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Abstract
Query processing in data integration occurs over network-bound,
autonomous data sources. This requires extensions to traditional
optimization and execution techniques for three reasons: there is an
absence of quality statistics about the data, data transfer rates are
unpredictable and bursty, and slow or unavailable data sources can
often be replaced by overlapping or mirrored sources. This paper
presents the Tukwila data integration system, designed to support
adaptivity at its core using a two-pronged approach. Interleaved
planning and execution with partial optimization allows Tukwila
to quickly recover from decisions based on inaccurate estimates.
During execution, Tukwila uses adaptive query operators such as
the double pipelined hash join, which produces answers quickly,
and the dynamic collector, which robustly and efficiently computes
unions across overlapping data sources. We demonstrate that the
Tukwila architecture extends previous innovations in adaptive ex-
ecution (such as query scrambling, mid-execution re-optimization,
and choose nodes), and we present experimental evidence that our
techniques result in behavior desirable for a data integration sys-
tem.

1 Introduction
The goal of a data integration system is to provide a uni-
form query interface to a multitude of data sources. The data
integration problem primarily arises in two contexts: organi-
zations trying to provide access to a collection of internal au-
tonomous sources, and systems that present a uniform inter-
face to a multitude of sources available on the World-Wide
Web (WWW). The key advantage of a data integration sys-
tem is that it frees users from having to locate the sources rel-
evant to their query, interact with each source independently,
and manually combine the data from the different sources.
�
This research was funded in part by ARPA / Rome Labs grant F30602-

95-1-0024, Office of Naval Research Grant N00014-98-1-0147, by National
Science Foundation Grants IRI-9303461, IIS-9872128, and 9874759.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on serverse or to re-
distribute to lists, requires prior specific permission and/or a fee.
SIGMOD ’99 Philadelphia, PA
Copyright 1999 ACM 1-58113-084-8/99/05...$5.00

The problem of data integration has received significant at-
tention in the research community as evidenced by numer-
ous research projects (e.g., [10, 20, 25, 17, 9, 3, 6, 1, 25, 21,
4, 13]) and the emergence of several commercial products
(e.g., DataJoiner [23] and jango.excite.com).

Three main challenges distinguish the design of a data
integration system from that of a traditional database sys-
tem: query reformulation, the construction of wrapper pro-
grams, and the design of new query processing techniques
for this more unpredictable environment. While the prob-
lems of reformulation and rapid wrapper development have
been the focus of previous work (e.g., [10, 17, 1, 9, 16, 3]),
relatively little attention has been given to the development
of query optimization algorithms and efficient query execu-
tion engines for data integration systems. These components
are now the critical bottleneck to making such systems de-
ployable in practice.

1.1 The Need for Adaptivity
To date, most data integration research has focused on the
problem of integrating information from web-based data sources,
where the amount of data returned by each source is gener-
ally small. The greater problem — that of querying over
multiple autonomous data sources of moderate size, across
intranets as well as the Internet — requires us to integrate
novel query execution techniques.

Several characteristics of the data integration problem
render existing database optimizers and execution engines
(or simple extensions thereof) inappropriate in the context
of data integration:� Absence of statistics: statistics about the data (e.g., cardi-

nalities, histograms) are central to a query optimizer’s cost
estimates for query execution plans. Since data integra-
tion systems manipulate data from autonomous external
sources, the system has relatively few and often unreliable
statistics about the data.� Unpredictable data arrival characteristics: unlike tradi-
tional systems, data integration systems have little knowl-
edge about the rate of data arrival from the sources. Two
phenomena that occur frequently in practice are significant
initial delays before data starts arriving, and bursty arrivals
of data thereafter. Hence, even if the query optimizer is



able to determine the best plan based on total work, the
data arrival characteristics may cause it to be inefficient in
practice [22].� Overlap and redundancy among sources: as a result of
the heterogeneity of the data sources, there is often signifi-
cant overlap or redundancy among them. Hence, the query
processor needs to be able to efficiently collect related data
from multiple sources, minimize the access to redundant
sources, and respond flexibly when some sources are un-
available.

Since data integration systems are designed for online
querying of data on the network, they have two other im-
portant characteristics. First, it is important to optimize the
time to the initial answers to the query, rather than to mini-
mize the total work of the system. Also, network bandwidth
generally constrains the data sources to be somewhat smaller
than in traditional database applications.

For all of these reasons, a data integration query proces-
sor should be adaptive. This is particularly true since a query
optimizer is unlikely to produce good plans from bad meta-
data, and even a plan that may be good on average should
be abandoned if unexpected situations arise. While runtime
adaptivity has been shown to speed up performance even in
traditional systems [15, 12], it becomes critical to perfor-
mance in the data integration context (e.g., [22]).

1.2 Adaptive Features of Tukwila
This paper describes the Tukwila1 data integration system,
designed with adaptivity built into its core. There are two
levels at which Tukwila exhibits adaptive behavior: between
the optimizer and execution engine, through a process of in-
terleaved planning and execution, and within the execution
engine, with operators designed for dynamic execution.� Interleaving planning and execution: when Tukwila pro-

cesses a query it does not necessarily create a complete
query execution plan before beginning to evaluate the query.
If the optimizer concludes that it does not have enough
metadata with which to reliably compare candidate query
execution plans, it may choose to send only a partial plan
to the execution engine, and decide how to proceed after
the partial plan has been completed, as in [7]. Alterna-
tively, the optimizer may send a complete plan, but the
execution engine may check for conditions that require in-
cremental re-optimization.� Adaptive operators: Tukwila incorporates operators that
are especially well suited for adaptive execution and for
minimizing the time required to obtain the first answers to
a query. Specifically, it employs an enhanced version of
the double pipelined hash join [24] (a join implementation
which executes in a symmetric, data-driven manner) and
techniques for adapting its execution when there is insuf-
ficient memory. In addition, the Tukwila execution engine
includes a collector operator whose task is to efficiently
union data from a large set of possibly overlapping or re-
dundant sources. Finally, Tukwila query execution plans
1Tukwila is a scenic city near Seattle in the Northwest United States.

can contain conditional nodes in the spirit of [12] in order
to adapt to conditions that can be anticipated at optimiza-
tion time.

