may act to discourage further adoptions. In this case, θ could be negative even when
contacts levels are quite sensitive to contact costs.
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Hence if the nth adoption results from a contact with some previous adopter in
the sequence, (r0, .., rn−1), then the probability, pc(r|r1, .., rn−1), that this adoption
will occur in region r is given by

pc(r|r1, .., rn−1) =
X

s∈R
pc(r|j)p(j ∈ s|r0, .., rn−1)

=
X

s∈R
Mr exp (−θcsr)P
v∈RMv exp (−θcsv)p(j ∈ s|r0, .., rn−1) (2.7)

If mn(s) denotes the number of times that region s appears in the sequence,
(r0, .., rn−1), then the last probability on the right hand side must be given by the
current fraction (relative frequency) of adopters in s, i.e., by

p(j ∈ s|r0, .., rn−1) = mn(s)

n
(2.8)

Thus letting fn = [fns = mn(s)/n : s ∈ R] denote the corresponding relative-
frequency distribution for the nth adoption event, it follows that the adoption
probability (2.7) may be rewritten as

pc(r|fn) =
X

s∈R
Mr exp (−θcsr)P
v∈RMv exp (−θcsv)fns , r ∈ R (2.9)

where all relevant information in (r0, .., rn−1) is seen to be summarized by the
current relative-frequency distribution of adopters, fn.
Finally, to capture both spatial-contact effects and regional-factor effects, it is

postulated that the conditional event probabilities, pn(r |r0, .., rn−1 ), are in fact
a probabilistic mixture of these two effects, i.e., that for all n = 1, .., N and
(r0, .., rn−1) ∈ Rn,

pn(r |r0, .., rn−1 ) = λpc(r|fn) + (1− λ)p0(r) (2.10)

with mixture probability, λ ∈ (0, 1). Note that as in (2.9) one may replace
(r0, .., rn−1) on the left-hand side of (2.10) with fn, and write simply

pn(r |fn ) = λpc(r|fn) + (1− λ)p0(r) , r ∈ R (2.11)

By way of summary, adoptions are thus assumed to be modeled by a spatial-
mixture process as defined by [(2.3),(2.9),(2.11)].6 There are several important
assumptions implicit in this model, which we now discuss in turn.

6For the case of independent random samples, mixtures of logits have been studied extensively
[as for example in Robert (1998, section 24.3.2) and McLachlan (2000, section 5.11)]. However
for the present type of sequentially-dependent samples, such mixture processes appear to be less
well known.
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2.1. The Spatial-Mixture Assumption

A spatial-mixture process above essentially treats adoptions as a two-stage process
in which (i) an “λ-weighted” coin is first flipped to determine whether an adop-
tion is due to contact effects or other non-contact effects, and (ii) the appropriate
distribution (either pc or p0) is then sampled to determine the region in which
the new adoption occurs. This model obviously oversimplifies the actual adop-
tion process in that adoptions may well involve both of these effects. However,
in the absence of any clear hypotheses about the possible interactions between
contact and non-contact effects, the present model attempts to capture their rela-
tive importance in the simplest possible way. Thus from a practical viewpoint, the
mixture probability, λ, is best viewed simply as measure of the relative importance
of spatial-contact effects in the adoption process.

2.2. The Constant-Population Assumption

Note also from equation (2.9) that the regional populations of potential adopters,
Mr, are treated as constant. This ignores that fact that such populations must
be reduced as adoptions occur (as recognized for example in “Bass-type” models
of innovation diffusion). Hence a second key assumption in the present model is
that the number of actual adopters in any region is a sufficiently small portion of
the total regional population to allow these populations to be treated as constant.
This is most reasonable for adoption processes involving, say, new products in
competitive environments where attainable market shares are not likely to be
large. More generally, this assumption is almost always appropriate for analyzing
the early stages of the adoption processes — where innovation diffusion effects are
most interesting. (A possible relaxation of this assumption is considered briefly in
the Concluding Remarks.) Notice also from (2.9) that it is only relative population
sizes that need to be considered here (i.e., doubling all populations has no effect
on the adoption process).7 This is even more clear in terms of the population
of adopters, which at any stage n of the process need only be specified in terms
of its associated relative frequency distribution, fn. Indeed, the evolution of this
adopter-distribution constitutes a major focus of the present analysis. In the
next section we show that as n becomes large, these distributions converge to a
unique steady state distribution that essentially characterizes the latter stages of
the adoption process. In addition it is shown that this convergence is generally

7However, doubling populations will certainly affect adoption rates. Such temporal issues
are discussed further in the Concluding Remarks.
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quite rapid as long as λ is not too large, i.e., as long as there are significant
non-contact components to adoption behavior.

3. Analysis of Steady States

The main objective of this section is to construct a deterministic “mean represen-
tation” of spatial-mixture process and show that this deterministic version always
converges to a unique mean-frequency distribution that describes the steady state
of the system. In section 7.1 of the Appendix it is shown (by appealing to deeper
results) that the full spatial-mixture process in fact converges with probability
one to the same steady-state. Hence the present simpler development is intended
primarily to motivate the essential features of this stochastic convergence result.
To analyze the asymptotic behavior of spatial-mixture processes as N becomes

large, it is convenient to rewrite the system in vector notation. For any fixed data
matrix, X = (xrj : r = 1, .., R, j = 1, .., J), contact-cost matrix, C = (crs : r, s =
1, .., R), and parameter values, λ, θ, and β = (β1, .., βJ)

0, let the contact-probability
matrix, Pc = [Pc(r, s) : r, s = 1, .., R], be defined for all r, s = 1, .., R by

Pc(r, s) =
Mr exp (−θcsr)P
v∈RMv exp (−θcsv) (3.1)

and let the intrinsic-probability vector, p0 = (p0(r) : r = 1, .., R)0, be defined by
(2.3).

3.1. The State-Probability Mapping

Next observe that if the unit simplex in <R (equivalently, the set of probability
distributions on R) is denoted by

∆ = {x = (x1, .., xR) ∈ <R
+ :

RX
r=1

xr = 1} (3.2)

then by definition, each relative frequency vector fn = (fnr : r ∈ R) in (2.11) above
must be an element of ∆. Hence if the state-probability mapping, p : ∆ → ∆, is
now defined for all f ∈ ∆ by

p(f) = λPcf + (1− λ)p0 (3.3)
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then from (2.11) it is seen that this mapping essentially defines the entire process
in the sense that for each n, the value p(fn) yields the nth state probability dis-
tribution for the process, i.e.,

pr(fn) = pn(r|fn) , n = 1, .., N (3.4)

In particular it is should be clear that the asymptotic properties of each spatial-
mixture process are governed by its state-probability mapping.
Before analyzing the properties of this mapping, it is useful to interpret p(fn) as

the conditional distribution of an appropriately defined random vector. If the rth

column of the R-square identity matrix, IR, is denoted by er = (0, .., 1, .., 0)0 then
the region in which the nth adoption occurs can be treated as the realization of a
random regional-outcome vector, Yn, where Pr(Yn = er|fn) denotes the conditional
probability that the nth adoption occurs in region r given the current distribution,
fn , of previous adopters. With this definition it follows at once from (2.11) and
(3.4) that for all n:

pr(fn) = Pr(Yn = er|fn) , r ∈ R (3.5)

Even more important for our present purposes is the fact that p can also be
interpreted as the conditional expectation of these regional-outcome vectors, i.e.,

E(Yn|fn) =
XR

r=1
er Pr(Yn = er|fn) =

XR

r=1
erpr(fn)

= IRp(fn) = p(fn). (3.6)

This view of p allows one to construct a useful deterministic approximation to
spatial-mixture processes.

3.2. Mean Representations of Spatial-Mixture Processes

If we now designate the sequence of random frequency vectors (fn : n = 1, .., N)
as the adoption-frequency sequence for the spatial-mixture process, then this
sequence is seen to be generated by the sequence of regional-outcome vectors
(Yn : n = 0, 1, .., N) according to the following recursive relation

fn+1 =
n

n+ 1
fn +

1

n+ 1
Yn , n = 1, .., N − 1 (3.7)

with initial condition, f1 = Y0, defined by the regional-outcome vector for the first
adopter. In other words, the adoption-frequency vector fn+1 for event n + 1 is
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constructed by adding the realization of the regional-outcome vector, Xn, to the
sum, nfn =

Pn−1
m=0 Ym, of all previous regional outcomes and rescaling by 1/(n+1).

Hence by taking conditional expectations, E(·|fn), of both sides, we obtain the
corresponding mean-value identity:

E (fn+1|fn) =
n

n+ 1
fn +

1

n+ 1
E(Yn|fn)

=
n

n+ 1
fn +

1

n+ 1
p(fn) , n = 1, .., N − 1 (3.8)

Finally, by treating these conditional expectations as representative mean fre-
quencies, f1 = E(f1) , f2 = E(f2|f1) , .., fn+1 = E

¡
fn+1|fn

¢
, we obtain a

deterministic difference equation

fn+1 =
n

n+ 1
fn +

1

n+ 1
p(fn) , n = 1, .., N − 1 (3.9)

that can be viewed as the mean representation of the spatial-mixture process.
While this deterministic representation in no way captures the full stochastic
behavior of the process, it is reasonable to expect (from the Law of Large Numbers)
that as N → ∞, the asymptotic behavior of this deterministic version should
accurately reflect that of the stochastic process.

3.3. Convergence of Mean-Representations

Hence the main objective of this section is to show that this sequence exhibits
strong global convergence properties to a unique relative-frequency distribution
that in fact describes the steady state of the system. In section 7.1 of the Appen-
dix (Theorem 2) it is shown that the stochastic sequence in (3.7) converges with
probability one to the same steady-state. We begin by rewriting (3.9) as follows:

fn+1 − fn
1/(n+ 1)

= p(fn)− fn (3.10)

In this form expression (3.10) looks roughly like a differential equation, where the
left-hand side is an approximate derivative. This can be made precise by first
noting that the integer sequence (n = 1, 2, ...) conveys only event-ordering infor-
mation that represents no explicit points of time. Hence we are free to associate
these events with any correspondingly ordered sequence of time points. A partic-
ularly useful choice is given by the following recursive definition. Let t0 = 0, and
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for each n ≥ 1 let
tn = tn−1 +

1

n
(3.11)

If we then associate the nth adoption event with time tn and replace fn with
f tnthen (3.10) takes the form:

f tn+1 − f tn
tn+1 − tn

= p(f tn)− f tn (3.12)

which is now seen to be a genuine discrete approximation to the (autonomous)
differential equation:

¦
ft = p(ft)− ft , t ≥ 0 (3.13)

Two additional points should be made here. First observe from (3.9) that since
(3.12) can also be written as

f tn+1 =
n

n+ 1
f tn +

1

n+ 1
p(f tn) (3.14)

and since the unit simplex, ∆, is closed under convex combinations we see that
f tn ∈ ∆ ⇒ p(f tn) ∈ ∆ ⇒ f tn+1. Hence for any starting point f t1 ∈ ∆, (3.12)
generates a well-defined sequence (f tn : n = 1, 2, ..) in ∆, so that these discrete
sequences are seen to approximate the behavior of the differential equation (3.13)
on the unit simplex. Even more important is the fact that for this sequence of
time values:

limn→∞ tn = limn→∞
Xn

m=1

1

m

=
X∞

m=1

1

m
=∞ (3.15)

