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Assurance 

A justified measure of confidence that a system will function as intended in 
its environment of use 

•  What level of confidence do we have as a result of various assurance 
activities? 
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Assurance 

A justified measure of confidence that a system will function as intended in 
its environment of use 

•  Why should we have a particular level of confidence? 

•  What evidence is there to support this level of confidence? 

•  Why do we believe the evidence? 
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Assurance 

A justified measure of confidence that a system will function as intended in 
its environment of use 

•  Not just the intended environment of use — the actual environment of use 
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Assurance 

A justified measure of confidence that a system will function as intended in 
its environment of use 

•  “as intended” by the system’s users as they are actually using it 

—  Different usage patterns possible by different sets of users 
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Assurance 

A justified measure of confidence that a system will function as intended in 
its environment of use 

•  Includes evaluating mitigations of possible causes of critical failures 

—  Minimize impact of unusual (or unexpected) operational conditions 

—  Minimize impact of vulnerabilities that can be exploited by hostile 
entities 
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Assurance Cases 

A means of increasing well-founded confidence that a system will behave 
as intended 

•  Augments testing where testing by itself is infeasible or too costly 

—  Cannot demonstrate system safety/security/performance solely by 
testing 

•  Can reduce the number of tests needed to assure a desired system 
capability because analysis results can complement testing results 

•  Typically used for safety cases (in Europe) 

•  Increasing interest in US 

—  ISO 15026-2 “Assurance Case” [under development] 

—  NRC Report: “Software for Dependable Systems: Sufficient Evidence?” 
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Purpose of Presentation 

Show what Assurance Case technology is and how it can provide 

•  Help in leveraging scarce assurance resources 

•  Help in producing a reviewable artifact providing 

—  Assurance of mission-critical properties 

—  Go/No-go criteria at different stages of development 

•  Assessment of the impact of changes to a system 

•  Development of and support for an engineering culture for software 

—  Explicit articulation and verification of assurance claims 

—  Focus on evidence and its significance 
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Recognition of the Assurance Problem  

OSD (AT&L) Software Engineering and System Assurance 

•  SW test/evaluation lacks rigor and breadth 

NDIA Top Software Issues (August 2006) 

•  5. Traditional SW verification techniques are costly and ineffective for 
dealing with the scale of complexity of modern systems 

•  6. There is a failure to assure correct, predictable, safe, secure execution of 
complex SW in distributed environments 

•  7 (in part). SW assurance issues are not adequately addressed for COTS/
NDI 
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NDIA 5: Ineffective SW Verification 

Over-reliance on testing rather than robust software verification techniques 
applied across the life cycle 

Current testing techniques scale poorly 

Compliance-based testing is inadequate 
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NDIA 6: Distributed Systems 

Assurance of systems of systems cannot be easily inferred from 
component level assurance  

Current techniques for specifying, building, demonstrating, and verifying 
assured components are inadequate 

Exhaustive testing to rule out vulnerabilities is not feasible 
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NRC Report on SW Dependability 

Software for Dependable Systems: Sufficient Evidence? 

•  Experts from industry and academia assessed current practices for 
developing and evaluating mission-critical software 

•  Goals:  

—  Identify the kinds of system properties for which certification is desired  

—  Identify how certification is obtained today 

—  Address system certification, examining a few different application 
domains (e.g., medical devices and aviation systems) and their 
approaches to software evaluation and assurance 

—  Identify design and development methods, including methods for 
establishing evidence of trustworthiness  
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NRC: Dependability Definition 

“Dependability: the ability to deliver service that can justifiably be trusted” 

•  Safety 

•  Reliability/Availability 

•  Security 

“Dependability is not a local property of software that can be determined 
module by module  

•  [It] has to be articulated and evaluated from a systems perspective that 
[includes] the context of usage” 
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NRC: Testing Alone Is Insufficient 

Testing is indispensable BUT 
•  “A rigorous development process in which testing and code review are the 

only verification techniques [cannot] justify claims of extraordinarily high 
levels of dependability” 

—  “Rigorous process is essential for preserving the chain of dependability 
evidence but is not per se evidence of dependability.” 

•  “Execution of even a large set of end-to-end tests, even [with] high levels of 
code coverage, in itself says little about the dependability of the system as 
a whole.” 

•  “Credible claims of dependability are usually impossible or impractically 
expensive to demonstrate after design and development [are complete]” 
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NRC: Analysis Gives Meaning to Testing 

“For testing to be a credible component of a [case for dependability], the 
relation between testing and properties claimed will need to be explicitly 
justified” 

•  Well-reasoned argument 

•  Formal proofs 

•  Static code checkers 

•  Known properties of system internals 

•  Operational profile 

•  Quality of the development staff 
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NRC Recommendation 

Assurance that a system is dependable requires the construction and 
evaluation of a “dependability case”  

•  Claims 

•  Arguments 

•  Evidence 

•  Expertise  
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SW Impact on System Dependability 

Positive 

•  Software can sometimes be used to compensate for hardware failures by 
switching out hardware that’s failing  

•  SW can also detect impending HW failures, signaling the need for 
preventive maintenance 

•  Neither of these contributions to overall system dependability is related to 
detected SW defect rates  

Negative 

•  SW failure rates for complex systems are usually underestimated 
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SW Failure: Random or Deterministic? 

