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Thermodynamic equations are developed for adsorption of multicomponent gas mix-
tures in microporous adsorbents based on the principles of solution thermodynamics.
The conventional spreading pressure and surface area variables, which describe 2-D
films, must be abandoned for adsorption in micropores, in which spreading pressure
cannot be measured experimentally or calculated from intermolecular forces. Adsorp-
tion is divided into two steps: (1) isothermal compression of the gas, (2) isothermal
immersion of clean adsorbent in the compressed gas. Thermodynamic functions (Gibbs
free energy, enthalpy, and entropy) from solution thermodynamics provide a complete
thermodynamic description of the system. Applications are described for characteriza-
tion of adsorbents, gas storage at high pressure, mixture adsorption, enthalpy balances,
molecular simulation, adsorption calorimetry, and shape selectivity in catalysis.

Introduction

Brief history of adsorption thermodynamics

The concept of surface excess in adsorption was intro-
duced by J. Willard Gibbs, but the interpretation and appli-
cation of the Gibbsian version of thermodynamics of surfaces
was impeded by the abstruse nature of his writing (Gibbs,
1928). The thermodynamics textbook by Lewis and Randall
(1923) exerted an enormous influence upon the development
of thermodynamics in the first half of the 20th century. How-
ever, their short section on thermodynamics of surfaces was
devoted entirely to the surface tension of liquid-vapor inter-
faces. The revision of Lewis and Randall by Pitzer and Brewer
(Lewis et al., 1961) devoted an entire chapter to surface ef-
fects, which concluded with a five-page section on adsorption
of gases. In particular they defined the isosteric heat (g,)

q,=RT2 Jdln P )
§ aT |,

This definition of isosteric heat obtained by differentiating a
series of adsorption isotherms at constant loading (n) is still
used today. Unfortunately, Eq. 1 applies only to a pure, per-
fect gas and its connection with the enthalpy of the adsorbed
phase and its extension to the case of real gas mixtures has
led to considerable confusion. The terminology ‘“isosteric
heat” intended to mean lines of constant loading is mislead-
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ing, because the evolution of a heat of adsorption requires a
change in loading. The existence of other heats of adsorption
such as the “differential heat of adsorption” equal to (q,, —
RT), the “equilibrium heat of adsorption” obtained by per-
forming the differentiation in Eq. 1 at constant spreading
pressure, and others (Valenzuela and Myers, 1989) adds to
the confusion. Agreement within the adsorption community
on the thermodynamic definition and physical meaning of the
energy of adsorption is long overdue.

Important contributions to the thermodynamics of physical
adsorption by D. H. Everett, T. L. Hill, and L. E. Drain were
summarized by Young and Crowell (1962). The thermody-
namics of physical adsorption on solid adsorbents is based on
the concept of an inert adsorbent and the introduction of two
new variables: surface area (A) and spreading pressure (ID).
A typical equation (Eq. 15 of Chapter 3) from Young and
Crowell’s book is

dF,= — S,dT +V,dP + AdIl + pdn, )

where F, =G, +I1 A4 is a free energy and the subscripts refer
to the surface phase. This 2-D, surface thermodynamics ap-
proach is standard in adsorption (Ruthven, 1984; Yang, 1987;

January 2002 Vol. 48, No. 1 145



Valenzuela and Myers, 1989; Suzuki, 1990). The problem with
the 2-D approach is that it requires a series of assumptions of
unknown validity: inert adsorbent, pure perfect gas, negligi-
ble volume of adsorbed phase, and so on. More disturbing is
the impossibility of calculating or measuring the spreading
pressure inside a micropore. The external surface area of
nonporous solids can be measured by microscopy, but the
definition and measurement of the surface area of nanome-
ter-sized micropores is fuzzy.

The topic of adsorption has been omitted from chemical
engineering textbooks on thermodynamics since the first one
by Dodge (1944). Phase equilibrium is properly concentrated
upon vapor-liquid systems because of their importance in dis-
tillation. Less attention is devoted to equilibria in liquid-liquid
and liquid-solid systems and adsorption thermodynamics was
ignored entirely until 1996. The reason for this neglect of
physical adsorption is that the fundamental equations of so-
lution thermodynamics developed for vapor-liquid equilibria
do not apply to adsorbed phases, which require special treat-
ment and the introduction of surface variables (IT and A) as
described in recent editions of Smith et al. (1996, 2001).

Advantages of solution thermodynamics

Innovations in adsorption technology such as pressure-
swing adsorption require chemical engineers to perform mass
and energy balances and calculate phase equilibria for ad-
sorption systems. The objective here is to show how the fa-
miliar principles of phase equilibria and solution thermody-
namics established for vapor-liquid equilibria can be applied
directly and rigorously to physical adsorption from gaseous
mixtures, while avoiding the undefined variables of 2-D sur-
face thermodynamics.

Since engineers and chemists have been measuring gas ad-
sorption in porous adsorbents for many years using the
metholodogy developed for thin films, the case needs to be
made that the solution thermodynamics approach is superior
not just in the nuances of interest to thermodynamic purists,
but also in everyday practical usage. Some of the advantages
of solution thermodynamics over the conventional 2-D ap-
proach are:

() Confusion over different heats of adsorption (see
above) is eliminated by the solution thermodynamics ap-
proach. In solution thermodynamics, the enthalpy of the ad-
sorbed phase is measured relative to a well-defined reference
state and there is no confusion about different types of en-
thalpy.

(2) The 2-D approach is based upon surface area, which
for microporous materials cannot be measured experimen-
tally or calculated theoretically. The suitability of approxi-
mate procedures such as the BET Point B method (Young
and Crowell, 1962) for estimating surface area has been ar-
gued for generations. A better characterization of an adsorb-
ent would be the maximum adsorption of a supercritical gas
such as argon at room temperature, or the enthalpy of im-
mersion of the adsorbent in a particular fluid.

(3) The isosteric heat defined in conventional 2-D treat-
ments of adsorption has a singularity (goes to infinity) at the
point where the amount adsorbed reaches a maximum (Salem
et al., 1998; Siperstein et al., 2001), whereas the integral en-
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Table 1. Integral and Differential Thermodynamic Functions
for Single-Component Adsorption.®

Function Symbol Eq.
pn’
Surface potential O] —RT f —df
o f
Free energy of immersion AG™™ @ + PV
) J [P
Enthalpy of immersion AHM™™ 72— — + pps
aT| T|,
. Jd
Entropy of immersion AS™™ — | —
aT |,
a a f
Integral free energy AG n’RT In F +o
Integral enthalpy AH? fnaAﬁ“dn”
0
AH* - AG*
Integral entropy AS¢ —
. . L f
Diff. free energy (chem. potential) Ag RT In F
dlnf
Diff. enthalpy Aht? — RT?
T |,
Diff. A AR R1 f
. ent 59 — —
iff. entropy S T n 7

*The integral enthalpy and heat of immersion are related by AH“ =
AH ™™ 4 papR — PYs and therefore AHY=AH ™™ for a perfect gas at
low pressure. For a perfect gas, f = P and except for very high pressure
the Poynting term PV* is negligible. All functions are normally negative
in sign.

thalpy of solution thermodynamics is smooth and well-de-
fined under all conditions.

(4) The conventional treatment of thin films is for adsorp-
tion of perfect gases on inert, planar solids at low pressures
of a few bars. The solution thermodynamics approach applies
to adsorption of fluid mixtures in porous materials at high
pressure up to 1,000 bars.

(5) The solution thermodynamics approach leads naturally
to the immersional functions: free energy, enthalpy, and en-
tropy of immersion of the clean adsorbent in the bulk fluid.
The obvious physical significance of these functions simplifies
their application to the solution of practical problems. The
concepts of spreading pressure, differential entropy, and iso-
steric heat developed in the conventional 2-D approach are
difficult to understand, even for experts.