Hence, one the one hand, the time intervals, tn − tn−1, in the denominator of
(3.12) get smaller, and thereby yield better and better approximations to the
derivative on the left side of (3.13). But on the other hand, these time points
slowly diverge to infinity, thus implying that the asymptotic behavior of (3.12) as
n→∞ should be reflected by that of (3.13) as t→∞. This is the essential feature
of the time sequence chosen in (3.11), and it continues to play a major role in the
stochastic version developed in the Appendix. Given these observations, it suffices
to say at this point that the asymptotic behavior of (3.12) [and hence of (3.9)]
can be studied in terms of the asymptotic behavior of (3.13). But since (3.13)
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is essentially a differential equation, one can draw on large body of knowledge to
determine its asymptotic properties.
To begin with it is clear that the steady states for solutions to this equation

must be precisely the set of points f ∈ ∆ where there is no further change,

i.e., where
¦
f = 0. By (3.13) this in turn is turn equivalent to the condition

that f = p(f), so that the steady states of solutions to (3.13) are precisely the
fixed points of the state-probability mapping, p. Hence (as asserted above) the
properties of this mapping are indeed central to the behavior of spatial-mixture
processes. In the present case, by expanding this map, we see that fixed points of
p must satisfy the linear equation:

f = p(f) = λPcf + (1− λ)p0

⇒ (IR − λPc)f = (1− λ)p0 (3.16)

Moreover, as shown in section 7.1 of the Appendix (Theorem 1), the matrix (IR−
λPc) is always nonsingular, so that we can solve for the unique fixed point of p as

f∗ = (1− λ)(IR − λPc)
−1p0 (3.17)

Given this result, the key question is whether or not solutions to (3.13) actually
converge to this steady state. Here we can appeal to standard properties of linear
differential equations to show that this is the case. In particular, if we rewrite
(3.13) more explicitly as

¦
ft = λPcft + (1− λ)p0 − ft

= (λPc − IR)ft + (1− λ)p0 (3.18)

then (as shown in Theorem 1 of the Appendix, section 7.1) global convergence of
solutions (ft : t ≥ 0) to (3.18) is assured if the real parts of all eigenvalues of the
matrix λPc − IR are negative. Here it can be shown (Lemma 2 of section 7.1 in
the Appendix) that the real part, α, of each eigenvalue of λPc − IR satisfies the
inequality

α ≤ λ− 1 (3.19)

and hence must be negative. This implies (as in Theorem 1 of section 7.1 in the
Appendix) that for every solution path (ft : t ≥ 0) to (3.13) we must have

limt→∞ ft = f∗ (3.20)
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So the same must be true for the approximating mean-frequency sequences in
(3.9) [and (3.12)]i.e., we must also have

limn→∞ fn = f∗ (3.21)

More generally, it can be shown (Theorem 2 of section 7.1 in the Appendix)
that if this deterministic sequence is replaced by the adoption-frequency sequence
(fn : n ≥ 1), then this stochastic sequence converges to f∗ with probability one,
i.e.,

Pr(limn→∞ fn = f∗) = 1 (3.22)

3.4. Rates of Convergence

The results above also help to clarify the important role of λ in determining
the rate of convergence to f∗. As is well known [from the eigenvalue bound in
(3.19)], the rate of convergence in (3.20) is of the same order of magnitude as the
convergence of exp[(λ − 1)t] to zero as t → ∞. In terms of the present discrete
approximation, this implies that for all n,¯̄

fn − f∗
¯̄
= O [exp{(λ− 1)tn] (3.23)

where [by (3.11)],

tn =
Xn

k=1

1

k
(3.24)

Hence smaller values of λ ensure faster rates of convergence. In the present case,
observe that if λ = 0, then there no contact effects, so that all adoptions are in-
dependent random samples from the same fixed distribution, p0, and convergence
to a steady state is simply the Law of Large Numbers applied to distribution p0.
In the present model, this constitutes the maximum possible rate of convergence
for the innovation diffusion process.
As spatial contacts become more important, i.e., as λ increases toward 1,

the fixed distribution p0 plays an ever-diminishing role. The resulting process
then tends to behave in a “sticky” manner, depending on initial conditions. For
example, if λ is close to one, and the first adoption occurs in a relatively populous
region, then there is a good chance that subsequent contacts will continue to
remain inside that region for some time. In the limiting case where all effects
are due to contacts (i.e., a pure-contact process with λ = 1) there must still be
a unique steady state, which is seen from (3.3) to be the stationary distribution
for the Markov chain with transition matrix Pc. But while this steady state must
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eventually be achieved, the underlying contact process tends to exhibit long-range
dependencies, and can be very slow to converge.8

4. Estimation of Parameters

Since the model itself is essentially a likelihood function, the obvious method
to employ for parameter estimation is maximum-likelihood estimation. Unfortu-
nately, this method turns out to be rather badly behaved for mixture models. For
without further constraints, there is no guarantee that the key mixture parameter,
λ, will lie between zero and one. Of course this would in principle be no problem
if one had sufficiently many samples. However, simulations show that “sufficiently
many” in the present case can be rather large (see section 7.2.3 of the Appendix).
Two alternative estimation procedures are developed below that avoid these dif-
ficulties. We begin with a brief look at the maximum-likelihood approach, and
then consider these alternative approaches.

4.1. Maximum-Likelihood Estimation

If for convenience we now denote the observed regional-outcome data by y =
(yn : n = 0, 1, .., N) [with yn(= rn) denoting the region in which the nth adoption
occurs], and let fn = f(y0, .., yn−1) denote the adoption frequency distribution
derivable from y0, .., yn−1 at stage n, then the joint probability function for this
data can be written explicitly as

p(y;β, λ, θ) = p(y0;β)
YN

n=1
p(yn|yn−1, .., y0;β, λ, θ) (4.1)

where semicolons are used to separate variables from parameters. By expressions
(2.3),(2.9) and (2.10), the probabilities on the right-hand side of (4.1) are seen to

8This pure-contact process is formally an instance of an interactive Markov process (as for
example in Brumelle and Gerchak, 1980) and can in fact be characterized as a Markov chain on
the denumerable state space of rational-valued distributions in the simplex ∆. However, while
this representation is useful for establishing the existence of steady states, it offers little help in
analyzing rates of convergence. Indeed, the “sticky” behavior of this process is due precisely to
the fact that the positive supports of the associated transition-probability distributions (each
with only R positive mass points) are very localized in this large state space. Simulated examples
show that even for small regional systems, the realized adoption-frequency distributions, fn, can
remain far from the steady state for values of n in the tens of thousands.

14



have the respective forms

p(y0;β) =
My0 exp

³PJ
j=1 βjxy0j

´
P

s∈RMs exp
³PJ

j=1 βjxsj
´ (4.2)

and

p(yn|yn−1, .., y0;β, λ, θ) = λpc [yn|f(y0, .., yn−1)] + (1− λ)p0(yn)

= λ
X

s∈R
Myn exp (−θcsyn)P
v∈RMv exp (−θcsv)fns + (1− λ)

Myn exp
³PJ

j=1 βjxynj
´

P
s∈RMs exp

³PJ
j=1 βjxsj

´
(4.3)

Hence the standard log likelihood function for parameters (β, λ, θ) is given by9

L(β, λ, θ|y) = log p(y0;β) +
XN

n=1
log p(yn|yn−1, .., y0;β, λ, θ) (4.4)

Our primary interest focuses on the behavior of this function with respect to the
mixture parameter λ. To clarify this behavior, recall from (2.10) that each term
of the summation on the right hand side can be written as

log p(yn|yn−1, .., y0;β, λ, θ) = log {λpθ(yn|fn) + (1− λ)pβ(yn)}
= log {λ [pθ(yn|fn)− pβ(yn)] + pβ(yn)} (4.5)

where the contact probability, pθ(yn|fn), and intrinsic probability, pβ(yn), are now
subscripted by their relevant parameters, θ and β, respectively. Hence each term
in the summation of (4.4) is seen to be a concave increasing [decreasing] function
of λ whenever pθ(yn|fn) > pβ(yn) [pθ(yn|fn) < pβ(yn)]. It should also be clear that
L is well defined for negative values of λ as long as bracketed values in (4.5) are
positive for all n = 1, .., N . In fact, simulations (below) show that such cases are
quite possible.
To gain further insight here, consider the following situation. Suppose that

true value of λ is close to zero, and that intrinsic probability model, pβ(·), fits
9At this point it should be noted that for estimation purposes it is of course assumed that the

number of regions (R) exceeds the number of parameters to be estimated (J) [so that intrinsic
probabilities are not overparameterized]. In addition it is implicitly assumed that the number
of adoptions (N) is larger that the number of regions [so that it is at least possible for the data
to include adoptions in all regions].
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the observed data quite well for an appropriate choice of β, say β∗. Suppose
moreover that these intrinsic probabilities are fairly uniform, so that none of the
probabilities pβ∗(yn) is extremely small. Finally, suppose that the true value of θ
is very large, so that contact probabilities are small when contact costs are large.
It is then reasonable to expect that the location, yn, of each new adopter will tend
to be closest to (i.e., have lowest contact costs with) those regions containing the
largest number of previous adopters. This means that a large negative value of θ
will tend to concentrate contact-probability mass on those regions with the fewest
previous adopters, thus making these realized contacts look very improbable. In
this type of situation is quite possible that for sufficiently negative values, θ∗, the
parameter combination (β∗, θ∗) will yield contact probabilities that are uniformly
smaller than the associated intrinsic probabilities, i.e., pθ∗(yn|fn) < pβ∗(yn) for
all n. In such a case, (4.4) becomes a globally decreasing function of λ which is
maximized at λ∗ = −∞.10
One explicit example is produced in the first column of Table 4.1 below. This

Max Lik EM MAP
Estimate P-value Estimate P-value Estimate P-value

β1 1.00038 0.00002 1.00038 0.00002 0.99939 0.00002
β2 -2.17349 0.00000 -2.17342 0.00000 -2.17165 0.00000
λ -1805646 0.00000 0.00013 0.99962 0.00001 0.92034
θ -2838.631 0.99999 260.007 1.00000 153.963 0.99999

Table 4.1: Example of Negative Lambda

example is taken from a set of 1000 simulations run on a model involving a se-
quence of 100 adoptions from a system of 18 regions (N = 100, R = 18).11 Values
for two intrinsic variables were generated randomly, and the model was simulated
with parameter values (β1 = 1, β2 = −2, λ = 0.3, θ = 10)12. The maximum-

10The possible nonexistence of maximum-likelihood estimates for mixture distributions is well
known, and was evidently first noted for mixtures of normal densities by Lehmann (1983). See
also the discussions in Robert (1998) and McLachlan (2000, section 2.5).
11For sake of convenience, the 18 regions chosen consist of a tightly grouped set of contiguous

counties in (an ArcView file of) North Carolina. The relevant contact costs were then taken to
be centroid distances between counties.
12It should be noted here that interregional distances were normalized to lie between zero and

one (with the maximum pairwise distance equaling one). At this scale, a negative exponential
with θ = 10 falls almost to zero at a about half the maximum distance, and essentially excludes
interaction effects beyond this range.
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likelihood estimates of parameters in the first column were obtained from one of
the simulated “bad” cases as described above. (A detailed development of this
estimation procedure is given in section 7.2.1 of the Appendix.) Notice that the β
estimates for the intrinsic component of the model are right on target, while the
estimates for λ and θ exhibit the type of pathological behavior described above.13

Here the inequalities pθ(yn|fn) < pβ(yn) do indeed hold for all n = 1, .., 100, so that
the algorithm would continue to produce greater negative λ values if allowed to
run indefinitely. Note also that while we have included the standard (asymptotic)
P-value diagnostics, these values are not really meaningful for either λ or θ, since
the partial derivatives of the likelihood function with respect to these parameters
are not quite zero (as is required for asymptotic normality of maximum-likelihood
estimates).
Such examples show quite dramatically that in this type of mixture model,

additional constraints are needed in order to ensure reasonable behavior of the
estimates.14 Here we consider two approaches. The first involves the well-known
EM algorithm, and has the theoretical advantage of building in a natural con-
straint on λ with essentially no additional modeling assumptions. The second
“Bayesian” approach turns out to be somewhat more attractive from a practical
viewpoint, but does require additional modeling assumptions.

