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The prediction of multicomponent adsorption equilibria from single-component data
is one of the most challenging and important problems in adsorption. The chief obstacle
to progress is a scarcity of accurate and consistent experimental data over a wide range
of temperature and loading for testing theories. Several binaries and one ternary system
on two types of zeolites (silicalite and faujasite) were studied in a combination calorime-
ter-volumetric apparatus. Activity coefficients and excess functions for enthalpy, free
energy, and entropy were extracted from the binary data using a three-constant equation
to represent nonidealities. The successful correlation of binary excess functions with
pure-component properties for type | isotherms on zeolites is a first step toward predict-
ing multicomponent adsorption from single-gas adsorption and a major advancement

over the theory of ideal adsorbed solutions.

Introduction

The ability of porous materials to adsorb fluids selectively
is the basis of many industrial applications, especially cataly-
sis and the separation and purification of gases and liquids.
Industrial applications of adsorption include the recovery of
organic solvent vapors, dehydration of gases, separation and
purification of hydrogen from steam-methane reformers, sep-
aration and purification of air, separation of normal paraffins
from branch and cyclic paraffins, production of olefins from
olefin and paraffin mixtures, and so on (Tien, 1994; Critten-
den and Thomas, 1998; Yang, 1987). Even though adsorption
plays an important role in the gas separation and purification
industry, the prediction of multicomponent equilibria is still
one of the most challenging problems in adsorption (Talu,
1998).

The main problem is a lack of accurate and consistent ex-
perimental data for testing theories. Almost no data are
available on enthalpy of adsorbed mixtures, although such in-
formation is necessary for the modeling of fixed-bed ad-
sorbers. Indirect measurements of mixture heats of adsorp-
tion using volumetric or gravimetric methods are possible in
principle, but require voluminous data on isobars, isotherms,
and loci of constant composition (Sircar, 1985, 1991).

Experimentally, an isotopic, steady-state kinetic technique
was used to calculate mixture heats of adsorption (Bajusz et
al., 1998a,b). Other studies have used the isosteric method to
measure mixture equilibria (Bulow, 1994; Bilow and Shen,
1998; Hampson and Rees, 1993; Rees et al., 1991). We have
described previously a calorimeter for simultaneous measure-
ments of mixture equilibria and heats of adsorption (Dunne
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et al., 1997; Siperstein et al., 1999a). Here, we report activity
coefficients, excess free energies, and enthalpies of mixing in
the adsorbed phase.

The objective of this article is to understand the molecular
basis for these deviations from ideality and attempt to predict
them on the basis of single-gas properties. Deviations from
ideal mixing are expressed as excess functions: excess free
energy (activity coefficients) and excess enthalpy (deviations
from ideal enthalpy of mixing). This excess function approach
is analogous to standard methods for expressing nonideal be-
havior in liquid mixtures (Prausnitz et al., 1999). However,
the use of excess functions for describing deviations from ideal
mixing in the adsorbed phase differs from liquid solutions in
several subtle but important ways, especially in how these ex-
cess functions are measured experimentally.

Enthalpy and Heat of Adsorption

The standard procedure for studying adsorption equilib-
rium is to measure loading at several temperatures. Typically,
three adsorption isotherms are measured at intervals of 30°C
so that the behavior of the system is determined within a
band of 60°C, a region +30°C from the middle isotherm. Our
volumetric-calorimetric method is the simultaneous measure-
ment of a single isotherm and the heat of adsorption, so that
the temperature dependence within some interval of temper-
ature is provided by thermodynamic equations linked to the
heat of adsorption. It is estimated that the assumption of
constant heat of adsorption over a temperature interval of
+30°C from a reference temperature generates errors less
than 1% in pressure and loading (Shen et al., 2000).
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The calorimetric method, which has been applied to single
component adsorption (Dunne et al., 1996a,b; Sircar et al.,
1999) and to mixture adsorption (Dunne et al., 1997; Siper-
stein et al., 1999b), reduces the experimental effort for mix-
tures without sacrifice of accuracy. The calorimetric method
is also ideally suited to the measurement of thermodynamic
excess functions such as enthalpy of mixing of adsorbed solu-
tions.

Fundamental equations for differential enthalpy

The heat of adsorption mentioned most frequently is the
isosteric heat (Valenzuela and Myers, 1989)

4 = RT? dInP )
st aT ),

which is evaluated by differentiating single-gas adsorption
isotherms at constant loading (n). g is a positive quantity
and g dn is the differential heat liberated by the isothermal
desorption of a differential amount of adsorbate dn. Unfor-
tunately, the terminology “‘heat of adsorption” is vague and
there is disagreement in the literature about its definition.
Equation 1, which is for adsorption from a pure perfect gas,
needs to be extended to the general case of adsorption from
a real gas mixture. The heat of adsorption measured experi-
mentally depends upon the imposed conditions: batch, steady
state, isothermal, isobaric, and so on. The existence of sev-
eral different types of heats of adsorption (equilibrium, inte-
gral, differential, and isosteric) adds to the confusion. Instead
of insisting upon a particular path for the generalized defini-
tion of isosteric heat, it is advantageous to work with differ-
ential and integral enthalpies which are state variables and
therefore independent of the path.

Let H™ be the experimental (Gibbs excess) enthalpy of an
adsorbed gas mixture containing n{" moles of component 1,
n3' moles of component 2, and so on. The superscript m sig-
nifies “measured” by conventional volumetric, gravimetric, or
calorimetric methods. The superscript m on the mol num-
bers (n") will be omitted to simplify notation. H™ is the in-
tegral enthalpy in units of joules per kilogram of adsorbent.
Let h* be the molar enthalpy of component i in the pure,
perfect gas state at the same temperature as the mixture. The
integral enthalpy of desorption relative to the perfect-gas ref-
erence state is

AH=Znih’i“—Hm (2)

Stated differently, — AH is the integral enthalpy of the ad-
sorbed phase relative to the perfect-gas reference state. Since
desorption is normally an endothermic process, AH is a posi-
tive quantity. The molar integral enthalpy of desorption is
then

H m

AH
Ah=—=Y x;h* — — 3)
n; i N

where total loading is

ng= Zni (4)
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and x;=n;/n, is the mol fraction of ith component in the
adsorption phase.
The differential enthalpy of desorption of the ith compo-

nent is
_ JAH
Ah;= =h¥ -
N |tn

GH™
an;

®)

T.n;
If the differential enthalpy is measured by calorimetry, the

molar integral enthalpy (heat of immersion) may be obtained
by integration

jo”‘z(Aﬁidni)

N

Ah (6)

Integral enthalpy is a state function and therefore the inte-
gration of Eq. 6 is independent of the path. Even for single-
gas adsorption, Eq. 6 shows that the integral enthalpy is not
equal to the differential enthalpy unless the latter is indepen-
dent of loading.

Equation 1 is extended to the general case of a real gas
mixture in Appendix A. The result for the differential en-
thalpy of the ith component relative to its perfect-gas refer-
ence state is

AT, = rr2( 20 (7
' AT Jopn,....

This exact relation allows differential enthalpies to be calcu-
lated from adsorption isotherms. For a perfect gas, f = P and

Aﬁ=RT2(aInP)
n

aT ®)
Comparison of Egs. 1 and 8 shows that g = Ah for the spe-
cial case of a pure perfect gas. The differential enthalpy de-
fined by Eqgs. 5 and 7 is needed for the description of mixture
adsorption. The actual heat of adsorption can always be cal-
culated from the differential enthalpy once the path is speci-
fied.

Summary of equations for adsorption equilibrium

For adsorption of a gas mixture containing N, compo-
nents, the equilibrium condition is equality of fugacity in the
adsorbed and gas phases (Myers and Prausnitz, 1965)

(i=1,2, ..., N,) )

where P is pressure, y and x are mol fractions in the gas and
adsorbed phase, respectively, ¢, is the fugacity coefficient of
component i in the gas phase, f;° is the fugacity of the pure
component in its standard state, and v; is the activity coeffi-
cient of component i in the adsorbed phase.

The standard state is fixed by the surface potential (d),
which for a pure component is

Pyidi = X

b= RT/Pnd Inf  (constant T) (10)
0
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The condition for applying the fugacity equations is that the
fugacities of the pure components (f°) be evaluated at the
surface potential (®) of the mixture. For a pure perfect gas,
fugacity (f) is equal to pressure (P) and

d=- RTand InP  (constant T) (11)
0

The reason for defining the standard state in terms of the
surface potential is that the fugacity equations obey the rules
of thermodynamic consistency, especially the Gibbs adsorp-
tion isotherm

dd=—Y ndy, (constantT) (12)
i

The Gibbs free energy of the adsorbed phase is

G:ZI-Lini+q) (13)

The surface potential has traditionally been expressed as &
= —1IIA, the product of a two-dimensional (2-D) spreading
pressure (I1) and specific surface area (A). The quantities II
and A can only be estimated in pores, but their product is
given exactly by Eqg. 10. Equation 13 shows that the surface
potential is actually the chemical potential of the solid ad-
sorbent relative to its pure state in vacuo at the same tem-
perature.

The extensive variables G and n; in Eq. 13 are experimen-
tally “measured” Gibbs surface excess variables which could
be emphasized by the notation G™ and n{", but the super-
scripts have been omitted in the interest of simplifying the
notation.

As shown later, a variable which arises frequently in ad-
sorption thermodynamics is

P P nfdlInf
‘p:_ﬁ:j; ndlnf=f0(&lnn)Tdn (constant T)

(14)

Since the surface potential (®) has units of J/kg, ¢ has units
of mol/kg, the same as loading.

It is convenient to define the excess free energy of the ad-
sorbed solution by

NC
g¢=RTY_ x;Iny, (15)
i

In Eq. 15 and in the equations to follow, the superscript e
refers to excess functions, as commonly defined in solution
thermodynamics of liquid mixtures (Prausnitz et al., 1999) and
is not to be confused with Gibbs surface excess variables; all
extensive variables in the adsorbed phase (G, H, S, n;) are
Gibbs surface excess variables. The g€ function refers to the
Gibbs free energy of the adsorbate species exclusive of the
solid, the quantity (G — ®) in Eqg. 13. This special definition
of g° allows adsorbed-phase activity coefficients to be ex-
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pressed as partial-molar derivatives in the customary way

r?(nlge)}
T,(//,nj

RT In yi=[ ry (16)

Note that the variables held constant for the differentiation
are temperature and i, unlike the partial molar quantities of
solution thermodynamics for which temperature and pres-
sure are fixed. Let the excess reciprocal loading be defined as

X

1 Nery
(1/n)e+n—l—z[ L] an

n;

The excess reciprocal loading vanishes for an ideal solution.
It can be shown (Talu et al., 1995) that Egs. 15 and 17 are
related by

0(ge/RT)} (18)

(1/n)e=[ "

The selectivity of the adsorbent for component 1 relative
to component 2 is a commonly used measure of separation
power; using Eq. 9

o _ X1/Y1 _ £2°v2/b,
2 X2/Y2  vi/be

(19

Differential enthalpy from activity coefficients and excess
reciprocal loading

Equations 9 to 19 describing the equilibria of adsorbed so-
lutions have been published previously (Valenzuela and My-
ers, 1989). Here, equations are derived for the differential
enthalpy of desorption (isosteric heat) in order to introduce
the temperature variable in a systematic way. For the general
case of a multicomponent real gas and a nonideal adsorbed
solution, it is shown in Appendix B that the differential en-
thalpy of desorption of the ith component is equal to

- dlIny, 1 dInvy,
Ah;=AhP+ RTZ(—Y) + —o+( y)
T WX n; (9!,[/ Tx

_ 1/n)°
Y x;Gen(Ah— Ahy) + RTZ(M)
x|~ a(1/m)° e @
n
ZX;—G;"—(T)
i T,x
where

Goe 1 dInn? )

i = (nio)Z Jln fio . ( 1)

This rigorous equation gives the mixture differential enthalpy
(Ah,) in terms of the pure-component differential enthalpy
(Ah)°), the pure-component integral enthalpy (Ah;°), and the
variation of the activity coefficient (y;) and excess reciprocal
loading (1/n)¢ with respect to temperature and #. As in the
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case of the fugacity equations, the surface potential (® =
— RTy) plays the essential role of connecting mixture heats
with their single-component values.

For the special case of an ideal solution, for which y;=1

and (1/n)¢ = 0, Eq. 20 simplifies to (Karavias and Myers, 1991)
ijGj°nj°(Aﬁj°— Ahj°)
ne(Ah;—Ahg) =

T 2
]

For example, the differential enthalpy of component 1 in a
binary solution of components 1 and 2 is

_ 1
Ah;=Ah+ —
1 1 nlo
%G N2 (AR = Ah?) + X,G,°n,° (AN, —

X1G 7+ X,G,°

Ahy?)

(23)

If the differential enthalpies for single-gas adsorption are
all constant (independent of loading), it follows from Eq. 6
that the integral and differential enthalpies are equal. For
this rare case, Eq. 22 predicts that the mixture differential
enthalpies for an ideal solution are equal to their (constant)
pure component values.

Equations 20 and 22 cannot be simplified for the usual case
when the differential enthalpy of the pure gas varies with
loading. The empirical approximation that the mixture differ-
ential enthalpy is equal to the value for the pure component
at the same loading appears to have no theoretical basis.

Thermodynamic Model

A three-constant model of binary adsorption is proposed.
All of the equilibrium properties of the mixture may be calcu-
lated from the excess Gibbs free energy

g8=(A+BT)x x,(1—e~ ") (24)

where A, B, and C are constants. Equation 24 is called the
ABC equation to emphasize that it contains three constants
which are independent of temperature, loading, and compo-
sition. This equation is the simplest form with the built-in
limits required of any theory (Talu and Myers, 1988; Valen-
zuela and Myers, 1989), especially thermodynamic consis-
tency and reduction to an ideal adsorbed solution at the limit
of zero loading. Specifically, the constant A is proportional
to the excess enthalpy, the constant B is proportional to the
excess entropy, and the constant C is proportional to the ex-
cess reciprocal loading. The exponential dependence upon
(defined by Eq. 14) agrees with experiment and molecular
simulation from zero loading up to saturation (Talu et al.,
1995). Although the excess free energy has a quadratic (sym-
metrical) composition dependence at constant ¢ in Eq. 24,
the composition dependence at constant pressure has the
asymmetrical form observed experimentally. The linear de-
pendence of excess free energy upon temperature implies an
enthalpy which is independent of temperature, an approxi-
mation consistent with the customary assumption that the
differential enthalpies (‘“heats”) are constant over the tem-
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perature range of interest.
The excess reciprocal loading is obtained by inserting Eq.
24 into Eq. 18

@
= ar (A+ BT)x,;x,e” ¢ (25)

dgY/RT
.

(1/n)°= (

This excess function is needed to calculate the total loading
(ny) from Eq. 17. According to Eq. 17, lim, _, o(1/n)® = (0 — ),
which is a finite but non-zero limit (Talu et al., 1995). The
finite limit (v — 0) from Eq. 25 is correct and consistent with
setting (1/n)¢ = O for ideal solutions at the limit of zero load-
ing.

Equation 25 predicts that the limit of (1/n)¢ is zero at the
saturation capacity (¢ — ) of the adsorbent.

The activity coefficients are given by substituting Eq. 24
into Eq. 16

RTIny;=(A+ BT)(l—e*CU/)xj2 (i#]) (26)
This equation satisfies the requirement that the activity coef-
ficient be unity at the limit of zero loading (¥ — 0). At high
loading (i - =), the activity coefficient approaches a con-
stant value corresponding to saturation.

The four partial derivatives needed in Eq. 20 were calcu-
lated from Egs. 25 and 26

dlny, CCun 2 o
( )4}X RTZ(l_e V) x; (i#j) (27
(“"V') A D o sl @)
i
((7(1/[1) ) 2X1X e —Cy (29)
oT ), RT
(a(l/n) ) _ (A+ BT)szlxze‘C"’ (30)
o)., RT

Application of the Gibbs-Helmholtz relation to Eq. 24
yields

e_ 21 g_e = -Cy
h T T [ T ]w,x Ax X,(1—e™ ") (31)
Physically, the excess enthalpy is the molar enthalpy of mix-
ing of the adsorbed solution at constant surface potential.
Note that the enthalpy of mixing is independent of tempera-
ture for our model, which is consistent with the assumption
that differential enthalpies (heats) are independent of tem-
perature.

Multicomponent systems

In preparation for a discussion of experimental data ob-
tained for a ternary mixture, the previous equations for the
binary case are next extended to a multicomponent mixture.
Our assumption of a quadratic composition dependence for
the excess functions implies the dominance of pairwise inter-
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actions, so that the ABC equation for a multicomponent sys-
tem (ternary and higher) is additive in the constituent bina-
ries (Walas, 1984). The excess free energy can be written

Nc  Nc
0°= 2 2 ( A+ BiT) xix(L—e ") (j>i) (32)
i=1j=1
where A;;, B;;, and C;; are the binary parameters for the
ABC equation. Specifically, for a ternary mixture

9°= (A + By T) X x(1— e C2¥)
+(Agz+ BiaT) Xy xg(1—e~=%)

+( Azt ByT )Xy xg(1—e ") (33)

Experimental Studies
Materials

Two types of zeolites were studied, silicalite and NaX
(FAU). The structures and compositions of these materials
are very different. Silicalite has a unit cell composition of
SiggO4q, and contains straight and sinugoidal channels with
pore openings of 5.3x5.6 and 5.1 xX5.5 A, respectively. FAU
has a unit cell composition of NagsAlggSijnsOsg4 and con-
tains 15 A-diameter supercages interconnected by 7.4 A-di-
ameter windows in a tetrahedral arrangement (Meier and OI-
son, 1992). Silicalite provides a homogeneous environment for
both polar and nonpolar molecules, whereas polar molecules
exhibit energetic heterogeneity in NaX due to the presence
of nonframework sodium ions.

We used commercial powders of these zeolites: silicalite
(Linde S115) manufactured by Union Carbide Corp. and NaX
(Linde 13X) with a Si/Al ratio of 1.23. Thermogravimetric
analysis of the samples yielded dehydrated weights of 99%
and 76% of that in air, respectively (Dunne et al., 1996a,b).

Gases used in the experiments were from Air Products &
Chemicals, Inc. (SF;, 99.99%; C,H,, 99.5%; C,H,, 99%;
C;Hg, 99.5%) and from Airco (CO,, 99.99%; CH,, 99.99%).

Method

The multicomponent calorimeter and the experimental
procedure have been described previously in detail (Dunne
et al., 1997; Siperstein et al., 1999a).

The pretreatment procedure for the sample was heating in
situ under vacuum from room temperature to 110°C over 24
h for a fresh sample, or 12 h when regenerating a used sam-
ple. This is followed by heating over a period of 12 h from

110°C to 350°C and, finally, maintaining the temperature at
350°C for 12 h.

For binary and ternary mixture measurements, the compo-
nents were dosed alternately in order to measure the mixture
enthalpies. The composition of the equilibrium gas was mea-
sured with a mass spectrometer through a leak valve attached
to the sample cell. Loadings of both components were calcu-
lated from mass balances using standard volumetric proce-
dures. The attainment of equilibrium was verified by revers-
ing the order in which the components were added to the
sample cell.

Analysis of Experimental Data

The seven binary mixtures listed in Table 1 cover behavior
ranging from nearly ideal to highly nonideal. NaX is classi-
fied as heterogeneous because of the high electric field
strength associated with its exchangeable cations; silicalite is
classified as homogeneous because it has no exchangeable
cations and a relatively low electric field strength. Partial re-
sults for some of these systems reported previously are indi-
cated by the reference in Table 1. The experimental data are
tabulated in Appendix C.

Single-gas isotherms and isosteric heats

Calculations of mixture properties such as adsorbed-phase
activity coefficients are extremely sensitive to the properties
of the single adsorbates. For this reason, we devoted special
attention to the reproducibility of the experimental data. Re-
versibility was established by comparing points obtained by
adsorption and desorption. Single gas isotherms are shown in
Figures 1 and 2. The three experimental points in Figure 2
for CH, on silicalite at pressures above 1 bar from Golden
and Sircar (1994) are needed to extrapolate our data to high
pressure for mixture calculations.

In preparation for calculating thermodynamic properties,
the single gas isotherms were fitted with a modified virial
equation

HP=n[ ]exp[cln+C2n2+C3n3+C4n4] (34)

Constants for Eq. 34 are given in Table 2. The virial equation
extrapolates properly to zero pressure: limy _, ,(dn/dp) = H.
The factor m/(m — n) was added to enforce Langmuirian be-
havior at high pressure where the virial expansion used by
itself diverges. Thus, Eqg. 34 has the correct asymptotic behav-
ior at high and low pressure plus sufficient flexibility to fit all
of the isotherms within experimental error. The average dif-
ference between the experimental pressure and the value cal-
culated by Eq. 34 is 1.1%.

Table 1. Binary Gas Mixtures Studied

Type of System Adsorbent Gas 1 Gas 2 Ref.
Homogeneous, size difference Silicalite SFs CH, Siperstein et al. (1999a)
Homogeneous, ideal Silicalite C,Hg CH, Dunne et al. (1997)
Heterogeneous, polar-nonpolar NaX Cco, C,Hg Dunne et al. (1997)
Heterogeneous, polar-nonpolar NaX co, C3Hg
Heterogeneous, polar-nonpolar NaX C,H, C,Hg Siperstein et al. (1999b)
Heterogeneous, nonpolar-nonpolar NaX SFs C,Hg
Heterogeneous, polar-polar NaX Cco, C,H,
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Figure 1. Experimental adsorption isotherms on NaX.

CO, at293 K (m); C,H, at 293 K (O); CzHg at 293 K (O);
SFg at 295 K (@); C,Hg at 293 K (). Solid lines are Eq. 34
with constants from Table 2.

The differential enthalpies (heats) of desorption shown in
Figures 3 and 4 were fit by a Maclaurin series

4
Ah=AR+ Y D;n!
i=1

(3%

Constants for Eq. 35 are given in Table 3. Ah° is the limiting
differential enthalpy at zero coverage. The average error be-
tween the experimental and calculated differential enthalpies
is 1.3%.

Two different runs are reported in Table 3 for CO, on
NaX. The heats for run Il were made on a different sample
of NaX and are about 2 kJ/mol higher; the single gas
isotherms for these two runs were indistinguishable.

Substitution of Eq. 35 into Eq. 6 gives the molar integral
enthalpy of desorption

(i+1) n

4
Ah=AP+ Y
i=1

(36)

Binary mixtures

As pointed out before, the surface potential is needed for
mixture calculations. Substitution of Eq. 34 into Eq. 14 and

10
%0 gdif d/,(?-—
g 1 o
=} =
L
£ I
2 :
7 A /
E o SFe g Ul cm, CH,
=] M -
g Zar
< v

7
/
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Figure 2. Experimental adsorption isotherms on sili-
calite.

SFg at 298 K (O0); C,Hg at 296 K (a); CH, at 297 K (@).
Data from Golden and Sircar (1994) for CH 4, (O). Solid lines
are Eq. 34 with constants from Table 2.

replacing fugacity (f) by pressure (P) gives for pure ad-
sorbates

1CZZC33044C5I1n
¢(n)—§ N +§ 5N +Z 3N +§ 4N —m n( _H)
(37)

Using individual loadings (n,, n,) and temperature as inde-
pendent variables for binary mixtures, the total loading is n,
=(n, + n,) and the composition of the adsorbed phase is x,
=n,/n,. The surface potential in the mixture ( = ,° = ,°)
was determined by combining Egs. 17 and 25

X2

o

1/me 1 !

n)y =—- +
Wm' =0

Inversion of Eq. 37 yields the functions n,°(¢#) and n,°(y) at
the common standard state (). Substitution of these two
functions into Eq. 38 yields a single equation in a single un-
known (). Having solved for y, the standard-state pressures
(P, and P,°) are given by Eq. 34. Adsorbed-phase activity
coefficients are calculated from Eqg. 26. Finally, Eq. 9 written

C
=—(A+BT e ©’ (38
SRR IR

Table 2. Constants of Eq. 34 for Single Gas Isotherms™

H m T Error

Gas Zeolite mol/Akg-kPa) C, C, C, C, mol/kg °C %
Cco, NaX 27.253 1.2338 —0.1241 0.0038 0.0 6.4674 20.0 3.0
C3Hg NaX 2.3657 —0.5251 0.3367 —0.2419 0.0648 3.4288 20.0 1.3
C,H, NaX 5.2039 0.3850 0.0075 0.0012 0.0012 4.5341 20.0 1.6
C,Hg NaX 0.1545 —0.2670 —0.0499 0.0192 0.0 3.8937 20.0 0.2
SFg NaX 0.3623 —0.0661 —0.0491 0.1115 0.0 3.4393 22.3 0.2
SFg Silicalite 0.5010 0.8010 —0.7501 0.2357 0.0 1.9495 25.0 1.4
C,Hg Silicalite 0.2145 —0.2752 0.1272 0.0 0.0 2.1534 23.0 0.6
CH, Silicalite 0.00945 0.0837 —0.0470 0.0 0.0 2.4578 24.0 0.4

*P is given in kPa for n in mol/kg.
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55 Table 3. Constants of Eq. 35 for Differential Enthalpies
O, (Heats) of Desorption of Pure Gases at 25°C*
_ 30 7?:._“ 9&“€H ARe Error
é 45 N.:. . A Gas Zeolite kJ/mol D, D, Dy D, %
= o “ h CO, NaX 47.776 —1.8994 —2.2273 0.7006 —0.0562 1.3
5 £ ¥ S CO, NaX(Il) 49.410 1.2389 —4.1093 1.1639 —0.0965 1.2
S 40 TCon, F . . CsHg NaxX 34400 —1.4850 2.7846 —0.3180 0.0 0.7
g Tae ﬁ.“- C,H, NaX 41.836 —0.3215 1.2203 —0.9452 0.1576 0.7
S 35 taost o A 7 s C,Hg NaX 26.893  1.1719 —0.0328 0.1195 0.0 1.0
= SF e Co, SFg  NaX 28.368 0.9789 0.3086 0.5204 0.0 1.3
5 30 2t SF;  Silicalite 35.908 1.8088 —3.4915 22187 0.0 1.6
8 peefS LT Gl C,Hj Silicalite 31130 05581 0.0 0.0 00 10
E CH, Silicalite 21.103 0.1924 0.0 0.0 0.0 1.5
25
*Ah is given in kJ/mol for n in mol/kg.
Z
207
0 ! 2 3 4 3 6 Calculation of dependent variables for a binary mixture
Amount adsorbed, mol’kg presupposes knowledge of the values of two constants: C and

Figure 3. Experimental differential enthalpies (isosteric
heats) on NaX at 298 K.

Solid lines are Eq. 35 with constants from Table 3.

for component Nos. 1 and 2 and perfect-gas behavior (¢; = 1)
for our low-pressure measurements

Py, =Pl yix (39)
Py, = P,"y, %, (40)

are solved for the dependent variables P and vy;.

In summary, for each binary mixture point, there are seven
equations (Egs. 38, 39, 40 and two of Egs. 34 and 37, one for
each component) and seven unknowns (n,°, n,°, P,°, P,°, ¢,
P, y,). The equations may be solved consecutively as shown.
In this way, the dependent variables (P, y,) were calculated
for the set of independent variables (n;, n,) and compared
with experiment.
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Figure 4. Experimental differential enthalpies (isosteric
heats) on silicalite at 298 K.
Solid lines are Eq. 35 with constants from Table 3.