All software failures are deterministic in the sense that they occur every 
time certain conditions are met but 

•  After egregious software faults have been removed, failure occurrences 
become a function of usage patterns and history, neither of which is 
deterministic 

For complex systems, the software is never perfect 

•  A system needs to be designed to recover from (currently unknown) critical 
faults whose effects are encountered only rarely  

—  Race conditions   

—  Memory leaks 

—  Dependence on history 

—  Accumulation of error 

—  Capacity limits 

—  Vulnerability exploitation 

22 
Assurance Cases 
December 2008 

© 2008 Carnegie Mellon University 

NRC: Reliability Analysis — SW vs. HW  

Feasibility of testing 

•  HW: continuity of physical phenomena  

—  allows inferences to be drawn from a few sample points (tests) 

•  SW: discontinuous  

—  Limited SW testing can rarely provide compelling evidence of behavior 
under all conditions 

Process/product correlation 

•  HW statistical process control 

—  Product samples give evidence of process quality, which determines 
quality of unsampled items 

•  SW: process/product quality correlation is generally weak 
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Dependability Improvement Programs 

[Dependability] growth is the improvement in a [dependability] parameter 
over a period of time due to changes in product design or the 
manufacturing process.  It occurs by surfacing failure modes and 
implementing effective corrective actions [AMSAA Reliability Growth 
Guide, TR-652] 

•  HW reliability improvement activities include the identification of unexpected 
failure modes and the identification of stress points that are likely points of 
failure  

•  For SW, funding is allocated to find and remove code faults, but often there 
is no software FMEA followed by design modifications to ensure that even 
when critical software components fail, the likelihood of a critical failure is 
reduced  

Where are the SW Dependability Improvement Programs? 
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Deficiencies in SW Dependability Approaches 

Dependability modeling and analysis is hardly ever done prior to code 
development  

Work focused on improving the robustness of a design, when done, is 
hardly ever considered a part of product improvement activities 

More can be done now than simply developing software dependability 
goals or making plans about how to use collected defect data to predict 
field dependability   
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NRC Recommendation 

Assurance that a system is dependable requires the construction and 
evaluation of a “dependability assurance case”  

•  Claims 

•  Arguments 

•  Evidence 

•  Expertise  
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Assurance Cases 

An assurance case presents an argument that a system is acceptably 
safe, secure, reliable, etc. in a given context 

•  A system could be physical, a combination of hardware and software, or 
procedural (e.g., operating rules) 

Experience with assurance cases has mainly been for safety cases 
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Argument and Evidence 

An assurance case requires claims, evidence, and an argument linking 
evidence to claims: 

•  Evidence 

—  Results of observing, analyzing, testing, simulating, and estimating the 
properties of a system that provide fundamental information from which 
the presence of some system property can be inferred 

•  High Level Argument 

—  Explanation of how the available evidence can be reasonably 
interpreted as indicating acceptable operation, usually by demonstrating 
compliance with requirements, sufficient mitigation of hazards, 
avoidance of hazards, etc. 
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Problems in System Assurance 

Size and complexity 
•  Increasingly complex systems 

Structure/clarity 
•  Large amounts of relevant information 
•  Little high level structure, so can be hard to understand 
•  In many cases, evidence is compelling, but the reader has to work very 

hard to extract and confirm the rationale for why it is compelling  
•  Argument and Evidence are confused 

—  what is assumed; what is empirically observed? 
—  where are subjective judgments made? 

•  Activities and Argument are confused 
—  “What we did” vs. “Why that makes it safe, secure, reliable, etc.” 

Consistency 
•  Coordinating effort from many sources (design analyses, development 

tests, specialty engineering, IV&V efforts) 
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Approaches to Establish Confidence in Systems 

Standards-Based 

•  Evaluate developer competence based on conformance to process 
standards 

Product-Based 

•  Claims about product behavior supported by evidence based on product 
analysis 

•  Evidence linked to claims by argument 

•  Beginning to be called an “assurance case” approach 
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Standards-Based Assurance Approach 

Examples: DO-178B for avionics safety; Common Criteria for security 

Development processes are evaluated against a standard 

•  Adherence to good development processes is evidence of ability to produce 
good products 

•  Product X has been developed using good development practices 

•  Therefore Product X is sufficiently safe, secure, reliable, etc. 
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Product-Based Approach 

Example: safety case in UK 

Developer creates an assurance case with 

•  Explicit claims about system behavior  

•  Supporting evidence for claims 

•  Arguments linking evidence to the claims 

The case is evaluated by independent assessors 
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What is an Assurance Case? 

A structured demonstration that a system is acceptably safe, secure, 
reliable, etc. 

•  A comprehensive presentation of evidence linked (by argument) to a 
claim 

IF     THEN Claim1; IF     THEN Claim2; IF    THEN Claim3;  
IF Claim2 and Claim3 THEN Claim4; IF Claim1 and Claim4 THEN Claim 

Evidence 

Evidence 

Evidence 

Claim2 

Claim3 
Claim4 

Claim1 

Claim 
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Goal Structuring Notation 

Goal Structuring Notation (GSN) was developed to help organize and 
structure Safety Cases in a readily reviewable form 
GSN has been used in Safety Case development for over a decade. A 
brief overview of its history is in [Kelly 04] 
GSN has been successfully used to document Safety Cases for systems 
such as aircraft avionics, rail signaling, air traffic control, and nuclear 
reactor shutdown 
We have used it to build cases showing that other attributes of interest 
(e.g., security) have been met. 