4.2. An EM Algorithm based on Data Augmentation

The estimation problem for mixture models discussed above is well known [see for
example the discussion in Hastie, Tibshirani, and Friedman (2001, section 8.5)].
A standard way to avoid this problem is to employ the two-stage interpretation of
mixture distributions mentioned in section 2.1 above, and to treat the outcome of
the first “coin-flipping” stage as an unobserved dichotomous variable, δ, where in
the present case, δ = 1 denotes a contact adoption and δ = 0 denotes an intrinsic
(non-contact) adoption. The data is then “augmented” to a larger data set (y, δ) =

13In the present case the true value, λ = .3, is not close to zero, so that the situation is not
exactly as described above. But even for this value of λ, approximately 3% of the simulated
λ-estimates were negative. This percentage of course eventually vanishes if N is allowed to
increase without bound.
14On the positive side, however, it is worth noting that the functional differences between the

intrinsic probabilities, pβ(yn), and contact probabilities, pθ(yn|fn), ensure that all parameters
of the model are generally identifiable. Hence the types of constraints often imposed to avoid
“aliasing” (or “label-switching”) problems in more symmetric mixture models are not necessary
in the present case [see for example the discussion in Stephens, 2000].
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[(yn, δn) : n = 1, .., N ] where the random vector, δ = (δn : n = 1, .., N), is now
treated as “missing data”. Finally, an EM algorithm is constructed to estimate
the parameters (β, λ, θ) in the presence of this missing data. This algorithm was
first formalized by Dempster, Laird, and Rubin (1977), who showed that a wide
range of estimation problems can be reformulated in terms of missing data.15 For
sake of completeness, a detailed development of this procedure for the present
case is given in section 7.2.2 of the Appendix. Hence for our present purposes it
is enough to sketch the main ideas.
Observe first that in this two-stage approach, λ becomes the sole parameter of

the (Bernoulli) distribution of each random variate, δn. Hence the joint probability
distribution in (4.1) is now replaced by a higher-dimensional joint probability
distributions of the form:

p(y, δ;β, λ, θ) = p(y0;β)
YN

n=1
p (yn| δn, y0, .., yn−1;β, θ) p(δn;λ) (4.6)

with corresponding log likelihood,

log p(y, δ;β, λ, θ) =
XN

n=1
log p(δn;λ) +h

log p(y0;β) +
XN

n=1
log p (yn| δn, y0, .., yn−1;β, θ)

i
(4.7)

Observe that if one were to average out (i.e., take expectations with respect to)
δ in the density (4.6) then the original likelihood function would obviously be
recovered. What is far less obvious is that if one averages out δ in the log likeli-
hood (4.7) then the resulting function continues to be monotone in the original
likelihood function, and hence has the same (local) maxima. This monotonic-
ity property suggests a natural algorithm: Given any current parameter values
(βk, λk, θk), (i) first take the expectation of (4.7) with respect to δ, and then (ii)
obtain (βk+1, λk+1, θk+1) by maximizing this function in (β, λ, θ). The expectation
in (i) is called the E-step, and the maximization in (ii) is called the M-step. One
can see immediately that this approach offers computational advantages since λ
appears only in the first term of (4.7), and can be maximized separately. In the
present case, it turns out that if in the E -step we let πkn denote the expectation

15With respect to mixture distributions in particular, the basic idea of this algorithm is
evidently much older, as discussed in section 4.3 of Dempster, Laird, and Rubin (1977). A
detailed treatment of EM algorithms for mixture distributions is given in McLachlan (2000,
section 2.8).
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of δn given current values (βk, λk, θk), then this expectation has the form

πkn = E(δn;βk, λk, θk) =
λkpk(y)

λkpk(y) + (1− λk)qk(y)
(4.8)

where pk and qk are positive probabilities. Moreover, in the M -step it turns out
that the value of λ which maximizes the expectation of (4.7) has the simple closed
form

λk+1 =
1

N

XN

n=1
πkn (4.9)

Hence it is clear from (4.8) and (4.9) that if 0 < λk < 1, then it must always be true
that 0 < λk+1 < 1. In other words, if we start with some initial guess 0 < λ1 < 1,
then all subsequent estimates will necessarily satisfy this constraint condition.
But since this procedure must always increase the likelihood function in (4.4) one
is led to ask how this is possible given the above behavior of this function. The
answer is that this procedure essentially builds in a natural parameter constraint,
0 ≤ λ ≤ 1, and then maximizes (4.4) subject to this constraint.
This is made clear by applying the EM algorithm to the above example. The

estimation results are shown in the second set of columns. Here it is clear that the
algorithm has converged to the zero-boundary value of λ. Moreover, a zero esti-
mate for λ is not altogether unreasonable given this realization of the data. Note
also that the sign of θ is now much more reasonable. The apparent insignificance
of both λ and θ in terms of asymptotic P-values again has little meaning since
the maximum occurs on the boundary of the constraint space, which violates the
classical conditions for asymptotic normality.
Finally, we note that in addition to this particular illustration, the behavior of

the EM algorithm was simulated for a range of sample sizes, N , in the 18-region
example described above. Since the results of these simulations are qualitatively
identical to those of the next procedure, we choose not to present them separately.

4.3. A Bayesian Estimation Approach

While the EM algorithm has many attractive features (including its simplicity
of calculation), it suffers from several practical shortcomings. First, since in the
present case it can be viewed formally an algorithm for likelihood maximization
subject to the constraint 0 ≤ λ ≤ 1, it will generally converge to zero values of
λ whenever the likelihood function is maximized at negative λ values. Hence, as
shown in the left histogram of Figure 4.2 below, the sampling distributions of such
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estimates tend to exhibit a clumping at zero, even though the true value of λ in
this example was chosen to be 0.3. In addition, this algorithm is notoriously slow
to converge. There are several well-known methods for speeding up this procedure:
most notably to truncate the computationally intensive M -step by taking only a
few gradient-steps (usually one) in each iteration.16 This generalization, known
as the GEM algorithm, was employed here but continued to be very slow to
converge. Even in cases where the maximum-likelihood estimates were quite close
to the true values, it generally proved to be most efficient to simply terminate the
GEM algorithm after several hundred iterations.
With these limitations in mind, we are led to consider an alternative approach

that amounts to smoothing the 0-1 constraint on λ. The most natural way to
achieve smoothing is to adopt a Bayesian viewpoint, and treat parameters as
random variables with prior distributions. The advantage of this approach in
the present case is that even for small sample sizes, one can not only guarantee
that λ lies in the unit interval, but can also impose sufficient smoothing to avoid
concentrations at the end points.

4.3.1. A Prior Distribution for λ

The most natural prior distribution for λ is of course the Beta Distribution, which
acts as the conjugate prior for simple binomial likelihoods. While prior skewness
can be incorporated by employing the general two-parameter family of Beta dis-
tributions, B(a, b), we choose to adopt the simple “symmetry” assumption that
(without further information) small values of λ are no more likely than large
values, i.e., that diffusion with very few spatial contacts is no more likely than
diffusion dominated by spatial contacts. Hence, in addition to the above model
assumptions, we now impose the Bayesian hypothesis that λ has a prior Beta
distribution with a = b, so that (up to a constant factor) its prior density has the
form:

π(λ) ∝ λa−1(1− λ)a−1 , a > 1 (4.10)

While it is possible to treat a as an unknown parameter to be estimated (by impos-
ing a “hyperprior distribution” on a) we choose to treat a as a simple smoothing
parameter to be specified. The shape of this prior density is illustrated in Figure
4.1 below for two values: a = 1.01 and a = 2.00.
The first density is seen to be very flat, and is here employed as a Bayesian

approximation to the constraint, 0 ≤ λ ≤ 1, above. This will serve as the default
16See also the methods discussed in McLachlan (2000, section 2.17).
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Figure 4.1: Prior Distributions for Lambda

value for most of the estimations discussed below. The second density is seen
to be more concentrated about the middle value, λ = 0.5, and is here taken to
represent the hypothesis that neither contact and nor non-contact elements are
dominant in the adoption process. As illustrated below, this type of prior tends
to yield more reasonable results in small-sample situations.
The other parameters are here taken to have flat (noninformative) priors with

densities of the form:
π(βj) ∝ 1 , j = 1, .., J (4.11)

and
π(θ) ∝ 1 (4.12)

Observe that (4.12) allows both positive and negative values for θ. While it may
be reasonable to postulate that θ > 0 [as is implicit in (2.4)], this not only requires
the introduction of an additional parameterized family of densities (such as a very
flat Gamma density), but also precludes certain relevant types of contact behavior
(as discussed in footnote 5 above). Hence we choose here to treat θ and β in a
parallel manner.

4.3.2. Maximum a posteriori estimation

In this Bayesian framework, the probability function in (4.1) is now interpreted
as a conditional density:17

p(y|β, λ, θ) = p(y0|β)
YN

n=1
p(yn|yn−1, .., y0, β, λ, θ) (4.13)

17Following standard Bayesian convention, we here refer to all probability distributions as
“densities” defined with respect to appropriate continuous or discrete reference measures.
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in which semicolons are replaced by conditioning notation, so that p(y|β, λ, θ) now
denotes the conditional density of y given (β, λ, θ). The posterior density of the
parameters (β, λ, θ) given y is then obtainable from (4.10) through (4.13) by the
standard identity

p(β, λ, θ|y)p(y) = p(β, λ, θ, y) = p(y|β, λ, θ)p(β, λ, θ)

⇒ p(β, λ, θ|y) ∝ p(y|β, λ, θ)p(β, λ, θ)
= p(y|β, λ, θ)π(β)π(θ)π(λ)
∝ p(y|β, λ, θ)λa−1(1− λ)a−1

= p(y0|β)
YN

n=1
p(yn|fn, β, λ, θ)λa−1(1− λ)a−1 (4.14)

Given this joint posterior density, the most standard Bayesian approach is to
derive the conditional posterior densities for each parameter, and then employ
Gibbs sampling techniques to simulate the marginal posterior distributions of
each parameter given y. This provides not only estimates of the posterior mean
(and median) of each parameter, but also estimates of their standard deviations
which can be used for testing purposes. This full approach will be developed in a
subsequent paper.18

For the present, we choose simply to employ the natural Bayesian generaliza-
tion of maximum-likelihood estimation: namely to find the most likely posterior
values of the parameters given the data y. This procedure, known as maximum a
posteriori (MAP) estimation,19 is seen [from a comparison of (4.4) and (4.14)] to
reduce to maximum-likelihood estimation when all priors are flat. In the present
case, the log posterior density of (β, λ, θ) has the form:

log p(β, λ, θ|y) = log
h
p(y0|β)

YN

n=1
p(yn|fn, β, λ, θ)

i
+ log

£
λa−1(1− λ)a−1

¤
= L(β, λ, θ|y) + (a− 1) [logλ+ log(1− λ)] (4.15)

But since the posterior mode of (4.14) is by definition the point (β∗, λ∗, θ∗) that
maximizes (4.14) [and hence (4.15)], it is clear that this estimation problem is

18This Gibbs sampling approach requires that the joint posterior density yield a proper distri-
bution (i.e., with finite probability mass). Hence it is worth noting in passing that even though
the above priors are improper with respect to β and θ, it can be shown [by employing the results
of Speckman, Lee and Sun (2001)] that the joint posterior density given by (4.4) together with
(4.2) and (4.3) is proper.
19For discussions of MAP estimation in the context of mixture distributions see McLachlan

(2000, section 2.10), and Hastie, et. al. (2001, section 8.5.1).
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formally equivalent to a penalized version of maximum-likelihood with penalty
function, (a−1) [log λ+ log(1− λ)], approaching−∞ as λ approaches zero or one.
Thus the practical effect of this MAP estimation approach is to replace the sharp 0-
1 constraint implicit in the EM algorithm above with a smoothed penalty-function
version. Here it is evident that the parameter a ∈ (1,∞) governs the degree of
smoothing, with a close to one yielding almost no smoothing of the 0-1 constraint
(as can also be seen from Figure 4.1). Hence, as with all Bayesian estimation, the
addition of this parameter serves to add flexibility to the constrained maximum-
likelihood approach above.
A final issue that should be mentioned here is the possibility of multiple max-

ima for the objective function in (4.15). In fact the very nature of mixture dis-
tributions often yields multiple modes corresponding to the separate statistical
populations in the mixture.20 Hence, when sample sizes are relatively small, it
may be difficult to distinguish a single dominant mixture of intrinsic and con-
tact events. In such cases it is important try alternative starting points when
maximizing (4.15) [as discussed further in section 7.2.3 of the Appendix].