AIChE Journal

May 2001 Vol. 47, No. 5

A,=(A+ BT). Values for C and A, were extracted by min-
imizing the error in calculated values of pressure and selec-
tivity (from Eq. 19), which set of variables is usually more
sensitive than P and y, for the extraction of mixture param-
eters. Figure 5 shows a typical contour plot for the error in
parameter space. After extracting parameters A, and C for
a binary mixture at a particular temperature, the values of A
and B were determined by minimizing the error between the
experimental differential enthalpies (heats) of desorption and
the values calculated from Egs. 20 and 27-30 under the con-
straint that A, = (A + BT). This two-step procedure is more
effective than extracting values for all three constants at once
by a simultaneous fit of mixture isotherms and enthalpies.

The ABC equation is more than an empirical fitting proce-
dure because Eg. 24 has the asymptotic properties required
by thermodynamics at low and high coverage (Talu and My-
ers, 1988; Talu et al., 1995). Since the ABC model is thermo-
dynamically consistent, successful fitting of the model to the
data implies that the experimental data are consistent as well.
Thus, our experimental data obey all of the differential and
integral thermodynamic consistency tests for binary mixtures
(Valenzuela and Myers, 1989). In addition, our mixture data
are consistent with the single-component isotherms at the
limits x; =1 and x,=1.

Models with two parameters are unable to fit the data
within experimental error. Models with four or more parame-
ters can reduce the error, but the parameters begin to lose
their physical significance. The three parameters in Eq. 24,
which account for the excess enthalpy ( A), the excess entropy
(B), and the excess reciprocal loading (C), are necessary to
describe mixture nonidealities as a function of temperature,
composition, and loading. Values of these constants derived
from experimental data for the binary mixtures are reported
in Table 4. The most nonideal systems are polar-nonpolar
pairs on NaX (CO,-C;Hg, CO,-C,Hg, C,H ,-C,H) and po-
lar-polar pairs on NaX (CO,-C,H,). Mixtures on nonpolar
molecules of nearly the same size (C,H4CH, in silicalite,
SF,-C,Hg in NaX) behave ideally as expected. Mixtures of
nonpolar molecules of different size (SF-CH, in silicalite)
exhibit nonidealities, but these entropic effects are weaker
than the energetic effects observed for polar molecules in high
electric fields.

Figures 6 and 7 show a comparison of the experimental
and calculated pressure and gas-phase composition using the
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Figure 5. Contour lines for error in calculated pressure
and selectivity plotted in parameter space for
the binary mixture CO,-C,Hg on NaX at 294 K
using constants in Eq. 24.

The minimum error is located at C = 0.11 and (A+ BT)=
—4.36.

ABC equation for six systems: five nonideal mixtures and one
ideal mixture (SFs-C,Hg on NaX). The data for the ideal
mixture CH,-C,Hg on silicalite can be found elsewhere
(Dunne et al., 1997). The error in the calculated pressure for
four points of system A is large, but inconsistent with the
other 21 points for which the average absolute error is 3%.
The average absolute error in the calculated pressure for sys-
tems B, C, D, and E is 2%. The calculated pressures for sys-
tem F are 9% too high but inconsistent with the nearly per-
fect agreement of experimental and calculated compositions
for this system. The average absolute error in the calculated
composition for all systems is 4%. Thus, the agreement of the
ABC equation with experiment is generally excellent but there
are systematic errors for systems A and F which would be
difficult to explain even with a more complicated model.
The experimental differential enthalpies are larger than the
ideal values, which is consistent with the negative deviations
from ideal behavior observed for the selectivities. For exam-
ple, heats of adsorption of CO, and C,Hg in a binary mix-
ture are shown in Figure 8. The error in the IAS prediction

Table 4. Parameters of Eq. 24 for Adsorption of Binary

Mixtures
A B Cc
Gases Zeolite kJ/mol kJ/mol - K kg/mol
co, C,Hg, NaX —115 0.01453 0.096
co, C,Hs NaX —10.0 0.01917 0.110
co, C,H, NaX -6.5 0.01450 0.030
C,H, C,H; NaX —45 0.00437 0.067
SF, CH, Silicalite -18 0.00355 1.633
SFs C,Hs; NaX 0.0 0.0 0.0
C,H; CH, Silicalite 0.0 0.0 0.0
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Figure 6. Experimental and calculated pressure for the
binary systems.

(A) CO,-C3Hg on NaX; (B) CO,-C,Hg on NaX; (C) C,H 4
C,Hg on NaX; (D) SFg-CH, on silicalite; (E) SFg-C,Hg on
NaX; (F) CO,-C,H, on NaX.

increases with loading as expected. In spite of systematic er-
rors of about 2 kJ/mol between the ABC equation and exper-
iment, the fit is good considering that there is only one ad-
justable parameter (A) for the differential enthalpies of a
binary mixture.

Ternary mixture

Ternary adsorption equilibria predicted from Eq. 33 using
data for the three constituent binaries were compared with
experiment for the system CO,-C,H,-C,Hgz on NaX. This
system was selected because one of the binary pairs (CO,-
C,Hy) is highly nonideal. The other two pairs are moderately
nonideal (CO,-C,H, and C,H,-C,H,). Measurements are
concentrated in the region of high loading where nonideali-
ties are the strongest.

Figures 9, 10, and 11 compare calculated pressures, selec-
tivities, and differential enthalpies, respectively, with experi-
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Figure 7. Experimental and calculated gas-phase com-
position for binary systems.
Legend: same as Figure 6.
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Figure 8. Experimental and calculated differential en-
thalpies (isosteric heats) for CO, and C,H4 on
NaX.

Symbols are experimental values; solid lines are Eq. 20;
dashed lines are Eq. 23 for IAS.

ment. The calculated pressure is 8% too high. The average
absolute error in the selectivity is 12%. The average error in
the calculated differential enthalpies is 2 kJ/mol, the same
uncertainty observed for binary mixtures. Overall, agreement
of experiment with the values calculated from Eg. 33 is good,
but imperfect. Our analysis indicates that multicomponent
equilibria can be predicted within about 10% from data for
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Figure 9. Comparison of experimental pressure for the
ternary system CO,-C,H,-C,Hg on NaX with
pressure calculated from Eq. 33.
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Figure 10. Comparison of experimental selectivity
(points) for the ternary system CO, (1)-C,H,
(2)-C,Hg (3) on NaX with selectivity calcu-
lated from Eq. 33 (solid lines).
Selectivity s;; = (x; y/Ax;yp)-

the constituent binaries, but does not quite rule out the pos-
sibility of specific higher-order interactions.

Discussion
Isobaric phase diagrams

Isobaric, isothermal equilibrium diagrams have been used
traditionally to represent binary adsorption data (Valenzuela
and Myers, 1989). The constants of the ABC equation de-
rived from fitting our experimental data over a wide range of
conditions provide a means of calculating equilibrium dia-
grams as a function of temperature, pressure, and vapor-
phase compositions. In the following discussion, we will refer
to equilibrium diagrams calculated from the ABC equation
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Figure 11. Comparison of experimental differential en-
thalpies (isosteric heats) for the ternary sys-
tem CO,-C,H,-C,H, on NaX with enthalpies
calculated from Egs. 20 and 33.
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as experimental data. Although these diagrams were not
measured directly, they were calculated by correlating the ex-
perimental data with a thermodynamically consistent model.

Inversion of Eq. 34 for a pure component gives the func-
tion n°(P;°); substitution of n;°(P°) into Eq. 37 followed by
another inversion gives the function P,°(y). Having specified
temperature (T), pressure (P), and vapor-phase mol frac-
tions (y;) as independent variables, substitution of the P;°(y)
functions into Eq. 9 yields a system of two equations in two
unknowns (i and x,). Isothermal, isobaric xy phase dia-
grams calculated this way are shown on Figure 12. The IAS
prediction (dashed line) crosses the experimental data (solid
line) at one point as required by thermodynamic consistency
(Talu and Myers, 1988). The coverage at this pressure (13.3
kPa) corresponds to fairly high loading for all pure compo-
nents except CH,, as shown on Figures 1 and 2.

Figure 12 shows that the system CO,-C;Hg on NaX is
highly nonideal under these conditions and exhibits an
azeotrope at about 80% CO,. The compositions of the ad-
sorbed and vapor phases are equal, but the pressure does not
pass through a maximum at the azeotropic composition as
would be the case for vapor-liquid equilibrium. For adsorp-
tion, isothermal xy-diagrams are a function of pressure. The
system SF;-C,H¢ on NaX is ideal within experimental error,
so the systems in Figure 12 display the full range of behavior
from ideal to highly nonideal solutions.

Differential enthalpies at infinite dilution

Isothermal, isobaric, mixture differential enthalpies (heats)
of adsorption are ploted on Figure 13. It is apparent that the
experimental enthalpies (solid lines) are consistently higher
than the values predicted by IAS (dashed lines), especially at
infinite dilution. Substituting Eqgs. 27-30 into Eq. 20 for infi-
nite dilution (x; > 0 and x; > 1) gives

Ahf=AhS— A(l—e %)+ ng(AhS—Ahp)

1 A+ BT
+
n:° RT

Ce | (41)

In the limit of high loading where deviations from ideal be-
havior are largest, i is large and the infinite dilution heats of
adsorption at high loadings simplify to

o

AR?=Ah— A+ — (AR - Ahy) (42)

For an ideal solution, A= 0; for real solutions A is normally
negative, corresponding to an exothermic enthalpy of mixing
(see Table 4). Equation 42 agrees with Figure 13: experimen-
tal infinite-dilution enthalpies are larger than those predicted
by IAS theory.

A rule of thumb is that a mixture differential enthalpy is
given by the pure-component differential enthalpy at the same
total loading. Is this rule better than IAS theory? Figure 14
shows a comparison of pure-component differential en-
thalpies (solid lines) with infinite-dilution enthalpies (dashed
lines) for the system CO, and C,Hg in NaX. When the
pure-component enthalpy increases with loading, as for
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Figure 12. Isothermal (295 K), isobaric (13.3 kPa) xy di-

agrams.

(A) CO,-C3Hg on NaX; (B) CO,-C,Hg on NaX; (C) CO,-
C,H, on NaX; (D) C,H,-C,Hg on NaX; (E) SFg-CH 4 on
silicalite; (F) SFg-C,Hg on NaX. Dashed lines predicted
by IAS theory.

C,Hjg, the infinite-dilution enthalpy is well represented by
the pure-component enthalpy at the same loading as the total
loading of the mixture, but for CO, in the same mixture, the
infinite-dilution enthalpy is closer to the IAS prediction than
to the pure-component enthalpy. Comparison of Figures 8
and 14 indicates that IAS theory is in general better than the
rule of thumb for the prediction of differential enthalpies.
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Figure 13. Isothermal (295 K), isobaric (13.3 kPa) dif-
ferential enthalpies (isosteric heats).

(A) CO,-C3Hg on NaX; (B) CO,_C,Hg on NaX; (C)
C,H,C,Hg on NaX; and (D) SFg-CH, on silicalite.
Dashed lines predicted by IAS theory. Solid and dashed
lines intersect at pure component enthalpies.
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CO,-C,Hg on NaX at 298 K with pure-com-
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Isobaric excess functions

The excess functions are useful for comparing deviations
from ideality. Isobaric, isothermal excess functions are shown
on Figure 15 and activity coefficients are shown on Figure 16,
both for a constant pressure of 13.3 kPa. The excess enthalpy
and excess free energy functions are negative. These negative
deviations from Raoult’s law generate activity coefficients
which are less than unity. Since the excess enthalpy is always
larger in absolute terms than the excess free energy, the ide-
alisties in these systems are enthalpy driven. Entropic effects
(Ts®=h®— g®°) are small but important.

Since Eq. 24 is quadratic in composition, the curves for the
excess functions are symmetric at constant surface potential.
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Figure 15. Isothermal (295 K), isobaric (13.3 kPa) ex-
cess enthalpy and excess free energy.

(A) CO,-C3Hg on NaX; (B) CO,C,Hg on NaX; (C)
C,H,C,Hg on NaX; (D) SFg-CH 4 on silicalite. x, is the
mol fraction of the first component in the adsorbed phase.
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Figure 16. Isothermal (295 K), isobaric (13.3 kPa) activ-
ity coefficients.

X, is the mol fraction of the first component in the ad-
sorbed phase. Legend: same as Figure 15.

Under the conditions of constant pressure imposed on Fig-
ures 15 and 16, the curves have their minima displaced to-
wards the component with the higher loading (higher surface
potential).

It is difficult to compare the relative magnitudes of the
nonidealities on traditional isobaric plots because of large
differences in their fractional coverages. To compare excess
properties at the same fractional coverage, a saturation ca-
pacity of the mixture must be defined. Since (1/n)¢*— 0 at
saturation, Eq. 17 gives

1 X X
I . (@)
Mmp mp  my

for the saturation capacity (m,,) of a binary mixture. The
relative magnitudes of the nonidealities in the adsorbed phase
are shown on Figures 17 and 18, where the excess free energy
and the excess enthalpy are plotted as a function of coverage
(6 =n,/my,) for an equimolar composition in the adsorbed
phase. One of the most interesting features of these figures is
the similarity between h® for the systems CO,-C;Hg on NaX
and CO,-C,Hg on NaX in spite of large differences in g°.
This suggests that energetic effects are similar for mixtures of
polar and nonpolar gases on an heterogeneous adsorbent, but
entropic effects depend on the size and shape of the
molecules. The quantity g¢/RT is dimensionless and may be
compared with excess free energy functions for vapor-liquid
equilibrium. The latter are usually positive while adsorption
excess free energies are almost always negative. Liquid mix-
tures with positive free energies in the range above 0.5 are
sufficiently nonideal to split into two liquid phases. Adsorbed
solutions do not exhibit phase splitting because the excess
free energies are negative, but the values of g¢/RT for the
systems CO,-C;Hg and CO,-C,H, on NaX place these sys-
tems into the highly nonideal category. The other binaries
display moderate negative deviations from Raoult’s law.
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Figure 17. Dimensionless excess free energy as a func-
tion of fractional coverage (#) at the
equimolar composition (x,=0.5).

(A): CO,-C3Hg on NaX; (B): CO,-C,Hg on NaX; (C):
C,H,-C,Hg on NaX; (D): SFg-CH 4 on silicalite; (E): CO,-
C,H, on NaX.

Figure 17 shows that the excess free energy is negative for
all of these systems. If one molecule has multiple sites with
different energies, but the energy of adsorption of the other
molecule is constant as for polar-nonpolar pairs adsorbed in
faujasite, it has been shown the gas-solid energetic hetero-
geneity of the polar molecule generates negative deviations
from Raoult’s law (Myers, 1983) for the adsorbed mixture.
For the systems studied here, this case is exemplified by the
system CO,-C,H on faujasite. If a larger molecule is denied
access to some of the pores accessible to a smaller molecule,
the effect of partial exclusion is to generate negative devia-
tions from Raoult’s law (Talu et al., 1995). Finally, if two
molecules are substantially different in size, it has been shown
by molecular simulation that the size difference generates
small, but non-negligible, negative deviations from Raoult’s
law (Dunne and Myers, 1994). This case is exemplified by the
system SF,-CH , on silicalite. Positive deviations from Raoult’s
law stemming from gas-gas interactions in the adsorbed phase

h/RT
S
N

0 0.2 0.4 0.6 0.8 1
(¢}

Figure 18. Dimensionless excess enthalpy as a function
of fractional coverage (@) at the equimolar
composition (x;=0.5).

Legend: same as Figure 17.
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Figure 19. Correlation of constant A=A+ BT in Eq. 24

with pure-component properties.

Ah° is the differential enthalpy of adsorption (isosteric
heat) at the limit of zero loading; Ah® is the molar integral
enthalpy of adsorption from Eq. 36 evaluated at satura-
tion; v, is the critical volume of the gas.

have been observed for adsorption on a perfectly homoge-
neous surface such as graphitized carbon block (Friederich
and Mullins, 1972), but not in complex heterogeneous mate-
rials such as zeolites and activated carbon in which gas-solid
energetic, entropic, and exclusion effects predominate.

Correlation of excess functions

A major goal of this work is to develop a methodology for
predicting nonideal mixture adsorption from pure-compo-
nent properties. The important properties are: (a) the zero-
coverage enthalpy and Henry constant, both of which charac-
terize the interaction of a single molecule with the bare solid;
(b) the integral enthalpy at saturation, which when compared
to the zero-coverage enthalpy provides information of the en-
ergetic properties of the system; and (c) the critical volumes
of the adsorbates for comparing the relative sizes of the
molecules. Figure 19 shows a correlation for A;= A+ BT
with energetic and steric factors. The correlation captures well
the trend for the systems studied, including an ideal system:
SF-C,Hg on NaX, and a system studied by Kabir et al.
(1998): CH,-C,H, on zeolite 5A. The log-log plot in Figure
20 shows that the constant C in Eq. 24 decreases with in-
creasing saturation capacity of the mixture.

The linear correlations in Figures 19 and 20 are repre-
sented by

ARS\ (Ve ), - _
(A+ BT)=—(0.188)(Ahs)(v—)(Ah;—Ah;) (44)

and
31.8

= (45)
m%

Ahj$ is the molar integral enthalpy of component i at satura-
tion obtained by substituting the saturation capacity (m) from
Table 2 into Eq. 36. Ah;° is the differential enthalpy at the
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Figure 20. Correlation of constant C in Eq. 24 with
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m,, is the saturation capacity from Eq. 43.

limit of zero coverage (the value tabulated in Table 3). V, is
the critical volume of the gas. Component No. 1 is defined as
the one with the larger value of Ah°; consequently (A + BT)
in Eq. 44 is negative and has the same units as Ah°. The
constant C in Eq. 45 has units of kg/mol for my, in mol/kg.
The mixture saturation capacity m,, is calculated from Eq.
43 at the equimolar composition (x; = 0.5).

Equations 44 and 45 provide a means of predicting multi-
component adsorption equilibria from single-gas isotherms
and enthalpies of adsorption. The effect of temperature upon
the selectivity and loading is determined by the differential
enthalpies (heats) of adsorption. Although the correlation is
based on experimental data for only seven binaries and three
types of zeolites, these systems cover a wide range of size
differences and energetic effects. This correlation represents
a first step toward the goal of predicting multicomponent
mixture equilibria from single-component adsorption.

Conclusions

Isothermal measurements of adsorption equilibria and
heats of adsorption describe the equilibrium behavior of mix-
tures as a function of temperature, pressure, and composi-
tion. Previous models of mixture adsorption were limited to
isothermal systems; mixture enthalpies (heats) allow the ef-
fect of temperature to be introduced into the phase equilib-
rium calculations in a systematic way. The model proposed
for the excess free energy in Eq. 24, along with single-compo-
nent isotherms and enthalpies, provides a complete thermo-
dynamic description of mixture adsorption for type |
isotherms without hysteresis loops.

The sensitivity of mixture calculations to the accuracy of
the single-gas measurements cannot be overemphasized.

Studies of the highly nonideal ternary system CO,-C,H,-
C,H, on NaX indicate that the ternary data can be pre-
dicted with errors not exceeding 10% from data for the con-
stituent binary systems.

The development of a correlation between the binary in-
teraction parameters in Eq. 24 and pure component proper-
ties is a first step toward the goal of predicting multicompo-
nent adsorption from single-gas adsorption isotherms and

AIChE Journal

differential enthalpies (heats) of adsorption. The correlation,
which accounts for entropic effects and energetic heterogene-
ity induced by differences in polarity, represents a major ad-
vancement over the theory of ideal adsorbed solutions (1AS).
The fact that mixture adsorption can be correlated in terms
of single-gas isotherms and enthalpies is encouraging and
suggests that accurate molecular models containing potential
parameters extracted from single-gas data should be useful
for predicting mixture adsorption by molecular simulation.
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Appendix A

Equation 7 is a exact expression for the differential en-
thalpy of desorption, which is a generalized kind of isosteric
heat for adsorption from real gas mixtures. The derivation of
Eq. 7 requires consideration of the fundamental differential
equations for the enthalpy and Gibbs free energy of an ad-
sorbed fluid

dH™=TdS™+ ) ;dni"

dGM=—S™dT + ) w;dni"
i

(AD)
(A2)

The quantities G™, H™, S™ and n{" are Gibbs excess vari-
ables. The superscript m notation exphasizes that these vari-
ables are ‘“measured” by experiment. In the following, the
superscript is omitted for n{" to simplify the notation. The
chemical potentials (u;) are set by the pressure, tempera-
ture, and composition of the equilibrium bulk gas. The ab-
sence of a VdP term is a consequence of the Gibbs definition
of an adsorbed phase of zero excess volume. Using Eq. Al

(aHm) T( asm)
= —_— +/"L’
ani T.n; ani T.n; I

A Maxwell-type equation for the differential entropy from

Eq. A2 is
as™ (c?,u,i)
an; T,nj_ al NixNj

(A3)

(A4)
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Combining Eqgs. A3 and A4

aH™ i J [ K
=Mi_'|'(ﬁ) =—T2—(ﬂ) (A5)
ﬁni T,nj (9T n“nj (7T T ni,nj

Fugacity is defined by

f.
lLi=MT+RTInfT:<

(A8)

where ¥ is the chemical potential in the perfect-gas refer-
ence state at which f* =1 bar. Substitution of Eq. A6 into
Ab gives

JH™ d [k anf,
=—T2—(ﬂ)—RT2(—') (A7)
(9ni T.n daT T oT ni.n;

From the thermodynamics of bulk fluids, the enthalpy and
chemical potential in the perfect-gas reference state are re-
lated by

d [ uF
h = —TZ—(—') A8
: dT\ T (A8)
S0
JH™ aInf,
—h* — RTZ(—) (A9)
ﬁni T.n aT ni,n;

Substituting the definition of differential enthalpy of desorp-
tion from Eg. 5 into Eq. A9 gives

AT, = r2( 220
' T Jn n;

(A10)
The differentiation, which is performed holding all mol num-
bers fixed, may be written

dIn f;
aT

Ah; = RTZ( ) QED. (A1)
Appendix B

Equation 20 is derived by differentiating the fugacity with
respect to temperature while holding individual loadings (n;)
constant as prescribed by Eq. 7. Constant loading of all com-
ponents is equivalent to constant total loading (n,) and con-
stant composition (x) so

(ﬁlnfi) (alnfi)
IT Jnmye. U 9T Jox

From the calculus

dlinf dIn f dIn f iy
T T I v L
T Jnx T Jux A )r \ T Jnx

From Eq. 9, the fugacity of the ith component in the ad-
sorbed phase is

(B1)

fi=f%v

(B3)
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and

Infi=Inf°+Inx;,+Iny, (B4)
The derivative on the lefthand side of Eq. B2, which is not
directly related to activity coefficients, has been expressed in
terms of three other derivatives. Using Eqg. B4, the first
derivative on the righthand side of Eq. B2 may be expanded

dIn f; dlInf? dlIny,
b s e
IT  Jyx aT Jy IT )y

The pure-component derivative at constant ¢ is related, but
unequal, to the derivative at constant loading. From the cal-
culus, for a pure component

dlnf dlnf dlnf N
()-S5, e
JT W JT n oy T oT n
Temporarily, starting with Eq. B6, pure-component proper-
ties like f,° are written without the subscript and superscript

(f) to simplify the notation. Integration of Eq. 14 by parts
gives

y=ninf —fnln fdn  (constant T) (B7)
0

SO

A e

The derivative (d4s/9T),, is for single-component adsorption
and, therefore, cannot be used in Eq. B2. From Eq. 14

2y
= B9
(alnf)T " (B9)
Substitution of Eqgs. B8 and B9 into B6 gives
dlnf dlnf dlnf 1 nnfdInf
e )5 )T ) L )
T |, aT )4 aT o nto \ oT /,
(B10)

Equation 7 for the differential enthalpy of a pure component
is

— dlnf
Ah::RTZ( ) (B11)
T |,
Substitution of Eg. B11 in B10 gives
dinf 1 no_
( ) = —— [ Ahdn (B12)
T |, nRT2/J

Equation 6 for the molar integral enthalpy of a pure compo-
nent is

LnAﬁdn

Ah= (B13)

n

AIChE Journal

Substitution of Eg. B13 in B12 gives

Ah=RT? alnf
aT )y

(B14)

Comparison of Eq. B14 with B11 shows that the differential
enthalpy is obtained by differentiation at constant loading,
while the integral enthalpy is obtained by differentiation at
constant . Equations B6—B14 are for single-gas adsorption.
The notation for pure-component reference states is now re-
sumed, so that the integral enthalpy of pure component i is
written Ah,°. Substituting Eq. B14 in B5 gives

(&Infi) Ahy? (&Inyi)

= +
dT J4x RT? T Jyx
Using Eq. B4, the second derivative on the righthand side of
Eq. B2 is

(alnfi) (&Infi") (alnyi)
= + (B16)
‘w, T,x (Mj T ’91// T,x

From Eg. 14 for a pure component in its reference state

((9Infi) 1 (&Inyi)
= +

(91# T,x |’]io z?lb T,x

Equation B17 shows that reciprocal loading (1/n) arises natu-

rally in the solution thermodynamics of adsorption. Defining
an excess reciprocal loading variable by

(B15)

(B17)

1

Wmy'=- (B18)

X;
“r

the reciprocal of the total loading (n,) may be written

+(1/n)° (B19)

1 X;
—-x-
n, oo
The third derivative on the righthand side of Eq. B2 is the
most difficult of the three derivatives to connect with excess

properties. First, from the calculus

( a(1/ny) )
WX

Ny _ T
(ﬁ)n.,x_ - ( ‘9(1/”1))
ﬁlﬂ T,x

(B20)

The third derivative on the righthand side of Eq. B2 has been
rewritten as the ratio of two new derivatives, which are next
evaluated using Eq. B19. The top derivative on the righthand
side of Eq. B20 is

) g (o] )

oT i(ni°)2 aT |y aT

(B21)

A brief digression is needed to evaluate the derivative of
loading with respect to temperature at constant ¢ for a pure
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component. The notation will be simplified temporarily by
omitting the superscript ° for a pure component. From the
calculus

(&)
an aT ),
— | === B22
( aT)¢ jad (822)
Substitution of Eg. B11 in B8 gives
N nAh 1
— | =—= ——== /| Ahdn B23
(aT)n RT? RTzfo (B23)

Using Eg. B13 for the definition of molar integral enthalpy,
Eq. B23 reduces to

aT RT?2 (B24)

( 19([/) n(Ah—Ah)
n
If the differential enthalpy of a pure adsorbate is constant
with loading, then h=Ah and Eqg. B24 predicts that ¢ at
fixed loading is independent of temperature.
A change of variables in Eq. 14 yields

=] n(dlnf
¢=f0 ndlnf=fo(alnn)Tdn (constant T) (B25)

Therefore
d dlnf
(50~ () e
an )¢ dinn )t
Substitution of Egs. B24 and B26 into B22 gives
an n(Ah—Ah) (dlnn
— | =- 3 (B27)
T W RT dlnf T

Returning to the notation of the mixture derivation for pure
components which was temporarily suspended in Egs. B22 to
B27

any n°(Ahe—Ahe) [ dlnny
(—) == 2 5 (B28)
aT |y RT dIn f -

Substitution of Eq. B28 in B21 gives the top derivative on the
righthand side of Eq. B20

(5’(1/nt))w'x= Xi (ni"(A_hi"—Ahi"))

aT = (n°)? RT?
dInn? a(1/m)°
(alnfi°)T+( T )W (B29)
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Using Eq. B19, the bottom derivative on the righthand side
of Eq. B20 is

(0(1/nt)) _y X; (ﬂ) +(a(1/n)e)

ap T (no)’\ oy 2
(B30)
Using Eq. B25
(ﬂ(l/nt)) .y X 2(ﬁlnnf’) +( a(1/n) )
2y T,x i (nio) din in T N T,x
(B31)

Substitution of Egs. B29 and B31 into B20 gives the desired
result for the third derivative on the righthand side of Eq. B2

4
(ﬁ)n(,x

> X ( n°(Ah—AhY) )( alnne )T+( (9(1/n)e)w’x

(no)° RT? dIn fe aT
Xi dlnny a(1/n)°
Pl 1),

Defining a pure-component factor (G;°) which is a function
of the single-gas isotherm and its slope

(B32)

Goe 1 dInn? B33
()P \ainfe )] (B33)

Equation B32 may be written

ZXiGionio

AN RT?2 aT
IT ) nox

a(1/n)°
( ﬁd[ )T X

(Aﬁi°—Ahi°)+( a(1/n) )
¥, x

ZXiGiO_

(B34)

Finally, substitution of Egs. 7, B15, B17, and B34 into B2

gives
- dlIny, 1 dInvy,
AR, = Ah°+ RTZ(—Y) T Bl it
oT WX ni° (9{,0 Tx
0y O T © o (9(1/n)e
LxGene (A7 — Ahyg) +RT? pr-
i ¥ x
) 1/’
ZXjGjo_( d )
i dj T,x
Q.E.D. (B35)
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Appendix C: Mixtures of CO, (1) and C,H; (2) on NaX

Table C1. Mixtures of CO, (1) and C;Hg (2) on NaX

Table C2. Mixtures of SF; (1) and C,H, (2) on NaX

P Ny T a; dz
kPa  mol/kg X1 Y1 S12 °C kJ/mol  kJ/mol
39.22 5254 1.000 1.000 20.89
34.18 38.49
4791 5351 0.969 0.966 1.12 20.92
33.02 38.01
5348 5431 0970 0.966 115 2091
33.03 38.40
64.05 5492 0946 0.930 132 2119
34.52 39.22
70.20 5554 0948 0.929 138 2135
34.70 41.83
8322 5589 0927 0.888 1.61 21.48
3.01 2967 1.000 1.000 20.76
37.94 35.42
359 3214 0922 0913 114 20.78
36.28 35.40
416 3362 0.926 0.920 1.09 20.64
36.28 37.25
499 3606 0.862 0.854 1.07 20.22
36.33 37.25
6.25 3.805 0869 0.866 1.03 20.56
36.34 39.14
823 4030 0818 0.804 110 20.70
37.28 39.18
1026 4192 0.826 0.812 1.10 20.70
3731 40.84
1435 4376 0786 0.741 1.28 20.63
37.90 40.90
1780 4507 0.794 0.745 132 20.58
38.00 42.69
26.14 4638 0764 0.659 1.67 20.62
38.08 42.70
3252 475 0774 0.660 1.76 20.66
37.97 41.99
4482 4828 0.753 0.584 217 20.63
0.17 1097 1.000 1.000 21.01
4421 35.29
033 1350 0.813 0.547 359 21.02
42.86 35.29
044 1586 0.841 0.631 3.08 21.06
42.86 36.65
061 1.835 0.726 0.493 273 21.03
42.47 36.65
079 2.072 0.758 0572 234 21.06
42.47 37.50
101 2325 0675 0491 215 21.03
42.64 37.50
122 2541 0703 0555 190 20.25
42.64 39.10
155 2794 0.639 0493 1.82 20.35
41.29 39.10
196 3.006 0.665 0547 1.64 2041
41.30 41.02
278 3254 0613 0498 160 20.39
42.90 41.04
337 3453 0636 0530 155 2044
42.93 43.78
505 3.689 0594 0460 172 2043
42.40 43.77
6.54 3.851 0613 0474 176 20.39
42.47 45.48
1097 4035 0582 0.396 213 20.37
43.83 4557
1419 4162 0599 0406 219 20.36
43.62 43.85
2383 4280 0578 0.325 2.85 2031
2.68 2526 0.000 0.000 20.74
51.56 42.49
345 2768 0.090 0.010 9.81 20.75
51.62 4457
548 2931 008 0.010 9.21 20.77
50.93 44.56
830 3150 0.157 0.020 9.13 20.73
51.09 46.09
1290 3255 0.152 0.018 9.76 20.38
48.88 46.08
19.31 3410 0.207 0.028 9.06 20.53
48.80 45.77
2749 3465 0203 0.024 10.38 20.83
47.29 45.74
36.39 3584 0251 0.037 873 2099
46.34 43.31
48.67 3.623 0.248 0.032 9.98 20.94
45.29 43.26
5775 3720 0.288 0.041 9.48 20.94

AIChE Journal

P Ny T O 9z
kPa  mol/kg X1 Y1 S12 °C kJ/mol  kJ/mol
3452 2859 0.000 0.000 20.79
37.00 3357
39.17 2927 0.030 0.022 1.38 20.82
36.90 33.18
4266 2981 0.030 0.021 142 21.07
37.06 33.18
5119 3.062 0.067 0.057 119 21.14
37.22 3371
55.18 3.106 0.066 0.055 121 21.18
38.69 33.74
66.59 3171 0.100 0.090 113 21.26
3229 2157 1.000 1.000 20.69
37.11 33.68
37.08 2239 0957 0.946 126 20.72
37.76 33.78
4281 2292 0.958 0.950 1.20 20.95
37.77 34.67
50.34 2388 0910 0.894 119 21.16
37.78 34.67
56.35 2434 0911 0.902 112 2133
37.78 34.24
64.82 2515 0871 0.857 113 21.40
754 1126 0.000 0.000 20.74
31.07 28.48
844 1271 0116 0.052 239 20.87
31.09 29.28
928 1371 0108 0.049 234 21.04
31.76 29.28
10.39 1511  0.193 0.101 212 2110
31.76 29.55
1140 1613 0180 0.095 210 2114
32.52 29.55
1288 1751 0.247 0.143 197 2116
32,55 30.59
1383 1827 0.237 0.140 191 21.20
33.17 30.60
1587 1963 0292 0.186 1.81 21.26
33.22 31.86
17.05 2.034 0282 0.180 1.79 21.32
34.27 31.87
19.72 2164 0329 0225 1.69 21.35
399 0951 1.000 1.000 18.82
30.70 29.07
542 1241 0884 0.766 232 1879
30.77 29.07
6.23 1347 0893 0.789 223 1884
30.77 29.89
793 1489 0807 0.660 215 18.92
32.67 29.92
9.02 1584 0819 0.685 2.08 1899
32.68 30.84
1117 1727 0749 0606 1.94 19.09
33.29 30.85
1272 1813 0.762 0631 187 19.22
33.29 31.02
1533 1944 0708 0576 179 19.27
1157
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Table C3. Mixtures of SF; (1) and CH, (2) on Silicalite Table C4. Mixtures of C,H, (1) and C,Hg (2) on NaX

P n, T a, a, P n, T g, d,
kPa  mol/kg X1 Y1 $12 °C  kJ/mol kJ/mol kPa  mol/kg X1 Y1 S12 °C  kJ/mol kJ/mol
2.08 0651 1.000 1.000 21.00 7.45 2877 1.000 1.000 23.92

35.14 2257 39.05  30.22
1134 0720 0.903 0201 36.87 21.05 674 2260 12.77 3.047 0941 0670 7.81 23.94 2950 3024
12.18 0.814 0917 0225 37.96 21.21 ' ' 16.76  3.221 0946 0.710 7.13 24.10 ' '
36.74  22.39 39.57 3212
22.99 0880 0.845 0.138 34.05 21.36 2522 3363 0900 0553 7.28 24.17
35.74 2235 4061  32.24
2443 0970 0.865 0.152 3554 21.44 2851 3433 0904 0574 7.03 24.26
35.76  22.66 40.77  33.46
36.01 1.029 0.812 0.116 3290 2153 567 2266 39.71 3545 0.869 0481 7.14 2422
3779 1102 0.833 0.126 34.76 21.49 ' ’ 1.60 1.824 1.000 1.000 24.43
3562 2219 4169  28.78
4883 1155 0792 0.107 31.77 21.49 ol 2201 429 2037 0895 0.402 1265 24.49
51.29 1224 0815 0.114 3410 2150 35'98 22'71 483 2171 0902 0444 1150 24.78 41.20 2876
63.37 1273 0.781 0.101 31.80 21.49 ’ : 773 2352 0832 0304 1133 2494 j(l)-; 282?
1532 0287 0528 0020 5428 21.30 864 2471 0841 0.333 10.63 25.10 40‘16 31‘09
1625 0442 0.700 0.048 46.61 21.29 1305 2671 0777 0260 9.90 25.15 : :
17.44 0.596 0.784 0.078 43.01 21.46 13.91 2.718 0.783 0.258 10.37 25.14 4011 31.09
40.06  30.72
1879 0735 0.830 0.110 39.61 21.55 1865 2909 0731 0204 1058 24.29 ods  0us
2040 0865 0861 0143 38712 2176 1026 2937 0734 0213 1020 2434 o '
577 1020 1.000 1.000 2509 e s3a4 2652 3106 0692 0185 983 2446 oo O
3212 1194 0908 0.245 3042 2521 681 2171 043 0957 1000 1000 217 oz 2700
3406 1257 0917 0.265 30.72 25.17 601 2200 216 1164 0830 0203 1920 2424 39-10 27-00
4735 1296 0.886 0.202 30.70 25.23 3727 2205 219 1202 0836 0210 1914 2498 39-11 28-03
4999 1352 0897 0222 3042 2528 .. .. 414 1410 0712 0114 1035 2441 o
22'23 (1)?312:11 g.ggg 8.(1)33 e giﬂ 422 145 0722 0120 1901 - 24.47 37.70 29.36
58'36 0'565 0'271 0'008 4788 24'16 3943  21.28 6.63 1.686 0.623 0.081 18.73 24.54 38‘39 29‘36
64.79 0‘602 01255 o‘oo7 47.76 24.25 8943 2117 677 1738 0635 0083 1918 2462 38.41 30.29
67.30 0.726 01400 01015 44.06 24.28 8.2z - 2Ll 939 195 0563 0067 17.96 2467 39.12 30.29
' ' ' ' ' ' 3822 2123 965 2017 0577 0074 17.09 2464 ' '
7338 0757 0383 0014 4307 24.32 37.75  21.23 12.98 1937 0.390 0.041 14.94 26.00
76.77 0.884 0491 0.024 3943 2437 37'72 20'99 13'77 1‘988 0'380 0'037 15'80 26'10 42.90  31.87
83.99 0916 0474 0.022 3945 24.39 ' ' ' ' ’ ' ' ' 43.02  31.87
37.87  20.99 1551 2223 0.452 0054 1444 26.18
8842 1.038 0556 0.034 3581 24.39 43.03 3221
37.98 2174 1643 2276 0.442 0048 1565 26.10
9586 1065 0.541 0032 3555 24.36 39.03 2176 18.94 2506 0.501 0.066 14.28 26.06 4353 32.20
101.56  1.180 0.609 0.046 3254 24.41 39'17 22'52 19'90 2'547 0'492 0'062 14'68 25'90 4347 3154
10896 1203 0596 0.044 31.92 24.35 ' ' ' ' ’ ' ' ' 4257 3154
0149 0583 0000 0000 o4 2352 2766 0543 0.082 13.28 2583 1239 3000
87'81 0'706 0'200 0'005 46.56 24'56 36.02  20.08 2518 2814 0533 0.077 13.70 2576 42'07 30'00
93.91 0.735 0.192 0.005 49.93 24.75 3611 20.79 30243005 0575 0103 1179 2571 41.95 29.30
98'09 0'862 0'335 0'012 42'11 24'98 36.44  20.79 3197 3.046 0567 0.098 12.06 24.46 42‘04 29‘31
104.72 0‘889 01325 01011 43.00 25.14 3663 2207 8906 3.208 0604 0.130 1021 2560 42.01 29.18
109.99 0.972 01412 0‘018 38.35 25.12 sriL 2201 4193 3240 0598 0.22 10.76 2583 41.66 29.17
: : : i i i 51.09 3378 0632 0.154 945 2595 ' '
1363 1.783  0.000 0.000 21.11
4354  30.23
1514 2040 0.133 0007 2337 21.13
4365 32.35
1601 209 0.129 0007 21.01 21.28
4350  32.36
1823 2340 0228 0015 19.67 21.45
4352 3258
19.36 2394 0223 0015 18.84 21.69
43.08 3258
2254 2624 0302 0.022 19.16 21.79
43.05  32.30
23.88 2673 029 0.021 1948 21.83
4391 3231
28.37 2882 0361 0.029 19.10 21.85
4417 33.90
3055 2936 0354 0.029 18.17 21.80
4441  33.90

36.83 3.117 0.410 0.040 16.74 21.70
39.29 31155 0.404 0.041 1585 21.62
4746 3305 0453 0.055 1413 2153
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Table C5. Mixtures of CO, (1) and C,H, (2) on NaX

Table C7. Ternary Equilibrium Data

P,torr nymol/kg Xco, Xc,n, Xc,Hg Yoo, Yo,H, Yo,He
7.35 2.054 1.000 0.000 0.000 1.000 0.000 0.000
1141 2.297 0.893 0.107 0.000 0.768 0.232 0.000
30.91 2.498 0.821 0.098 0.081 0.287 0.086 0.627
36.35 2.744 0.838 0.089 0.073 0.342 0.081 0.577
45.41 2.993 0.768 0.167 0.065 0.334 0.140 0.526
73.62 3.193 0.719 0.156 0.125 0.221 0.110 0.669
86.18 3.428 0.741 0.145 0114 0.257 0.115 0.628
106.66 3.657 0.693 0.202 0.105 0.254 0.175 0.571
147.18 3.810 0.664 0.194 0.142 0.201 0.140 0.659
20.37 2.337 0.000 1.000 0.000 0.000 1.000 0.000
27.36 2.578 0.097 0.903 0.000 0.041 0.959 0.000
49.38 2.753 0.090 0.845 0.065 0.024 0.577 0.399
63.27 2.970 0.084 0.857 0.059 0.025 0.625 0.350
80.12 3.192 0.153 0.793 0.054 0.048 0.635 0.317
122.77 3.357 0.146 0.751 0.103 0.035 0.477 0.488
156.32 3.531 0.138 0.768 0.094 0.034 0.515 0.451
189.04 3.712 0.190 0.724 0.086 0.050 0.528 0.422
252.99 3.817 0.185 0.698 0.117 0.042 0.449 0.509

Table C8. Ternary Heats of Adsorption

P Ny T 0s 9z
kPa  mol/kg X1 Y1 S12 °C kJ/mol  kJ/mol
0.63 1718 1.000 1.000 23.94
4413 38.23

099 1939 0.886 0759 246 23.99
42.49 38.22

1.32 2157 0.897 0.782 244 2401
42.49 37.40

1.93 2387 0810 0.641 239 2410
41.29 37.39

2.49 2616 0.827 0.671 235 24.13
41.29 37.26

347 2855 0.757 0.568 237 24.10
40.57 37.25

440 3.092 0.776 0604 228 24.10
40.57 37.37

598 3337 0718 0525 230 24.03
41.44 37.38

743 3576 0.738 0.555 226 23.80
41.45 37.74

9.96 3.805 0.692 0495 229 23.80
40.11 37.70

12.49 4029 0711 0518 229 23.89
40.10 37.61

16.73 4236 0.673 0467 235 23.96
40.62 37.65

2063 4422 0691 0485 237 2397

1598 4465 1.000 1.000 20.54
37.61 36.64

20.63 4.646 0955 0.907 219 20.54
38.01 36.69

2485 4800 0.957 0911 219 20.56
38.01 36.93

3205 4951 0920 0.831 234 20.62
38.10 36.95

38.38 5.086 0924 0.836 238 20.72
38.14  37.65

4822 5200 0.894 0775 244 20.75

189 1999 0.000 0.000 23.46
44.42 40.86

253 2239 0109 0.042 280 2347
44.39 39.28

344 2465 0.099 0.038 279 2349
43.59 39.28

4.56 2706  0.183 0.075 276 23.45
43.58 39.00

6.26 2939 0.168 0.069 272 2343
42.61 38.99

8.08 3169 0.233 0.101 270 23.38
42.56 38.28

1024 3382 0218 0.090 281 21.75
42.99 38.29

1326 3605 0.273 0.118 2.80 21.66
42.97 38.08

17.73 3.779 0259 0.108 289 21.64
42.61 38.08

22.42 3.966 0.303 0.129 294 2164
42.67 38.44

29.63 4105 0.291 0.120 3.02 2170
42.75 38.45

36.46 4260 0330 0.136 3.13 2171

Table C6. Mixtures

of CO, (1) and C,H¢ (2) on NaX

n; mol/kg Xco, Xc,H, Xc,Hg Uco, Yc,H,  Uc,Hg
2.054 1.000 0.000 0.000 42.99
2.175 0.947 0.053 0.000 4299  37.53
2.283 0.905 0.068 0.027 4299 37.53 28.45
2.513 0.851 0.098 0.051 41.16 37.52 28.45
2.745 0.809 0.118 0.073 41.16 37.13 28.45
2.977 0.774  0.138 0.088 4117 37.15 29.56
3.205 0.743 0.156 0.101 40.87 37.14 29.56
3.426 0.717 0.168 0.115 40.88 37.71 29.57
3.632 0.700 0.180 0.120 4092 37.76 31.07
2.337 0.000 1.000 0.000 39.84
2.457 0.048 0.952 0.000 45.06 39.84
2.556 0.062 0.916 0.022 4506 39.84 29.68
2.767 0.090 0.869 0.041 45.02 38.78 29.66
2.972 0.109 0.832 0.059 4391  38.78 29.66
3.173 0.127 0.801 0.072 4394  38.80 31.19
3.360 0.146 0.770 0.084 43.95 38.92 31.20
3.5633 0.158  0.747 0.095 42.86  38.91 31.20
3.687 0.171 0.730 0.099 4298  39.05 32.99

P n, T ax 02
kPa  mol/kg X1 2 S12 °C kJ/mol  kJ/mol
6.38 3.532 1.000 1.000 20.76

38.23 28.99
1062 3.717 0.949 0633 10.81 20.76

38.39 29.00
1261 3.924 0.953 0.666 10.09 20.67

3841 30.37
1822 4.087 0.913 0498 10.55 20.63

38.33 30.36
2143 4274 0919 0528 10.13 20.64

38.35 30.85
28.65 4406 0.889 0.431 1054 20.61
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