Adaptive behavior in Tukwila is coordinated in a uni-
form fashion by a set of event-condition-action rules. An
event may be raised by the execution of operators (e.g., out
of memory, data source not responding) or at materialization
points in the plan. The possible actions include modifying
operator execution, reordering of operators, or re-optimization.

1.3 Example
A simple example demonstrates the breadth of Tukwila’s
adaptive behavior. Suppose that the same query (Figure 1a)
is issued to the system under three extreme conditions: when
the source tables are of unknown size, are small, or are large.
Each time, assume that the relative statistics are such that a
traditional optimizer would construct the join tree in Fig-
ure 1b. In a traditional query engine, the join implementa-
tions, memory allocations, and materialization points will be
fixed at compile time, and the tree will be executed in a pre-
determined order. Tukwila implements mechanisms needed
to behave more adaptively. Consider its response to the three
cases:

No size information: With no information there is no point
in traditional optimization. Instead, the optimizer may de-
cide to compute a partial result that it chooses heuristically,
such as the join AB, and decide afterwards what do next.

Small tables: Tukwila chooses the double pipelined join
implementation for joins of small cardinality, and pipelines
the entire query. When source latencies are high, this type
of join has a large advantage over traditional joins, but it de-
mands considerably more memory. To handle the “unlucky”
case that memory is exceeded, the join operator has an over-
flow resolution mechanism.

Large tables: If the tables are sufficiently large, Tukwila’s
optimizer chooses standard hash joins, and breaks the pipeline,
perhaps after join AB in Figure 1b. Now, depending on the
rules in force, one of two things may happen during execu-
tion:� Rescheduling: If all sources respond, and table AB has

a cardinality sufficiently close to the optimizer’s estimate,
execution continues normally. Should some sources re-
spond slowly, however, Tukwila can reschedule as with
query scrambling [22]. If the connection to data source A
times out, join DE will be executed preemptively. Should
that time out as well, the optimizer is called with that infor-
mation to produce a plan reordered to use the non-blocked
sources first.� Re-optimization: After the AB join completes and ma-
terializes, Tukwila compares the actual cardinality with
the optimizer’s estimate. As in [15], if this value signif-
icantly differs from the optimizer’s estimate, the optimizer
is awakened to find a cheaper plan (perhaps the one in Fig-
ure 1c) given more accurate information.



Select * from A,B,C,D,E
where A.ssn =B.ssn
and     B.ssn=C.ssn
and     C.ssn=D.ssn
and     D.ssn=E.ssn
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Figure 1: Sample query, initial join tree, and join tree produced by re-optimization.

The paper is organized as follows. Section 2 provides an
overview of the architecture of Tukwila. Section 3 describes
the mechanisms for interleaving of planning and execution.
Section 4 describes the new query operator algorithms used
in Tukwila. Section 5 discusses the implemented system.
Section 6 describes our experimental results. Section 7 dis-
cusses related work, and Section 8 discusses several addi-
tional issues and concluding remarks.

2 Tukwila Architecture
This section provides an overview of the Tukwila architec-
ture as illustrated in Figure 2.

Queries: A Tukwila user poses queries in terms of a medi-
ated relational schema. The relations in the mediated schema
are virtual in the sense that their extensions are not stored
anywhere. The goal of the mediated schema is to abstract
the details of the data sources’ schemata from the user. In
this paper we limit our discussion to select-project-join (con-
junctive) queries over this mediated schema.

Data source catalog: The catalog contains several types
of metadata about each data source. The first of these is
a semantic description of the contents of the data sources.
Second is overlap information about pairs of data sources
(that is, the probability that a data value

�
appears in source���

if
�

is known to appear in source
���

) for use by collector
operators, as in [8]. In the extreme case, overlap information
can indicate that two sites are mirrors of each other. Finally,
the catalog may contain key statistics about the data, such as
the cost of accessing each source, the sizes of the relations
in the sources, and selectivity information.

Query reformulation: The query over the mediated schema
is fed into the Tukwila query reformulation component, which
is based on an enhanced version of the algorithm described
in [17]. In general, a query reformulator converts the user’s
query into a union of conjunctive queries referring to the data
source schemata. This paper focuses on a limited form in
which we have a single query that may include disjunction
at the leaves. This limited disjunction, which is handled by
our dynamic collector operator, is useful in handling multi-
ple overlapping or mirrored data sources with the same at-
tributes, e.g. in a query over bibliographical databases.

Query optimizer: The query optimizer transforms the rewrit-
ten query into a query execution plan for the execution en-
gine. The optimizer has the ability to create partial plans

if essential statistics are missing or uncertain, and also pro-
duces rules to define adaptive behavior during runtime.

Query execution engine: The query execution engine pro-
cesses query plans produced by the optimizer. The execution
engine emphasizes time-to-first result and includes operators
designed to facilitate this. It includes an event handler for
dynamically interpreting rules and supports incremental re-
optimization.