4.3.3. Simulated Estimation Results

MAP estimation (with a = 1.01) was applied to 1000 simulations of the 18-region
example above for the range of sample sizes shown in the first column of Table
4.2. The mean, median, and standard deviation of the sampling distributions for
each parameter estimate are shown in the rest of the table. The last column for
each variate shows the fraction of “bad” cases, defined for λ(= 0.3) to be a value
less than .01, and for all other parameters [β1(= 1), β2(= −2), θ(= 10)] to be a
value with the wrong sign. As mentioned above, the parameter choice, a = 1.01,
is taken to approximate an unsmoothed 0-1 constraint on λ. Before discussing
the results of this approach in detail, it should be reiterated that the results
obtained for the EM algorithm above are almost exactly the same. However, the
EM algorithm takes on average about ten times as long to converge. Hence, while
there are many known methods for marginally improving the efficiency of the EM
algorithm, MAP estimation seems win hands down in the present application.21

Turning now to the estimation results themselves, notice first that the esti-
mates for β1 and β2 seem quite reasonable even for the smallest sample size tested.
20See for example the illustrations given in Robert (1998) and McLachlan (2000).
21It is worth noting however that the improvement procedure (M -step) in each iteration of

the EM algorithm is computationally somewhat simpler that the general gradient algorithm for
MAP estimation. See section 7.2.2 for further discussion.
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Beta 1 Beta 2
Size Mean Median St Dev % < 0 Mean Median St Dev % < 0
100 1.1727 1.057 0.615 0 -2.199 -2.046 0.675 0
200 1.102 1.029 0.413 0 -2.109 -2.039 0.465 0
500 1.077 1.017 0.372 0 -2.104 -2.035 0.411 0
1000 1.012 1.002 0.159 0 -2.014 -2.003 0.176 0
2000 1.008 0.999 0.098 0 -2.007 -2.001 0.124 0

Lambda Theta
Size Mean Median St Dev % < .01 Mean Median St Dev % < 0
100 0.264 0.266 0.130 .029 16.378 9.268 169.19 .041
200 0.259 0.261 0.106 .005 11.114 9.126 123.69 .020
500 0.269 0.263 0.096 .001 5.105 9.073 130.35 .002
1000 0.274 0.274 0.071 0 9.311 9.415 2.207 0
2000 0.280 0.275 0.061 0 9.406 9.477 1.777 0

Table 4.2: Simulation Results for a = 1.01

In particular, there were no estimates with the wrong sign.22 However, the results
for λ and θ are far less satisfactory. Turning first to the mixture parameter, λ, it
is clear that for sample sizes as small as 100 the estimates are quite unreliable.
This is seen most clearly by the fact that almost 3% of the samples are clumped
at zero. This means that about 3 in every 100 samples can be expected to yield
a negative maximum-likelihood estimate of λ, even though the true value of λ is
substantially larger than zero. This is shown in more detail in the corresponding
histogram for λ estimates on the left in Figure 4.2 below. For comparison, the
estimation results are also given for a smoothing value of a = 2.0. Notice that
here the negativity problem has disappeared altogether, and that the values are
now more concentrated around the true value, λ = .3.
However, it is important to emphasize that smoothing by itself is not guar-

anteed to improve the situation. For example, if λ were in fact close to zero, it
is clear that the prior distribution for a = 2 in Figure 4.1 above would tend to
overstate the significance of contact effects. More generally, it is well known that
prior distributions tend to “pull” estimated modal values toward the prior mean.
Hence a small maximum-likelihood value would be pulled upward toward λ = .5.
The same is true for values of λ close to one, where smoothing tends to understate

22The corresponding ranges of asymptotic P-values were all quite significant, and are not
shown.
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Figure 4.2: Lambda Estimates for N = 100

the significance of contact effect. All that can be said here is that when samples
are relatively small (say less than 200 in the present case), a smoothing value of
around a = 2.0 tends to produce better results than an unsmoothed estimate as
long as the true value of λ is not too extreme.

4.4. Steady-State Consequences for Estimation

As stated in section 3.3, the present model is not simply a mixture model. In fact
it is a discrete dynamical model with adoption frequencies (fn) that converge sto-
chastically to a unique steady given by the fixed point, f∗, of the state-probability
mapping in (3.17) Hence if this innovation diffusion process has progressed suf-
ficiently far, then it is reasonable to suppose that the most recently observed
adoption frequencies, fN , are fairly close to f∗. This has several consequences for
parameter estimation. First, since the fixed point in (3.17) is seen to be an explicit
function of the parameters, this provides an additional piece of information that
is potentially useful for estimation purposes. However, if these frequencies are
“too close” to the steady state, f∗, then there is the possibility of an identification
problem in estimation. We now discuss each of these issues in turn.

4.4.1. Steady-State Regression

In view of the computational difficulties with MAP estimation discussed in section
7.2.3 of the Appendix, it is important to obtain a good starting point for the
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maximization algorithm. With this in mind, our present objective is to use steady
state information to obtain reasonable initial parameter values for the estimation
procedure. To do so we begin by observing from (3.16) that if f∗ were known,
then we would have the additional parametric relation:

(IR − λPθ)f
∗ = (1− λ)pβ

⇒
·

1

1− λ
(IR − λPθ)

¸
f∗ = pβ (4.16)

where [as in (4.5)] we now index the contact-probability matrix, Pθ, and intrinsic-
probability vector, pβ, by their associated parameters. Next let

α =

"X
s∈R

Ms exp
³XJ

j=1
βjxsj

´#−1
(4.17)

so that pβ has the form

pβ(r) = αMr exp(x
0
rβ)

⇒ log pβ(r) = logα+ logMr + x0rβ
⇒ log pβ = (logα)u+ logM +Xβ (4.18)

where M = (Mr : r = 1, .., R)0 is the vector of regional populations, and again
u = (1, .., 1)0 denotes the unit vector in <R. In this context, if fN is assumed to
approximate f∗,23 then we may write

log

·
1

1− λ
(IR − λPθ)

¸
fN − logM ≈ (logα)u+Xβ (4.19)

Finally, by letting v(λ, θ) denote the left-hand side of (4.19) we obtain the ap-
proximate linear relation

v(λ, θ) = [u,X]

µ
β0
β

¶
(4.20)

where βo(= logα) can now be viewed as an unknown intercept term. Hence for
each given (λ, θ) pair, we can estimate β using ordinary least squares. While

23If N is large, then it may be more reasonable to average frequencies over say the last ten
percent of adoptions, f = 1

mΣ
N
n=N−mfn (with m/N ≈ .10), and use f rather than fN .
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neither λ or θ are known, they are scalar parameters. Moreover, λ is bounded by
the unit interval, and θ is assumed to be positive. So in view of the speed of linear
regression, it is a simple matter to try a selected range of values of these variables,
compute the associated β estimate, and choose the triple (β, λ, θ) with maximum
log likelihood, L(β, λ, θ|y), to be the initial set of parameter values (β0, λ0, θ0) for
the MAP estimation procedure. In the present model it turns out that β is not
overly sensitive to the choice of θ > 0, so we simply set θ = 1 and focused on
values of λ.24 In this context, one additional simplification is possible since (4.16)
requires that (IR − λPθ)fN ≥ 0. This is easily seen to restrict feasible values of λ
to an interval (0, λ) with λ defined by the condition that

min
r

£
fN(r)− λPθ(r, ·)fN

¤
= 0 (4.21)

Even for the bad case involving only N = 100 adoptions, this procedure produced
a reasonable starting point [β0 = (0.98073,−1.7987), λ0 = 0.00899,and θ0 ≡ 1],
for obtaining the final estimates in the MAP column of Table 4.1.

4.4.2. Parameter Identifiability

To motivate the second consequence of stochastic convergence, suppose that the
diffusion process is not observed from its inception, but rather that data is only
available for adoptions n = m, .., N . Then the joint density in (4.1) now has the
form:

p(ym;β, λ, θ) =
YN

n=m
p(yn|fn, β, λ, θ) (4.22)

where ym = (ym, .., yN). In addition, suppose that m is sufficiently large to ensure
by stochastic convergence that fn ≈ f∗ for all n ≥ m, and hence that (4.22) has
the approximate form:

p(ym;β, λ, θ) ≈
YN

n=m
p(yn|f∗, β, λ, θ) (4.23)

This is now seen to be the likelihood of N −m independent random samples from
the distribution f∗, so parameter estimation is essentially classical maximum-
likelihood estimation for independent random sampling. By solving for f∗ in
(4.16) as,

f∗(β, λ, θ) = (1− λ)(IR − λPθ)
−1pβ (4.24)

24In the context of footnote 12 above, a negative exponential with θ = 1 is fairly disbursed,
with weights falling from one at zero to about 0.40 at the maximum interregional distance.
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we can rewrite (4.23) in classical form as

p(ym;β, λ, θ) ≈
YR

r=1
f∗r (β, λ, θ)

Nfmr (4.25)

Now suppose also that N −m is sufficiently large to ensure (by the Law of Large
Numbers) that the relative frequencies, fm, corresponding to ym are almost the
same as f∗, i.e., fm ≈ f∗. Then since it is well known that (4.25) is maximized
when each f∗r equals f

m
r , it follows that any parameter values (β, λ, θ) satisfying the

identity fm = f∗(β, λ, θ) should be approximately maximum-likelihood estimates.
To see that this yields a nonidentifiability problem, observe first from (4.24) that
this identity can be written more explicitly as follows:

fm = (1− λ)(IR − λPθ)
−1pβ

⇒ (IR − λPθ)f
m = (1− λ)pβ (4.26)

Hence if we invoke the natural assumption that within-region contact costs, crr,
are always smaller that between-region contact costs, crs, and allow θ to become
large, then by (3.1) it follows that limθ→∞ Pθ = IR, so that for large θ expression
(4.26) reduces to

(1− λ)fm ≈ (1− λ)pβ (4.27)

Thus for θ = ∞ and λ = 1, it is clear from (4.27) that β is not identifiable.
Of course λ = 1 is not possible in MAP estimation. So what this means from a
practical viewpoint is that whenm andN−m are both large, one can expect to find
cases yielding MAP estimates with θ large, λ close to one, and β estimates highly
erratic. Simulations show that this is exactly what happens. In particular, the
simulations shown in the “1000” row of Table 4.2 above are actually constructed
as the first 1000 observations in simulations with N = 2000. The second thousand
observations were then used to construct estimation examples as above with m =
1000 and N − m = 1000. The MAP estimation results for these samples are
shown in the columns marked “Second 1000 Samples” in Table 4.3 below, and
those in the “First 1000 Samples” are repeated from Table 4.2 below. The single
most important comparison here is in terms of standard deviations. Notice in
particular that those for the beta estimates have increased by a full order of
magnitude. Notice also that λ both and θ are now significantly skewed toward
larger values (mean > median). One specific example is illustrated in the last
two columns. Notice that in the second 1000 samples, the estimates of both λ
and θ are considerably larger than for the first 1000 samples, and that the beta
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First 1000 Samples Second 1000 Samples Example
Par Mean Median St Dev Mean Median St Dev First Second
β1 1.012 1.002 0.159 1.1071 1.007 2.783 1.314 -10.303
β2 -2.014 -2.003 0.176 -2.1851 -2.009 3.910 -2.369 -38.599
λ 0.274 0.274 0.071 0.3083 0.2855 0.123 0.325 0.954
θ 9.311 9.415 2.207 10.572 9.679 12.70 8.596 40.605

Table 4.3: Comparison of Early and Late Estimates

estimates are now way off base. These are exactly the results predicted above,
and show that identification problems do indeed tend to emerge as the given
samples segment moves toward the steady state. The inference here is simply
that diffusion parameters become harder to identify in later stages of the process,
where adoption behavior is itself more diffuse.

