Leading the Charge: Reinventing Computer Science at Penn

Rapid change. That's the trademark characteristic of the discipline of computer science. Should you need proof, just think about entire encyclopedias, books and music all in a single device in the palm of your hand. Then consider the spectrum of people who thrive using these advances. With the ability to do countless functions and operations just by pressing our fingertips to a screen, we routinely use technology that just short years ago was still theory. Rapid change is the result of computer science's ability to constantly push boundaries and bring us the novel devices and tools we will rely upon in the years to come.

"To me, the constant change and excitement is associated with the 'outward face' of computer science," says Sampath Kannan, the newly named chair of the Department of Computer and Information Science (CIS). "It is increasingly the key partner in unlocking the mysteries of so many other disciplines as information technology becomes integral to every aspect of our lives."

Penn Engineering's CIS department is a leading force in this change. In less than a decade, an undergraduate degree in Networked and Social Systems Engineering and master's degrees in Robotics, Embedded Systems, and Computer Graphics and Game Technology have all been added. Years ago, finding a university that offered these types of courses was a tall task, but now, thanks to pioneering efforts of computer scientists at Penn, they've become an integral part of both the field and its curricula.

The groundwork may already have been laid, but to Kannan, the Henry Salvatori Professor in CIS, this is just the beginning. "More new degrees are in the works," he notes. "At the same time, we are always on the lookout for bright new stars in these ever-evolving research areas to join our faculty."

An Organic Fit

As the field continues this rapid metamorphosis, Kannan will lead the charge in creating new, exciting opportunities, a challenge that he eagerly accepts. To start, Kannan says that a focus on the area of formal methods will result in the creation of techniques to provide future software and hardware systems that are both correct and reliable. "It's obviously crucial when you think of how much rides on these systems," he states, adding that "everything from pacemakers to nuclear plants, from our financial systems to air and spacecraft" can be affected.

When it comes to his peers, the selection of Kannan as chair was well-received. Insup Lee, the Cecilia Fitler Moore Professor in CIS, calls his colleague "the complete package," while highlighting his managerial, intellectual and interpersonal skills. "Sampath is very optimistic and that can be quite contagious," says Lee. "We are lucky to have him here."

Though he's just settling into his new role, Kannan feels as if his new position is an organic fit, a transition made easier by the faculty and staff around him. "I would not want to be chair of many departments, but this one practically runs itself," he says. "The faculty and staff are always ready to take on more than their fair share of responsibilities to make certain that CIS succeeds in its mission. Also, I know I have the good wishes of everyone and that makes this job a pleasure."

Algorithms as Elixir

Being at the forefront of change is nothing new for Kannan, whose distinguished career has revolved around algorithms and their myriad uses. It doesn't take long to notice the omnipresent nature of algorithms in our society. The sequencing of the human genome happened because of algorithms, Facebook uses them to recommend friends, and Google's search engine employs them when guessing what users are looking for. "Even your credit card transaction on Amazon is kept secure by means of algorithms for encrypting and decrypting data," says Kannan.

The use of algorithms goes far beyond social media and online shopping, as shown by the spectrum of different topics which Kannan is currently trying to tackle. He continues to return to the question of how to compute reliably with unreliable programs or computers. "My doctoral thesis was on designing helper programs called checkers that would determine whether a program was producing the correct output," he states.

"I am now working at a much more detailed level to determine how we can build circuits out of gates that can produce the wrong answer with some probability and maximize the probability of the whole circuit producing the right output." In addition to answering this question, Kannan is also exploring network tomography and has become interested in the intersection of computer science and economics.

For Kannan, his field serves as a possible elixir for many of the world's issues. "Algorithmic thinking means not just 'what the solution is' but also how one arrives at it in a reasonable amount of time and space. This applies to every aspect of our lives, from cooking dinner to planning for retirement," states Kannan. "Such thinking can not only find efficient solutions for problems in biology, economics, physics and the social sciences, it can also pose new challenges to usher in the futures of these fields."

View the full the article in Penn Engineering magazine: "Leading the Charge: Reinventing Computer Science at Penn," by Andrew Clark.

Interested? Learn more!

View Sampath Kannan's Faculty Profile

Return to News Features