Wrappers: the query execution engine communicates with
the data sources through a set of wrapper programs. Wrap-
pers handle the communication with the data sources and,
when necessary, translate the data from the formats used in
the sources to those used in Tukwila. We assume a location-
independent wrapper model, where wrappers can be placed
either at the data source or at the execution system.

3 Interleaving Planning and
Execution

The query optimizer takes a query from the reformulator and
uses information from the source catalog to produce query
execution plans for the execution engine via a System-R
style dynamic programming algorithm. The non-traditional
aspects of the Tukwila optimizer include the following:� The optimizer does not always create a complete execu-

tion plan for the query. If essential statistics are missing or
uncertain, the optimizer may generate a partial plan with
only the first steps specified, deferring subsequent plan-
ning until sources have been contacted and critical meta-
data obtained.� In addition to producing the annotated operator tree, the
optimizer also generates the appropriate event-condition-
action rules. These rules specify (1) when and how to
modify the implementation of certain operators at runtime
if needed, and (2) conditions to check at materialization
points in order to detect opportunities for re-optimization.� The query optimizer conserves the state of its search space
when it calls the execution engine. The optimizer is able
to efficiently resume optimization in incremental fashion
if needed.

3.1 Query Plans
Operators in Tukwila are organized into pipelined units called
fragments. At the end of a fragment, pipelines terminate,
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Figure 2: Architecture of the Tukwila information integration system.

results are materialized, and the rest of the plan can be re-
optimized or rescheduled. A plan consists of a partially-
ordered set of fragments and a set of global rules. The partial
ordering reflects constraints on the order of execution such
as data flow dependencies. The global rules encode condi-
tional execution policies, such as choosing among a set of
alternative fragments after one completes. Fragments unre-
lated in the partial order may execute in parallel. For ex-
ample, we may execute one CPU-bound fragment in parallel
with other network-bound fragments as in [14].

3.1.1 Fragments and Operators

A fragment consists of a fully pipelined tree of physical op-
erators, and a set of local rules. Each node in the tree is
a physical operator specifying: (1) the algebraic operator at
the node (e.g., selection, join), (2) the chosen physical imple-
mentation of the operator (e.g., hash join, double pipelined
join), (3) the children of the node, (4) the memory allocated
to the operator, as discussed in [5, 18], and (5) an estimate
of result cardinality.

3.1.2 Rules

Rules are the key mechanism for implementing several kinds
of adaptive behavior in Tukwila:� Re-optimization: At the end of a fragment, if the opti-

mizer’s cardinality estimate for the fragment’s result is sig-
nificantly different from the actual size, the optimizer will
be reinvoked (in the same spirit as [15]).� Contingent planning: At the end of a fragment the ex-
ecution engine can check properties of the result in or-
der to select the next fragment (thus implementing choose
nodes [12]).� Adaptive operators: The policy for memory overflow
resolution in the double pipelined join (Section 4.2) is guided
by a rule. Collectors (Section 4.1) are also implemented
using rules.� Rescheduling: Rules are used for specifying when a plan
should be rescheduled if a source times out (as in query
scrambling [22]).

Tukwila rules have the form when event if condition
then actions. For example, the following rule calls the op-
timizer to replan the subsequent fragments if the estimated

cardinality is significantly different from the size of the re-
sult.

when closed(frag1)
if card(join1) � 2 * est card(join1) then replan

Formally, a rule in a Tukwila plan is a quintuple 	�
��
������������ ��� � � ����������� � .
An event can trigger a rule, causing it to check its condition.
If the condition is true, the rule fires, executing the actions.
The owner is the query operator or plan fragment which the
rule controls or monitors. Only active rules with active own-
ers may trigger. Firing a rule once makes it become inactive.

The execution system generates events in response to im-
portant changes in the execution state, such as:���! #"!$ , %�& �#'!")( : fragment/operator starts or completes��")*)*+�)* : operator failure, e.g., unable to contact source�-,/.�0/"��!1+,32 n 4 : data source has not responded in � msec.���!1�, �)5 0/"�0/��*)6 : join has insufficient memory�-,)7+*+"8'�78� & (32 n 4 : � tuples processed by operator

Once an event has triggered a set of associated rules,
each rule’s conditions are evaluated in parallel to determine
whether any actions should be taken. Conditions are propo-
sitional formulae, with comparator terms as propositions.
The quantities that can be compared include integer and state
constants, states, values precomputed by the optimizer (e.g.,
estimated cardinality or memory allocated), and various dy-
namic quantities in the system:�9':,+;�,#"<2 operator 4 : the operator’s current state� % ;�*�(32 operator 4 : the number of tuples produced so far�-,/.�0/"<2 operator 4 : the time waiting since last tuple�=0/"�0/�)*)6/2 operator 4 : the memory used so far

After all rule conditions corresponding to a given event
have been evaluated, actions are executed for those rules
whose conditions are met. Most actions change some oper-
ator’s memory allocation, implementation, or state. Tukwila
actions include:� set the overflow method for a double pipelined join� alter a memory allotment� deactivate an operator or fragment, which stops its execu-

tion and deactivates its associated rules� reschedule the query operator tree� re-optimize the plan



� return an error to the user

Naturally, the power of the rule language makes it pos-
sible to have conflicting or non-terminating rules. It is ulti-
mately the responsibility of the optimizer to avoid generating
such rules. However, in order to avoid the most common er-
rors we impose a number of restrictions on rule semantics:
(1) All of a rule’s actions must be executed before another
event is processed. (2) Rules with inactive owners are them-
selves inactive. (3) No two rules may ever be active such
that one rule negates the effect of the other and both rules
can be fired simultaneously. (This final aspect is a condition
that can be statically checked.)

3.2 Query Execution
The Tukwila query execution engine is responsible not only
for executing a query plan, but also for gathering statistics
about each operation and for handling exception conditions
or re-invoking the optimizer. The system takes a query exe-
cution plan from the optimizer and sends its rules to the event
handler (Section 3.3). Then each plan fragment is processed
in turn, as a single, pipelined execution unit.

The operator tree is executed using the top-down “itera-
tor” model [11]. (Note that our implementation of the double
pipelined join is an iterator-based adaptation, as described in
Section 4.2). Control flows from the root node and makes
its way down the tree. At the leaf nodes are file scans or
requests for data from wrappers2.

As operators within a fragment are executed, they per-
form two functions in addition to data manipulation: they
gather cardinality statistics for the optimizer, and they in-
voke the event handler when significant system events (such
as running out of memory, timing out on a connection, or
completion of a fragment) occur.

3.3 Event Handling
The event handler is responsible for interpreting the rules
that are attached to query execution plans, and thus it is the
subsystem which enables most of Tukwila’s adaptive behav-
ior. The execution system may generate an event at any time.
These events are fed into an event queue, which imposes an
ordering on the rule evaluation process.

For each event in the queue, the event handler uses a hash
table to find all matching rules that are in the active set. For
each active rule, it evaluates the conditions; if they are sat-
isfied, all of the rule’s actions are executed before the next
event in the queue is processed. Actions may change op-
erator execution or cause the execution engine to terminate
the current plan and re-invoke the optimizer, sending back
statistics.

2Although several authors have considered wrappers that, in addition
to accessing the data sources, may also apply relational operators to the
data, in our discussion we assume that exploiting additional capabilities of
the wrappers is done within the reformulator, and hence Tukwila submits
atomic fetch queries to the wrappers.

4 Adaptive Query Operators
Tukwila plans include the standard relational query opera-
tors: join (including dependent join), selection, projection,
union and table scan. In this section, we highlight Tukwila’s
adaptive operators: the dynamic collector and the double
pipelined join operator.

4.1 Dynamic collectors
A common task in data integration is to perform a union
over a large number of overlapping sources [27, 8]. Com-
mon examples of such sources include those providing bib-
liographic references, movie reviews and product informa-
tion. In some cases different sites are deliberately created as
mirrors.

For these reasons, the Tukwila query reformulator will
output queries using disjunction at the leaves. We could po-
tentially express these disjunctions as unions over the data
sources. However, a standard union operator has no mecha-
nism for handling errors or for deciding to ignore slow mir-
ror data sources once it has obtained the full data set, so it
does not provide the flexibility needed in the data integration
context. In Tukwila we treat this task as a primitive operator
into which we can program a policy to guide the access to
the sources.

An optimizer that has estimates of the overlap relation-
ships between sources can provide guidance about the order
in which data sources should be accessed, and potential fall-
back sources to use when a particular source is unavailable
or slow (as in [8]). This guidance is given in the form of a
policy. The query execution engine implements the policy
by contacting data sources in parallel, monitoring the state
of each connection, and adding or dropping connections as
required by error and latency conditions. A key aspect dis-
tinguishing the collector operator from a standard union is
flexibility to contact only some of the sources.

Formally, a collector operator includes a set of children
(wrapper calls or table scans of cached or local data) and
a policy for contacting them. A policy is a set of triples> 	 � ����?@�@�A?CBED , associating with the

�
th child of the collector an

activation condition �+? and a termination condition �@? . The
conditions are propositional boolean formulas constructed
from ,+*!18" , 5+; & '!" , ;!$+( , �)* , and four kinds of predicates on
children: %�& �8'!")(+2 ��4 , ")*�*+�)*#2 ��4 , ,3.�0/"��!1�,82 �4 and ,)7+*+"8'�78� & (+2 �4 .
The policy is actually expressed in Tukwila as a set of event-
condition-action rules, which are implemented using the nor-
mal rule-execution mechanisms.

In the example below, we have a fairly complex policy.
Initially we attempt to contact sources F and G . Whichever
source sends 10 tuples earliest “wins” and “kills” the other
source. (Note that we take advantage of the fact that a rule
owned by a deactivated node has no effect.) If Source F
times out before Source G has sent 10 tuples, Source H is
activated and the other sources are deactivated.

when opened(coll1)
if true then activate(coll1,A); activate(coll1,B)



when threshold(A,10)
if true then deactivate(coll1,B)

when threshold(B,10)
if true then deactivate(coll1,A)

when timeout(A)
if true then activate(coll1,C); deactivate(coll1, B);

deactivate(coll1, A)

4.2 Double Pipelined Join
Conventional join algorithms have characteristics undesir-
able in a data integration system. For example, sort-merge
joins (except with presorted data) and indexed joins cannot
be pipelined, since they require an initial sorting or index-
ing step in this context. Even the pipelined join methods —
nested loops join and hash join — have a flaw in that they
follow an asymmetric execution model: one of the two join
relations is classified as the “inner” relation, and the other as
the “outer” relation. For a nested loops join, each tuple from
the outer relation is probed against the entire inner relation;
we must wait for the entire inner table to be transmitted ini-
tially before pipelining begins. Likewise, for the hash join,
we must load the entire inner relation into a hash table before
we can pipeline.

We now contrast these models with the double pipelined
join (also known as the pipelined hash join), which was orig-
inally proposed in [24] for parallel database systems.

4.2.1 Conventional Hash Join

As was previously mentioned, in a standard hash join, the
database system creates a hash table from the inner relation,
keyed by the join attributes of the operation. Then one tuple
at a time is read from the outer relation and is used to probe
the hash table; all matching tuples will be joined with the
current tuple and returned [11]. If the entire inner relation
fits into memory, hash join requires only as many I/O opera-
tions as are required to load both relations. If the inner rela-
tion is too large, however, the data must be partitioned into
smaller units that are small enough to fit into memory. Com-
mon strategies such as recursive hashing and hybrid hashing
use overflow resolution, waiting until memory runs out be-
fore breaking down the relations.

In recursive hashing, if the inner relation is too large, the
relation is partitioned along bucket boundaries that are writ-
ten to separate files. The outer relation is then read and parti-
tioned along the same boundaries. Now the hash join proce-
dure is recursively performed on matching pairs of overflow
files.

Hybrid hashing [11] uses a similar mechanism, but takes
a “lazy” approach to creating overflow files: each time the
operation runs out of memory, only a subset of the hash
buckets are written to disk. After the entire inner relation
is scanned, some buckets will probably remain in memory.
Now, when the outer relation is read, tuples in those buckets
are immediately processed; the others are swapped out to be
joined with the overflow files. Naturally, hybrid hashing can
be considerably more efficient than recursive hashing.

A hash join has several important parameters that can be
set by an optimizer based on its knowledge of the source re-
lations’ cardinalities. Most important is the decision about
which operand will be the inner relation: this should be the
smaller of the two relations, as it must be loaded into a mem-
ory. Other parameters include the number of hash buckets to
use, the number of buckets to write to disk at each over-
flow, and the amount of memory to allocate to the operator.
In a conventional database system, where the optimizer has
knowledge about cardinalities, and where the cost of a disk
I/O from any source is the same, the join parameters can be
set effectively. However, a data integration environment cre-
ates several challenges:� The optimizer may not know the relative sizes of the two

relations, and thus might position the larger relation as the
inner one.� Since the time to first tuple is important in data integration,
we may actually want to use the larger data source as the
inner relation if we discover that it sends data faster.� The time to first tuple is extended by the hash join’s non-
pipelined behavior when it is reading the inner relation.

4.2.2 Double Pipelined Hash Join

The double pipelined hash join is a symmetric and incre-
mental join, which produces tuples almost immediately and
masks slow data source transmission rates. The trade-off is
that we must hold hash tables for both relations in memory.

As originally proposed, the double pipelined join is data-
driven in behavior: each of the join relations sends tuples
through the join operator as quickly as possible. The op-
erator takes a tuple, uses it to probe the hash table for the
opposite join relation, and adds the tuple to the hash table
for the current relation3. At any point in time, all of the data
encountered so far has been joined, and the resulting tuples
have already been output.

The double pipelined join addresses many of the afore-
mentioned problems with a conventional hash join in a data
integration system:� Tuples are output as quickly as data sources allow, so time

to first output tuple is minimized.� The operator is symmetric, so the optimizer does not need
to choose an “inner” relation.� Its data-driven operation compensates for a slow data source
by processing the other source more quickly. This also al-
lows the query execution system to make more efficient
use of the CPU, as it may process data from one join rela-
tion while waiting for the other.

On the other hand, the double pipelined join poses two
problems as we attempt to integrate it into Tukwila. The
first is that the double pipelined join follows a data-driven,
bottom-up execution model. To integrate it with our top-
down, iterator-based system, we make use of multithreading:
the join consists of separate threads for output, left child, and

3Once the opposite relation has been read in its entirety, it is no longer
necessary to add tuples to the hash table unless the matching bucket has
overflowed.



right child. As each child reads tuples, it places them into a
small tuple transfer queue. The join output thread then takes
a tuple from either child’s queue, depending on where data
is present, and processes that tuple. For greater efficiency,
we ensure that each thread blocks when it cannot do work
(i.e., when transfer queues are empty for the output thread,
or full for the child threads).

The second problem with a double pipelined join is that
it requires enough memory to hold both join relations, rather
than the smaller of two join relations. To a large extent, we
feel that this is less of a problem in a data integration envi-
ronment than it is in a standard database system: the sizes of
most data integration queries are expected to be only moder-
ately large, and we may also be willing to trade off some total
execution time in order to get the initial results sooner. Ad-
ditionally, we expect an optimizer to use conventional joins
when a relation is known to be especially large, or when one
input relation is substantially smaller than the other. Nev-
ertheless, we have identified several strategies for efficiently
dealing with the problem of insufficient memory in a double
pipelined join, and report on experiments with each of these
methods (see Section 6).

4.2.3 Handling Memory Overflow

When a hash join overflows, the only feasible recovery strat-
egy is to take some portion of the hash table and swap it to
disk. With the double pipelined hash join, there are at least
four possibilities. First, it is possible to use statically sized
buckets which are flushed and refilled every time they over-
flow, but this would not perform well if the relation were
slightly larger than memory. Another alternative would be
a conversion from double pipelined join to hybrid hash join,
where we simply flush one hash table to disk.

The two algorithms we implemented in Tukwila are con-
siderably more sophisticated and efficient. To give a feel for
the algorithms’ relative performance, we include an analysis
here of a join between two unsorted relations A (left child)
and B (right child) of equal tuple size and data transfer rate,
and of the same cardinality I . For simplicity, we count tuples
rather than blocks, and we further assume even distribution
of tuples across hash buckets, and that memory holds J tu-
ples. Note that our emphasis is on the disk I/O costs, and
that we do not include the unavoidable costs of fetching in-
put data across the network or writing the result.

Incremental Left Flush Upon overflow, switch to a strat-
egy of reading only tuples from the right-side relation; as
necessary, flush a bucket from the left-side relation’s hash
table each time the system runs out of memory. Now re-
sume reading and joining from the left side. This approach
allows the double pipelined join to gradually degrade into
hybrid hash, flushing buckets lazily. If memory is exhausted
before the operation completes, we proceed as follows. (1)
Pause reading tuples from source A. (2) Flush some buckets
from A’s hash table to disk. (3) Continue reading tuples from
source B, entering them into B’s hash table, and using them
to probe A’s (partial) table; if a B-tuple belongs in a bucket
whose corresponding A-bucket has been flushed, then mark

the tuple for later processing. (4) If source B’s hash table
runs out of memory after A’s table has been flushed com-
pletely, then write one or more of B’s buckets to disk. (5)
When all of B has been read, resume processing tuples from
source A. If these tuples belong in a bucket which has been
flushed, then write the tuples to disk; otherwise probe source
B’s hash table. (6) Once both sources have been processed,
do a recursive hybrid hash to join the bucket overflow files.
To avoid duplicates, the unmarked tuples from A should only
be joined with marked tuples from B, whereas marked tuples
should be joined with both unmarked and marked tuples. We
calculate total costs for this algorithm as follows:� Suppose K �ML IONMJ , so B does not overflow. We flushIQP K � tuples from A, giving a cost of R�IQPSJ .� Suppose J L ITNUR:J , so B is too large to fit in memory.

In reading B, we overflow 2 K � 4#V 2 IWPXJY4 tuples. Reading

the rest of A flushes IZV[KZ\�^] P`_� J more tuples. Our total

cost becomes a�IZPba�J[V KQ\] .

Incremental Symmetric Flush In this case, we pick a bucket
to flush to disk, and flush the bucket from both sources.
Steps to resolve overflow are as follows: (1) Upon mem-
ory exhaustion, choose a bucket and write that component
of both A and B’s hash tables to disk. (2) Continue read-
ing tuples from both source relations. (3) If a newly read
tuple belongs to a flushed bucket, mark the tuple as new and
flush it to disk; otherwise, add the tuple to the appropriate
hash table, and use it to probe the opposite hash table. (4)
Once both sources have been processed, do a recursive hy-
brid hash to join the bucket overflow files. Note that the join
must consider the tuple markings: unmarked tuples should
only be joined with marked tuples; marked tuples should be
joined with both unmarked and marked tuples. The disk I/O
costs of this algorithm can be derived as follows:

Suppose IcNdReJ . After reading the entire contents of both
tables, we have overflowed R�IfPgJ tuples. After reading
them back, we get a total cost of a�IQPhR:J .

Our analysis suggests that incremental left-flush will per-
form fewer disk I/Os than the symmetric strategy, but the lat-
ter may have reduced latency since both relations continue
to be processed in parallel. Section 6.3 evaluates this assess-
ment empirically.

5 Implementation
The Tukwila system is an end-to-end platform for data in-
tegration research, from query reformulation through opti-
mization to execution strategies and wrapper interfaces. To
facilitate this, we use a component architecture with separate
modules (wrappers, execution system, optimizer) communi-
cating via well-specified APIs. Wherever possible, we lever-
age pre-existing standards, including TCP sockets, XML,
and Unicode.

All communication between modules occurs over a socket
interface. While this introduces a minimal performance penalty
in cross-module calls on a single machine, it gives Tukwila
several highly desirable characteristics. The first is that our



system supports a limited form of scalability and distribu-
tion: all components can share a single machine or run on
separate machines. A second major benefit of using sock-
ets is that the system is language- and platform-independent.
Our execution engine is written in C++ on a Windows NT/Pentium
II platform; the optimizer and wrappers are written in Java,
and can run on any platform supporting the language.

The query execution system accepts plans which are spec-
ified in an XML-based query plan language which is human-
writable. At the end of its execution cycle (which may con-
sist of an entire plan, or merely some subset after which the
engine was directed to return to the optimizer), the execution
system sends back information about operator state and car-
dinalities so the optimizer will have more accurate statistics.

The Tukwila query execution engine currently consists
of approximately 25,000 lines of C++ code. The execution
engine is designed with a multithreaded architecture in order
to support prefetching and the double pipelined join and col-
lector operators. Thread scheduling is done by the operating
system, but it is controlled closely by the execution engine
in order to prevent heavy contention for the CPU. We use a
custom memory-management system optimized for efficient
space usage in creating hash tables.

An early version of the query optimizer, implemented
in Java and which includes the ability to save optimization
state, was used in our experiments involving interleaving of
planning and execution. For the other experiments, we used
hand-coded query plans for greater control.

6 Experiments
We report the highlights of our experiments in four areas,
showing that (1) the double pipelined join outperforms hy-
brid hash, (2) the preferred output behavior dictates optimal
memory overflow strategy, (3) interleaved planning and exe-
cution produces significant benefits, and (4) having the opti-
mizer save state in order to speed subsequent re-optimizations
yields substantial savings.

6.1 Experimental Methodology
Experiments were performed using scaled versions of the
TPC-D data set, at 50MB and 10MB, created with the db-
gen 1.31 program. This data was stored in IBM DB2 Uni-
versal Database 5.20 on a dual-processor 450MHz Pentium
II server with 512MB RAM, running Windows NT Server.
The wrappers used IBM’s DB2 JDBC driver, and were run
directly on the server with JIT v. 3.10.93. The execution en-
gine was run on a 450MHz Pentium II machine under NT
Workstation with 256MB RAM. Our machines were con-
nected via a standard 10Mbps Ethernet network.

For each of the experiments, we initially ran the query
once to “prime” the database, then repeated it 3 times un-
der measurement conditions. We show the average running
times in our experimental results.

6.2 Performance of Double Pipelined Join
In order to compare the overall performance of the double
pipelined join versus a standard join, we ran all possible
joins of two and three relations in our 50MB TPC-based data
set.

The results are very much in favor of the double pipe-
lined join. In each of the experiments, we saw the same
pattern: not only did the double pipelined join show a huge
improvement in time to first tuple, but it also had a slightly
faster time-to-completion than the hybrid hash join. This is
explained by the double pipelined join’s use of multithread-
ing, which allows it to perform useful work as it is wait-
ing for data to arrive. The exact performance gain of the
double pipelined join varied depending on the sizes of the
tables (since a small inner relation allows the hybrid hash
join to perform well), but in all cases there was a measur-
able difference. Additional preliminary experiments suggest
that adding prefetching to the hybrid hash join can almost
remove the gap in total execution time between the two join
methods, but that the double pipelined hash join still has an
advantage in time-to-first-tuple.

Figure 3a shows a typical plot of tuples vs. time for the
3-relation join lineitem ikj order i�j supplier with different
configurations of the join tree. lineitem is larger than the
combined order ikj supplier result, so clearly it should be
joined last. However, since the hybrid hash join is not sym-
metric, our assignment of inner and outer relations at each
join impacts the performance for this join. In contrast, the
double pipelined join performs equally well in all of these
cases.

Next, we analyze the performance of the double pipe-
lined join in a wide-area domain. In order to get realistic
performance, we redirected wrapper data originating at the
University of Washington to a Java “echo server” located
at INRIA in France, which “bounced” the data back to the
wrapper, which in turn forwarded the delayed data to the
execution engine. A measurement of link bandwidth with
the ttcp network measurement tool yielded an estimate of
82.1KB/sec, and ping returned a round-trip time of approx-
imately 145msec.

Figure 3b shows the performance of a sample join, part-
supp i�j part, under conditions where both connections are
slow, the inner relation is slow, the outer relation is slow, and
at full speed. As expected, we observe that the double pipe-
lined join begins producing tuples much earlier, and that it
completes the query much faster as well.

6.3 Memory Overflow Resolution
The first experiment assumed ample memory, but since dou-
ble pipelined join is memory intensive, we now explore per-
formance in a memory-limited environment. In order to con-
trast our double pipelined overflow resolution strategies, we
ran experiments to measure the performance of these strate-
gies under different memory conditions.

Figure 4 shows one such result. Here we are executing
the join part ikj partsupp, which requires approximately
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Figure 3: Double pipelined join produces initial results more quickly, is less sensitive to slow sources, and completes faster than the optimal
hybrid hash join.

48MB of memory in our system. The graph shows how
the number of tuples produced by a given time varies as we
run the same join with full memory, 32MB of memory, and
16MB of memory.

From the figure it is apparent that the Left Flush algo-
rithm has a much more abrupt tuple production pattern, as
it runs smoothly only until the first overflow, after which it
must flush and read in the right child before resuming fully
pipelined operation. Note that this is still superior to the
hybrid hash join, because our algorithm may still produce
output as it reads the right child if there is data in the left
child’s hash table.

In contrast, the Symmetric Flush algorithm continues to
pipeline as it overflows, but the number of buckets in mem-
ory decreases. The result is a a somewhat smoother curve
which is dependent on the skew of the data.

Our experiments suggest that overall running time for the
two strategies is relatively close, and that the primary basis
for choosing the overflow resolution strategy should be the
desired pattern of tuple production. Left Flush must operate
for a period in which few tuples are output, but after which
it begins pipelining the left child against most or all of the
right child’s data. Symmetric Flush produces tuples more
steadily, but its performance slows as memory is exceeded,
up until the point at which the sources have been read and
the overflow files can be processed.

The results also suggest that, while there is a noticeable
penalty for overflowing memory with the double pipelined
join, the operator’s ability to produce initial tuples quickly
may still make it preferable to the hybrid hash join in many
situations.

6.4 Interleaved Planning and Execution
For complex queries over data sources with unknown selec-
tivities and cardinalities, an optimizer is likely to produce a
suboptimal plan. In this experiment, we demonstrate that
Tukwila’s strategy of interleaving planning and execution
can slash the total time spent processing a query. We find
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Figure 4: Symmetric Flush outputs tuples more steadily, but the
rate tapers off more than with Left Flush. Overall performance of
both strategies is similar.

that replanning can significantly reduce query completion
time versus completely pipelining the plan.

For the 10MB data set, we ran all seven of the four-table
joins that did not involve the lineitem table (which was ex-
tremely large). The optimizer was given correct source car-
dinalities, but it had to base its intermediate result cardinal-
ities on estimates of join selectivities, since no histograms
were available. We used the double pipelined join imple-
mentation in all cases.

In Figure 5 we see the comparison of running times for
three different strategies using the same queries. The base-
line strategy is simply to materialize after each join and go
on to the next fragment. The second strategy added a rule
to the end of each fragment, which replans whenever the
cardinality of the result differs from the estimate by at least
a factor of two. The third strategy is to fully pipeline the
query.

In every case, the materialize and replan strategy was
fastest, with a total speedup of 1.42 over pipeline and 1.69
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Figure 5: Even counting the cost of repeated materialization, in-
terleaved planning and execution runs faster than a fully pipelined,
static plan.

over the naı̈ve strategy of materializing alone. This is some-
what surprising, since the benefit of replanning based on
corrected estimates overwhelms the costs of both replanning
and extra materializations in each case. The most likely rea-
son is that many of the join operations were given insuffi-
cient memory because of poor selectivity estimates, and this
caused them to overflow. In practice, both cardinality and
selectivity estimates of initial table sizes will be inaccurate,
favoring replanning even more.

6.5 Saving Optimizer State
As the results from the previous experiment illustrate, re-
optimization can yield significant performance improvements.
Hence, it is common for the Tukwila execution system to
re-invoke the optimizer after finishing a fragment. The op-
timizer then needs to correct its size estimate for the frag-
ment’s result, and update the cost estimate to reflect the cost
of reading the materialization. A dynamic-programming op-
timizer can either replan from scratch each time, or save its
state for reuse on the next re-optimization.

For the case of replanning from scratch, the query gets
smaller by one operation after each join, thereby halving the
size of the dynamic program. However, reuse has the ad-
vantage that any new information about the completion of a
fragment can only impact half of the entries in the original
table.

The advantage of saving state is that half of the useful
entries in the rebuilt table have already been computed. Our
stored-state algorithm visits none of these nodes. To facili-
tate this search strategy during re-optimization, we introduce
usage pointers into the dynamic program from each sub-
query to every larger subquery that can use it as a left or right
child. We also keep a usage pointer from every subquery to
every subplan that does use it as a left or right child. In our
final experiment, we compare replanning from scratch to re-
optimization based on saved state as optimized with usage
pointers. Here we realize a speedup of up to 1.64 over re-
planning from scratch. In separate experiments (not shown)

we compare re-optimization using saved state without usage
pointers and the resulting performance is worse than replan-
ning from scratch.

7 Related work
The INGRES query optimization algorithm originally inter-
leaved steps of constructing a query execution plan and exe-
cuting it [26]. However, their approach was largely eclipsed
by less flexible System-R style optimizers. Only recently
have Kabra and DeWitt demonstrated the utility of runtime
re-optimization for conventional database queries using a
System-R style optimizer [15]. The Tukwila rule mecha-
nism enables re-optimization as in [15] with two important
advantages: (1) we do not necessarily create complete plans
in advance, and (2) our optimizer was built to support effi-
cient re-optimization while [15] used the standard Paradise
optimizer.

Graefe and Ward’s choose nodes allow the execution sys-
tem to choose from a set of precompiled subplans based on
runtime variables [12]. Oracle’s Rdb [2] used a “dynamic
optimization” strategy to deal with uncertainty by running
alternative query plan subtrees in parallel competition. Al-
though our query plans have a different structure, they can
express similar choices over a set of fragments.

Tukwila provides dynamic collectors to organize access
to redundant and overlapping information sources. Local
completeness reasoning [9] can be used to generate policies
for collectors when there are covering relationships between
the sources. Probabilistic reasoning can be used whenever
there is partial overlap, and completeness is not required [8].
Tukwila is the first data integration system to incorporate
these techniques into a query processor.

Other researchers have investigated double pipelined joins
(e.g., [14, 24]), but in the context of parallel database sys-
tems as opposed to data integration. Bouganim et al. [5] con-
sider adaptive scheduling techniques aimed at large queries,
and Nag and DeWitt [18] investigate memory allocation strate-
gies in the context of decision support queries.

The data integration context provides performance chal-
lenges unfamiliar in database systems. Urhan et al. explored
replanning and rescheduling options for dealing with long
source transmission delays [22] that may occur when sources
are remotely located and autonomous. Our framework incor-
porates their adaptive algorithms.

Data integration also involves extending the query-answering
problem to handle sources with varying capabilities. In con-
trast to our paper, much of this work has focused on either
query optimization or query reformulation. The Garlic sys-
tem [13] optimizes over sources that can perform joins. The
work on fusion queries [27] optimizes queries for data that
occur in multiple sources, while utilizing semijoins at the
sources if possible. Systems such as TSIMMIS [10], the In-
formation Manifold [17], Hermes [1], and Razor [9] have fo-
cused on the query reformulation component. Our research
complements these projects by providing a general query ex-
ecution engine.



8 Conclusions
This paper represents the first step in a larger research effort
concerning query optimization and execution for data inte-
gration. Our main contribution is identifying several basic
mechanisms for achieving adaptive behavior, incorporating
them into a unified framework, and presenting evidence of
their utility. In particular, we make the following contribu-
tions:� We describe the architecture of the implemented Tukwila

query processor. The key contribution is that adaptivity is
designed into its core to facilitate interleaving of planning
and execution. Furthermore, Tukwila provides a platform
for incorporating hybrid optimization [19, p181] and im-
portant query optimization techniques that have been de-
veloped previously in isolation (e.g., query scrambling [22],
choose nodes [12], runtime re-optimization [15], optimiza-
tion of fusion queries [27]).� We describe the design and implementation of query op-
erators that are especially suited for adaptive behavior —
the double pipelined join and the dynamic collector. We
also demonstrate two useful techniques Tukwila uses to
adapt the execution of a double pipelined join when there
is insufficient memory for its execution.� We use Tukwila to measure the impact of adaptive execu-
tion on data integration performance. We show that the
double pipelined join outperforms the hybrid hash join.
We demonstrate experimentally the efficiency gains of in-
terleaving optimization and execution over the traditional
approach of computing the entire plan before execution
begins. We provide methods to efficiently resolve mem-
ory overflow for the double pipelined join. Our final ex-
periment demonstrates the benefits of having the optimizer
save state for subsequent re-optimization.

The success of our adaptive query execution system sug-
gests a next course of action for the Tukwila project, which
is to explore how the optimizer can best use our techniques
in combination. We plan to discover effective strategies for
generating rules and policies for dynamic collectors, as well
as for combining interleaving of planning and execution and
the double pipelined join to produce fast results. In addition,
we plan to further extend the execution system to make use
of optimistic prefetching and caching of source data.
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