5. An Application to Internet Grocery Shopping

The following application involves the adoption of a new Internet grocery shopping
service, Netgrocer.com, by consumers in the Philadelphia metropolitan area. The
spatial units (regions) are here taken to be zipcode areas, and the time span is
from the introduction of this web site in May 1997 through January 2001. The
zipcode-level demographic data used was provided by CACI Marketing Systems.
Philadelphia was chosen as a study area from a much larger data set including all
zipcode areas throughout the country.25

5.1. Spatial Data and Intrinsic Variables

The Philadelphia data set consisted of N = 1288 adoptions over the given time
period, and involved a total of R = 46 zipcode areas.26 As in the simulation
study above, contact costs were taken to be linear in distance between centroids
of zipcode areas. Populations for each zipcode area were based on 1999 levels,
and were assumed to be essentially the same for all other years. The demographic

25The authors are grateful to David Bell for supplying the Netgrocer.com data used for the
empirical application in this paper.
26There are 48 zipcode areas in Philadelphia. Two (peripheral) areas were excluded because

of missing information.
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data used for the intrinsic variables at the zipcode level are described in Table 5.1
below.

Variable Description
SUPMAS number of supermarkets per person
NOVEHICLE % of housing units with no vehicle available
APER % of Asians
BPER % of Blacks
HPER % of Hispanics
ELDERLY % of population over 65 years old
COLDEG % of over 25 year-olds with college degrees
SOLO % of single-member households
FAMLARG % of households with more than five members

Table 5.1: Description of Intrinsic Variables

The choice of these variables was based on a number of considerations that
can be roughly classified as follows:

Access to off-line retail stores: Adoption of online grocery shopping would
appear to be more attractive to consumers who do not own cars and/or live in
zip-code areas that have fewer grocery stores. To reflect accessibility to off-line
groceries, the availability of vehicles (NOVEHICLE) and the number of super-
markets divided by the population in the zipcode area (SUPMAS) were included.

Access to the Internet: According to a study by U.S. Department of Com-
merce27, households of different ethnic and racial backgrounds have disparate rates
of Internet access. Black and Hispanic households show lower Internet penetration
rates (23.5% and 23.6%, respectively) than White and Asian households (46.1%
and 56.8%, respectively). Hence we also expect that the percent of Black (BPER),
Hispanic (HPER), and Asian (APER) households should influence the probability
of adoption. Specifically, zipcode areas with higher percent of Black and Hispanic
households are expected to be less likely to adopt the innovation. In addition,
the elderly tend to be less willing to accept new technologies, partly because their
learning costs are higher than for the young. Therefore we expect that adoptions

27Falling through the net: Toward digital inclusion, A Report on Americans’ Access to Tech-
nology Tools (October 2000), U.S. Department of Commerce, Economics and Statistics Admin-
istration, National Telecommunications and Information Administration. This report can be
obtained at the website, http://digitaldivide.gov/reports.htm
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will be less likely in zipcode areas with higher percentages of elderly residents
(ELDERLY).

Attractiveness of on-line shopping: We expect that more educated consumers
(COLDEG) will tend to value time more highly, and hence find online grocery
shopping more attractive . We also expect that the size of households will influence
the attractiveness of on-line shopping. To capture such effects, we have included
both the percentage of single-member households (SOLO) and the percentage of
households with more than five members (FAMLARG).

5.2. Estimation Results

Estimates were obtained using both the MAP estimation procedure and the EM
algorithm. The results, shown in Table 5.2 below, are seen to be essentially the
same for both procedures.28 In addition to the initial parameter values obtained
by steady-state regression (discussed above), several alternative starting values
for the parameters were tried and no secondary maxima were found.

MAP Estimates EM Estimates
Variable Estimate P-value Estimate P-value
SUPMAS -2197.695 < 0.0000 -2197.459 < 0.0000
NOVEHICLE 7.254 < 0.0000 7.253 < 0.0000
APER 5.410 < 0.0000 5.410 < 0.0000
BPER -0.899 0.0064 -0.899 0.0064
HPER -1.655 0.3075 -1.656 0.3073
ELDERLY -6.830 0.0005 -6.830 0.0005
COLDEG 4.318 0.0021 4.318 0.0021
SOLO -4.230 0.0998 -4.228 0.1000
FAMLARG -12.550 0.0008 -12.547 0.0008
LAMBDA 0.582 < 0.0000 0.582 < 0.0000
THETA -1212.148 0.9995 -1085.000 0.9985

Table 5.2: Comparison of MAP and EM Estimates

The key mixture parameter λ is statistically very significant, and suggests that
word-of-mouth contacts may indeed be an important component of new-adoption

28However, the MAP gradient procedure converged in 12 iterations, while the EM algorithm
required 636 iterations to converge.
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behavior. This is also supported by the estimated value for θ, which is seen to be
very negative. Plots show that the log posterior density approaches its maximum
asymptotically as θ → −∞, and hence that it is not possible to ascertain a
meaningful asymptotic P-value here (as discussed above). However, it does appear
that contacts are very sensitive to distance. To see that these findings are in fact
consistent with the data, consider the spatial distribution of cumulative adoptions
shown in Figure 5.1 below. Here it is clear that adoptions in the Philadelphia

1997 1998 1999

Figure 5.1: Cumulative Adoption Frequencies

area are highly concentrated in the two zipcode areas (19104,19103) near the
middle of the map. The biggest of these (19104) contains both the University of
Pennsylvania and Drexel University, thus suggesting that many adoptions were by
word of mouth between students, faculty and others associated with this academic
complex. However, it should also be emphasized that since the Internet is used
extensively by this particular population, many adoptions may have resulted from
direct exposure to Internet advertising. In any case, the large negative value of
θ suggests that most contacts are occurring inside these zipcode areas. So for
this adoption process it appears, unfortunately, that zipcode areas are too large
to capture diffusion effects in much detail.
Turning finally to the β estimates, most of our hypotheses were confirmed.

First the significant positive sign on NOVEHICLE and negative sign on SUP-
MAS29 both suggest that accessibility to off-line shopping does decrease the like-

29The parameter estimate for SUPMAS is large because SUPMAS is the only variable that is
not normalized between zero and one.
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lihood of adoption. As for ethnic differences in Internet usage, the signs of APER
and BPER are very significant and consistent with our hypothesis. (The sign of
HPER is also consistent but not significant). The effects of age are also evident in
the significant negative sign on ELDERLY. Finally, the significant positive sign
on COLDEG is consistent with our hypothesis about the attractiveness of online
shopping to those with high values for time.
But perhaps what is most important to note here is that most of these findings

can again be explained largely in terms of the academic populations within which
this innovation process is concentrated. This is particularly clear with respect to
the strong negative significance of ELDERLY and FAMLARG, both of which are
consistent with young student populations. The positive significance of APER
is also consistent with the current composition of these populations. The only
real surprise here is the insignificance of SOLO, which is clearly an attribute of
student populations. While SOLO does exhibit some collinearities with other
variables, this is not the main source of the problem. Rather, the key difficulty
appears to be the fact that less than 17% of households in the university zipcode
(19104) are actually single-member households. In particular, this large zipcode
also contains a sizable residential population in West Philadelphia not related to
the university.30 This again suggests that in the present application, zipcode areas
are too large to capture some of the significant population heterogeneities that
exist.

6. Concluding Remarks

In this paper we have developed a probabilistic mixture model for analyzing new-
product adoption processes in space. The primary intent of the model is to allow
the relevance of spatial contact effects to be estimated in a simple manner by
means of a single mixture parameter. But while the model is appealing in terms
of its simplicity, it is clearly limited in scope. Hence it is appropriate here to
consider two possible extensions of the model that would widen its applicability.
One simple extension would be to relax the constant-population assumption,

and allow the populations of past adopters and potential future adopters in each
region to change as new adoptions occur. The primary advantage of the constant-
population assumption employed here is to allow a simple formulation and analysis
of the steady-state properties of the model — assuming relatively large regional
30Most off-campus students now live in the Center City area of Philadelphia, as reflected by

tract 19103 which contains almost 50% single households.
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populations of potential adopters. But in cases where regions are quite small
(such as the extreme case of single individuals, when such data is available),
or more generally, cases where the numbers of adopters are likely to grow to a
significant fraction of total regional populations, this notion of a steady state is not
tenable. Here it would be more appropriate to replace fixed regional populations,
Mr, with variable populations. More precisely, if for any given adoption data,
y = (y0, y1, .., yN), we define indicator functions by δnr (y) = 1 ⇔ yn = r, then
for any set of initial regional populations, (Mr : r ∈ R), one may consider state-
dependent populations, (Mn

r : r ∈ R, n = 1, .., N) defined by

Mn
r (y) =Mr −

Xn

i=0
δnr (y) (6.1)

The present model can easily be reformulated in terms of these variable popula-
tions.31

Amore important limitation of the present model relates to time. In particular,
this event-based process ignores any real-time considerations. However, if one is
interested for example in the number of new customers expected during the first
year following the introduction of a product, or the time required for adoptions
to reach say 20% of “market saturation”, then it is clear that time-based rates of
adoption are crucial. With this in mind, it is important to observe that event-
based models such as the present one can always be viewed formally as “jump
processes” embedded within continuous-time stochastic processes, where the only
missing ingredient is the relevant sequence of “sojourn times” between jumps.
By choosing the right state space, one can in fact regard the present model as
the simplest type of a jump process, namely a Markov chain. In particular, if
regional populations Mr are taken as fixed integers, and partitioned into adopter
subpopulations, Ma

r , and non-adopter subpopulations, M
a

r = Mr −Ma
r , then one

can easily reformulate the present model as a Markov chain on the finite state
space,M, consisting of all possible population profiles,

M = {[(Ma
r ,Mr −Ma

r ), r ∈ R] : 0 ≤Ma
r ≤Mr, r ∈ R} (6.2)

(Note also that this state space automatically incorporates variable populations,
as discussed above.) Such a Markov chain can easily be extended to a continuous-
time Markov process by the introduction of appropriately defined exponential
sojourn times [as detailed for example in Kulkarni (1995,Chapter 6)]. Of course

31It should be noted, however that (like most Bass-type models) these state-dependencies still
ignore other relevant population changes, such as in- and out-migration from each region r.
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it should be emphasized that the state space in (6.2) is generally enormous, and
difficult to analyze directly. But it nonetheless provides a basic framework within
which more succinct modeling representations can be developed. Such possibilities
will be explored in subsequent work.