[Kelly 04] Tim Kelly, and Rob Weaver. The Goal Structuring Notation — A Safety Argument Notation. 
http://www-users.cs.york.ac.uk/~rob/papers/DSN04.pdf 
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Goal Structuring Notation 

To show how claims              are broken down into sub-claims, 

and eventually supported by evidence 

while making clear the argumentation strategies                     
adopted, 

the rationale for the approach (assumptions, justifications) 

and the context                    in which claims are stated  

A/J 

C :  Timing Constraints Satisfied 

Timing constraints for all mission - 
( or safety - )  critical functions are  
satisfied under worst case  
execution timing 
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Presenting Clear Cases 

Basic structure 

•  Claim: what we want to show 

—  A proposition: either true or false 

•  Argument: why we believe the claim is met, based on 

•  Evidence: test results, analysis results, etc. 

In general, arguments are structured hierarchically 

•  Claim, argument, sub-claims, sub-arguments, evidence 

•  Easy to show graphically, although can be done in a document or tabular 
structure 
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Potential Assurance Case Benefits 

Improves comprehension of existing arguments 

Improves discussion and reduces time-to-agreement on what evidence is 
needed and what the evidence means 

(Having identified argument structure up front) focuses activities towards 
the specific end-objectives 

Recognition and exploitation of successful (convincing) arguments 
becomes possible (assurance case patterns) 

Supports monitoring of project progress towards successful certification 
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GSN Principles 

GSN has methodological rules that help in creating well-structured 
assurance cases 

Cases can be reviewed against these rules to improve their quality 

Cases are also reviewed to determine that the content is sound and 
convincing 
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GSN Advantages 

Captures the elements most critical for arguing a case (claims, evidence, 
argument strategy, assumptions, relation of claims to subclaims and 
evidence) 

Is reviewable 

Can be used at various stages of system development 

Gaining increasing interest in the US 

•  NRC report 

•  DHS workshop 

•  ISO draft standard in development 

•  Medical devices (FDA interest) 

•  Is required by some organizations in EU and UK 
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GSN Disadvantages 

Lack of familiarity 

Lack of examples in non-safety domains 

Lack of clarity about costs vs. added value 

Concerns about scalability 



© 2008 Carnegie Mellon University 24 

Presentation Title 1/22/09 

47 
Assurance Cases 
December 2008 

© 2008 Carnegie Mellon University 

How to Present Assurance Cases 

Possible approaches to inclusion of graphic diagrams: 

•  In full as Appendix / Annex to document 

•  Integrated within body of document 

—  Claim structure (1 level), Text, Claim structure, Text … 

•  As ‘Executive Summary’ at beginning of document 

—  Maximum 2 pages of structure, 2-3 levels of decomposition 

•  As separate, stand-alone, Index Document 

—  e.g. to explain argument distributed across many safety case 
documents 
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Step 1 – Identify Claims: Top Claims 

What is the overall objective of the argument? 

•  The ‘take-home’ message for the reader 

•  Reading the claim structure should convince someone that ... 

—  e.g. “System X is Safe” 

Things to watch out for 

•  Jumping ahead 

—  “Interlocks fitted to machinery” rather than 
“Risk associated with Hazard X reduced” 

—  The fact that risk is reduced is probably of more interest (to the reader) 
than how risk has been reduced 
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Step 1 – Identify Claims: Top Claims 

Things to watch out for (cont.) 

•  Over-simplification 

—  “System X is safe” vs. 
“System X is acceptably safe to operate in operating context Y” 

The top claim is the seed from which the argument can develop 

•  If it doesn’t contain the right concepts (e.g. acceptability) or jumps–ahead 
the scope & usefulness of the argument presented can be limited 

Not always appropriate to start from 1st principles (depends on audience) 
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Step 1 – Identify Claims: Phrasing 

Claims should be phrased as propositions 

•  Statements that can be said to be TRUE / FALSE (e.g. “The sky is blue” or  
“Pittsburgh is a beautiful city”) 

—  NB: not limited to statements that can be objectively proven 

•  Statement should be expressed as a single statement (1 sentence) of in the 
form: 

—  <NOUN-PHRASE><VERB-PHRASE> 

—  Noun-Phrase identifies the subject of the claim 

—  Verb-Phrase defines a predicate over the subject 
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Step 1 – Identify Claims: Phrasing 

Noun-Phrases 

•  Entities or attributes associated with the argument being made 

•  For safety arguments, from the following areas: 

—  System development – the design method, coding, requirements 
activities, etc. 

—  System design – physical & functional properties of design 

—  System operation and maintenance – procedures, roles, etc. 

—  Testing, Safety and Hazard Analyses – e.g. fault trees, test results 

•  Example subjects 

—  “Module XYZ123”, “Fault Tree for Top Event Y”, 
“Testing Activity Z” 
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Step 1 – Identify Claims: Phrasing 

Verb-Phrases 

•  Predicates over the subjects (qualification) 

—  e.g. (over previously listed subjects) “… was developed to Integrity 
Level 4 guidelines”, “… shows probability of event Y occurring < A”, “… 
achieved 80% coverage of system functions” 

Tense 

•  Claims should be written in a tense appropriate for the intended time of 
reading 

—  e.g. for initial certification – past tense for development, present tense 
for system attributes, future tense for operation and maintenance 

—  “System was written in SPARK-ADA subset”, 
“Likelihood of hazard X is 1x10-6”, 
“Maintenance will be carried out every Y days” 



© 2008 Carnegie Mellon University 27 

Presentation Title 1/22/09 

53 
Assurance Cases 
December 2008 

© 2008 Carnegie Mellon University 

Step 1 – Identify Claims: Phrasing 

Tense (cont.) 

•  Claims should be phrased as positive statements of objectives achieved – 
not requirements or aspirations 

—  “Failure Rate is less than 1x10-6” rather than 
“Failure Rate must be less than 1x10-6” 

•  Why? 

—  For the final argument, it is what the reader wants to know 

—  To avoid (necessarily) having to re-phrase the claim structure 

—  When developing the structure, a statement of achievement can be 
read as a claim to be achieved (i.e. stating a claim as an achievement 
doesn’t pose a significant problem early in the lifecycle) 
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Step 1 – Identify Claims: Phrasing 

The following are examples of correctly stated claims: 

Subject  
<Noun-Phrase> 

Predicate  
<Verb Phrase> 

Component X has no critical failure rates 

All identified hazards for System Y have been sufficiently mitigated 

Non-destructive examination of 
weld-site Z 

has been performed 

Design A employs triple modular redundancy 



© 2008 Carnegie Mellon University 28 

Presentation Title 1/22/09 

55 
Assurance Cases 
December 2008 

© 2008 Carnegie Mellon University 

Step 1 – Identify Claims: Phrasing 

The following are examples of incorrectly stated claims: 

Claim: Reason: 

“Hazard Log for System Y” Noun Phrase — describes an entity 
— not a statement 

“Fault Tree for Hazard H-1” As above 

“Perform Fault Tree Analysis of 
Hazard H-1” 

Verb Phrase — an action — not a 
statement 

“How many failure modes does 
component X have?” Question — not a statement 

Test: can we say claim is TRUE/FALSE? 
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Step 1 – Identify Claims: Phrasing 

Difficulties in Summarizing Claims: 

•  Sometimes, it can be difficult to ‘sum-up’ a claim in a single succinct 
statement 

—  e.g. a safety requirement that is described in 1/2 page in the standard 

•  One approach, is to reference out: 

—  e.g. “Requirement 6.3 has been met” 

•  However, we would still like to make the claim structure readable, so even 
the briefest description helps 

—  e.g. “Requirement 6.3 (Defence in Depth) has been met” 
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Step 2 – Define basis for claims: Context 

Having presented a claim, make clear (unambiguous) the basis on which 
that claim is stated 

•  When a claim talks of hazards, components, requirements, fault trees, 
acceptability, sufficiency … is it clear what is being referred to? 

Claims are rarely objective ‘context-free’ statements (especially when 
terms such as tolerable and negligible are used) 

The aim is to ensure that both writer and reader have same understanding 

For example, it is not helpful to state the claim… 
•  “Requirement 6.3 has been met”  

… if it is unclear to the reader what “Requirement 6.3” refers to 
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Step 3 – Identify strategy 

Next step is to work out how to substantiate the stated claim 

•  “What reasons are there for saying the claim is TRUE?” 

•  “What statements would convince the reader that the claim is TRUE?” 

Aiming for statements that are easier to support than the larger claim 

•  Breaking into a number of smaller claims –  i.e. Divide-and-Conquer 

•  Relating claim more closely to specific application in question (e.g. for a 
generic requirement) 
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Step 3 – Identify strategy: Phrasing 

The role of a strategy node is to clearly explain the relationship between a 
claim and a set of sub-claims 

An analogy: 

Strategy statement should succinctly describe the argument approach 
adopted, ideally in the form: 

•  “Argument by … <approach>” 

3xy3 + 2x2y2 + 5xy = 17y      (Divide both sides by y) 
3xy2 + 2x2y + 5x = 17 

Strategy 
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Step 3 – Identify strategy 

Where do strategies come from? 

For a safety argument, sources of information are: 

•  The design itself 

•  Analysis and Testing results  

•  NB: not just supporting claims, but also structuring argument 

However, can also simply be a question of presentation 

•  Especially true at the high levels 

•  (Analogous with Fault Trees – many different trees produce the same 
cutsets) 

•  In these cases 
—  Look within the argument (claims, context) already outlined 
—  Bottom line: aiming for a clear breakdown 
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Strategy 

Step 3 – Identify strategy: 

Strategies can be implicit or explicit 

•  Implicit examples already shown 
(Claims broken down directly into sub-claims) 

•  Explicit strategy 
is a node 
placed between 
parent and 
child claims 
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Step 3 – Identify strategy: Phrasing 

Example statements: 

•  “Argument by appeal to test results” 

•  “Argument by consideration of historical data” 

•  “Quantitative argument using simulated run data” 

Noun-Phrase descriptions of the claim decomposition 

•  Not actually part of the argument themselves 

•  But help in understanding the argument presented 
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Step 3 – Identify strategy 

Q: When is it necessary to explicitly introduce a strategy node? 

A1: Whenever you wish to explain the relationship between a claim and its 
sub-claims 

•  Ask yourself whether the reader will understand how you have broken down 
the claim into sub-claims 

A2: Whenever the strategy requires additional (contextual) information, 
justification or assumptions 
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Step 3 – Identify strategy: Phrasing 

Things to watch out for: 

•  Strategies should not be imperative verb-phrases 

—  e.g. “Use Historical Data” 

•  Strategies should be expressed from the perspective of the argument 
approach, not the design, testing, or analysis approach 

—  e.g., “Argument by appeal to interlock”  rather than 
“Interlocks used” 

•  Strategies should not contain claims 

—  Should be possible to remove strategy nodes 
and not affect the argument being made 
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Step 4 – Define basis for strategy 

In the same way as is necessary for claims, must examine what contextual 
information (including models) is required 

Same process – examine strategy for terms or concepts introduced but not 
‘bound’ 

•  e.g. for sub-system breakdown strategy the term ‘All identified sub-
systems” is used 

Ask what information is required in order to expand or fulfill strategy 
outlined 
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Step 4 – Define basis for claims: Rationale 

Additionally, it may be useful to explicitly represent the following: 

•  Assumptions – are there any assumptions on which the strategy | claim is 
being put forward as a solution to the parent claim? 

•  Justification – why that particular strategy | claim is being put forward as a 
solution to the parent claim? 

Both assumptions and justifications are statements (like claims) and 
therefore should be expressed as NOUN-PHRASE VERB-PHRASE 
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Step 5 – Elaborate strategy 

Having identified an approach, it is necessary to lay out the claims that 
fulfill that approach, e.g. 

•  for strategy ranging over all sub-systems – expand for claims over each 
individual sub-system 

•  for quantitative results strategy – provide quantitative claim statements 

In elaborating the strategy, define claims 

If strategy, and basis of strategy, are clear – this step can be 
straightforward 
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Step 6 – Identify Solutions 

Eventually, faced with a claim that doesn’t 
need further expansion, refinement, 
explanation … 

In such cases, simply have to reference out 
to information that supports claim by means 
of solution 

As references, solutions should be NOUN-
PHRASEs 
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Step 6 – Identify Solutions 

Possible Mistake: 

•  ‘Jumping’ to a solution too 
soon 

•  The relationship between 
claim and the referenced 
information should be obvious 
to both writer and reader ??? 
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Overview 

Definition and Purpose 

The System Assurance Problem 

Introduction to Assurance Cases 

Hazard Analyses and Assurance Cases 

Assurance Case Development 

Conclusions 
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The System Assurance Problem 

Systems are getting more complex and more dependent on software 

•  Reaching sound conclusions about dependability is getting harder 

Traditional methods for evaluating dependable behavior are increasingly 
inadequate 

•  Too costly (in time and money) to test complex systems well 

•  Testing is not the best way of showing impact of subtle, but critical errors 

•  Constraining interactions among system components can make it easier to 
increase dependability but may be hard to find constraints consistent with 
required functionality 

We need better ways of integrating a variety of analyses (evidence) into 
assurance cases, i.e., 

•  We need better means of showing how certain evidence supports 
conclusions about system properties 
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Final Thoughts 

Testing by itself is inadequate for reaching valid conclusions about SW 
dependability in complex systems 

Assurance case must 

•  Integrate design analyses focused on SW hazards and FMEA 

•  Be reviewable 

Assurance case evaluation criteria are currently subjective 

•  Need more data on which subtle defects are worth analysis efforts 

•  Need more understanding of what makes dependability arguments sound 

Assurance case patterns hold promise of capturing “valid” arguments and 
guiding dependability improvement efforts 
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Purpose of Presentation 

Show what Assurance Case technology is and how it can provide 
•  help in leveraging scarce assurance resources 

—  what part of case is most important to gaining assurance? 
—  where can work be leveraged (e.g., aspects of requirements analysis) 

•  help in producing a reviewable artifact providing 
—  assurance of mission-critical properties (the claims) 
—  go/no-go criteria at different stages of development  

•  assessment of the impact of changes to a system 
—  which part of the case is affected 

•  development of and support for an engineering culture for software 
—  explicit articulation and verification of assurance claims 
—  focus on evidence and its significance 
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Conclusions 

Within conventional assurance reports the ‘chain of argument’ can often 
get lost 

•  But the argument is more important than the document! 

GSN (and assurance cases) have been found to be a useful basis for 
mapping out and evolving the structure of the Arguments 

•  Provides a roadmap for a document or set of documents 

•  Provides a basis for discussion among engineers and between developers 
and assessors 

•  Creating outline arguments at the beginning of a project helps show 
progress towards a final solution 
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Contact Information 

Charles B. Weinstock 
System of Systems 
Software Assurance Project 
Telephone:  +1 412-268-7719 
Email:  weinstock@sei.cmu.edu 

U.S. mail: 
Software Engineering Institute 
Customer Relations 
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Pittsburgh, PA 15213-2612 
USA 

World Wide Web: 
www.sei.cmu.edu 

Customer Relations 
Email: 
customer-relations@sei.cmu.edu 
Telephone:  +1 412-268-5800 
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Overview 

Definition and Purpose 

The System Assurance Problem 

Introduction to Assurance Cases 

Hazard Analyses and Assurance Cases 

Assurance Case Development 

Conclusions 
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From Hazard Report to Assurance Case 

Cause/Fault 
Tree Ref 

Effect/Severity/ 
Likelihood Mitigation Verification 

Faulty data 
exchanged among 
redundant 
computers causes 
all computers to fail.  
This could occur 
because of Improper 
requirements, 
incorrect coding of 
logic, incorrect data 
definitions (e.g., 
initialized data), and/
or inability to test all 
possible modes in 
the SW 

Effect: Loss of 
operation of system 
during critical phase, 
leading to loss of life. 
Severity: Catastrophic 
Likelihood: Improbable 
Class: Controlled 

a) Software safeguards 
reduce, to the maximum 
extent feasible, the 
possibility that faulty data 
sent among redundant 
computers causes them 
to fail 
b) Program Development 
Specifications and 
Functional SW 
Requirements 
c) Subsystem design and 
functional interface 
requirements are used in 
the design and 
development of the 
relevant SW 
d) … 

Extensive validation and testing are in 
place to minimize generic SW problems. 
The contractors must perform rigorous 
reviews throughout the SW definition, 
implementation, and verification cycles. 
These review processes cover 
requirements, design, code, test 
procedures and results, and are designed 
to eliminate errors early in the SW life 
cycle. 
After completing system level verification, 
critical SW undergoes extensive 
integrated HW/SW verification at facility 
XXX 
Extensive verification is independently 
performed at facility XXX, using hardware 
and software maintained to duplicate the 
configuration of the fielded system 

Portion of a typical, 
traditional, software-
related hazard report 
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From Hazard Report to Assurance Case 

Cause/Fault 
Tree Ref 

Effect/Severity/ 
Likelihood Mitigation Verification 

Faulty data 
exchanged among 
redundant 
computers causes 
all computers to fail.  
This could occur 
because of improper 
requirements, 
incorrect coding of 
logic, incorrect data 
definitions (e.g., 
initialized data), and/
or inability to test all 
possible modes in 
the SW 

Effect: Loss of 
operation of system 
during critical phase, 
leading to loss of life. 
Severity: Catastrophic 
Likelihood: Improbable 
Class: Controlled 

a) Software safeguards 
reduce, to the maximum 
extent feasible, the 
possibility that faulty data 
sent among redundant 
computers causes them 
to fail 
b) Program Development 
Specifications and 
Functional SW 
Requirements 
c) Subsystem design and 
functional interface 
requirements are used in 
the design and 
development of the 
relevant SW 
d) … 

Extensive validation and testing are in 
place to minimize generic SW problems. 
The contractors must perform rigorous 
reviews throughout the SW definition, 
implementation, and verification cycles. 
These review processes cover 
requirements, design, code, test 
procedures and results, and are designed 
to eliminate errors early in the SW life 
cycle. 
After completing system level verification, 
critical SW undergoes extensive 
integrated HW/SW verification at facility 
XXX 
Extensive verification is independently 
performed at facility XXX, using hardware 
and software maintained to duplicate the 
configuration of the fielded system 

Faulty data exchanged 
among redundant 
computers causes all 
computers to fail.  

This could occur because of 
improper requirements, 
incorrect coding of logic, 
incorrect data definitions 
(e.g., initialized data), and/
or inability to test all 
possible modes in the SW 

Effect: Loss of 
operation of system 
during critical phase, 
leading to loss of life. 

Severity: Catastrophic 

Likelihood: Improbable 

Class: Controlled 

Cause/Fault 
Tree Ref 

Effect/Severity/ 
Likelihood Mitigation 

a) Software safeguards 
reduce, to the maximum 
extent feasible, the 
possibility that faulty 
data sent among 
redundant computers 
causes them to fail 

What software 
safeguards? 
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From Hazard Report to Assurance Case 

Cause/Fault 
Tree Ref 

Effect/Severity/ 
Likelihood Mitigation Verification 

Faulty data 
exchanged among 
redundant 
computers causes 
all computers to fail.  
This could occur 
because of improper 
requirements, 
incorrect coding of 
logic, incorrect data 
definitions (e.g., 
initialized data), and/
or inability to test all 
possible modes in 
the SW 

Effect: Loss of 
operation of system 
during critical phase, 
leading to loss of life. 
Severity: Catastrophic 
Likelihood: Improbable 
Class: Controlled 

a) Software safeguards 
reduce, to the maximum 
extent feasible, the 
possibility that faulty data 
sent among redundant 
computers causes them 
to fail 
b) Program Development 
Specifications and 
Functional SW 
Requirements 
c) Subsystem design and 
functional interface 
requirements are used in 
the design and 
development of the 
relevant SW 
d) … 

Extensive validation and testing are in 
place to minimize generic SW problems. 
The contractors must perform rigorous 
reviews throughout the SW definition, 
implementation, and verification cycles. 
These review processes cover 
requirements, design, code, test 
procedures and results, and are designed 
to eliminate errors early in the SW life 
cycle. 
After completing system level verification, 
critical SW undergoes extensive 
integrated HW/SW verification at facility 
XXX 
Extensive verification is independently 
performed at facility XXX, using hardware 
and software maintained to duplicate the 
configuration of the fielded system 

Faulty data exchanged 
among redundant 
computers causes all 
computers to fail.  

This could occur because of 
improper requirements, 
incorrect coding of logic, 
incorrect data definitions 
(e.g., initialized data), and/
or inability to test all 
possible modes in the SW 

Cause/Fault 
Tree Ref Mitigation 

b) Program 
Development 
Specifications and 
Functional SW 
Requirements 

c) Subsystem design 
and functional interface 
requirements … 

How are requirements 
a mitigation for this 
cause? How so? 
Which ones? 
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From Hazard Report to Assurance Case 

Cause/Fault 
Tree Ref 

Effect/Severity/ 
Likelihood Mitigation Verification 

An error common to 
software in each 
redundant computer 
causing all 
computers to fail.  
This could occur 
because of improper 
requirements, 
incorrect coding of 
logic, incorrect data 
definitions (e.g., 
initialized data), and/
or inability to test all 
possible modes in 
the SW 

Effect: Loss of 
operation of system 
during critical phase, 
leading to loss of life. 
Severity: Catastrophic 
Likelihood: Improbable 
Class: Controlled 

a) Software safeguards 
reduce, to the maximum 
extent feasible, the 
possibility that faulty data 
sent among redundant 
computers causes them 
to fail 
b) Program Development 
Specifications and 
Functional SW 
Requirements 
c) Subsystem design and 
functional interface 
requirements are used in 
the design and 
development of the 
relevant SW 
d) … 

Extensive validation and testing are in 
place to minimize generic SW problems. 
The contractors must perform rigorous 
reviews throughout the SW definition, 
implementation, and verification cycles. 
These review processes cover 
requirements, design, code, test 
procedures and results, and are designed 
to eliminate errors early in the SW life 
cycle. 
After completing system level verification, 
critical SW undergoes extensive 
integrated HW/SW verification at facility 
XXX 
Extensive verification is independently 
performed at facility XXX, using hardware 
and software maintained to duplicate the 
configuration of the fielded system 

Faulty data exchanged 
among redundant 
computers causes all 
computers to fail.  

This could occur because of 
improper requirements, 
incorrect coding of logic, 
incorrect data definitions 
(e.g., initialized data), and/
or inability to test all 
possible modes in the SW 

Cause/Fault 
Tree Ref Verification 

Extensive validation and testing 
are in place to minimize generic 
SW problems. The contractors 
must perform rigorous reviews 
throughout the SW definition, 
implementation, and verification 
cycles. These review processes 
cover requirements, design, 
code, test procedures and 
results, and are designed to 
eliminate errors early in the SW 
life cycle. 

What is “extensive”? What are “rigorous 
reviews”? How do 
they eliminate errors? 
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From Hazard Report to Assurance Case 

Cause/Fault 
Tree Ref 

Effect/Severity/ 
Likelihood Mitigation Verification 

Faulty data 
exchanged among 
redundant 
computers causes 
all computers to fail.  
This could occur 
because of improper 
requirements, 
incorrect coding of 
logic, incorrect data 
definitions (e.g., 
initialized data), and/
or inability to test all 
possible modes in 
the SW 

Effect: Loss of 
operation of system 
during critical phase, 
leading to loss of life. 
Severity: Catastrophic 
Likelihood: Improbable 
Class: Controlled 

a) Software safeguards 
reduce, to the maximum 
extent feasible, the 
possibility that faulty data 
sent among redundant 
computers causes them 
to fail 
b) Program Development 
Specifications and 
Functional SW 
Requirements 
c) Subsystem design and 
functional interface 
requirements are used in 
the design and 
development of the 
relevant SW 
d) … 

Extensive validation and testing are in 
place to minimize generic SW problems. 
The contractors must perform rigorous 
reviews throughout the SW definition, 
implementation, and verification cycles. 
These review processes cover 
requirements, design, code, test 
procedures and results, and are designed 
to eliminate errors early in the SW life 
cycle. 
After completing system level verification, 
critical SW undergoes extensive 
integrated HW/SW verification at facility 
XXX 
Extensive verification is independently 
performed at facility XXX, using hardware 
and software maintained to duplicate the 
configuration of the fielded system 

These ambiguities 
in the hazard report 
make certification 
assessment more 
difficult.  

The answers may be 
available elsewhere, 
but we are left to 
find them ourselves.  

The mitigations and 
verification actions 
are implicitly related 
to the cause/hazard.  

Make the relationship 
more explicit by 
constructing claims 
and evidence in an 
assurance case.  
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From Hazard Report to Assurance Case 

Cause/Fault 
Tree Ref 

Effect/Severity/ 
Likelihood Mitigation Verification 

Faulty data 
exchanged among 
redundant 
computers causes 
all computers to fail.  
This could occur 
because of improper 
requirements, 
incorrect coding of 
logic, incorrect data 
definitions (e.g., 
initialized data), and/
or inability to test all 
possible modes in 
the SW 

Effect: Loss of 
operation of system 
during critical phase, 
leading to loss of life. 
Severity: Catastrophic 
Likelihood: Improbable 
Class: Controlled 

a) Software safeguards 
reduce, to the maximum 
extent feasible, the 
possibility that faulty data 
sent among redundant 
computers causes them 
to fail 
b) Program Development 
Specifications and 
Functional SW 
Requirements 
c) Subsystem design and 
functional interface 
requirements are used in 
the design and 
development of the 
relevant SW 
d) … 

Extensive validation and testing are in 
place to minimize generic SW problems. 
The contractors must perform rigorous 
reviews throughout the SW definition, 
implementation, and verification cycles. 
These review processes cover 
requirements, design, code, test 
procedures and results, and are designed 
to eliminate errors early in the SW life 
cycle. 
After completing system level verification, 
critical SW undergoes extensive 
integrated HW/SW verification at facility 
XXX 
Extensive verification is independently 
performed at facility XXX, using hardware 
and software maintained to duplicate the 
configuration of the fielded system 

Faulty data exchanged 
among redundant 
computers causes all 
computers to fail.  

This could occur because of 
improper requirements, 
incorrect coding of logic, 
incorrect data definitions 
(e.g., initialized data), and/
or inability to test all 
possible modes in the SW 

Claim: The possibility 
that ‘Faulty data 
exchanged among 
redundant computers 
causes all such 
computers to fail 
(during critical 
mission phases)’ has 
been reduced ALARP 
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From Hazard Report to Assurance Case 

Cause/Fault 
Tree Ref 

Effect/Severity/ 
Likelihood Mitigation Verification 

Faulty data 
exchanged among 
redundant 
computers causes 
all computers to fail.  
This could occur 
because of improper 
requirements, 
incorrect coding of 
logic, incorrect data 
definitions (e.g., 
initialized data), and/
or inability to test all 
possible modes in 
the SW 

Effect: Loss of 
operation of system 
during critical phase, 
leading to loss of life. 
Severity: Catastrophic 
Likelihood: Improbable 
Class: Controlled 

a) Software safeguards 
reduce, to the maximum 
extent feasible, the 
possibility that faulty data 
sent among redundant 
computers causes them 
to fail 
b) Program Development 
Specifications and 
Functional SW 
Requirements 
c) Subsystem design and 
functional interface 
requirements are used in 
the design and 
development of the 
relevant SW 
d) … 

Extensive validation and testing are in 
place to minimize generic SW problems. 
The contractors must perform rigorous 
reviews throughout the SW definition, 
implementation, and verification cycles. 
These review processes cover 
requirements, design, code, test 
procedures and results, and are designed 
to eliminate errors early in the SW life 
cycle. 
After completing system level verification, 
critical SW undergoes extensive 
integrated HW/SW verification at facility 
XXX 
Extensive verification is independently 
performed at facility XXX, using hardware 
and software maintained to duplicate the 
configuration of the fielded system 

Faulty data exchanged 
among redundant 
computers causes all 
computers to fail.  

This could occur because of 
improper requirements, 
incorrect coding of logic, 
incorrect data definitions 
(e.g., initialized data), and/
or inability to test all 
possible modes in the SW 

Better claims: Each 
possible cause has 
been mitigated 
(differently) 
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From Hazard Report to Assurance Case 

Cause/Fault 
Tree Ref 

Effect/Severity/ 
Likelihood Mitigation Verification 

Faulty data 
exchanged among 
redundant 
computers causes 
all computers to fail.  
This could occur 
because of improper 
requirements, 
incorrect coding of 
logic, incorrect data 
definitions (e.g., 
initialized data), and/
or inability to test all 
possible modes in 
the SW 

Effect: Loss of 
operation of system 
during critical phase, 
leading to loss of life. 
Severity: Catastrophic 
Likelihood: Improbable 
Class: Controlled 

a) Software safeguards 
reduce, to the maximum 
extent feasible, the 
possibility that faulty data 
sent among redundant 
computers causes them 
to fail 
b) Program Development 
Specifications and 
Functional SW 
Requirements 
c) Subsystem design and 
functional interface 
requirements are used in 
the design and 
development of the 
relevant SW 
d) … 

Extensive validation and testing are in 
place to minimize generic SW problems. 
The contractors must perform rigorous 
reviews throughout the SW definition, 
implementation, and verification cycles. 
These review processes cover 
requirements, design, code, test 
procedures and results, and are designed 
to eliminate errors early in the SW life 
cycle. 
After completing system level verification, 
critical SW undergoes extensive 
integrated HW/SW verification at facility 
XXX 
Extensive verification is independently 
performed at facility XXX, using hardware 
and software maintained to duplicate the 
configuration of the fielded system 

Effect: Loss of 
operation of system 
during critical phase, 
leading to loss of life. 

Severity: Catastrophic 

Likelihood: Improbable 

Class: Controlled 

Claim context and 
assumptions 
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AC to Resolve These Problems 
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Assurance Case Benefits 

It’s not that we don’t already produce this data, but we don’t present it 
effectively 

•  The motivation for some activities and decisions is not evident to outside 
reviewers or new personnel 

Effective presentation can 

•  Motivate consideration of different designs 

—  Ways of eliminating data exchanges (requirements scrub) 

•  Explain why certain evidence is critically important 

—  Code reviews showing that data validation checks are done 

—  Test results showing invalid data is rejected 

•  Help prioritize activities that contribute to the argument 

90 
Assurance Cases 
December 2008 

© 2008 Carnegie Mellon University 

From Hazard Report to Assurance Case 

Cause/Fault 
Tree Ref 

Effect/Severity/ 
Likelihood Mitigation Verification 

Faulty data 
exchanged among 
redundant 
computers causes 
all computers to fail.  
This could occur 
because of improper 
requirements, 
incorrect coding of 
logic, incorrect data 
definitions (e.g., 
initialized data), and/
or inability to test all 
possible modes in 
the SW 

Effect: Loss of 
operation of system 
during critical phase, 
leading to loss of life. 
Severity: Catastrophic 
Likelihood: Improbable 
Class: Controlled 

a) Software safeguards 
reduce, to the maximum 
extent feasible, the 
possibility that faulty data 
sent among redundant 
computers causes them 
to fail 
b) Program Development 
Specifications and 
Functional SW 
Requirements 
c) Subsystem design and 
functional interface 
requirements are used in 
the design and 
development of the 
relevant SW 
d) … 

Extensive validation and testing are in 
place to minimize generic SW problems. 
The contractors must perform rigorous 
reviews throughout the SW definition, 
implementation, and verification cycles. 
These review processes cover 
requirements, design, code, test 
procedures and results, and are designed 
to eliminate errors early in the SW life 
cycle. 
After completing system level verification, 
critical SW undergoes extensive 
integrated HW/SW verification at facility 
XXX 
Extensive verification is independently 
performed at facility XXX, using hardware 
and software maintained to duplicate the 
configuration of the fielded system 

Extensive validation and testing 
are in place to minimize generic 
SW problems. … 

Evidence should point to 
each test and test result 
related to verification of 
each safeguard 
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When to Visualize the Argument? 

Q: At what stage in a project is it worth visualizing the argument? 

Answers: 

•  Early on (high level) to get a clear picture (and gain agreement) of 
argument structure 

—  Useful as a scoping exercise and effort allocation 

•  As project is progressing, in order to monitor status towards completion of 
an acceptable argument 

•  At end of project in order to present the final argument and evidence that 
exists 