(6) Experimental measurements of adsorption in porous
materials using volumetric or gravimetric methods require
careful attention to the placement of the Gibbs dividing sur-
face between the gas phase and the solid adsorbent. Conven-
tional 2-D treatments of adsorption do not apply to porous
materials.

(7) Since the spreading pressure inside a micropore con-
taining a few dozen molecules cannot be calculated from in-
termolecular forces, theory cannot be compared with experi-
ment using the conventional 2-D approach. Solution thermo-
dynamics provide a simple connection between theoretical
absolute variables (total energy, total number of adsorbate
molecules) and experimental excess variables.

The thermodynamic functions for adsorption developed in
the next section are summarized in Table 1, and a sample
calculation for the Langmuir model is given in the Appendix.
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The theoretical development section is followed by numerous
applications in adsorption technology.

Theory
Defining adsorption in porous materials

An adsorption system contains two macroscopic phases: a
gas phase and a solid phase. For typical adsorbents such as
zeolites or activated carbon, adsorption occurs inside the ad-
sorbent in micropores, mesopores, and macropores. Com-
mercial adsorbents are manufactured not as single crystals,
but as small particles which are usually shaped into larger
particles using binders. Adsorption occurs mainly within the
pores of the adsorbent, but may also occur on its external
surface and occasionally in the binder.

In order to divide the adsorbate molecules and their prop-
erties into two phases, it is necessary to distinguish adsorbed
molecules from gas-phase molecules. A methane molecule lo-
cated inside a micropore 4 A from its internal surface can
reasonably be classified as adsorbed. A methane molecule lo-
cated at a distance of 100 A from the surface of the adsor-
bent can reasonably be classified as belonging to the gas
phase. Ambiguity arises for intermediate cases. Is a methane
molecule located at a distance of 10 A from the surface of
the solid adsorbed? Fortunately, the problem of defining a
boundary between the adsorbed and gas phases was solved
by Gibbs (1928), whose solution was to propose the construc-
tion of a mathematical dividing surface between the two
phases. Gibbs was intentionally vague about the exact loca-
tion of this dividing surface, which is advantageous because it
would be difficult to define a dividing surface within the mi-
cropores of an adsorbent.

Figure 1a shows the density profile close to the surface for
the case of single-component adsorption. The density of the
adsorbate (p?®) is constant in the gas phase and constant
(zero) within the solid. The amount adsorbed within the in-
terface (n®) obviously depends upon the location of its
boundaries. Figure 1b illustrates the Gibbs model in which
the actual interface is replaced by a single dividing surface
located somewhere within the interfacial region. The gas
phase with volume V'8 has a homogeneous density ( p&) up to
the dividing surface. The mass balance for adsorption is

n*=n'—V3sps 3)
2 '
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2. Actual interface. b. Gibbs model of interface

Figure 1. Profile of gas density at gas-solid interface.
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The total amount of gas in the system (n‘) and its bulk den-
sity ( p8) are measured experimentally. The volume of the gas
phase (V8) increases as the dividing surface in Figure 1b
moves from left to right, while the amount adsorbed (n?) de-
creases from a positive value to zero and finally becomes neg-
ative as the dividing surface enters the solid phase. Thus, the
amount adsorbed (n“) depends upon the location (x,) of the
dividing surface.

The location of the dividing surface is fixed by selecting a
reference gas for which the amount adsorbed is defined to be
Zero

n“=n'-V&%&=0  (for He) 4)
It follows that
nt
Vs = e (for He) )

Equation 4 provides a method of measuring adsorption rela-
tive to helium by measuring the volume of the gas phase (V%)
using helium as a reference component. V4, called the dead
space or void volume, is normally measured at the standard
conditions of room temperature and low (sub-atmospheric)
pressure. The Gibbs procedure of defining adsorption rela-
tive to a reference component is independent of whether he-
lium actually adsorbs. Helium was selected as the reference
gas, because it is a small, inert molecule, but a smaller inert
molecule (if one existed) would measure a slightly larger dead
space than helium. The point is that all experiments and the-
oretical calculations should be based upon the same refer-
ence state.

Referring again to Figure 1b, the gas volume (J¥) is re-
quired for volumetric experiments and the solid volume (V)
is required for gravimetric experiments. 4 includes the pores
of the adsorbent, and V* is the skeletal volume of the ad-
sorbent. The skeletal volume, which is the total volume of the
solid minus its pore volume, is measured by the buoyancy
force exerted in helium gas. The volume displaced by the solid
(7*) is the slope on a plot of apparent weight vs. density of
helium. Thus, gravimetric and volumetric experiments are
based upon the same assumption: that helium gas does not
adsorb at the standard conditions of room temperature and
low pressure.

Instead of defining adsorption by Eq. 3, why not measure
the total amount of gas contained in the micropores? Unfor-
tunately, an experimental method for measuring the total
amount of gas adsorbed in the pores does not exist. The stan-
dard volumetric technique measures the total amount of gas
in the system but cannot distinguish between molecules in
the pores and molecules in the gas phase. The gravimetric
method also fails to measure total adsorption in the pores
because of the necessity for a buoyancy correction to the ap-
parent weight.

Adsorption measured relative to helium by Eq. 3 is called
Gibbs excess adsorption. The excess adsorption is the total
amount of gas in the pores minus the amount that would be
present if the pores were filled with gas at the equilibrium
bulk density.
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Thermodynamic properties of porous materials

According to the Gibbs model of adsorption depicted in
Figure 1b, any extensive thermodynamic function may be
written

Z'=7"+2784+27° (6)
The gas-phase portion is
Z8=V8p8z8 (7)

where p# is the molar density of the bulk gas and z¢ is the
molar value of Z in the bulk phase at the same values of the
intensive variables (T, P, y;). The molar function z8(7, P,
y;) is determined from independent PVT measurements on
the bulk gas. As explained in the previous section, V'8 is
determined from Eq. 5 using helium gas. Specifically, from
Eq. 7

ng =Vsepsy,
Us =VEpeus
S8 =V8p8sE
Ve =VEpEyps =18 (8)

The solid-phase term (Z*) in Eq. 6 is determined from inde-
pendent measurements of the solid adsorbent in its pure
standard state.

From Eq. 6

né=ni—né

Ut =U' - U - U*

§o=§— 58— 8

Vi—pi-yE—ps=0 )

a form which emphasizes the excess nature of the Gibbs
model for which the adsorbed phase is a mathematical plane
of zero volume (V*=0). According to Eq. 9, the energy of
the adsorbed phase (U?) includes the energy change of the
solid adsorbent relative to its standard state in addition to
the energy of the adsorbate molecules. A similar statement
applies to the entropy. Solution thermodynamics is unable to
distinguish energy changes in the solid from energy changes
of the adsorbate molecules.

Referring again to Figure 1b, the total volume is divided
into two parts: the gas phase (V/¢) and the condensed phase
(V*). The condensed phase includes the adsorbed phase with
volume V“ = 0 by definition. The Gibbs model ignores possi-
ble changes in the volume of the condensed phase in re-
sponse to increased pressure or because of swelling in the
case of polymeric adsorbents. Since the volumetric method is
based upon a constant value of V4 and the gravimetric
method is based upon a constant value of V¥, deformation or
swelling of V* would be revealed by lack of agreement of
volumetric and gravimetric isotherms. Experimental evidence
of such a discrepancy has not yet been found.