7. Appendix

The following appendix includes stochastic steady-state analysis as well as the
details of the maximum-likelihood, EM, andMAP estimation procedures discussed
in the text.

7.1. Steady State Analysis

The purpose of this section of the Appendix is to establish the stochastic conver-
gence property in expression (3.22) of the text. The approach used here draws
heavily on the work of Kushner and Clark (1978), as summarized in Kushner and
Kim (1997), now designated as [KK]. From a conceptual viewpoint, this approach
closely parallels the development of sections 3.2 and 3.3 , except that we now
consider approximations to the autonomous differential equation (3.13) on ∆ by
the stochastic relation in (3.7), rather than the deterministic relation in (3.9). We
begin by rewriting (3.7) in a more general form as:

¦
ft = Ψ(ft) , f0 ∈ ∆ (7.1)

with (affine) kernel function, Ψ : <R → <R, defined by

Ψ(f) = p(f)− f

= [λPcf + (1− λ)p0]− f (7.2)

To analyze this differential equation, we begin by showing that the restriction of
starting points, f0, in (7.1) to the unit simplex ∆ ensures that solutions will be
entirely contained in ∆:

Lemma 1. The unit simplex, ∆, is an invariant set for the differential equation
with kernel (7.2), i.e., for any solution (ft : t ≥ 0) of (7.1) it must be true that

ft ∈ ∆ , t ≥ 0 (7.3)
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Proof: To see that a solution path (ft : t ≥ 0) with f0 ∈ ∆ can never leave
∆, note first that if u = (1, .., 1)0 ∈ <R, then one may define a corresponding
differential equation for the sum, s = u0f , by

¦
st = u0

¦
ft = u0 [λPcft + (1− λ)p0 − ft]

= λ (u0Pcft) + (1− λ)u0p0 − u0ft (7.4)

But u0p0 = 1 and u0f = 1 for all f ∈ ∆. Moreover, since Pc is column stochastic by
definition, it also follows that u0Pc = u0, and hence that for all solutions (ft : t ≥ 0)
with f0 ∈ ∆ we must have,

¦
st = λ(1) + (1− λ)(1)− 1 = 0 , t ≥ 0 (7.5)

This in turn implies that these solutions must stay in the unit flat, F = {f ∈
<R : u0f = 1} containing ∆. Thus it follows from the continuity of solution paths
for (7.1) that any path leaving ∆ must cross the boundary ∂(∆) of ∆ in F at least
once. Hence suppose t0 is the first exit time for this path, so that by continuity,
ft0 ∈ ∂(∆). Then since ∆ is the intersection of F with the nonnegative quadrant
in <R, it follows that (for R ≥ 2) we must have ft0r = 0 for some component of
ft0 . To see that this is not possible, let Pc(r, ·) denote the rth row of Pc and let
p0r denote the rth component of p0. Then by the positivity of both Pc(r, ·)ft0 and
p0r, we see that

ft0r = 0 ⇒
¦
f t0r = Ψr(ft) = λPc(r, ·)ft0 + (1− λ)p0r > 0

By the continuity of Ψ it then follows that
¦
f tr > 0 for all t in some neighborhood

(t0− ε, t0+ ε) of t0, and thus that ftr can only increase in this neighborhood. But
since t0 is the first exit time, ft must then lie in the relative interior of ∆ for all
t ∈ (t0 − ε, t0). Hence we must have ftr > 0 for all t ∈ (t0 − ε, t0), and it follows
that ftr can only reach zero by decreasing. Thus we obtain a contradiction, and
may conclude that no first exit time, t0, can exist.

In analysis to follow, we may thus treat (7.1) as general differential equation on
<R subject only to the initial condition that f0 ∈ ∆. To characterize the stability
properties of this differential equation, we begin with two useful eigenvalue results.
If the modulus of each complex number ω = a+ ib is denoted by |ω| = √a2 + b2,
then we have the following eigenvalue property of contact-probability matrices,
Pc:
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Lemma 2. If ω is an eigenvalue of Pc, then |ω| ≤ 1.

Proof: First observe that since Pc must have the same eigenvalues as its trans-
pose, P 0

c, we may shift attention to P
0
c. Observe next from the column stochasticity

of Pc that P 0
cu = u, and hence that 1 is an eigenvalue of P 0

c with eigenvector u.
Hence the result follows from the nonnegativity of P 0

c, which together with the
Perron-Frobenius Theorem implies that this positive eigenvalue must have maxi-
mum modulus for P 0

c.

As a direct consequence of this property for Pc we next show that:

Lemma 3. If ω = a+ ib is any eigenvalue of the matrix λPc − IR , then

−(1 + λ) ≤ a ≤ λ− 1 (7.6)

Proof: If ω is an eigenvalue of λPc−IR then by definition there is some (possibly
complex-valued) vector x with (λPc − IR)x = ωx, so that

λPcx− x = ωx ⇒ Pcx =

µ
1 + ω

λ

¶
x (7.7)

Hence (1 + ω) /λ must be an eigenvalue of Pc and it follows from Lemma 2 that

1 ≥
¯̄̄̄
1 + ω

λ

¯̄̄̄
=

¯̄̄̄
1 + a

λ
+ i

b

λ

¯̄̄̄
=

sµ
1 + a

λ

¶2
+

µ
b

λ

¶2
(7.8)

and thus that

1 ≥
¯̄̄̄
1 + a

λ

¯̄̄̄
⇒ −1 ≤ 1 + a

λ
≤ 1

⇒ −λ ≤ 1 + a ≤ λ

⇒ −(1 + λ) ≤ a ≤ λ− 1 . (7.9)

Using these eigenvalue properties we can now establish the fundamental con-
vergence property of (7.1), namely that [as in (3.17)] the fixed point for p,

f∗ = (1− λ)(IR − λPc)
−1p0 (7.10)
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is the (unique) globally asymptotically stable stationary point of (7.1)

Theorem 1.[Deterministic Convergence] If (ft : t ≥ 0) is any solution to
(7.1) then

limt→∞ ft = f∗ (7.11)

Proof: It must first be verified that f∗ is well defined, i.e., that the matrix
(IR − λPc) in (7.10) is nonsingular. By rewriting this matrix as

(IR − λPc) = −λ
µ
Pc − 1

λ
IR

¶
(7.12)

it is clear that nonsingularity of (IR − λPc) is equivalent to that of
¡
Pc − 1

λ
IR
¢
.

But since the determinantal equation

|Pc − ωIR| = 0 (7.13)

is precisely the characteristic equation of the contact-probability matrix, Pc, it
then follows that

¡
Pc − 1

λ
IR
¢
is nonsingular (i.e., has a nonzero determinant) iff 1

λ

is not an eigenvalue of Pc. Finally since every eigenvalue of Pc must have modulus
less than or equal to one by Lemma 2, and since λ ∈ (0, 1)⇒ 1/λ > 1, it follows
that 1/λ cannot be an eigenvalue of Pc. Hence the unique fixed point, f∗, of p in
(7.10) is well defined, and is seen from (7.2) to be the unique stationary point of
(7.1).
It thus remains to be shown that this stationary point is globally asymptoti-

cally stable, i.e., that (7.11) holds. To do so, it is convenient to convert the affine
differential equation (7.1) to a linear differential equation by employing the change
of variables,

zt = ft − f∗ , t ≥ 0 (7.14)

which, by the fixed-point property of f∗, yields

¦
zt =

¦
ft = [λPcft + (1− λ)p0]− ft

= [λPc(zt + f∗) + (1− λ)p0]− (zt + f∗)
= [λPczt − zt] + [λPcf

∗ + (1− λ)p0 − f∗]

= λPczt − zt = (λPc − IR)zt (7.15)

and thus yields the linear differential equation

¦
zt = Azt , t ≥ 0 (7.16)
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with matrix kernel
A = λPc − IR (7.17)

To establish (7.11) it then suffices from (7.14) to show that for every solution
(zt : t ≥ 0) of (7.16) we must have

limt→∞ zt = 0 (7.18)

But for linear differential equations it is well known [for example, Theorem 6.5.2
in Hirsch and Smale (1974, p.136)] that this is equivalent to showing that all
eigenvalues of A have negative real parts. Hence the desired result follows at once
from Lemma 3.

Given these deterministic convergence results for (7.1), we are ready to state
our central result on stochastic convergence to (7.1). If the positive integers are
denoted by N = {1, 2, ..}, then we now consider stochastic adoption-frequency
sequences (fn : n ∈ N) in ∆ generated as in (3.7) by

fn+1 =
n

n+ 1
fn +

1

n+ 1
Yn , n ∈ N (7.19)

with initial condition, f1 = Y0, where (Yn : n = 0, 1, 2, ..) is the sequence of
regional-outcome vectors for a spatial-mixture process. Next observe that this
sequence can be rewritten as:

fn+1 = fn + �nZn , n ∈ N (7.20)

where the stochastic process (Zn : n ∈ N) is defined for all n by
Zn = Yn − fn (7.21)

and where the step-size sequence (�n : n ∈ N) is defined by,
�n = 1/(n+ 1) , n ∈ N (7.22)

In this form, (7.20) is seen to be an instance of expression (5.1.3) in [KK](with
θn ≡ fn and Yn ≡ Zn). Notice in particular that this step-size sequence satisfies
the critical “slow divergence” condition that

P∞
n=1 �n = ∞ with �n → 0, as in

expression (5.1.1) of [KK]. Notice also that since (fn) always lies in ∆, there is no
need for a projection operator, Π∆, constraining this sequence to ∆. With this
reformulation of (7.19), we are now ready to state our main result:
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Theorem 2.[Stochastic Convergence] If (fn : n ∈ N) is the adoption-frequency
sequence for a spatial-mixture process, and f∗ is the unique fixed point of the as-
sociated state-probability mapping as in (3.17), then

Pr (limn→∞ fn = f∗) = 1 (7.23)

Proof: Observe first that since (fn) always lies in the (compact) domain of
attraction, ∆, for the asymptotically stable point, f∗, and since the step-size
sequence (�n) has already been observed to satisfy the slow-divergence condition
(5.1.1) in [KK], it follows from Theorem 5.2.1 in [KK] that it is enough to verify
conditions (A2.1) through (A2.5) in [KK, p.94], which can equivalently be stated
in our terms as follows: Condition (A2.1) requires that

supnE
¡kZnk2

¢
<∞ (7.24)

and conditions (A2.2) and (A2.3) together state that there must exist a continuous
function Φ and sequence of random vectors (ϕn) such that for all n ∈ N,

E (Zn+1|f1, Z1, .., Zn) = Φ(fn+1) + ϕn+1 (7.25)

Finally, conditions (A2.4) and (A2.5) require respectively that the step-size se-
quence (�n) in (7.20) and random vector sequence (ϕn) in (7.25) must satisfy the
additional “shrinkage” conditions thatX∞

n=1
�2n <∞ (7.26)

and
Pr
³X∞

n=1
�n |ϕn| <∞

´
= 1 (7.27)

To verify these conditions, we first recall from (3.6) together with the recursive
construction of (fn) in (7.19) that for all n ∈ N,

E (Yn+1|f1, Y1, .., Yn) = E(Yn+1|fn+1) = P (fn+1) (7.28)

Hence, observing from (7.19) that fn+1 is totally determined by (f1, Y1, .., Yn), and
that Yn+1 depends on the past only through fn+1, it follows from (7.21) together
with the definition of Ψ that

E (Zn+1|f1, Z1, .., Zn) = E(Yn+1 − fn+1|f1, Y1 − f1, .., Yn − fn)

= E(Yn+1|f1, Y1, .., Yn)−E(fn+1|f1, Y1, .., Yn)
= E(Yn+1|fn+1)− fn+1

= P (fn+1)− fn+1

= Ψ(fn+1) (7.29)
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Hence by setting Φ = Ψ and ϕn ≡ 0, it follows at once from the continuity of Ψ
that (7.25) holds for these choices. Moreover, from the well-known convergence
result X∞

n=1

1

(n+ 1)2
<∞ (7.30)

we also see that conditions (7.26) and (7.27) hold for our choices of (�n) and (ϕn).
Finally to verify (7.24), observe if we set ∆sup = sup {kfk : f ∈ ∆} then by the
boundedness of ∆, ∆sup < ∞. But since the sequences (Yn) and (fn) in (7.21)
both lie in ∆, we may then conclude that

kZnk = kYn − fnk ≤ kYnk+ kfnk ≤ 2∆sup (7.31)

and hence that
supnE

¡kZnk2
¢ ≤ 4 (∆sup)

2 <∞ (7.32)

Thus all conditions are satisfied, and the result is established.

