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1. Vectors, contravariant and covariant
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Figure 1. Non-orthogonal basis vectors in two dimensional flat space. Angle be-
tween basis vectors θ = 53.13◦. Basis vectors {e1, e2} are set against a background
of Cartesian coordinates {x, y}. The basis set for covectors is {e1, e2}.

Vectors are the simplest form of tensor. In 4-dimensional spacetime, tensors like the Riemann
curvature tensor are of order 4 with 44 = 256 components. It is helpful to begin the study of tensors
with vectors, tensors of order 1 with only four components. Or simplify still further by working in
2-dimensional spacetime, with two components and two basis vectors. This simple two-dimensional
case is adequate to illustrate the curvature of space (e.g., the surface of a sphere), the difference
between contravariant and covariant vectors, and the metric tensor.

Unfortunately, terminology is confusing and inconsistent. The old-fashioned but still widely used
names used to distinguish types of vectors are contravariant and covariant. The basis for these
names will be explained in the next section, but at this stage it is just a name used to distinguish
two types of vector. One is called the contravariant vector or just the vector, and the other one is
called the covariant vector or dual vector or one-vector. A strict rule is that contravariant vector
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components are identified with superscripts like V α, and covariant vector components are identified
with subscripts like Vβ . The mnemonic is: “Co- is low and that’s all you need to know.”

This discussion is focused on distinguishing contravariant and covariant vectors in the flat Carte-

sian space of Figure 1. A set of basis vectors {~e1,~e2} is chosen so that any vector ~V can be expressed
as:

~V = V 1~e1 + V 2~e2 = V α~eα

Notice that the path for locating a point traces a parallelogram (in two dimensions) or a paral-
lelepiped (in three dimensions). Components are not determined by perpendicular projections onto
the basis vector as for Cartesian components.

Already the usefulness of the Einstein summation rule is apparent: Any term containing a dummy
variable forces a summation, in this case only over i = 1, 2 but in general over the four dimensions
of spacetime. The dummy variable must be paired up and down, subscript and superscript, like α
here. The basis vectors need be neither normalized nor orthogonal, it doesn’t matter. In this case,
the basis vectors {~e1,~e2} are normalized for simplicity. Given the basis set {~e1,~e2} for vectors, a
basis set for dual vectors {ẽ1, ẽ2} is defined by:

(1) ẽ α ~eβ = δαβ

The ~ symbol identifies vectors and their basis vectors, the ˜ symbol identifies dual vectors and their
basis vectors. As shown on Figure 1, the dual basis vectors are perpendicular to all basis vectors
with a different index, and the scalar product of the dual basis vector with the basis vector of the
same index is unity. The basis set for dual vectors enables any dual vector P̃ to be written:

P̃ = P1ẽ
1 + P2ẽ

2 = Pαẽ
α

The set of basis vectors and their corresponding covectors for the example in Figure 1 are:

~e1 = (1, 0) ẽ1 = (1.0,−0.75)

~e2 = (0.6, 0.8) ẽ2 = (0, 1.25)

which satisfy Eq. (1):

~e1ẽ
1 = 1; ~e2 ẽ

2 = 1; ~e1ẽ
2 = ~e2 ẽ

1 = 0

Consider the vector OP from the origin to point P on Figure 1, which can be written in terms of
its basis vectors:

OP = ~V = V 1~e1 + V 2~e2 = 0.875~e1 + 1.875~e2

or in terms of its basis set for the covectors:

OP = P̃ = P1ẽ
1 + P2ẽ

2 = 2 ẽ1 + 2.4 ẽ2

A vector may be thought of as an object that operates on a covector:

~V (P̃ ) = (0.875~e1 + 1.875~e2)(2 ẽ1 + 2.4 ẽ2) = 6.25

and yields the scalar product. Or vice versa for P̃ (~V ).
The values of these coordinates, (V 1, V 2) = (0.875, 1.875) for the vector and (P1, P2) = (2.0, 2.4)

for the dual vector, can be verified by geometry. The metric tensor gαβ defined by its basis vectors:

gαβ = ~eα·~eβ

The metric tensor provides the scalar product of a pair of vectors ~A and ~B by

~A · ~B = gαβV
αV β

The metric tensor for the basis vectors in Figure 1 is

gij =

(
~e1 ·~e1 ~e1 ·~e2
~e2 ·~e1 ~e2 ·~e2

)
=

(
1 0.6

0.6 1

)
The inverse of gij is the raised-indices metric tensor for the covector space:

gij =

(
ẽ1·ẽ 1 ẽ1·ẽ 2

ẽ2·ẽ 1 ẽ2·ẽ 2

)
=

(
1.5625 −0.9375
−0.9375 1.5625

)
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The metric tensor for contravariant-covariant components is:

gij =

(
ẽ1·~e1 ẽ1·~e2
ẽ2·~e1 ẽ2·~e2

)
=

(
1 0
0 1

)
The square of the vector ~A may be calculated from the metric in several ways:

~V · ~V = gijA
iAj = g11V

1V 1 + g12V
1V 2 + g21V

2V 1 + g22V
2V 2 = 6.25

P̃ · P̃ = gijPiPj = g11P1P1 + g12P1P2 + g21P2P1 + g22P2P2 = 6.25

P̃ · ~V = gijPiV
j = δijPiV

j = PiV
i = P1V

1 + P2V
2 = 6.25

Covariant components may be calculated from countervariant components using the metric

Pj = gijV
i

and countervariant components may be calculated from one-forms using the inverse metric

V j = gijPi

For example:

P1 = g11V
1 + g21V

2 = (1)(0.875) + (0.6)(1.875) = 2.0

P2 = g12V
1 + g22V

2 = (0.6)(0.875) + (1)(1.875) = 2.4

2. Change of Coordinates

2.1. Contravariant vectors.

(2) V ′α =
∂x′α

∂xβ
V β

For spacetime, the derivative represents a four-by-four matrix of partial derivatives. A velocity V in
one system of coordinates may be transformed into V ′ in a new system of coordinates. The upper
index is the row and the lower index is the column, so for contravariant transformations, α is the
row and β is the column of the matrix.

For example, for a 4-velocity vector in spacetime:

V ′α =
∂x′α

∂τ
=
∂x′α

∂xβ
∂xβ
∂τ

=
∂x′α

∂xβ
V β

where τ is the proper time.

2.1.1. Example: (r, θ)→ (x, y).

x = r cos θ

y = r sin θ

∂x′α

∂xβ
=

(
∂x′1

∂x1
∂x′1

∂x2

∂x′2

∂x1
∂x′2

∂x2

)
=

(
∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

)
=

(
cos θ −r sin θ
sin θ r cos θ

)
2.1.2. Example: (x, y)→ (r, θ). The relations are

r =
√
x2 + y2

θ = arctan
(y
x

)
∂x′α

∂xβ
=

(
∂x′1

∂x1
∂x′1

∂x2

∂x′2

∂x1
∂x′2

∂x2

)
=

(
∂r
∂x

∂r
∂y

∂θ
∂x

∂θ
∂y

)
=

(
x√
x2+y2

y√
x2+y2

−y
x2+y2

x
x2+y2

)
=

(
cos θ sin θ

− sin θ
r

cos θ
r

)
The transformation matrices are inverses.



4 ALAN L. MYERS

2.2. One-forms.

(3) V ′α =
∂xβ

∂x′α
Vβ

The rule is that the upper index refers to the row and the lower index to the column, so for one-form
transformations β is the row and α is the column. For example, a gradient V in one system of
coordinates is transformed into a V ′ gradient in a new system of coordinates. The chain rule for a
potential φ is:

V ′α =
∂φ

∂x′α
=

∂φ

∂xβ
∂xβ

∂x′α
= Vβ

∂xβ

∂x′α

Strictly Vβ in this equation should be a row vector, but the order of matrices is generally ignored as
in Eq. (3).

3. Tensors

3.1. Tensor transformations. The rules for transformation of tensors of arbitrary rank are a
generalization of the rules for vector transformation. For example, for a tensor of contravariant rank
2 and covariant rank 1:

T ′αβγ =
∂x′α

∂xµ
∂x′β

∂xν
∂xρ

∂x′γ
Tµνρ

where the prime symbol identifies the new coordinates and the transformed tensor.