Another consideration is the variation of 17¢ and V* with
temperature. Although both volumes are functions of tem-
perature, their temperature dependence is weak. V* in-
creases with temperature according to the temperature coef-
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ficient of expansion of the solid, which is of order
1/ VXaV/dT)p=1075 to 10~* K~ L. Changes in V* may be
significant when making gravimetric measurements over a
wide range of temperature. Molecular simulations of the he-
lium pore volume of silicalite (Siperstein et al., 2001) indicate
that the pore volumes at 300 and 400 K are 0.175 and 0.146
cm?/g, respectively. The decrease in helium pore volume is
due to helium-solid intermolecular forces, not expansion or
contraction of the solid. Determinations of void volume
should always be accompanied by the temperature of the
measurement. At high pressure in the range 100-1,000 bar,
the adsorption isotherm is highly sensitive to the void vol-
ume.

Fundamental equation for energy

Adsorption in microporous adsorbents falls naturally into
the framework of solution thermodynamics, with the distinc-
tion that the solvent is a solid. The starting point is the fun-
damental differential equation for the energy of a micro-
porous adsorbent containing C gaseous adsorbates (Callen,
1985)

C
dU=TdS — PdV + Y pdn; + pdm (10)
i=1

The intensive variables of the condensed phase are the tem-
perature (7'), the pressure (P), the chemical potentials of the
adsorbates ( y;), and the chemical potential of the solid ad-
sorbent (). The chemical potentials of the adsorbates are in
J/mol and the chemical potential of the adsorbent is in J/kg.
The extensive variables of the condensed phase are the inter-
nal energy (U), entropy (§), the amount (number of mols) of
each adsorbate (n;), and the mass of solid adsorbent (m).
Equation 10 is written for the solid phase plus the adsorbed
phase, that is, the entire condensed phase.

The particle-size distribution, composition, and structure
of the individual adsorbent particles are assumed to be uni-
form throughout the system. Thus, the external surface area
of the adsorbent and the extensive thermodynamic properties
are directly proportional to the mass of adsorbent present.
Stated mathematically

UnS, nV, nn;, nm) =qU(S, V, n;, m) (11)

The total energy U of the solid phase is a first-order, homo-
geneous function of the variables S, V, n;, and m; that is to
say, doubling the values of S, V, n;, and m at constant values
of the intensive variables (T, P, w;, u) doubles the value of
U. It follows from Eq. 11 and Euler’s theorem for homoge-
neous functions (Callen, 1985) that

C
U=TS—PV— Y wn;+ um (12)
i=1

Adsorption thermodynamics deals with systems such as a
packed column or sample cell containing a fixed mass of ad-

sorbent. The solid phase is open with respect to the adsor-
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bates, but closed with respect to the adsorbent. The re-
versible addition of solid adsorbent to the system correspond-
ing to the udm term in Eq. 10 is not physically realizable, so
dm =0 and the mass of adsorbent is a constant. The exten-
sive variables (U,S,V,n;) are converted to extensive variables
per unit mass so that Eq. 12 may be written in the asymmet-
ric, but more useful, form

C
U=TS—PV+ Y wn,+p (13)

i=1

In Eq. 13 and, henceforth, all extensive variables (U,S,V,n;,
and so on) are written per unit mass of adsorbent and called
mass extensive variables. For the adsorbent in its pure stan-
dard state at the equilibrium pressure and temperature

US=TS*— PV + u (14)

The pure solid is assumed to be incompressible so that 1=
V¥ U =U*, and §°= §**, where the asterisk refers to the
clean adsorbent in vacuo. However, the pressure affects the
enthalpy and free energy so H*= H** + PV*, G*=G** +
PV¥, and p’= u** + PV°. The free energy (G*) of the pure
adsorbent is equal to its chemical potential ( u*); the units of
both are J/kg. The PV® term is a Poynting correction which
accounts for hydrostatic pressure (de Azevedo et al., 1999).

Given the equilibrium values of 7 and P, any mass exten-
sive function of the adsorbed phase is obtained by subtract-
ing the function for the pure solid from the corresponding
function for the condensed phase

U'=U-U*

Si=8-5°

Véi=V—-V*=0

ni=mn; (15)

Subtracting Eq. 14 from Eq. 13, and using Eq. 15
C
Ut=TS"+ ), wné+® (16)
i=1
where

®= (- u) (17)

is called the surface potential (Sircar and Myers, 1973a) or
grand potential. If no adsorption occurs, then = u® and the
surface potential is zero. Writing Eq. 10 for the condensed
system containing a constant mass m of adsorbent

C
AU=TdS + Y wdn, (18)

i=1

The PdV term vanishes because IV =17° is assumed constant.
For the same mass of adsorbent in its standard state

dU* = TdS* (19)
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Substracting Eq. 19 from Eq. 18, and using Eq. 15

C
dU°=TdS+ Y, w,dn® (20)

i+1

Equations 16 and 20 are the integral and differential equa-
tions governing the adsorbed phase. Changes in the proper-
ties of the adsorbent from its standard-state values (U%, S*)
are included implicitly in U“ and S“. In surface thermody-
namics, the adsorbent is assumed to be inert so that its chem-
ical potential is unperturbed by isothermal adsorption (u =
1*). Assuming the adsorbent to be inert is acceptable for ad-
sorption on the external surface of solid particles, but, for
microporous adsorbents, the concept of an inert adsorbent
must be abandoned. The surface potential (®) in Eq. 16 van-
ishes only in the trivial case of no adsorption.

Enthalpy and free energy

The Legendre transformations for the auxiliary functions
are (Callen, 1985)

H=U+ PV
F=U-TS
G=F+PV=H-TS (21)

where H is enthalpy, F is Helmholtz free energy, and G is
Gibbs free energy. From Eq 16.

U=TS"+ ¥ pn +
H*=TS* +% un® + ®
Fi=Ypun’+d

G'=Xuni{+o (22)

In Eq. 22 and, henceforth, summation over the C adsorbates
is implicit. The enthalpy is equal to the internal energy, be-
cause the volume of the adsorbed phase is zero. The
Helmholtz and Gibbs free energies are equal for the same
reason. The free energy of the adsorbed phase consists of
two parts: the free energy of n{ mols of each species in the
equilibrium gaseous state plus an additional term, the surface
potential (), which is zero if no adsorption takes place.
This is the point at which surface thermodynamics diverges
from solution thermodynamics. Surface thermodynamics,
which is the standard approach adopted in monographs on
adsorption (Ruthven, 1984; Suzuki, 1990; Yang, 1987), as-
sumes an inert adsorbent with chemical potential which is
independent of loading. It is difficult at first to accept the
fact that the chemical potential of a porous adsorbent varies
with the isothermal loading of the adsorbate molecules. In
molecular simulation, it is generally assumed that the adsorb-
ent generates an invariant potential field. However, the exis-
tence of a potential field is not inconsistent with changes in
free energy, which contain both energetic and entropic con-
tributions. From the perspective of solution thermodynamics,
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the intimate contact of the adsorbate molecules with the
atoms of the porous material alters the chemical potential of
the solid. Consider the immersion of clean adsorbent in a
compressed gas held at constant pressure and temperature.
Since the variables pressure, temperature, and chemical po-
tential of the compressed gas are fixed during the immersion
process, the only intensive variable capable of change is the
chemical potential of the adsorbent.

Surface thermodynamics is valid when the surface area can
be measured experimentally. For example, the external sur-
face area of nonporous carbon black can be measured by mi-
croscopy. In this case, the model of an inert adsorbent with
adsorption occurring in a 2-D film on its external surface is
realistic. However, the concepts of surface area and spread-
ing pressure lose their physical meaning in porous adsorbents
such as zeolites.

From Eq. 22

H*=U* (23)
and
G'=F'=U"-TS" (24)
From Egs. 20, 23, and 24, it follows that

dU“ = TdS“ + ¥ ju,dn®
dH" = TdS® + ¥ ,dn®
dF = — 94T + ¥ p,dn®

dG“ = — S“dT + ¥ p,dn® (25)

The surface potential (®) term in Eq. 22 for the integral
functions does not appear explicitly in the differential equa-
tions for the adsorbed phase.

Equations 22 and 25 are the basic integral and differential
equations for the adsorbed phase. Any extensive property of
the condensed phase is the sum of the property in the ad-
sorbed phase (H“ S¢ and so on) plus the corresponding
property of the solid adsorbent in the absence of adsorption
(H*, §*, and so on) as described by Egs. 14 and 19.

Surface potential

The surface potential, which is the chemical potential of
the solid adsorbent relative to its pure standard state, is ob-
tained from Eq. 22

=G~ pn! (26)
Differentiating and substituting Eq. 25 for dG? gives
d®=— ST —Xnidy, (27)

This equation is analogous to the Gibbs-Duhem equation for
a liquid mixture with the —VdP term replaced by d®. At
constant temperature, Eq. 27 reduces to the Gibbs adsorp-
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tion isotherm

d® = —Ynidu, (constant T') (28)

Replacing chemical potential by fugacity

d®=—RTYXn{dInf;  (constant T) (29)

Since surface potential is a state function, the integration for
® is independent of the path. The thermodynamic consist-
ency of experimental data may be tested by comparing values
of ® obtained for different paths (Myers and Sircar, 1972).
Integrating for pure-component adsorption from the unad-
sorbed state at zero pressure where u = u*= u*™* and ®=0

a

p n
o=-RrT[" —df
p=0 f

(constant T) (30)

For a perfect gas

adlnP

dInn®

dn®  (constant T')

(€2))

<I>=—RTf0Pn?idP=—RTf0n

In the solution thermodynamics approach, the chemical po-
tential of the nonvolatile adsorbent is determined indirectly
by integrating the chemical potential of the gas. An analo-
gous integration is used to calculate the chemical potential of
a strong electrolyte in aqueous solution from the change in
chemical potential of the water vapor (de Azevedo et al.,
1999).

The concept of the adsorbent as a solvent suggests that its
chemical potential at the limit of zero loading should be given
by Raoult’s law. At the limit of zero pressure, the slope of the
adsorption isotherm is given by Henry’s law: n* = KP. Since
the adsorbed gas obeys Henry’s law, the solvent (the solid
adsorbent) follows Raoult’s law over the same dilute range

RT RT
¢=p—us=ﬁlnxs=ﬁln(l—x“)
RT
=~——x“=—n"RT (32)
M

where x* is the mol fraction of solid adsorbent, x“ is the mol
fraction of adsorbate, and n“ is mols of gas per unit mass of
adsorbent. The (unknown) molecular weight of the adsorbent
(M) cancels in the result. At the limit of zero pressure, the
surface potential decreases in direct proportion to the amount
adsorbed. The limiting relation ® = —n“RT may be com-
pared to the corresponding equation for a 2-D perfect gas
from surface thermodynamics: 11 4 =n“RT. Thermodynam-
ics is indifferent to the name of the property (the ITA prod-
uct or the chemical potential of the adsorbent), but the physics
of adsorption in micropores is best described within the
framework of solution thermodynamics because spreading
pressure in a micropore is undefined.
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Degrees of freedom and independent variables

The number of degrees of freedom from the Gibbs phase
rule is

F=C+2-P (33)
where C is the number of chemical components present and

P is the number of phases. Since one component is the ad-
sorbent

F=C+3-P=C+3-2=C+1 (34)

if C is the number of adsorbates present. For example, for
binary adsorption, there are three degrees of freedom. The
natural independent variables for the integral functions are
T, P, y;; the dependent variables are then n{, AH? AS“, ®,
and so on. The natural independent variables for the differ-
ential functions are 7T, n{, n5; the dependent variables are
then P, y,, and so on.

Equality of chemical potentials at equilibrium

Up to this point it has been assumed without proof that
the chemical potential in the adsorbed phase (u?) is equal to
the chemical potential in the gas phase (uf). Here, the as-
sumed equality of chemical potentials is verified by minimiz-

ing the Gibbs free energy of the total system at constant tem-
perature and pressure. From Eq. 6

G'=G"+G:+G* (35)

Since these are extensive functions per unit mass of adsorb-
ent, G° is the chemical potential of the adsorbent in its stan-
dard state

dG*=dp’*=—8°dT +V*dP (36)
Differentiating Eq. 35
dG'=dG" + dG# + dG* (37)
From Eq. 25
dG® = — ST + X pfdn? (38)
For the bulk gas phase (Sandler, 1998)
dGé=—S8dT +V8dP + X pufdn§ (39)
Minimizing G’ at constant 7 and P under the constraint
n} = nf{+ nf = constant (40)
gives
dG' =Y pidn{ + L ufdnf =YX (uf — ul)dnf=0 (41)
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Since equality of chemical potentials uf = u! corresponds to
equilibrium (dG*=0), the use of the notation u, for the
chemical potential in either phase is justified.

Determination of void volume

The measurement of Gibbs excess variables according to
Eq. 9 requires prior determination of the void volume (dead
space) of the apparatus using Eq. 5

t
Vs = % (for He) (42)
The standard procedure is to measure the void volume using
pure helium gas at low pressure and room temperature (7°)
by assuming that helium does not adsorb. »n’ is the total num-
ber of mols of helium admitted to the sample cell per unit
mass of adsorbent; V4 is the specific void volume of the ap-
paratus measured in cm® per unit mass of adsorbent; p# is
the helium density. At low pressure, use of the perfect-gas
law in Eq. 42 gives

n'RT°
Ve =
P

(for He) (43)

The experimental determination of dead space is based on
Eq. 43. The theoretical value is calculated from statistical
thermodynamics, which at the limit of low pressure gives for
the excess adsorption

nt=—— (44)

where B is called the adsorption second virial coefficient
(Steele, 1974)

1
B=— —E(MAT _ 114 45
— [[e Jdr (45)

E is the gas-solid potential energy of a single molecule, and
m is the mass of a representative sample of solid adsorbent.
The integration is performed over the gas phase including
the pore volume. In order for theory to mimic experiment,
the second virial coefficient for helium must be zero so that

1
Ve =— [e ENATY for H 46
= je r (for He) (46)

E is the gas-solid potential energy of a helium atom. The
integration in Eq. 46 is performed over the entire condensed
phase as well as the gas phase, since the exponential vanishes
within the solid where where ¢ — oo,

Integral and differential properties of the adsorbed phase

The integral functions free energy, enthalpy, and entropy,
which arise naturally from solution thermodynamics, are
missing from the traditional surface thermodynamics ap-
proach based upon spreading pressure, 2-D films, isosteric
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heat, and other differential quantities. A special feature of
the integral functions is that their natural independent vari-
ables (temperature, pressure, and gas-phase composition) are
controllable experimentally. The integral functions are
needed for engineering calculations and are useful for char-
acterization of adsorbents, as shown below. The integral
functions for the adsorbed phase are defined relative to the
perfect-gas reference state at the same temperature

AG*=G*—Tn'u’ = AH" — TAS*
AH"=H*—Ynh?
AS® =8 —Ynls? (47)

The quantities u;, 45, and s7 refer to the molar values in the
perfect-gas reference state. The integral free energy and en-
thalpy (AG“, AH“) are measured in joules per kilogram of
adsorbent. Substituting for G in Eq. 47 from Eq. 22

AG=Xni( pf+p7)+@

J[®
a_ a(7,2 _1,°\_ T2
AH*=Yn{(h§—h})-T _aT[_T]Py,.

IP

AS":ZH?(EF—S?)—[E} (48)
P,y;

The overline notation for partial molar variables in the bulk
gas phase (h%,58) is omitted for the chemical potential ( w$)
since its partial molar character is understood. The expres-
sion for AS“ is obtained by combining Eq. 47 with the partial
differential of Eq. 27 with respect to temperature; then AH*
=AG“+TAS“.

The equations for AG?, AH“, and AS“ contain two parts:
(1) changes for isothermal compression of the gaseous ad-
sorbates from their perfect-gas reference states to the equi-
librium pressure; (2) changes for isothermal, isobaric adsorp-
tion (® and its derivatives). Consider isothermal immersion
of clean, evacuated adsorbent into the compressed gas; the
free energy of immersion is

AG™™ = (G*—Tniuf) +(G* = G™) (49)

AG™™ js the change in the free energy of the condensed
phase caused by adsorption, measured relative to compressed
gas and evacuated adsorbent. The first term on the righthand
side of Eq. 49 is the free energy of adsorbed gas relative to
bulk compressed gas; the second term is the free energy of
the adsorbent in its standard state (T, P) relative to the evac-
uated state (T,in vacuo). Combining Eqs. 47-49 and observ-
ing that (G* — G**) = PV'®

AG™™ =@ + PV

4 J[®
AH™ = —T2—|—| +PV*
IT[T|p,,
_ IP
Asmm=—[ﬁ]}’ (50)
y
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At low pressure, the Poynting correction (PV*) for the en-
thalpy and free energy may be ignored. Thus, disregarding
the (PV*) nuisance term, the surface potential is equal to the
free energy of immersion. The free energy of immersion is
negative because adsorption is spontaneous. The enthalpy of
immersion (A H™™) may be measured directly by calorimetry
(see below) or indirectly by differentiating the surface poten-
tial according to Eq. 50. Since the heat of immersion is
exothermic, A H™™ is negative in sign. Since the adsorption
process is associated with a loss of entropy, the entropy of
immersion (AS™™) is also a negative quantity. The free en-
ergy and enthalpy of immersion in a pure liquid can be used
to predict adsorption from liquid mixtures (Sircar and Myers,
1973b).

The surface potential (®) and associated immersional
functions (AG™™ A H™™ A §im™) are more closely related to
the adsorption process than the integral functions (AGY,
AH? AS?) in Eq. 48, which contain an additional term for
isothermal compression of the bulk gas

i

AGCOmP — ana( My = M?) = RTZ’Z? 1n Po

+Xnigk
AH©™ = Ynd(R§ — i) = TnfhR

i

Po

ASOmP =Y nd(5f — s} ) =— RLnfIn—-+Xnifr (51)
The compression terms for the bulk gas are obtained from
partial pressures (Py,) and from residual functions (g%, %,s7)
(Smith et al., 2001) which vanish for a perfect gas.

The integral and immersional functions derived from solu-
tion thermodynamics are related to the molar and differen-
tial functions generated by 2-D surface thermodynamics. The
integral functions in Eq. 48 are converted to molar variables

by dividing each function by the total amount adsorbed n{ =
Ln{

AG“
Agt=——=Ah"—-TAs"
t
AH?
ARt =—,
nt
As? A% 52
= (52)

The molar integral functions Ag“ and Ah® have units of
J/mol.

The differential functions for component i in a multicom-
ponent mixture are obtained from the integral functions. Dif-
ferentiation of the functions AG?, AH“, and AS“ in Eq. 47
gives

Ag [ 7AG* RT1 Ji
a_| — =u?— e = n|—
8= T |y, T I
_ [oAH" _ dInf;
Ahf=|— =h?—h‘}=—RT2 e
| (?I’li T .n¢ oT né,n¢
[ 9AS? J fi
A5l = - =5 —s;=——|RTIn— (53)
L (?ni T,n¢ aT fl ni,nf
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The relations = (9G/In{)y .= pi and (9S°/on)y, ne =
— (/T ) e, n¢ Decessary for the derivation of Eq. 53 were
obtained from the total differential for G in Eq. 25. The
independent variables for the differential functions are tem-
perature and mol numbers (n?). f; is fugacity and f° is the
standard-state fugacity (1 bar). The overline notation in these
functions (such as AA¢) is used to distinguish differential
functions from molar integral functions (AAh%); the differen-
tial character of the chemical potential is implicit. The differ-
ential functions Ag¢ and AZ¢ have units of J/mol and, like
the integral and molar integral functions, are based on the
perfect-gas reference state. For a pure bulk fluid, the partial
molar and molar functions are equal. The molar and differ-
ential functions for the adsorbed phase are unequal, even for
a pure adsorbate.

The relationships in Eq. 53 are similar to those for partial
molar quantities in a bulk fluid. However, for a bulk fluid,
the partial molar derivatives are at constant pressure; for an
adsorbed fluid, the partial derivatives are at constant loading.

A sample calculation of the integral, immersional, molar
integral, and differential functions summarized in Table 1 is
provided in Appendix A. The immersional functions of Eq.
50 are more closely related to the adsorption process than
the other functions, which contain additional terms for
isothermal compression of the gas.

Differential enthalpy and isosteric heat

Confusion about the meaning of isosteric heat is
widespread in the adsorption literature. For example, Egs.
29-46 in the revised version of Lewis et al.’s (1961) textbook
gives the following relation between the differential entropy
and the isosteric heat (g,,)

A§”=q—;—Rlnfi (54)

Equation 54 has a sign error: the first term should be
(—=q,,/T) (cf. Table 1). Errors like this one could be avoided
by replacing the ill-defined isosteric heat with the differential
enthalpy of adsorption. Differential enthalpy is not a heat of
adsorption, the value of which would depend upon the path.
Differential enthalpy is a state function which can be mea-
sured either by calorimetry (see below) or by differentiating a
series of adsorption isotherms at constant loading

- dlInf;
Ah¢=—RT*| —— (55)
oT nf,né
For a pure, perfect gas
- dln P
Ah®= — RT? (56)
oT |,

Except for the minus sign, this equation is identical to Eq. 1.
The isosteric heat is a positive quantity by definition, but the
differential enthalpy of adsorption is negative (exothermic).
The integral enthalpy can be calculated by differentiating
the surface potential (T, P, y;) according to Eq. 48, or by
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integrating the differential enthalpies; for example, from Eq.
53 for a binary mixture

d(AH®) = Ah$dn$ + AhSdns  (const. T)  (57)
Since AH“ is a state function, the integral is independent of

the path and the differential enthalpies are related by
Maxwell-type equations

AARS ARG (58)
(9}1% T,nf (971[{ T.n%

The differential mixture enthalpies (whose absolute values are
called isosteric heats in the literature of adsorption) are func-
tions of loading and can be measured experimentally or pre-
dicted from single-gas adsorption data (Siperstein and Myers,
2001). For pure-component adsorption, the integral is

AH"= fnnAfz”dn“ (const. T) (59)
0

The differential enthalpy A%® is a function of loading (n%),
but its variation with temperature is weak and the assump-
tion of its constancy over a moderate range of temperature is
a useful approximation. For pure-component adsorption of a
perfect gas, Eq. 56 gives for constant Ah“

| P Ah® 1 . 60
N T 7T (constant n“)  (60)

which provides the function P(T) given a reference point
P°(T®) at the same loading (n“).

Heat capacity

A useful and frequently used approximation is that the dif-
ferential (AA%) and integral (AH“) enthalpies of the ad-
sorbed phase are independent of temperature, at least over
some modest interval of temperature. With this approxima-
tion, the heat capacity at constant loading from Eq. 70 sim-
plifies to

_ [one
P oaT

] = Yni(ep), 1)

so that the heat capacity of the adsorbate is equal to its heat
capacity in the perfect-gas state. If in addition the gas phase
is ideal, the heat capacity of the system follows from Eq. 6

Cp=Ci+Cp+Cy=Yni(cy), + Lni(cy)
i i

+CF = Eoni(), + G (62)
l

The heat capacity of the adsorbent in its pure standard state
(C,) is equal to its heat capacity in vacuo (C,*). Thus, the
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heat capacity of the entire system (condensed phase and gas
phase) may be estimated from the heat capacity of the evacu-
ated solid adsorbent and the ideal-gas heat capacities of the
adsorbates (Sircar, 1991).

Equation of state

The intensive variables pressure, temperature, and gas-
phase composition determine the gas-phase properties (den-
sity, molar enthalpy, chemical potential, and so on), the
solid-phase properties in vacuo, and the adsorbed-phase
properties from Eq. 9. The equation of state for the adsorbed
phase is the surface potential ®(T, P, y;). From Eq. 31, the
adsorption isotherm for a pure, perfect gas is

P [od
nt=——|— (63)
RT| 0P |,

The integral enthalpy from Eq. 48 for a pure, perfect gas is

J[®
AH”=—TZE[T] (64)
P

The surface potential of an adsorbent in a pure liquid deter-
mines the selectivity for adsorption from liquid mixtures
(Sircar and Myers, 1973b): the higher the value of |®| in a
pure component, the greater its preferential adsorption from
liquid mixtures. The surface potential is also required for cal-
culations of mixed-gas adsorption (Siperstein and Myers,
2001).

Example. The equation of state at the limit of zero pres-
sure is given by Eq. 32: ® = —n“RT. Using Eq. 63

. n? an
R —

which is true if and only if n*= K(T)P. Thus, the equation
of state predicts Henry’s law for the adsorption isotherm.
From Egs. 59 and 64

lim

[a In n} Ah*
» RT?

Equation 66 for calculating the zero-pressure limit of the dif-

ferential enthalpy from the temperature coefficient of ad-

sorption should be more accurate than the usual procedure

of extrapolating Eq. 56 or differentiating Henry constants

(Valenzuela and Myers, 1989)

lim Ah%= RT? dIn K 67
PTO B dar |’ (67)

Applications
Characterization of adsorbents

Table 1 summarizes the integral and differential thermody-
namic equations needed for characterization of adsorbents
and for engineering calculations.
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Adsorption of gas mixtures

Equations 48 and 50 apply to multicomponent adsorption
of an imperfect gas, but the integration for the surface poten-
tial term according to Eq. 29 requires experimental, isother-
mal mixture data for the loading as a function of fugacity.
Similarly, the integration for the integral enthalpy by Eq. 57
requires differential enthalpies for adsorbed mixtures. Exper-
imental mixture isotherms and enthalpies are seldom avail-
able so reliable methods of predicting mixture data from sin-
gle-gas adsorption isotherms are essential (Siperstein and
Myers, 2001).

Adsorption at high pressure

At high pressure, according to Eq. 3, the total amount of
gas contained in the micropores (n') tends toward a limit
called the saturation capacity, while the density in the gas
phase (p?®) increases without limit. Eventually, when the
density in the gas phase increases with pressure at the same
rate as the absolute density in the pores (n/V?), the excess
adsorption (n®) passes through a maximum and then begins
to decline with pressure. At very high pressure, when the ab-
solute density in the pores is equal to the bulk-gas density,
the excess adsorption is zero. Although adsorption loses its
potential for storage and separation applications under these
conditions, high-pressure adsorption has been studied exten-
sively (Bénard and Chahine, 2001).

Once the adsorption isotherm has passed through a maxi-
mum, the amount adsorbed becomes an invalid independent
variable because it is not single-valued. The differential en-
thalpy (isosteric heat) and differential entropy have no mean-
ing under these conditions. However, the integral functions
(AG“, AH“, AS?), for which the independent variable is the
pressure, are well defined even when the excess amount ad-
sorbed passes through a maximum and declines to negative
values.

Enthalpy and entropy balances

The solution thermodynamics approach to adsorption gives
the thermodynamic properties of the entire system as the sum
over the gas, adsorbed, and solid phases. The most important
property is the enthalpy for energy balances; calculations of
lost work and efficiency are based upon entropy balances.
The enthalpy and entropy functions for the entire system are
given by Eq. 6

H'=H¢+ H+ H®
§'=S%4 85948 (68)

Gas Phase. The thermodynamic properties for the gas
phase are conveniently calculated from perfect-gas heat ca-
pacities and residual functions (Smith et al., 2001)

HE = Zn§[h3 + 1 ()T + hf}
i T

(69)

dr P
S8 = ang[sf +/T(C;)i7 —RIHF +SiR
T°

i
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h° and s° are molar enthalpy and molar entropy, respectively,
at the reference temperature (7°) and standard pressure (P°).
¢5 is the ideal-gas heat capacity. A% and s* are the residual
enthalpy and entropy, respectively, at temperature 7'; the
residual functions are zero for a perfect gas. As usual, the
mass extensive variables (H$, S8, n®) refer to a unit mass of
solid adsorbent.

Adsorbed Phase. Similarly, the thermodynamic properties
for the adsorbed phase are calculated from ideal-gas heat ca-

pacities and the integral functions of Eq. 48
H= an’[thrfT(cp")idT} +AH®
. T°
L
T dTr
S4= s+ °) — | +AS? 70
lZn, [sl fTO(CP ), T ] (70)

Solid Adsorbent. The thermodynamic properties of the
solid adsorbent in its standard state at the equilibrium tem-
perature and pressure are

T *
H'=H*+ [ (C)"dT + PV*
IRG))
T
s _ Qs%k T s\*
§°=$ +[To(c,,) - (71)

where the asterisk refers to the properties of the adsorbent
per unit mass in vacuo. Equation 71 is not based on the as-
sumption that the solid adsorbent is inert; isothermal changes
in the enthalpy or entropy of the solid adsorbent induced by
adsorption are included in the AH“ and AS“ functions for
the adsorbed phase.

Calorimetry

The differential enthalpy of adsorption defined in Eq. 53
can be measured by calorimetry. An isothermal batch
calorimeter consists of a dosing cell and a sample cell con-
nected through a valve. When the valve is opened, an incre-
ment of gas expands from the dosing cell into the sample cell
and a portion of the increment adsorbs. The total energy of
the calorimeter is

U'=US+U“+U*+U" (72)

U!(T) includes the walls of the sample and dosing cells and
the valve. U*(T) is the energy of the adsorbent in its standard
state. According to the first law for a closed system

dU' = dU% + dU" = dQ (73)

Equation 73 and the following equations are for constant
temperature. The differentials dU® and dU*" vanish under
isothermal conditions and no work is done on the composite
system. The mass balance is

n'=n8 + n“ = const. (74)
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$0
dn® = — dn (75)

Combining Eqgs. 23, 47, 53, 73 and 75 for the case of single-
component adsorption

AR Q | 4t h 76
a _ +— o
dn®  dn® (76)

In general, the derivative (dU$/dn?) depends upon the equa-
tion of state of the bulk gas, but for a perfect gas Ué = néu°
and

aus o e
W=u=h—RT (77)

For a perfect gas, Eq. 76 simplifies to

g
dn‘

Ah®=— —RT (78)

Since adsorption is exothermic, the differential heat dQ/dn*
is negative.

The measurement of the differential enthalpy of adsorp-
tion from mass and energy balances applied to a calorimeter
is straightforward compared to derivations for the measure-
ment of the ill-defined isosteric heat (Young and Crowell,
1962; Siperstein et al., 1999).

Molecular simulation of adsorption

The grand canonical partition function (McQuarrie, 1976)
used in grand canonical Monte Carlo (GCMC) simulations is

I

_ Z o~ E/(N VKT o NukT (79)
iN

The independent variables are volume (V) temperature (T),
and chemical potential of the adsorbate molecules (). The
grand potential G=U—TS — uN is related to the partition
function by

G=—kTInE(V,T,p) (80)

For bulk fluids, § = — PV. For 2-D surface thermodynamics,
G = — 114, where II is spreading pressure and A is surface
area. Within the framework of solution thermodynamics, the
grand potential of an adsorbed phase is equal to its surface
potential, G = ®.

The volume is a simulation box containing a representive
sample of the microporous adsorbent. The dependent vari-
ables are the specific potential energy (¢) in J/kg and the
specific total (absolute) amount of adsorbate in the pores (n")
in mol/kg. These total variables must be converted to excess
functions, especially the excess amount adsorbed (n“) and the
integral enthalpy (A H*), for comparison with experiment. For
single-gas adsorption, from Egs. 8 and 9
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n®=n'—Vsps (81)
and
U*=U"'-V38us-U* (82)

V¢ is calculated from the adsorption second virial coefficient
of helium, Eq. 46. The potential energy (¢) is the total en-
ergy of gas-gas and gas-solid interactions relative to the per-
fect-gas reference state and the solid adsorbent in vacuo

¢=U'—n'u’-U* (83)
A combination of Eqgs. 81-83 with Eqgs. 23 and 47 gives
AH®= ¢ + PVE — n'RT — V8p8hR (84)

where A% is the residual enthalpy in the bulk gas phase (Smith
et al., 2001). For a perfect gas, h®=0.

Equations 81 and 84 are key equations for converting simu-
lation variables to experimental variables. The correction term
containing the pore volume (V$) is sometimes negligible at
low temperature and low pressure, but dominates at very high
pressure and causes the excess amount adsorbed (n“) to pass
through a maximum. The density factor ( p#) in the correc-
tion term of Eq. 81 suggests that the difference between ab-
solute and excess functions is zero at low pressure since
limp_, ( p® = P/RT. Actually, the Henry’s constants and the
zero-pressure differential enthalpies differ for absolute and
excess adsorption (Talu and Myers, 2001) and the magnitude
of the difference increases with temperature.

The absolute differential energy [d¢/dn']l; may be calcu-
lated directly from fluctuations in ¢ and n’ (Nicholson and
Parsonage, 1982), but there is no simple relationship between
this simulation variable and the differential enthalpy Ah“ of
experiment. The most direct conversion is the definition AA®
=(dAH"/dn"); using excess variables from Eqs. 81 and 84.

Shape selectivity in catalysis
The Henry constant (K) defined by

K= lim — (85)

can be related to free energy by combining Eqs. 48 and 51

na
AG“=n”RT1n[ O}+(I>. (86)
KP
Using Eq. 32
Ag® act RT|(1 " 1 87
g = nu - n KPO ° ( )
Since the limit at infinite dilution (n*—0) is Ag®=—o, a

standard state must be chosen. For example, for Ar on sili-
calite at 32.6°C, the Henry constant K = 0.00173 mol/ (kg
kPa) (Dunne et al., 1996). For P°=100 kPa and n“=0.001
mol/kg, Ag®= —15.64 kJ/mol. Selecting a small, but other-
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wise arbitrary, loading for the standard state in the adsorbed
phase

Ag“=—RTIn K +const. (88)

Comparison of two adsorbates in identical standard states
gives

K,
Agi{—Agi=—RTIn— (89)
K,

The comparison in Eq. 89 is independent of the standard
state chosen for the adsorbed state. This equation was used
recently (Schenk et al., 2001) to compare the Gibbs free en-
ergies of formation of various alkane molecules in zeolites
using Monte Carlo calculations. For example, the free energy
of formation of 3,3,5-trimethylheptane relative to n-decane
at 415 K is 33 kJ/mol in MFI, but near zero in FAU or in the
gas phase. Thus, MFI strongly favors the formation of n-de-
cane relative to 3,3,5-trimethylpentane, because the shape of
n-decane is commensurate with the pore shape (Schenk et
al., 2001).

Conclusions

Adsorption in microporous adsorbents can be treated as a
particular case of solution thermodynamics in which the sol-
vent is a solid adsorbent. Spreading pressure and surface area
variables is unnecessary.

An obvious difference between adsorbed and bulk fluids is
the relative importance of the interfacial region. In vapor-
liquid equilibrium, two macroscopic phases are separated by
a gas-liquid interfacial region which is too small to influence
the thermodynamic properties of either phase. In adsorption
equilibrium, two macroscopic phases (gas and solid adsorb-
ent) are separated by a gas-solid interfacial region, which may
contain more molecules than the bulk gas phase.

A subtle difference between adsorbed and bulk fluids is
observed in the differential variables. For a pure bulk fluid,
the partial molar variables are identical to the molar quanti-
ties, for example, the partial molar enthalpy (dH/dn); p is
equal to the molar enthalpy (H/n). For adsorbed fluids, the
differentials are not partial molar variables because the pres-
sure is not held constant for the differentiation. Conse-
quently, for a pure adsorbed fluid (see Figure 4), the differ-
ential entropy (A5) is not equal to the molar entropy (AS/n).
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Notation

A =specific surface area, m?*/kg
A =constant in Eq. A2, J/(mol-K)
B =adsorption second virial coefficient, cm?/g
B =constant in Eq. A2, J/mol
¢, =heat capacity of perfect gas, J/(mol-K)
C =const. in Eq. A2, Pa™!
(ng ;pecific hegt capaciFy, kg K) .
» eat capacity of solid adsorbent in vacuo, J/kg-K)
E =energy, J
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f =fugacity, Pa
F =specific Helmholtz free energy, J/kg
G =specific Gibbs free energy, J/kg
AG“ =integral free energy of adsorbed phase, J/kg
G =grand potential (U —TS — uN), J/kg
g =molar Gibbs free energy, J/mol

gR =residual Gibbs free energy of ith gaseous component, J/mol
Ag®=molar integral free energy of adsorbed phase, J/mol
Ag® =differential free energy in adsorbed phase, J/mol

h =molar enthalpy, J/mol

h°=molar enthalpy of perfect gas, J/mol

h¢ =partial molar enthalpy in gas phase, J/mol

h® =residual enthalpy of ith component in gas phase, J/mol
Ah“ =molar integral enthalpy of adsorbed phase, J/mol
Ah® = differential enthalpy in adsorbed phase, J/mol

H =specific enthalpy, J/kg

A H® =integral enthalpy of adsorbed phase, J/kg
k =Boltzmann constant, 1.3806 x 10~23 J/K

K =Henry constant, mol/ (kg-Pa)

m =mass of adsorbent, kg

M =molecular weight, kg/mol

N =number of molecules

n =specific amount adsorbed, mol/kg

P =pressure, Pa

P°=standard pressure, 1 bar

q,, =Iisosteric heat, J/mol

Q =specific heat absorbed by system, J/kg

R =gas constant, 8.3145 J/(mol-K)

s =molar entropy, J/(mol-K)
s°=molar entropy of perfect gas, JAmol-K)

§¢ = partial molar entropy in gas phase, J/Amol-K)

s} =residual entropy of ith component in gas phase, J/Amol-K)
As® =molar integral entropy of adsorbed phase, J/mol-K)
A5 =differential entropy in adsorbed phase, J/Amol-K)

S =specific entropy, JAkg-K)
AS® =integral entropy of adsorbed phase, J/(kg-K)
T =temperature, K
T°=room temperature; reference temperature, K
u =molar internal energy, J/mol
U =specific internal energy, J/kg
v =molar volume, m*/mol
V =specific volume, m*/kg
178 =specific void volume of system, m%/kg
I/ = specific volume of solid adsorbent, m*/kg
x =mol fraction in condensed phase
x =distance perpendicular to Gibbs dividing surface, m
y; =mol fraction of i/th adsorbate in gas phase
n =chemical potential of adsorbent, J/kg

'’ =chemical potential of pure adsorbent in std. state, J/kg

w; =chemical potential of ith adsorbate, J/mol

E =grand canonical partition function

IT =spreading pressure, N/m

p =molar density, mol/m*
¢ =specific gas-gas + gas-solid potential energy, J/kg
® =surface potential, J/kg

Subscript

i =refers to ith adsorbate component

Superscripts

a =refers to adsorbed phase
comp =refers to isothermal compression of gas
g =refers to gas phase
imm =refers to isothermal immersion of pure adsorbent in com-
pressed fluid
°=refers to value in perfect-gas standard state
s =refers to pure solid
s* =refers to pure solid in vacuo
t =refers to total value for system
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Appendix

The enthalpy, free energy, and entropy functions are calcu-
lated for the Langmuir model of adsorption of a pure, per-
fect gas. Although the Langmuir model seldom fits experi-
mental data quantitatively, it predicts qualitatively the behav-
ior of the thermodynamic functions in microporous adsorb-
ents. The Langmuir adsorption isotherm is

mCP
nt =
1+CP

(A1)

n“ is specific loading in mol/kg, m is the saturation capacity
in mol/kg, P is the pressure, and C is a function of tempera-
ture

1

C=—eYRe™BRT (A2)
PO

where 4 and B are constants: it is shown below that A is the
molar integral entropy at saturation and B is the (constant)
differential enthalpy of adsorption. P° is the standard-state
pressure. Assuming a perfect gas, the surface potential is ob-
tained by substituting Eq. Al in Eq. 31

®=—-mRTIn(1+CP) (A3)
From Egs. 48 and 51
P
AG*=n“RT In 7 + P (A4)
Using Eq. A3
P
AG*=nRT In - — mRT In(1+ CP) (AS)
From Eqs. 48 and 51 for a perfect gas (h® = 0)
J [P
AH =-T*— | = (A6)
JT| T,
Using Eqgs. A2 and A3
AH*=n"B (A7)

From Egs. 47, AS, and A7

P

TAS*=AH—-AG*=n’B+mRTIn(1+ CP)—n“RT In I3
(A8)
Having calculated the integral functions AG%, AH?, and AS“,
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the molar integral functions are obtained by dividing by n“

AG*¢ P m
Ag'=——=RTIn— — —RTIn(1+CP)

n P n

AH*
Ah'=——=B8

n

i m P

TAs'=——=B+—ZRTIn(1+CP)~ RTIn (A9)

n n

Equation A9 shows that the constant B in Eq. A2 is equal to
the molar integral enthalpy, which, in general, varies with
loading, but is a constant for the Langmuir model. In prepa-
ration for calculating the differential functions, the pressure
is eliminated from Eq. AS using Al

na
AG®=—mRT ln[ ]-i—n”RTln .
—n* CP° m-—n*
(A10)
Using Eq. 53
Ag*=RTI il
g8 = n P°
Ah“=B
p
TA§“=B—RTlnF (A11)

Taking the limit as P — % and n* - m in Eq. A9 gives for
the molar integral entropy

B
lim As*=—+RIn(CP*)=4 (A12)

P> x

which shows that the constant A4 in Eq. A2 is the molar inte-
gral entropy at saturation. Experimental data for adsorption
of gases near their critical temperatures in zeolites (Myers
and Siperstein, 2001) gives values in the range —10R to
—12R for the molar integral entropy at saturation. This is
comparable to a typical value of —10R for the entropy of
condensation of liquids at their normal boiling points (Smith
et al., 2001).

Finally, the immersional functions are calculated from Eq.
50 using A3

AG™™ = — mRT In (1+ CP)

A fgimm mBCP
T 1+cCP

TAS™m — mBCP +mRT In(1+ CP) (A13)
1+CP

The nuisance term PV* in Eq. 50 is negligible at low pres-
sure. All three functions are negative in sign. The equation
for the enthalpy of immersion has the same functional form
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Figure A1. Langmuir adsorption isotherm at 298.15 K.

Differential enthalpy = —28 kJ/mol; capacity = 5 mol/kg;
molar integral entropy at saturation = —10.5R.

as the adsorption isotherm. The expression for the entropy of
immersion contains two terms of opposite sign (TAS™™ =
AH'™™ — AG™™) 50 that TAS™™ has a minimum. For ad-
sorption of subcritical fluids, condensation of the vapor at its
vapor pressure may occur first, before the minimum is
reached.
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Figure A2. Integral functions (AG?, AH? AS?) at

298.15 K relative to perfect-gas reference

state.
Constants same as Figure Al.

AIChE Journal

10

O 4
A8
=
=]
£ 101 gt
&
g .
a 20 1 TAs
2
n-‘ =a
TAS
230 A Ah* = AR®
-40 . . . .
0 1 2 3 4 5
Amount adsorbed, (mol/kg)

Figure A3. Differential (Ag?, Ah? As? and molar
functions (A g?, Ah?, As?) at 298.15 K rela-
tive to perfect-gas reference state.

Constants same as Figure Al.

Numerical example

Let constants A= —10.5R, B= —28 kJ/mol, and m =5
mol/kg; let variables P°=1 bar and T = 298.15 K. From Eq.
A2, C=2214 bar™ L.
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Figure A4. Immersional functions (AG'™™, AH'™™,
AS'™™) at 298.15 K relative to compressed
gas and clean adsorbent.

Constants same as Figure Al.
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The Langmuir adsorption isotherm (Eq. Al) is plotted on
Figure Al. The integral thermodynamics functions for the
adsorbed gas (AG“, AH?, AS*) from Egs. A5, A7 and A8 are
plotted on Figure A2. Values for all three functions are rela-
tive to the perfect-gas reference state at 298 K and 1 bar.
The inset in Figure A2 shows that the AG® and TAS* func-
tions intersect at low pressure (0.01 bar), because AS* has
zero slope at the origin.

The differential and molar integral functions from Eqgs. A9
and A1l are plotted on Figure A3. The differential Gibbs
free energy (Ag“) is equal to the chemical potential of the
gas (u?). Notice that the differential and molar functions are
unequal. The Langmuir model has the unusual property that
the molar and differential enthalpies are equal. For a real
system, the differential enthalpy is neither constant nor equal
to the molar enthalpy. Furthermore, for a real system, the
differential enthalpy (A%“) is undefined (goes to infinity) at
high loading approaching the saturation capacity.

The immersional functions from Eq. A13 are plotted on
Figure A4. For subcritical fluids, these functions terminate at
the vapor pressure. For supercritical fluids, there is no limit
to the pressure, but the Langmuir model does not account
for excess variables according to Eq. 3 and therefore fails at
high pressure.

This example shows that the behavior of the integral func-
tions (AG“, AH“, AS*) plotted on Figure A2 and their dif-
ferentials plotted on Figure A3 is complex, even for the
Langmuir model. However, the immersional functions
(AG™™ A ™™ AS™m) on Figure A4 have simple shapes,
finite non-zero slopes at the origin, and no singularities. The
free energy of immersion is the equation of state for the ad-
sorbed phase according to Eq. 63. The immersional functions
are clearly defined physically as the change accompanying the
isothermal, isobaric contact of clean adsorbent with com-
pressed fluid.
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