7.2. Estimation Details

In this final section we give explicit developments of the maximum-likelihood,
EM, and MAP estimation procedures discussed the text. First we consider the
maximum-likelihood estimates discussed in section 4.1 above.

7.2.1. Maximum-Likelihood Estimation

For convenience, we restate a number of relevant definitions in the text. First let
the row vector of intrinsic attributes for region r be denoted by xr = (xrj : j =
1, .., J), and let the realized adoption data again be denoted by y0 for the first
adopter, and y = (yn : n = 1, .., N) for all subsequent adopters. Next let the
intrinsic probability of r be denoted by

pβ(r) =
Mr exp(β

0xr)PR
s=1Ms exp(β

0xs)
(7.33)

and let the contact probability of r given relative frequency vector f = (fs : s =
1, .., R) be denoted by

pθ(r|f) =
X

s∈R
Mr exp (−θcsr)P
v∈RMv exp (−θcsv)fs

=
X

s∈R
Pθ(r, s)fs (7.34)
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where the contact probability matrix, Pθ = [Pθ(r, s)], in (3.1) is now indexed by
its parameter θ. The mixture probability of r given f together with the parameter
vector, φ = (β, λ, θ) is then given [as in (2.11)] by

pφ(r|f) = λpθ(r|f) + (1− λ)pβ(r) (7.35)

In these terms, the log likelihood function in (4.4) has the form

L(φ|y) = L(β, λ, θ|y) = log pβ(y0) +
XN

n=1
log pφ(r|f))

= log pβ(y0) +
XN

n=1
log [λpθ(r|f) + (1− λ)pβ(r)] (7.36)

If the relative relative frequency vector generated by events (y0, y1, .., yn) in (2.8) is
again denoted by fn, then the gradient of L is given by∇φL = (∇βL

0,∇λL,∇θL)
0,

where

∇βL = (x0y0 −
X

s∈R
pβ(s)x

0
s) +

XN

n=1

(1− λ)pβ(yn)

pφ(yn|fn) (x0yn −
X

s∈R
pβ(s)x

0
s)

(7.37)

∇λL =
XN

n=1

pθ(yn|fn)− pβ(yn)

pφ(yn|fn) (7.38)

∇θL =
XN

n=1

λ

pφ(yn|fn)
X

s∈R
Pθ(yn, s)fn(s)

hX
v∈R

Pθ(v, s)csv − csyn

i
(7.39)

The terms of the Hessian matrix

Hφ =

 ∇ββL ∇λβL
0 ∇θβL

0

∇λβL ∇λλL ∇λθL
∇θβL ∇λθL ∇θθL

 (7.40)

are somewhat more complex. We begin with the important diagonal components,
and start with the simplest of these, namely∇λλL. Partial differentiation of (7.38)
yields

∇λλL = −
XN

n=1

µ
pθ(yn|fn)− pβ(yn)

pφ(yn|fn)
¶2

< 0 (7.41)

and shows that L is strictly concave in λ [as already observed following (4.5) in
the text]. Next, if for each n we let αn = (1 − λ)pβ(yn)/pφ(yn|fn) ∈ (0, 1), then
partial differentiation of (7.37) with respect to β yields (after some reduction):

∇ββL = A1 −A2 (7.42)
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where

A1 =
XN

n=1
[αn(1− αn)]

³
x0yn −

X
s∈R

pβ(s)x
0
s

´³
xyn −

X
s∈R

pβ(s)xs
´

A2 =
³
1 +

XN

n=1
αn

´
·hX

s∈R
pβ(s)x

0
sxs −

³X
s∈R

pβ(s)x
0
s

´³X
s∈R

pβ(s)xs
´i

Notice first that A1 is a nonnegative weighted sum of positive semidefinite (psd)
matrices, and hence is psd. Moreover, observe that square-bracketed term in A2 is
the (psd) covariance matrix of a random vector with outcomes (xs) and associated
probabilities pβ(s). Hence B is psd by the same argument. From (7.42) we then
see that ∇ββL is the difference of two psd matrices, and thus is generally not
negative semidefinite (nsd). Moreover, the first-order condition, 0 = ∇βL, is seen
from (7.37) to offer little additional insight into the negative semidefiniteness of
∇ββL at singular points. In fact, examples show that L can be multimodal in β
(see section 7.2.3 below). Turning finally to ∇θθL, partial differentiation of (7.39)
yields with respect to θ yields

∇θθL = B1 − (B2 +B3) (7.43)

where the three matrices:

B1 =
XN

n=1

λ

pφ(yn|fn)
X

s∈R
Pθ(yn, s)fn(s)

³X
v∈R

Pθ(v, s)csv − csyn

´2
B2 =

XN

n=1

λ

pφ(yn|fn)
X

s∈R
Pθ(yn, s)fn(s)

hX
v∈R

Pθ(v, s)c
2
sv

−
³X

v∈R
Pθ(v, s)csv

´2¸
B3 =

XN

n=1

µ
λ

pφ(yn|fn)
¶2µX

s∈R
Pθ(yn, s)fn(s)

hX
v∈R

Pθ(v, s)csv − csyn

i2¶
are all seen to be nonnegative. Hence it should be clear that the sign of this
(scalar) second derivative is completely undetermined. As with β, examples show
that the L can be multimodal in θ (see section 7.2.3 below). To determine the
off-diagnonal terms, observe first that the partial of (7.37) with respect to λ yields
(after some reduction)

∇λβL = −
XN

n=1

pβ(yn)pθ(yn|fn)
pφ(yn|fn)2 (x0yn −

X
s∈R

pβ(s)x
0
s) (7.44)
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and similarly, the partial of (7.37) with respect to θ yields

∇θβL = −λ(1− λ)
XN

n=1

·
pβ(yn)

pφ(yn|fn)2 (x
0
yn −

X
v∈R

pβ(v)x
0
v)·X

s∈R
Pθ(yn, s)fn(s)

³X
v∈R

Pθ(v, s)csv − csyn

´i
(7.45)

Finally the partial of (7.38) with respect to λ yields.

∇λθL =
XN

n=1

pβ(yn)

pφ(yn|fn)2
X

s∈R

h
P θ(yn, s)fn(s)·³X

v∈R
Pθ(v, s)csv − csyn

´i
(7.46)

In regions where Hφ is negative definite (i.e., has all negative eigenvalues), one
can employ these results to construct Newton-Raphson increments, −H−1

θ ∇φL .
Otherwise, the simple gradient, ∇φL, can be used.
However, there are several additional complications in this type of gradient

procedure that should be mentioned. First, step sizes must of course be restricted
sufficiently to ensure that only logs of positive quantities are involved in evalu-
ations of the objective function L. A special problem related to θ is that the
objective function can often be extremely flat in the θ direction, thus slowing
down convergence. Here is was found to be efficient to do fairly broad line-search
maximization with respect to θ on each step.

7.2.2. EM Algorithm

Turning next to the EM algorithm in section 4.2 above, it is here postulated that
the outcome of the first stage for the nth adoption is a Bernoulli random variable,
δn, with Pr(δn = 1) = λ. The explicit form of the joint density in (4.6) is

p(y, δ;β, λ, θ) = p(y0;β)
YN

n=1
p (yn| δn, y0, .., yn−1;β, θ) p(δn;λ)

= pβ(y0)
YN

n=1
pθ (yn| fn)δn pβ(yn)1−δn

£
λδn(1− λ)1−δn

¤
(7.47)
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with associated log likelihood

L(β, λ, θ|y, δ) = log pβ(y0) +
XN

n=1

£
δn log pθ (yn| fn) + (1− δn) log pβ(yn)

¤
+
XN

n=1
[δn log λ+ (1− δn) log(1− λ)]

= log pβ(y0) +
XN

n=1

©
δn
£
log pθ (yn| fn)− log pβ(yn)

¤
+ log pβ(yn)

ª
+
XN

n=1
{δn [log λ− log(1− λ)] + log(1− λ)} (7.48)

Hence, for any given set of parameter estimates, φk = (βk, λk, θk), the E-step
for this procedure consists of calculating the expectation of (7.48) with respect
to δn under the parameter values φk. Since y is taken to be given, we must
first determine the conditional distribution, pφk(δn|y), of δn given y under φk.
Note that the only relevant parts of y for δn are the adoption outcome, yn,
and the current relative frequency distribution, fn, of previous adopters. Hence
pφk(δn|y) = pφk(δn|yn, fn), and it follows by definition that for δn = 1,

pφk(δn = 1|yn, fn)pφk(yn|fn) = pφk(δn = 1, yn|fn)
= pφk(yn|δn = 1, fn)pφk(δn = 1|fn)
= pθk(yn|fn)λ (7.49)

Similarly, for δn = 0,

pφk(δn = 0|yn, fn)pφk(yn|fn) = pφk(δn = 0, yn|fn)
= pφk(yn|δn = 0, fn)pφk(δn = 0|fn)
= pβk(yn)(1− λ) (7.50)

and we see by taking ratios of both sides of (7.49) and (7.50) that

pφk(δn = 1|yn, fn)
pφk(δn = 0|yn, fn)

=
pθk(yn|fn)λ

pβk(yn)(1− λ)
(7.51)

This together with the identity 1 = pφk(δn = 1|yn, fn) + pφk(δn = 0|yn, fn), then
yields

pφk(δn = 1|yn, fn) =
λpθk(yn|fn)

λpθk(yn|fn) + (1− λ)pβk(yn)
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Thus, if we denote the conditional expectation of δn given (yn, fn) under φk by
πkn, then (as with all Bernoulli variates)

πkn = Eφk(δn|yn, fn) = pφk(δn = 1|yn, fn)
=

λpθk(yn|fn)
λpθk(yn|fn) + (1− λ)pβk(yn)

Finally, to obtain the desired expectation, we need only observe that the right
hand side of (7.48) is linear in δn, so that

Eφk [L(β, λ, θ|y, δ)] = log pβ(y0)
+
XN

n=1
Eφk(δn|yn, fn) [log pθ (yn| fn)− log pβ(yn)] + log pβ(yn)

+
XN

n=1

©
Eφk(δn|yn, fn) [log λ− log(1− λ)] + log(1− λ)

ª
= log pβ(y0) +

XN

n=1

©
πkn [log pθ (yn| fn)− log pβ(yn)] + log pβ(yn)

ª
+
XN

n=1

©
πkn [log λ− log(1− λ)] + log(1− λ)

ª
(7.52)

Turning next to theM-Step of the procedure, the expectation in (7.52) constitutes
the relevant objective function for this step. Hence if we now let