3.2. Metric tensor. The metric tensor defined by:

(4) gµν = eµ · eν
Infinitesimal displacement vector:

d~x = dxµeµ

dx2 = (dxµeµ) · (dxνeν) = gµνdx
µdxν

More generally for vectors ~V and ~W :

~V · ~W = gµνV
µW ν

This is the “new” inner product, invariant under any linear transformation. It reproduces the “old”
inner product in an orthonormal basis:

A ·B = (1×A1B1) + (1×A2B2) + (1×A3B3)

3.3. Contraction. Vector B is contracted to a scalar (S) by multiplication with a one-form Aα:

AαB
α = S

Contraction of indices for a tensor works as follows:

T ′αβα =
∂x′α

∂xµ
∂x′β

∂xν
∂xρ

∂x′α
Tµνρ =

∂xρ

∂xµ
∂x′β

∂xν
Tµνρ = δρµ

∂x′β

∂xν
Tµνρ =

∂x′β

∂xν
Tµνµ

Contracted tensors T ′ and T transform as contravariant vectors V ′ and V :

V ′β =
∂x′β

∂xν
V ν

Of fundamental importance is the use of the metric tensor gµν and its inverse (dual metric) gµν to
raise and lower indices:

Tν = gµνT
µ

T ν = gµνTµ

This process works for higher order tensors:

Ajk = gijAik

Cijk = gjmC
im
k

T ijk = gimT jkm
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The Kronecker delta may be written as a tensor in terms of the metric and its inverse:

gµνgνλ = δµλ

The double contraction of a symmetric tensor Sµν and an asymmetric tensor Aµν is zero, that is
AµνS

µν = 0.

3.4. Raising and Lowering Indices in E&M. An electric field can refer to a gradient:

E = −∇V =⇒ Eµ = − ∂V
∂xµ

or to a force:

E =
F

q
=⇒ Eµ =

Fµ

q
=
maµ

q

The index can be raised or lowered using the metric:

Eµ = gµνEν Eµ = gµνE
ν

In an orthonormal system, it makes no difference.

4. Christoffel Symbols from Metric Tensor

Definition of Christoffel symbol is

Γkijek =
∂ei
∂xj

The Γ symbol by itself is not a tensor. Form dot product:

Γkijek · em = em · ∂ei
∂xj

Γkijδ
m
k = em · ∂ei

∂xj

Γmij = em · ∂ei
∂xj

Let ∂ei
∂xj =

∂ej
∂xi . This equality is for basis vectors and does not hold for unit vectors, for example,

in spherical corrdinates ∂r̂
∂θ 6=

∂θ̂
∂r . The Christoffel symbol is symmetric in its two lower indices:

Γkij = Γkji.

Γmij =
1

2
em · ∂ei

∂xj
+

1

2
em · ∂ej

∂xi

Γmij =
1

2
em · ∂ei

∂xj
+

(
1

2
gkm

∂ek
∂xj
· ei −

1

2
gkm

∂ej
∂xk
· ei
)

+
1

2
em · ∂ej

∂xi
+

(
1

2
gkm

∂ek
∂xi
· ej −

1

2
gkm

∂ei
∂xk
· ej
)

The terms on each line inside the parentheses sum to zero. Using em = gkmek:

Γmij =
1

2
gkmek ·

∂ei
∂xj

+

(
1

2
gkm

∂ek
∂xj
· ei −

1

2
gkm

∂ej
∂xk
· ei
)

+
1

2
gkmek ·

∂ej
∂xi

+

(
1

2
gkm

∂ek
∂xi
· ej −

1

2
gkm

∂ei
∂xk
· ej
)

Γmij =
1

2
gkm

[(
ek ·

∂ei
∂xj

+
∂ek
∂xj
· ei
)

+

(
ek ·

∂ej
∂xi

+
∂ek
∂xi
· ej
)
−
(
ei ·

∂ej
∂xk

+
∂ei
∂xk
· ej
)]

Γmij =
1

2
gkm

[
∂(ek · ei)
∂xj

+
∂(ej · ek)

∂xi
− ∂(ei · ej)

∂xk

]

(5) Γmij =
1

2
gkm

[
∂gik
∂xj

+
∂gjk
∂xi

− ∂gij
∂xk

]
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4.1. Example for 2-Sphere. The metric for a sphere is:

ds2 = dr2 + r2dθ2 + r2sin2θ dφ2

For a 2-sphere of radius R:

ds2 = R2dθ2 +R2sin2θ dφ2

For a unit 2-sphere:

gij =

(
gθθ gθφ
gφθ gφφ

)
=

(
1 0
0 sin2θ

)

gij =

(
gθθ gθφ

gφθ gφφ

)
=

(
1 0
0 1

sin2θ

)
There are 8 Christoffel symbols and only 3 of them are non-zero:

Γφθφ = Γφφθ =
1

2
gφφ

∂gφφ
∂xθ

=
1

2

(
1

sin2 θ

)
(2 sin θ cos θ) = cot θ

Γθφφ = −1

2
gθθ

∂gφφ
∂xθ

= −1

2
(1)(2 sin θ cos θ) = − sin θ cos θ

Eq. (5) contains 6 terms of type gij
∂gij
∂xk for each of the 8 symbols, a total of 48 terms.

5. Non-Covariant Version

Consider in this section only non-curved coordinates on a flat manifold. The gradient of a scalar
field is:

∇f =⇒ ∂f

∂xµ
= ∂µf

The gradient of a vector field is:

∇V =⇒ ∂V µ

∂xν
= ∂νV

µ

and its divergence is:

∇ ·V =⇒ ∂V µ

∂xµ
= ∂µV

µ

The vector product of A and B is:

C = A×B =⇒ ci = εijkajbk

where ε is the permutation symbol (or alternating unit tensor) sometimes called the Levi-Civita
pseudo-tensor, which is completely anti-symmetric. ε123 = 1 and so does any even permutation of
123 like 231; ε132 = −1 and so does any odd permutation of 123 like 132; and ε = 0 if two of the
three indices have the same value. Or imagine a clock with 1 at 12 o’clock, 2 at 4 o’clock and 3 at
8 o’clock. ε = +1 for clockwise permutations and ε = −1 for counter-clockwise permutations. For
example, for the vector product:

c1 = ε1jkajbk = ε123a2b3 + ε132a3b2 = a2b3 − a3b2

The following identify is useful:

eijkei`m = δj`δkm − δjmδk`

The scalar product is

a · b = aibi
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6. Covariant Derivative

We will need the connection coefficient:

Γkijek =
∂ei
∂xj

For an abstract vector V expanded in countervariant basis vectors:

V = V iei

∂V

∂xj
=
∂V i

∂xj
ei + V i

∂ei
∂xj

=
∂V i

∂xj
ei + V iΓkijek =

∂V i

∂xj
ei + V kΓikjei =

(
∂V i

∂xj
+ V kΓikj

)
ei

In terms of its coefficient tensor, the covariant derivative of a vector is

∇jV i =
∂V i

∂xj
+ V kΓikj

For an abstract vector V expanded in covariant basis vectors:

V = Vie
i

∂V

∂xj
=
∂Vi
∂xj

ei + Vi
∂ei

∂xj
=
∂Vi
∂xj

ei + Vk
∂ek

∂xj

A connection coefficient is needed for the derivative of a covariant base vector. Starting with:

eie
k = δki

∂ei
∂xj

ek +
∂ek

∂xj
ei = 0 =⇒ Γmij eme

k +
∂ek

∂xj
ei = 0 =⇒ ei

∂ek

∂xj
= −Γkij

Multiplying by ei

eiei
∂ek

∂xj
=
∂ek

∂xj
= −eiΓkij

Substitution yields

∂V

∂xj
=
∂Vi
∂xj

ei − VkΓkije
i =

(
∂Vi
∂xj
− VkΓkij

)
ei

The covariant derivative of a one-form is

∇jVi =
∂Vi
∂xj
− VkΓkij

Note the positive sign for vectors and the minus sign for one-forms.

6.1. Extension to Higher-Order Tensors.

∇kT ij =
∂T ij

∂xk
+ TmjΓimk + T imΓjmk

∇kTij =
∂Tij
∂xk

− TmjΓmik − TimΓmjk

∇kT ij =
∂T ij
∂xk

+ Tmj Γimk − T imΓmjk
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7. Riemann Curvature Tensor

Parallel transport of a vector is defined as transport for which the covariant derivative is zero.
The Riemann tensor is determined by parallel transport of a vector around a closed loop. Consider
the commutator of covariant differentiation of a one-vector:

[∇γ∇β −∇β∇γ ]Vα

In a flat space, the order of differentiation makes no difference and the commutator is zero so that
any non-zero result can be attributed to the curvature of the space.

∇βVα =
∂Vα
∂xβ

− ΓσαβVσ ≡ Vαβ

∇γVα =
∂Vα
∂xγ

− ΓσαγVσ ≡ Vαγ

∇β∇γVα =
∂Vαβ
∂xγ

− ΓταγVτβ − ΓηβγVαη

=
∂2Vα
∂xγ∂xβ

−
∂Γσαβ
∂xγ

Vσ − Γσαβ
∂Vσ
∂xγ

− Γταγ

(
∂Vτ
∂xβ

− ΓστβVσ

)
− Γηβγ

(
∂Vα
∂xη

− ΓσαηVσ

)

∇γ∇βVα =
∂Vαγ
∂xβ

− ΓταβVτγ − ΓηγβVαη

=
∂2Vα
∂xβ∂xγ

−
∂Γσαγ
∂xβ

Vσ − Γσαγ
∂Vσ
∂xβ

− Γταβ

(
∂Vτ
∂xγ

− ΓστγVσ

)
− Γηγβ

(
∂Vα
∂xη

− ΓσαηVσ

)
Each equation has 7 terms. In the commutator, the first terms cancel because the order of normal
partial derivatives does not matter. The 3rd term of the first equation cancels with the 4th term of
the second equation because the symbols used for dummy indices are irrelevant. The 4th term of
the first equation cancels with the 3rd term of the second equation for the same reason. The 6th
and 7th terms cancel because Christoffel symbols are symmetric in their lower indices. Only the 2nd
and 5th terms survive:

[∇γ∇β −∇β∇γ ]Vα =

(
∂Γσαγ
∂xβ

−
∂Γσαβ
∂xγ

+ ΓταγΓστβ − ΓταβΓστγ

)
Vσ

The terms within the parentheses define the Riemann curvature tensor:

Rσαβγ ≡
∂Γσαγ
∂xβ

−
∂Γσαβ
∂xγ

+ ΓταγΓστβ − ΓταβΓστγ

A necessary and sufficient condition for flat space is that the Riemann curvature is equal to zero.

8. Ricci Tensor

The first and fourth indices are contracted to give:

Rαβ = Rγαβγ =
∂Γγαγ
∂xβ

−
∂Γγαβ
∂xγ

+ ΓταγΓγτβ − ΓταβΓγτγ

For spacetime coordinates:

Rµν =
∂Γαµα
∂xν

−
∂Γαµν
∂xα

+ ΓβµαΓαβν − ΓβµνΓαβα

Some authors contract the first and third indices. Because of symmetries, other contractions give
either zero or ±Rµν .

The Ricci scalar is:

R = gijRij
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9. Geodesics

In curved space the shortest distance between two points is called a geodesic. It can be defined
geometrically as a path which “parallel transports” its own tangent vector. Think of an automobile
tracing geodesics over sand dunes by locking the steering wheel into the straight-ahead direction.
Let U be the tangent vector of a parameterized curve with components dxβ/dλ, where λ is the affine
parameter. Let V be the parallel transport vector with the desired property that

dV

dλ
= 0

Starting with

V = V αeα

take ordinary (not partial) derivatives:

dV

dλ
=
dV α

dλ
eα + V α

deα
dλ

Using the chain rule
deα

dλ
=
∂eα
∂xβ

dxβ

dλ
and introducing the Christoffel symbol:

∂eα

∂xβ
= Γγαβeγ

dV

dλ
=
dV α

dλ
eα + V αΓγαβeγ

dxβ

dλ

=
dV α

dλ
eα + V γΓαγβeα

dxβ

dλ

=

(
dV α

dλ
+ V γΓαγβ

dxβ

dλ

)
eα

Using dV/dλ = 0 and V = U = dxβ/dλ

(6)
d2xα

dλ2
+ Γαβγ

dxβ

dλ

dxγ

dλ
= 0

9.1. Example for Geodesic on 2-Sphere. There are 3 non-zero Christoffel coefficients:

Γφθφ = Γφφθ = cot θ; Γθφφ = − sin θ cos θ

For α = θ:
d2θ

dλ2
+ Γθφφ

dφ

dλ

dφ

dλ
=
d2θ

dλ2
− sin θ cos θ

(
dφ

dλ

)2

= 0

For α = φ:
d2φ

dλ2
+ Γφθφ

dθ

dλ

dφ

dλ
+ Γφφθ

dφ

dλ

dθ

dλ
=
d2φ

dλ2
+ 2

cos θ

sin θ

dθ

dλ

dφ

dλ
= 0

First consider a meridian from the north pole to the equator, parameterized as θ = λ, φ = 0, and
0 ≤ λ ≤ π

2 for which

dθ

dλ
= 1;

d2θ

dλ2
=
d2φ

dλ2
=
dφ

dλ
= 0

These values satisfy the two geodesic equations so the meridian is a geodesic.
Next consider a locus of constant latitude (45◦), parameterized as θ = π

4 , φ = λ, and 0 ≤ λ ≤ 2π
for which

dφ

dλ
= 1;

d2θ

dλ2
=
dθ

dλ
=
d2φ

dλ2
= 0

The second geodesic equation containing the term d2φ/dλ2 is satisfied but the first geodesic equation

containing the term d2θ/dλ2 gives 0−
√

2
√

2(1)2 = −2 6= 0 is not satisfied, so the locus of constant
45◦ latitude is not a geodesic.
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10. Euler-Lagrange Equation

Find the trajectory q(t) for which the time integral of the Lagrangian is a minimum. Specifically

S =

∫ t2

t1

L{q(t), q̇(t), t}dt

where S, which maps a function to a scalar, is called the action and q(t) describes the trajectory.
The Euler-Lagrange differential equation ensures the action is minimized with respect to all possible
paths:

∂L

∂q
− d

dt

∂L

∂q̇
= 0

For several coordinates:

∂L

∂qi
− d

dt

∂L

∂q̇i
= 0

For conservative systems, L = T −V . The advantage is that we are dealing with scalars which have
the same value in any coordinate system, which is the motivation for a special symbol qi for general
coordinates. Also, particles in GR move along geodesic paths of least distance in curved spacetime.

10.1. Example for Newtonian System in Cartesian Coordinates. For the x-coordinate:

L = T − V =
1

2
mẋ2 − V (x)

∂L

∂x
= −∂V

∂x
;

∂L

∂ẋ
= mẋ

∂L

∂x
− d

dt

∂L

∂ẋ
= −∂V

∂x
− d

dt
mẋ = −∂V

∂x
−mẍ = 0

Fx = mẍ

10.2. Example for Newtonian System in 2-D Polar Coordinates.

x = r cos θ

y = r sin θ

L =
m

2
ṙ2 +

m

2
r2θ̇2 − V (r, θ)

∂L

∂r
= mrθ̇2 − ∂V

∂r
;

∂L

∂ṙ
= mṙ

∂L

∂θ
= −∂V

∂θ
;

∂L

∂θ̇
= mr2θ̇

∂L

∂r
− d

dt

∂L

∂ṙ
= 0;

∂L

∂θ
− d

dt

∂L

∂θ̇
= 0

mrθ̇2 − ∂V

∂r
−mr̈ = 0; −∂V

∂θ
− d

dt
(mr2θ̇) = 0

Fr = mr̈ −mrθ̇2 Fθ =
d

dt
(mr2θ̇)

The term mrθ̇2 is the centrifugal force and mr2θ̇ is the angular momentum, which is constant in
the absence of an applied torque Fθ.
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10.3. Generalization to Geodesic as Shortest Curve in Curved Spacetime. In a curved
space, the metric determines the infinitesimal length:

ds =
√
gabdxadxb

A line integration gives finite length s:

s =

∫
ds =

∫
ds

dλ
dλ =

∫ √(
ds

dλ

)2

dλ =

∫
Ldλ

where L is the “Lagrangian” function of x and ẋ ≡ dx/dλ:

L =

√
gab

dxa

dλ

dxb

dλ
= L(x, ