
Querying Heterogeneous Information Sources Using
Source Descriptions

Alon Y. Levy Anand Rajaraman* Joann J. Ordille
AT&T Research

levyOresearch.att.com

Stanford University Bell Laboratories

anandQcs.stanford.edu joannQbell-labs.com

both free and commercial databases on product in-

Abstract

We witness a rapid increase in the number of
structured information sources that are available
online, especially on the World-Wide Web. These
sources store interrelated data on topics such as
product information, stock market information,
entertainment, etc. We would like to use the
data stored in these databases to answer complex
queries that go beyond keyword searches. We de-
scribe the Information Manifold, an implemented
system that provides uniform access to a.hetero-
geneous collection of more than 100 information
sources on the WWW. IM contains declarative de-
scriptions of the contents and capabilities of the
information sources. We describe algorithms that
use the source descriptions to prune efficiently the
set of information sources for a given query and
practical algorithms to generate executable query
plans. We also present experimental studies indi-
cating that the architecture and algorithms used
in the Information Manifold scale up well to sev-
eral hundred information sources.

1 Introduction

We witness a rapid increase in the number of struc-
tured information sources that are available online.
The World-Wide Web (WWW), in particular, is a pop-
ular medium for interacting with such sources. The
WWW is usually regarded as an interconnected col-
lection of unstructured documents. However, a large
number of structured information sources are now be-
coming available on the Web. These sources include

*Part of this work was done while this author was visiting
AT&T Bell Laboratories.

Permission to copy without fee all OT part of this material is
granted provided that the copies are not made OT distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Baae
Endowment. To copy otherwise, OT to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 22nd VLDB Conference
Mumbai(Bombay), India, 1996

formation, stock market information, real estate, au-
tomobiles, and entertainment. The interface to such
sources is typically a collection of fill-out forms. The
query answer usually takes the form of an HTML doc-
ument that is very structured, and can be parsed and
converted into a set of tuples or more complex data
types. There are other structured information sources
that are available online but not on the WWW such
as name servers, bibliographic sources, and university-
wide and company-wide information systems, and they
too provide query interfaces.

Most search tools available for the WWW today
(e.g., AltaVista, Lycos, Inktomi, Yahoo) are based on
keyword search. Keyword search is a useful way to
search a collection of unstructured documents, but is
not effective with structured sources. Currently, the
interaction with such a large collection of structured
sources is done manually. The user must consider the
list of sources available, decide which ones to access,
interact with each one individually, and manually com-
bine answers from different sources. We would like to
use the data stored in these databases to answer com-
plex queries, and provide a uniform interface to the
sources. In particular, the user should be able to ex-
press what he or she wants, and the system should find
the relevant sources and obtain the answers, possibly
by combining data from multiple sources.

Example 1.1 Suppose we are interested in purchas-
ing a car. The parameters of interest to us are its
category (sportscar or sedan), price, year of manufac-
ture, model, and the car reviews. We ask query Q:
Get the price and reviews of sportscars for sale that
were manufactured no earlier than 1992. Suppose we
have access to the online information sources shown in
Figure 1) among many others. Some of the sources are
obviously not useful to answer Q. We can straight-
away determine that Source 4 is not useful to answer
this query, because it has no information about cars.
We can also conclude that Source 3 is not relevant.
Here the reasoning is more subtle: we are interested
only in cars manufactured after 1992, whereas Source

251

1 Source 1: Used cars for sale.
Accepts as input a category or model of car, and optionally a price range and a year range.
For each car that satisfies the conditions, gives model, year, price, and seller contact information.
Source 2: Luxury cars for sale. All cars in this database are priced above $20,000

1 Accepts as input a category of car and an optional price range. I
For each car that satisfies the conditions, gives model, year, price, and seller contact information.
Source 3: Vintage cars for sale (cars manufactured before 1950).
Accepts as input a model and an optional year range.
Gives model, year, price, and seller contact information for qualifying cars.
Source 4: Motorcycles for sale.
Accepts as input a model and an optional price range.
Gives model, year, price, and seller contact information.
Source 5: Car reviews database. Contains reviews for cars manufactured after 1990.
Accepts as input a model and a year.
Outnut is a car review for that model and vear.

Figure 1: Example information sources.

3 has information only on cars manufactured before
1950. We are left with sources 1, 2, and 5 and two
possible plans to answer Q:

1.

2.

Ask Source 1 for the models and prices of all
sportscars manufactured after 1992. For each
model, obtain a review from the Source 5.

Ask Source 2 for the models, years, and prices of
sportscars. From the (Model, Year, Price) tuples
that result, select only those where Year 1 1992.
For each model in the selected tuples, obtain a
review from Source 5.

Notice that in plan 1 we took advantage of the capabil-
ity of Source 1 to select a specified year range, whereas
in plan 2 we had to do the selection ourselves because
Source 2 cannot do it for us. Also note that the out-
puts of Sources 1 and 2 are enough to satisfy the inputs
requirements of Source 5 (i.e., the year and model of
the car). For example, if Source 5 would also require
more specific information about the car (e.g., number
of doors, engine type) in order to return a review, we
would not be able to combine information from these
three sources. It is possible to verify that these are the
only two query plans to answer Q using these informa-
tion sources. The answer to Q is the union of the sets
of tuples produced by executing these two plans. 0

One of the key difficulties in providing access to
a large collection of information sources is that sev-
eral sources store interrelated data, and any query-
answering system must understand and exploit the
relationships between their contents. In particular,
since the number of sources is very large, we must
have enough information about the sources that en-
ables us to prune the sources accessed in answering a

specific query, and we must have effective techniques
for pruning sources. Second, many sources are not
full-featured database systems and can answer only
a small set of queries over their data (for example,
forms on the WWW restrict the set of queries one can
ask). Moreover, most sources contain incomplete in-
formation. For example, there are several information
sources advertising cars for sale. No single source con-
tains information on all cars for sale.

We describe the Information Manifold (IM), a fully
implemented system that provides uniform access to a
heterogeneous collection of more than 100 information
sources on the WWW. IM tackles the above problems
by providing a mechanism to describe declaratively the
contents and query capabilities of available informa-
tion sources. There is a clean separation between the
declarative source description and the actual details
of interacting with an information source. The system
uses the source descriptions to prune efficiently the set
of information sources for a given query and to gener-
ate executable query plans. Specifically, we make the
following contributions. First, we present a practical
mechanism to describe declaratively the contents and
query capabilities of information sources. In particu-
lar, the contents of the sources are described as queries
over a set of relations and classes. Consequently, it is
possible to model the fine-grained distinctions between
the contents of different sources, and it is easy to add
and delete sources. Modeling the query capabilities of
information sources is crucial in order to interact with
many existing sources. Second, we describe an efficient
algorithm that uses the source descriptions to create
query plans that can access several information sources
to answer a query. The algorithm prunes the sources
that are accessed to answer the query, and considers

252

the capabilities of the different sources. Finally, we de-
scribe experiments that show that our query planning
algorithm will scale up as the number of information
sources increases. The experiments show the perfor-
mance of our query planning algorithm using 100 in-
formation sources.

There are several important issues in building a sys-
tem that provides a uniform interface to multiple in-
formation sources, that are not discussed here. One
important issue is that of deciding that two constants
in two different information sources refer to the same
object in the world (e.g., the same person appearing in
two different information sources). Briefly, our imple-
mentation tries first to find unique identifiers for each
constant (e.g., social security number of a person).
When it cannot find such identifiers it uses heuristic
correspondence functions as in the Remote-Exchange
system [FHM94]. It should also be noted that the goal
of Information Manifold is to provide only a query in-
terface, and not update or transaction facilities. As a
consequence, we do not address issues such as consis-
tency and transaction processing which are addressed
by research on multidatabase systems.

2 Data Model

We use the relational model, augmented with certain
object-oriented features that are useful for describ-
ing and reasoning about the contents of information
sources. The data model includes (1) relations of any
arity, (2) classes and a class hierarchy. There is a par-
tial order < such that C 4 D whenever class C is a
subclass of class D, and (3) a set of attributes associ-
ated with each class. A class also inherits attributes
from its superclasses. Attributes may be single-valued
or multi-valued.

Relations contain tuples while classes contain ob-
jects. Each object has a unique identifier. The at-
tribute values of a relation or a class can be either
atomic values (strings or integers) or object identifiers.
An object may belong to more than one class (even if
the classes are not related via 4). It is possible to de-
clare a pair of classes to be disjoint, meaning that no
object can belong to both classes.

In order to be able to treat relations and classes uni-
formly, we associate a unary relation with each class
and a binary relation with each attribute. The con-
tents of these relations are as follows (we use the same
name for the class and its associated relation):

l For class C, (X) E C whenever 2: is the identifier
of an object o and C is one of the classes of o.

l For attribute A on class C, (X, Y) E A whenever
(X) E C and x.A = y (y is called the A-$ller of
X).

For single-valued attributes we often use A(z) to
denote the only value for which A(x, y) can hold. In
order that these relations fully capture the semantics
of the class hierarchy, our model includes certain in-
tegrity constraints. These constraints take the form
of inclusion dependencies and functional dependencies.
In particular:

l Whenever C 4 D when C and D are viewed
as classes, the inclusion dependency C c D holds
when C and D are viewed as relations.

l For each auxiliary relation A(X,Y) correspond-
ing to a single-valued attribute A, we have the
functional dependency A : X + Y.

l For each pair of disjoint classes C and D, Cfl D =
0 holds when C and D are viewed as relations.

Table 1 shows the classes and attributes we use
throughout the paper.
The World View: In the Information Manifold, the
user poses queries in terms of a world view which is
a collection of virtual relations and classes. Thus, the
world view is like a schema. We use the term world
view instead of schema to emphasize the fact that no
data is actually stored in the relations and classes of
the world view.’ It serves as the schema against which
the user poses queries (thereby freeing the user from
having to interact with each source schema individ-
ually), -and it is used to describe the contents of the
information sources.

Example 2.1 The world view we use throughout this
paper consists of the classes in Table 1 (all the at-
tributes of which are single-valued) and the relation
ProductReview(Mode1, Year, Review). 0

In this paper, a query is a conjunctive query over
the world-view relations and the built-in predicates <,
5. We require the queries to be range-restricted.

Example 2.2 The following query asks for models,
prices, and reviews of sportscars for sale that were
manufactured no earlier than 1992 (query & of Ex-
ample 1.1):

d%P, r> + CarForSale(c), Category(c, sportscar),

Year(c, y), y > 1992, Price(c,p),

Model(c, m), ProductReview(m, y, r)

q

1 However we do not mean to imply that the world view is a
schema for all domains.

253

Automobile Product Model, Year, Category Stereo
Mo2orcycle Automobile Model, Year Car
Car Automobile Model, Year, Category Motorcycle
NewCar Car Model, Year, Category UsedCar
UsedCar Car Model, Year, Category NewCar
CarForSale Car Model, Year, Category, Price, SellerContact

Class Subclass of Attributes
Product 1 Model

1 Disjoint from
1 Person

Table 1: A class hierarchy. The classes Person and Stereo are not shown.

We use this font to denote constants, lowercase let-
ters for variable names, and uppercase letters with bars
to denote tuples of variables and constants. Formally,
a query is of the form:

where: (1) RI,..., R, are relations in the world view,
(2) C, is a conjunction of order subgoals of the form
U@V, where B E {<, >, I,>} and U,V E LJ,<i,,Zi,
and (3) X E Ul<i<n Zi.

--
--

3 Describing Information Sources

Queries are posed to the system in terms of the world
view. However, the data to answer these queries is ac-
tually stored in external information sources. There-
fore, to answer a query, we need descriptions that re-
late the contents of each information source to the
classes, attributes and relations in the world view.
Furthermore, since sources may not be able to an-
swer arbitrary queries About their contents, we need
to describe the capabilities of the information sources
in order to create plans that can actually be executed.

3.1 Contents of Information Sources

There are several desiderata for descriptions of the con-
tents of information sources. First, since the number
of information sources is large and frequently chang-
ing, we should be able to add new information sources
without changing the world view, and without affect-
ing the descriptions of other information sources. Sec-
ond, since many sources contain closely related infor-
mation, the descriptions should be able to model fine-
grained differences between their contents, so that the
set of sources relevant to a query can be determined
as “tightly” as possible.

We model the contents of an information source as
tuples in one or more relations. The key to the flexibil-
ity in our source descriptions is that we describe rela-
tions in the sources as queries over the world-view re-
lations and the comparison predicates. Formally, each
source is modeled as containing tuples of a relation

(or several relations) which we call source relations.
The names of the source relations are disjoint from
the names of the world view relations. For each source
relation, we specify a conjunctive query over the world
view relations that describes the conditions the tuples
in the relation must satisfy. Note that the source need
not contain all the tuples that satisfy the query; for
example, no database of cars for sale contains all cars
for sale. We emphasize this incompleteness by using
the connective c to relate the head and body of the de-
scription instead of the conventional 6 used in queries.
Figure 2 shows the content descriptions corresponding
to the informal descriptions in Figure 1.

It should be emphasized that the features of our
data model (the class hierarchy, disjointness of classes
and built-in predicates) and the fact that we describe
contents as queries enables us to describe very tightly
the contents of the sources. Consequently, our query
processor is able to prune significantly the sources rel-
evant to a given query. Furthermore, adding sources
does not affect the descriptions of other information
sources.

3.2 Capabilities of Information Sources

The content description tells us what is in an infor-
mation source, but it does not tell us which queries
the source can answer about its contents. Many in-
formation sources permit only a subset of the possible
queries on their databases. For example, the used car
database in Example 1.1 requires either the category
or model of the car as an input. When generating
query plans it is important to adhere to the capabil-
ities of the information sources, and exploit them as
much as possible. In Example 1.1, the query plan in-
volving sources 2 and 5 was different from the plan
involving sources 1 and 5 because source 1 was able to
perform the selection on the year of the car.

We describe the capabilities of an information
source using capabili2y records. Capability records are
meant to capture the two kinds of capabilities encoun-
tered most often in practice: the ability of sources to
apply a (perhaps limited) number of selections, and

254

Source 1: Used cars for sale. .

Contents: VI(~) C_ CurForSale(c), UsedCar
Capabilities: ({Model(c), Category(c)}, {Model(c), Category(c), Year(c), Price(c), SellerCodact(c)},
{Year(c), Price(c)}, 1,4)
Source 2: Luxury cars for sale. All cars in this database are priced above $20,000
Contents: Vz(c) E CurForSule(c), Price(c,p), p 2 20000
Capabilities: ({Category(c)}, {Model(c), Category(c), Year(c), Price(c), SellerContact(c
{Price(c)}, 1,3)
Source 3: Vintage cars for sale (cars manufactured before 1950).
Contents: h(c) E CarForSule(c), Yeur(c, y), y s 1950
Capabilities: ({Model(c)}, {Model(c), Calegory(c), Year(c), Price(c), SellerContact(c
{ Year(c)), 1 j 2)
Source 4: Motorcycles for sale.
Contents: V~(C) c Motorcycle(c)
Capabilities: ({Model(c)}, {Model(c), Year(c), Price(c), SellerContact(c {Price(c)}, 1,2)
Source 5: Car reviews database. Contains reviews for cars manufactured after 1990.
Contents: Vs(m, y, r) 2 Cur(c), Model(c, m), Year(c, y), ProductRewiew(m, y, r)
Capabilities: ({m, y}, {m, y, r}, {}, 2,2)

Figure 2: Source descriptions for the sources in Figure 1

the limited forms of variable bindings that an informa-
tion source can accept. The capability records specify
which inputs can be given to the source, the minimum
and maximum number of inputs allowed, the possible
outputs of the source and the selections the source can
apply. Sources with capabilities to perform arbitrary
relational operators (e.g., full fledged databases) are
considered in [LRU96].

Formally, a capability record specifies which param-
eters can be given to the source. A parameter of a
source relation @I?) is either a variable 2 E 5? or A(z)
where A is an attribute name and x E x. With ev-
ery source relation we associate exactly one capability
record of the form (Sin, S,,,,t, Ssel, min, max), where
Si,,, Sout and SSel are sets of parameters of&, and
min and max are integers. Every variable in X must
appear in a parameter either Si, or Sout.

The meaning of the capability description is the fol-
lowing. In order to obtain a tuple of R from the infor-
mation source, the information source must be given
bindings for at least min elements of Si,,. The ele-
ments in Sout are the parameters that can be returned
from the information source. The elements of Sse,,
which must be a subset of Sin U Sout, are parameters
on which the source can apply selections of the form
oopc, where c is a constant and op E {<,<,#,=}.
Given a source relation R, providing the informa-
tion source with the values al,. . . , a, for the elements
Ql,..., CX,, in Si,, asking for the values of pi, . . . , PI
in Sout, and passing the selections ~1, . . . , rk to the
source will produce the tuples (Yl, . . . , Yl) that satisfy
the following conjunction:

R’(Yl,..., Yr) : -R(X1,. . .,X,), QI = al, . . . ,
%=%,k%=~, .*.,@l=~,yl, *..,yk.

Given a content description of the form R C_ &R and
input/output specifications as described above, the fol-
lowing is called the augmented description of R w.r.t.
the input/output specifications:

R’(Yl,... ,X) C QR,W=UI,Q~=u.,

pl=K, .*~,b=~,yl,-/k

In our query-planning algorithm we use a specific
canonical augmented description of R in which the
inputs include all of Si,,, the outputs include all of
Sout and there are no selections (note that this does
not mean that our query plans necessarily provide all
the inputs and extract all the outputs from a source).
Figure 2 lists the capability records describing the in-
formation sources in our example.

3.3 Query Plans

A query plan is a sequence of accesses to information
sources interspersed with local processing operations.
A query plan must combine information from various
sources in a way that guarantees semantically correct
answers, and must adhere to the capabilities of the
information sources. We explain these notions below.
Given a query & of the form

Q(x) + RI(%), . . . , R,(%), C,

a plan to answer it consists of a set of conjunctive
plans. Conjunctive plans are like conjunctive queries

255

except that we also specify the inputs and outputs to
every subgoal. An executable conjunctive plan is of the
form:

P:&(X) -VI(BI) (inl,outl,sell) ,

Each of the q’s is a source relation corresponding
toan information source. The elements of the sets ini
are of the form pi : ~2, where pi is one of the param-
eters in the set Sin of the information source of K,
and pa is either a value appearing in the query, or a
parameter that appears in out1 U . . . U outi-1. The set
outi is a subset of S&t in the capability record of the
information source Vi, and seli is a set of selections to
be passed to the information source. Finally, the car-
dinalities of ini, outi and seli must be consistent with
the capability record of the information source of K.
Cp is a set of selections that are applied locally by the
query executor.

To define the semantic correctness of a conjunctive
plan, we consider the canonical augmented content de-
scriptions of the information sources. Recall that given
the input and output specifications, each information
source is modeled as containing a subset of the relation
defined by a conjunctive query Qi. Therefore, we can
consider the expansion of the plan P as the query PI
obtained by expanding the definitions of the subgoals
K. Formally P’ is obtained by replacing the subgoal
x(Vi) by the body of the query Qi after unifying the
head variables of Qi with Vi. The conjunctive plan P
is said to be semantically correct if P’ is contained in
Q, i.e., for any extension of the world view relations
that satisfies the integrity constraints, the answer to
P’ would be a subset of Q.

Example 3.1 Consider our query asking for sports
cars manufactured in 1992 or later:

d%P, r> +- CarForSale(c), Category(c, sportscar),

Year(c, y), y 2 1992, Price(c,p),

Model(c, m), ProductReview(m, y, r)

The following is a semantically correct plan:

4 : Q(m,p, r> +
VI(C) ({Category(c) : sportscar}, {Price(c), Model(c)},

{Year(c) 1 1992}),
Vs(m, Y, r> ({m : Model(c), 9 : Year(c)), {r), 0).

To see why, we can verify that the expansion query P[
of PI obtained by unfolding the augmented descrip-
tions of VI and V5 is contained in the original query:

P: : Q(m,p, r) +- CarForSale(c), UsedCar(
Model(c, m), Category(c, t), t = sportscar, Year(c, y),
Price(c,p), ProductReview(m, y, r), y 2 1992. 0

.

256

Semantically correct plans required only that P’ be
contained in Q and not equivalent to Q for the follow-
ing reasons. First, even if P’ were equivalent to Q,
the answer obtained by executing P may not be com-
plete because the sources may be incomplete. Second,
conjunctive plans that produce only a subset of the an-
swer are also useful. For example, if we are searching
for sports cars manufactured after 1992, and we have
an information source with cars manufactured after
1994, we would still want to query it. We define the
set of answers to the query Q as all the tuples that
can be obtained by some executable and semantically
correct conjunctive plan for Q.

4 Algorithms for Answering Queries

Our algorithm for generating executable query plans
has two steps. In the first we generate semantically
correct conjunctive plans, and in the second we try to
order the conjuncts of the plan to ensure that they are
executable. The first step of the algorithm is described
in detail in a companion paper [LR096]. Here we only
describe the aspects of this step that are needed to un-
derstand the second step and the experimental results.

A semantically correct plan guarantees that the an-
swers produced will actually be answers to the query.
Finding a semantically correct query plan amounts
to finding a conjunctive query Q’ that uses only the
source relations and is contained in the given query
Q. Therefore, our problem is closely related to the
problem of answering queries using views [LMSS95,
RSU95, YL87, CKPS95, SDJL96], where the source
relations play the role of the views. However, the prob-
lem of answering queries using views is known to be
NP-complete in [LMSS95], even for conjunctive queries
without built-in atoms. The main source of complex-
ity is the fact that there are an exponential number of
candidate rewritings that need to be considered. This
is especially significant in our context because that al-
gorithm would be exponential in the number of infor-
mation sources. Our algorithm drastically reduces the
number of candidate rewritings considered by procecd-
ing as follows. First, the algorithm computes a bucket
for each subgoal in the query, each containing the in-
formation sources from which tuples of that subgoal
can be obtained. In the second step, we consider all
the possible combinations of information sources, one
from each bucket, and check whether it is a semanti-
cally correct plan, or can be made semantically correct
if additional built-in atoms are added to the plan. Fi-
nally, we minimize each plan by removing redundant
subgoals. As we see in Section 5, the first step, consid-
erably reduces the number of possibilities considered
in the second step, The details of the first step are
given in Figure 3.

Set Bucketi to 0 for 1 5 i 5 m.
For i = 1, . . . , m do:

For each V E V
Let V be of the form: V(F) C_ S,(?l), . . . , S,(Y,), Cv
Forj=l,...,ndo

If Ri = Sj or Ri and Sj are nondisjoint classes
Let $J be the mapping defined on the variables of V as follows:
If y is the k’th variable in Yj and Y E y

then I+!(Y) = xk, where zk is the k’th variable in xi.
else 4(y) is a new variable that does not appear in Q or V. \

Let Q’ be the 0-ary query:
Q’ + RI(%), . . ., &n(%n),.C~, SI(V@>), . . . , SdlcI(%)>, 1cI(Cv)
If Sati.$able(Q’) then add $(V) to Bwketi.

End.

Algorithm CreateBuckets(V,Q)
Inputs: V is a set of content descriptions, and Q is a conjunctive query of the form
Q : Q@) + RI(%), . . . , R&k), CQ.

Figure 3: Algorithm to create the relevant buckets for each query subgoal. The procedure SatisJiable(Q’) tests
whether a query Q’ is satisfiable. It tests that the conjunction of built-in atoms is satisfiable, and that there are
no two subgoals C(x) and D(x) where C and D are disjoint classes. We assume that the source descriptions are
given to the algorithm in their canonical augmented form.

Example 4.1 We illustrate the algorithm on our ex-
ample. Consider our query asking for sports cars man-
ufactured no sooner than 1992:

q(ml,pl, ~1) c CarForSale(q), Category(cl, sportscar),

Year(cl, YI), Y 2 1992, f+ce(cl,pl),
Model(q, ml), ProductReview(ml , y1, r~).

and Source 4 does not get added because CarForSale
and Motorcycle are disjoint classes. Source 5
is the only source in the bucket of the subgoal
ProductRevjew(ml, ~1, 7-1).

and consider what happens when algorithm Create-
Buckets looks at Source 1 and the first subgoal of our
query CarForSale(cl). The canonical augmentation of
the content description of Source 1 is:

The algorithm will now check the Cartesian product
of the buckets. For example, as shown in Example 3.1,
the plan resulting from combining sources 1 and 5 is
contained in the original query, and is therefore a se-
mantically correct plan. 0

4.1 Finding an Executable Ordering

V{(m, t, y,p, 3) s CarForSale(c), UsedCar(Price(c,p),
Cotegory(c, t), Year(c, y), Model(c, m), SellerContact(c, s)

therefore, the algorithm will find the mapping c + cl
and check whether the following is satisfiable:2

CarForSale(q), Category (cl, sportscar),

Year(cl, YI), ~1 2 1992, Price(cl, PI),
Model(q, ml), ProductRewiew(ml, yl, rl),
UsedCar(SellerContact(cl, 6)

Since the classes CarForSale and UsedCar are not
disjoint, the conjunction is satisfiable and Source 1
is added to bucketl. In a similar fashion, Source 2
is added to bucketa. Source 3 does not get added
because (y 5 1950, y 2 1992) is not satisfiable,

In the second step of creating query plans we consider
the semantically correct plans and try to order the sub-
goals in such a way that the plan will be sxecutable,
i.e., will adhere to the capability requirements of the
information sources. Figure 4 describes an algorithm
that given a semantically correct plan, finds an order-
ing on its subgoals that is executable, if such an or-
dering exists. The algorithm proceeds by maintaining
a list of available parameters, and at every point adds
to the ordering any subgoal whose input requirements
are satisfied. Finally, the algorithm pushes as many
selections as possible to the sources.

Example 4.2 Consider the semantically correct plan
for answering our sportscar query:

2Note that some variables (e.g., y1 and y) get equated be- & : Q(m,p,r) + VI(C), Vs(m, y,r), Model(c, m),
cause of the single-valued attributes. Year(c, y), Category(c, sportscar), y 2 1992.

257

procedure create-executable-plan(Q’)
/* Input: Q’ is a semantically correct conjunctive plan whose non-interpreted subgoals are Vi,. . . , U,. */

The capability record of the information source of Vi is (ini, out!, seli, mini, mari).
We assume all bindings in Q’ are given explicitly using the = relation as a conjunct.

Output: an executable query plan P’, which is an ordering VI,. . . , V, of Vi,. . . , U,,,
and triplets (V;l,, I&, Vie,) specifying the inputs and outputs of the conjuncts.
CJZI is the set of selections that will be applied locally. */

QueryBindings = The set of variables in Q’ bound by values in the query.
Q out = The head variables of Q’.
QuerySelections = The set of variables in Q’ for which the query contains a selection.
BindAvailo = QueryBindings.
fori=l,...,n

The i’th subgoal in the ordering, vi, is any subgoal U, of Q’ that was not chosen earlier and
at least minj of the parameters in inj are in BindAvaili-1.
if there is no such subgoal, return plan not executable, else

BindAvail; = BindAvail;-1 u outj.
vi’f = A minimal set of parameters in BindAvaili-1 that satisfied the input requirement of U,.
V& = All the parameters in Outj.

end for
if Q,,t g BindAvail, return plan not executable.
fori=l,...n

Remove any element from Vi,,, that is not needed as an input to a subsequent subgoal or for Q,,t.
Add to as many parameters as possible from QuerySelections U BindAvaili-i to r/;k

and selections using these parameters to V8Lr such that the cardinality of Vi: U V;=, does
not exceed the input capacity of its source.

C~I includes all the built-in atoms in Q’ that are not in one of the V$‘s.
end create-executable-plan.

Figure 4: An algorithm for computing an executable ordering of a semantically correct plan. We assume,that any
pair of variables that are forced to be equal because of the functional dependencies have already been equated
in the input.

The bindings available in the query are {Category(c)}.
Therefore, the input requirements of Vi(c) are sat-
isfied and so it is put first. The outputs of VI(C)
are {Model(c), Price(c), Year(c), SellerContact(c
therefore BindAvail = {Category(c), Model(c),
Price(c), Year(c), SellerContact(c and so the in-
put requirements of Vs(m, y, r) are satisfied. Since the
second information source provides the review, the
ordering is executable. Finally, we add y >_ 1992
to the selections of the first source. We remove
SellerContact from the outputs of the first subgoal
because it is not needed anywhere in the query. 0

The following theorem shows that our algorithm
will find an ordering of a plan whenever an executable
ordering exists, and.wili do so in polynomial time. The
proof is omitted because of space limitations.

Theorem 4.1: Let&’ be a semantically correct plan.
If there is an ordering of the subgoals of Q’ that re-
sults in an executable plan, then procedure create-
executable-plan will find it. The running time of

the procedure is polynomial in the size of Q’. 0

Algorithm create-executable-plan is a, general-
ization of an algorithm by Morris [Mor88] for ordering
subgoals in the presence of binding constraints. The
key difference is that our capability records encode a
set of possible binding patterns for each subgoal, and
we find an ordering that chooses one pattern from ev-
ery such set. Furthermore, our binding patterns in-
volve not only variables occurring in the query, but
also attributes on them, and also the possibility of
pushing selections on parameters.

Our descriptions allow only one capability record
for every source relation. This restriction essentially
means that the parameters that can be obtained from
the source do not depend on how we chose to satisfy
the input requirements of the source. In practice, we
have found this to be sufficient to describe the sources
we encountered. Conceivably, there may be situations
in which it will not suffice, and the output set depends
on which set of input parameters we used. The follow-
ing theorem shows that in such a case, the problem of

258

determining whether there exists an executable order-
ing for a plan is intractable, and therefore the choice we
made also has important computational advantages.

Theorem 4.2 : If every source relation in the
content descriptions of information sources could
have more than one capability record of the form
(Sin, sout, Ssel, min, max), then the problem of deter-
mining whether a semantically correct plan can have
an executable ordering is NP-complete. 0

5 Implementation and Experiments

The Information Manifold system, whose architecture
is shown in Figure 5 uses the techniques described in
the previous sections to provide a uniform query in-
terface to 100 structured information sources on the
WWW. When a query is posed, the system uses the
descriptions of information sources to compute ex-
ecutable query plans. The actual interaction with
the information sources is done through interface pro-

grams. Logically, for every information source there
is an interface program that accepts any query tem-
plate available at the source and returns the appropri-
ate answer. The interface program accepts the bound
parameters to a query corresponding to the template,
interacts with the information source, and produces a
relation corresponding to the free parameters in the
query template. Several of the interface programs use
an .outerjoin-based technique [RU96] to convert hier-
archically structured documents into relations. An
important aspect of the system is that it provides
a stream of answers to the use, and therefore tries,
to minimize the time taken to begin and sustain the
stream, as opposed to minimizing the time taken to
provide all the answers to the query. Minimizing the
time to the early tuples is important because the user
is likely to find a satisfactory answer before all answers
are exhausted.

In order to experimentally evaluate our algorithms,
we selected a set of queries and studied how various
parameters varied as we increased the number of in-
formation sources available to the system. Here we il-
lustrate our results using three representative queries:

1. Find titles and years of movies featuring Tom
Hanks.

2. Find titles and reviews of movies featuring Tom
Hanks.

3. Find telephone number(s) for Alaska Airlines.

For each query, we varied the number of informa
tion sources available to the system from 20 to 100 and
measured various parameters. The results are shown

I I 1 I I 8 I I

20 30 40 50 60 70' 80 90 100

Figure 6: Total query planning time in seconds versus
number of information sources.

in Table 2. Our experiments were run on a SGI Chal-
lenge 150MHz computer. Maximum bucket size is the
number of sources in the largest bucket created us-
ing Algorithm CreateBuckets. Plans enumerated is
the number of candidate plans enumerated in the sec-
ond stage of the query planning algorithm, while plans
generated is the total number of semantically correct
and executable query plans actually generated for a
given query. Table 2 also gives the total time taken to
generate all query plans and the time per plan.

We note that the number of information sources
relevant to a query generally increases with the to-
tal number of sources available. However, Algo-
rithm CreateBuckets is extremely effective in prun-
ing away irrelevant sources. The effectiveness of the
pruning is measured in terms of the reduction in the
number of candidate plans that are enumerated when
creating semantically correct plans. If there were no
pruning (as suggested by the nondeterministic algo-
rithm in [LMSS95]), we would have to enumerate
O(nlQl) plans for query Q, where n is the total number
of information sources and]&I is the number of sub-
goals in Q. For example, with 100 sources, we would
have to enumerate more than 1 million plans for Query
1. However, the number of plans we actually enumer-
ate is only 26 (a function of the product pf the bucket
sizes). :

Observe also that although Query 1 and Query 2
both ask about movies, the number of sources rele-
vant to Query 2 is more than the number of sources
relevant&o Query 1 (7 versus 2 with 100 sources, for
example); This difference is due to our ability to model
fine-grained distinctions among movie sources, which
enables us to prune away certain sources for Query 1
that are relevant to Query.2.

Figure 6 plots the total time to generate all query

259

User interface

_______-_______.
I

Relevance reasoning ’
7 f I I

0

I I
I 0
I Execution engine
1 I
I 0 I
I Select. project, join, union... I

1

INTERNET

1 Flies 1 1 fntwface 1 1 Database 1 1 database 1

Figure 5: Architecture of the Information Manifold

0.8

0.8

-20 30 40 50 80 70 80 90 100

Figure 7: Average time per plan in seconds versus
number of information sources.

plans for each query against the number of information
sources available to the system. Note that the overall
time generally increases with the number of informa-
tion sources, but not exponentially. Due to the effec-
tive pruning, the time for plan generation is more a
function of the number of relevant information sources
than of total number of information sources.

The total time for query planning is not a very good
indicator of system response time. In the Information
Manifold, each query plan is executed a soon as it is
generated, in parallel with further planning and exe-

cuting other plans. Thus, a better measure of response
time is the average time to generate one query plan.
We plot the average time per plan against the number
of information sources in Figure 7. In contrast to the
total query planning time, we observe that the average
plan time does not always increase with the number
of information sources, nor does it increase as rapidly.
This effect is due to the fact that increasing the num-
ber of sources available generally also increases the
number of possible query plans. Finally, we observe
that the average time per plan is within a tight range
of less than 1 second for the queries we study, even
when the number of information sources is large. This
time is to be contrasted with the greater time taken
to execute a query plan, which typically involves going
over a network.

6 Related Work

Several systems (e.g., TSIMMIS [PGGMU95], HER-
MES [ACPS96], CARNOT [CHSSl], DISCO [FRV95],
Nomenclator [OM93]) f or integrating multiple infor-
mation sources are being built on the notion of a medi-
ator. The key aspect distinguishing Information Man-
ifold from the other systems is its generality, i.e., that
it provides a source independent, query independent
mediator. Instead of being tailored to specific infor-
mation sources and/or specific queries on these infor-
mation sources, the input to Information Manifold is

260

Table 2: Query planning statistics for queries 1, 2, and 3 as the number of available information sources is varied
between 20 and 100.

a set of descriptions of the contents and capabilities of
the sources. Given a query, the Information Manifold
will consider the descriptions and the query, and will
create a plan for answering the query using the sources.
Consequently, we do not have to build a new mediator
for different queries or information sources. For ex-
ample, the Nomenclator system incorporates multiple
CCSO, X.500 and relational name servers. Source de-
scriptions are given as equality selections on a single
relation, and queries can only reference one relation.

The SIMS system [ACHK94] also describes infor-
mation sources independently of the queries that are
subsequently asked on them. The descriptions in* the
Information Manifold are richer than those in SIMS
because they allow relations of arbitrary arity, and
in particular allow us to express the fact that an
information source contains a conjunctive view over
world-view relations (either classes, roles or relations
of higher arity). SIMS does not consider capability
descriptions of the sources. SIMS, as well as the Inter-
net Softbot [EW94] use Artificial Intelligence planning
techniques for determining the relevant information
sources and creating a query plan. These approaches
do not provide the guarantees of ours, that is that we
find all and only the relevant sources.

In [LSK95] a language for describing information
sources that was less expressivg than the one we de-
scribe here was proposed. The language did not con-
sider the capability descriptions, and the algorithms
described for finding relevant information sources did
not deal with the case where source descriptions are
given as queries on the world-view relations. Conse-

quently, only a limited range of information sources
could be incorporated. Practical algorithms and evalu-
ation were also not discussed there. The algorithm for
finding semantically correct plans is described in detail
in [LR096]. In that paper we also describe methods
for using run-time bindings to speed up query process-
ing and for interleaving of planning and execution.

A related line of work is on Web query languages.
For example, W3QS [KS951 is a system for specify-
ing high-level queries over unstructured information
sources. This system enables the user to specify in
the query patterns of nodes on the web and properties
of such nodes. W3QS is a useful tool that enables a
lot of otherwise manually done search to be done by
a search engine, but it does not make use of contents
of structured sources, and combine information from
multiple sources.

7 Conclusions and Future Work

We described the query planning algorithms used in
Information Manifold, a novel system that provides a
uniform query interface to distributed structured in-
formation sources. The Information Manifold frees
the user from having to interact with each informa-
tion source separately, and to combine information
from multiple sources. The techniques underlying
the Information Manifold are applicable to sources on
the WWW as well as other collections of information
sources such as company-wide databases. The key
aspect of our system is a mechanism for describing
the contents and capabilities of the available informa-
tion sources. This enables expressing fine-grained dis-

261

tinctions between the contents of different information
sources, thereby enabling us to prune the sources that
are irrelevant to a given query. A novel aspect of,our
system is that it describes the capabilities of infor-
mation sources in addition to their contents, which is
crucial in order to interact with remote sources. Our
architecture and algorithms have been useful in prac-
tice, allowing us to describe many existing information
source. The end result is the first system that provides
a database-like interface to over 100 structured infor-
mation sources on the WWW.

There are several important areas of research we
are currently pursuing. One issue is obtaining source
descriptions. Currently, the source descriptions are
created by hand, but an active area of research is the
design of tools for automating this process. We are
also considering how to extend our source descriptions
so that we will be able to infer that a source is relevant
to a query with some degree of likelihood. For exam-
ple, if we are searching for papers on database systems,
and have access to a repository of papers on operating
systems, we cannot completely ignore the repository,
because we cannot state that these two fields are dis-
joint. However, we would like to access this repository
only after we have accessed all other repositories that
are closer to database systems.

Acknowledgments

We thank Marie-Christine Rousset, Arnie Rosenthal,
Avi Silberschatz, Anthony Tomasic and Jeff Ullman
for comments on earlier versions of this paper.

References
[ACHK94]

[ACPS96]

[CHSSI]

[CKPS95]

[EW94]

[FHM94]

Yigal Arens, Chin Y. Chee, Chun-Nan Hsu,
and Craig A. Knoblock. Retrieving and
integrating data from multiple information
sources. International Journal on Intelligent
and Cooperative Information Systems, 1994.

S. Adali, K. Candan, Y. Papakonst,antinou,
and V.S. Subrahmanian. Query caching and
optimization in distributed mediator sys-
tems.’ In Proceedings of SIGMOD-96, 1996.

C. Collet, M. N. Huhns, and W. Shen. Re-
source integration using a large knowledge
base in carnot. IEEE Computer, 1991.

S. Chaudhuri, R. Krishnamurthy, S. Potami-
anos, and K. Shim. Optimizing queries with
materialized views. In Proceedings of ICDE-
95, 1995.

Oren Etzioni and Dan Weld. A softbot-based
interface to the internet. CACM, 37(7), 1994.

D. Fang, J. Hammer, and D. McLeod. The
identification and resolution of semantic het-
erogeneity in multidatabase systems. In Mul-

[FRV95]

[KS951

[LMSS95]

[LR096]

[LRU96]

[LSK95]

[Mor88]

[OM93]

[PGGMU95]

[RSU95]

[RU96]

[SD,JL96]

[YL87]

tidatabase Systems: An Advanced Solution
for Global Information Sharing. 1994.

Daniela Florescu, Louiqa Rashid, and
Patrick Valduriez. Using heterogeneous
equivalences for query rewriting in multi-
database systems. In COOPIS ‘95, 1995.

David Konopnicki and Oded Shmueli.
W3QS: A query system for the WWW. In
Proceedings VLDB, 1995.

A. Y. Levy, A. 0. Mendelzon, Y. Sagiv,
and D. Srivastava. Answering queries using
views. In Proceedings of ACM PODS, 1995.

A. Y. Levy, A. Rajaraman, and J. J. Ordille.
Query answering algorithms for information
agents. In Proceedings of AAAI-96, 1996.

A. Y. Levy, A. Rajaraman, and J. D. Ullman.
Answering queries using limited external pro-
cessors. In Proceedings of ACM PODS, 1996.

A. Y. Levy, D. Srivastava, and T. Kirk. Data
model and query evaluation in global infor-
mation systems. Journal of Intelligent Infor-
mation Systems, 5 (2), September 1995.

K. A. Morris. An algorithm for ordering sub
goals in NAIL! In Proceedings ACM PODS,
1988.

J. J. Ordille and B. P. Miller. Distributed
active catalogs and meta-data caching in de-
scriptive name services. In Proceedings of the
13th International IEEE Conference on Dis-
tributed Computing Systems, 1993.

Y. Papakonstantinou, A. Gupta, H. Garcia-
Molina, and J. Ullman. A query translation
scheme for rapid implementation of wrap-
pers. In In proceedings of DOOD-95, 1995.

Anand Rajaraman, Yehoshua Sagiv, and Jef-
frey D. Ullman. Answering queries using
templates with binding patterns. In Proceed-
ings of ACM PODS 1995, 1995.

Anand Rajaraman and Jeffrey D. Ullman.
Integrating information by outerjoins and
full disjunctions. In In Proceedings of ACM
PODS, 1996.

D. Srivastava, S. Dar, H. V. Jagadish, and
A. Y. Levy. Answering queries with .aggre-
gation using views. In Proceedings of VLDB,
1996.

H. Z. Yang and P. A. Larson. Query transfor-
mation for PSJ-queries. In Proceedings of the
13th International VLDB Conference, pages
245-254, 1987.

262