Zk
1 (β) = log pβ(y0) +

XN

n=1
(1− πkn) log pβ(yn)

(7.53)

Zk
2 (θ) =

XN

n=1
πkn log pθ (yn| fn) (7.54)

Zk
3 (λ) =

XN

n=1

©
πkn [log λ− log(1− λ)] + log(1− λ)

ª
= (log λ)

XN

n=1
πkn + log(1− λ)

³
N −

XN

n=1
πkn

´
(7.55)

then it follows that this objective function can be written as

Zk(β, λ, θ) = Zk
1 (β) + Zk

2 (θ) + Zk
3 (λ) (7.56)

and hence is a separable additive in β, λ, and θ. We start by maximizing Zk
3 with

respect to λ, which turns out to be expressible in closed form as follows:

∇λZ
k
3 =

1

λ

XN

n=1
π − 1

1− λ

³
N −

XN

n=1
πkn

´
= 0
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⇒ λ∗ =
1

N

XN

n=1
πkn (7.57)

Moreover, one may readily verify that the second derivative is negative, and hence
that λ∗ uniquely maximizes this concave function. To maximize Zk

1 with respect
to β, observe that by substituting (7.33) into (7.53) and taking partial derivatives:

∇βZ
k
1 = x0y0 +

XN

n=1

¡
1− πkn

¢
x0yn

−
³
N + 1−

XN

n=1
πkn

´³X
s∈R

pβ(s)x
0
s

´
(7.58)

Similarly, by substituting (7.34) into (7.54) and differentiating, we obtain (after
some manipulation):

∇θZ
k
2 =

XN

n=1
πkn
X

s∈R
Pθ(yn, s)fn(s)P
v∈R Pθ(yn, v)fn(v)

hX
v∈R

Pθ(v, s)csv − csyn

i
(7.59)

Before proceeding to the second-order conditions, it is of interest to consider the
behavior of ∇θZ

k
2 in this M -step. Recall that while the EM algorithm embodies

a natural constraint on the admissible range of λ, no such restriction is placed on
θ. Hence a natural way to investigate the sign of θ here is to consider the sign of
∇θZ

k
2 evaluated at θ = 0. If this sign is always positive then this must guarantee

that the optimal value of θ is positive. To see what this means in the present case,
observe from (3.1) that P0(r, s) =Mr/

P
s∈RMs, and hence thatX

v∈R
P0(v, s)csv =

P
v∈RMvcsvP
v∈RMv

=
_
cs (7.60)

is simply the average contact cost from region s to all individuals in the system.
In these terms we have

∇θZ
k
2

¯̄
θ=0

=
XN

n=1
πkn
X

s∈R
Mynfn(s)P
v∈RMynfn(v)

£_
cs − csyn

¤
=

XN

n=1
πkn

nX
s∈R

fn(s)
_
cs −

X
s∈R

fn(s)csyn

o
(7.61)

The first term in brackets is seen to be the average contact cost from current
adopters to all individuals in the system, and the second term is the average
contact cost from current adopters to individuals the region where the nth adoption
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occurs. Hence positivity of all these terms guarantees that ∇θZ
k
2

¯̄
θ=0

will be
positive. In other words, if average contact costs to each successive adopter are
“lower than expected” when θ = 0, then the most likely value of θ should be
positive (indicating sensitivity to contact costs). More generally if these contact
costs tend to be lower than expected, then positivity should still hold.
It is also worth noticing here that for any given parameters φk = (βk, λk, θk),

the values of the gradients in (7.58) and (7.59) are exactly the same as those for
the likelihood function in (7.37) and (7.39) above. For example, (7.39) can be
rewritten [by adding pθ(yn|fn) to both numerators and denominators] as

∇θL =
XN

n=1

λpθ(yn|fn)
pφ(yn|fn)

X
s∈R

Pθ(yn, s)fn(s)

pθ(yn|fn)
hX

v∈R
Pθ(v, s)csv − csyn

i
(7.62)

But since
λpθk(yn|fn)
pφk(yn|fn)

=
λpθk(yn|fn)

λpθk(yn|fn) + (1− λ)pθk(yn)
= πkn (7.63)

and since by (7.34),

pθ(yn|fn) =
X

v∈R
Pθ(yn, v)fn(v) (7.64)

it follows that ∇θL|φ=φk is precisely the same as ∇θZ
k
2 . A similar argument

shows that ∇βL|φ=φk = ∇βZ
k
1 . Hence from a gradient viewpoint, this M -step

is seen to be essentially the same as partial likelihood maximization with re-
spect to (β, θ). However, since πkn is fixed in the gradient for each M -step, while
λpθ(yn|fn)/pφ(yn|fn) is variable in the gradient function ∇θL, it should also be
clear that the second-order properties of these two maximization problems are
generally quite different, and in particular that those for the M -step should be
simpler. In particular we see here that

∇ββZ
k
1 = −

³
N + 1−

XN

n=1
πkn

´
·nX

s∈R
pβ(s)x

0
sxs −

³X
s∈R

pβ(s)xs
´³X

s∈R
pβ(s)x

0
s

´o
(7.65)

and hence that Zk
1 is now negative semidefinite in β [by the same argument as

that for A2 in (7.42)]. But the second partial with respect to θ is unfortunately
not much simpler than that for maximum-likelihood. Here, if we let

αθ(s, r) =
Pθ(r, s)fn(s)P
v∈R Pθ(r, v)fn(v)

(7.66)
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and
zθ(s, r) =

X
v∈R

Pθ(v, s)csv − csr (7.67)

then in terms of this notation,

∇θθZ
k
1 = C1 − (C2 + C3) (7.68)

where the three terms

C1 =
XN

n=1
πkn

½X
s∈R

αθ(s, yn)zθ(s, yn)
2 −

³X
s∈R

αθ(s, yn)zθ(s, yn)
´2¾

C2 =
XN

n=1
πkn
X

s∈R
αθ(s, yn)

·X
v∈R

Pθ(v, s)c
2
sv −

³X
v∈R

Pθ(v, s)csv
´2¸

C3 =
XN

n=1
πkn

hX
s∈R

αθ(s, yn)csyn

i
are all nonnegative [since the bracketed terms in C1 and C2 are again seen to be
the variances of appropriately defined random variables]. Hence the sign of ∇θθZ

k
1

continues to be indeterminate.
Separable additivity implies that maximization with respect to β and θ can

be done separately. As with the gradient procedure for maximum likelihood, it
generally proved to be more efficient to carry out a fairly broad line-search max-
imization for θ than to rely on gradient steps (which tend to be rather small).
However even with Newton-Raphson steps for β and line searches for θ, the EM
algorithm is very slow to converge. Hence the following more efficient MAP esti-
mation procedure is recommended for the present model.

7.2.3. MAP Estimation

For the Bayesian approach discussed in section 4.3 above, the mixture parameter,
λ, was postulated to be a random variable with symmetric prior Beta distribution,
π(λ) ∝ λa−1(1 − λ)a−1, where the parameter, a > 1, is treated as a smoothing
parameter. In addition it was assumed that β and θ were distributed with flat
priors, yielding the joint posterior density in (4.14) with log posterior given [as in
(4.15)] by:

Φ(β, λ, θ|y) = L(β, λ, θ|y) + (a− 1) [logλ+ log(1− λ)] (7.69)

Maximization of (7.69) to estimate the posterior mode, i.e., MAP estimation, is
thus equivalent to penalized maximization of (7.36) with λ-penalty function given
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by the second term in (7.69). Hence the gradient and Hessian for (7.69) are
obtainable almost directly from those of (7.36). In particular, it follows at once
that

∇βΦ = ∇βL (7.70)

∇θΦ = ∇θL (7.71)

∇λΦ = ∇λL+ (a− 1)
·
1

λ
− 1

1− λ

¸
(7.72)

where the gradients of L with respect to β, λ, and θ are given respectively by
(7.37), (7.38), and (7.39). Similarly all terms of the Hessian matrix for Φ are
exactly those of (7.40) except for the second partial of Φ with respect to λ, which
now takes the form:

∇λλΦ = ∇λλL− (a− 1)
·
1

λ2
+

1

(1− λ)2

¸
(7.73)

But since ∇λλL < 0 by (7.41) and since the second term in (7.73) is negative, it
again follows that Φ is strictly concave in λ. Moreover, since Φ approaches −∞ as
λ approaches either 0 or 1, it then follows that for any values of (β, θ), Φ always
achieves a unique maximum in λ on (0, 1).
Note also that for a close to one [a = 1.01 in Figure 4.1] and for λ ∈ (0, 1) [but

not too close to 0 or 1], both gradient and Newton-Raphson steps are almost the
same in both maximization procedures. The key distinctions involve cases where
L achieves it maximum in λ outside [0, 1]. Here it should be clear that the MAP
estimate of λ will be close to 0 or 1 (with degree of closeness depending on the
smoothing parameter a). To gain further insight into these cases, it is useful to
look more closely at L, which can be written in terms of (4.5) as

L(β, λ, θ|y) = log pβ(y0) +
XN

n=1
log {λpθ(yn|fn) + (1− λ)pβ(yn)} (7.74)

Notice here that as λ approaches zero, all terms involving θ vanish. Thus it is not
surprising that estimates of θ become extremely unstable when λ is close to zero
[as for example in the case depicted in Table 4.1 of the text]. Similarly, when λ
approaches one, all terms involving β except the first term vanish. So when λ is
close to one, only the initial observation, y0, provides much information about β,
and estimates of β can be expected to be unstable [as reflected by the example
shown in Table 4.3 of the text].
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As mentioned in the text, an additional difficulty that can arise is the pos-
sibility of multiple maxima for the objective function Φ. For the simulations
summarized in Table 4.2 of the text, multiple maxima occurred with some fre-
quency for sample sizes N ≤ 200. In all such cases there were two local maxima.
These usually produced similar values of the β coefficients, but radically different
pairs of (λ, θ) values. One example (with N = 200) is illustrated in Table 5.1
below. Notice in particular the radical difference between the two values of λ.

Global Max Local Max
Par Estimate P-value Estimate P-value
β1 -5.271 < 0.0000 -7.449 0.921
β2 3.939 0.0001 -27.541 0.825
λ 0.031 < 0.0000 0.911 < 0.000
θ -5.407 0.00002 -11.676 < 0.000

Table 7.1: Case of Multiple Maxima

This illustrates a case where the two modes do indeed correspond to “best local
fits” of the intrinsic model and contact model, respectively. Moreover, while the
intrinsic mode is somewhat more likely, both modes are seen in Figure 7.1 below
to be quite prominent.32 So, especially for small sample sizes, it is imperative
to try a number of starting points in the MAP estimation procedure to identify
possible multiple modes.
Finally, as asymptotic theory predicts, when the number of adoptions, N , is

large (and the true value of the mixture parameter, λ, is not too close to 0 or
1), the maximum-likelihood estimates of (β, λ, θ) are generally well behaved, and
there is little need for alternative estimation procedures.33 In the simulations of
Table 4.2 in the text, this turned out to be the case for N ≥ 1000. But since
these simple simulations involved only four unknown parameters, this serves to
underscore the limitations of direct maximum-likelihood estimation in the present
context.
32This plot shows the log-likelihood values along a line in the parameter space through the

two modes. If the parameter vectors for the two modes are denoted by φ1 and φ2, then the
values plotted are L

£
αφ1 + (1− α)φ2|y¤ for α ∈ [−0.1, 1.1]. Hence the two modes correspond

respectively to the points α = 0 and α = 1.
33As discussed in MacLachlan(2000, section 2.5), as long as such estimates are uniquely iden-

tifiable, they are guaranteed to be strongly consistent under very general conditions.
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Figure 7.1: Plot of Multiple Maxima
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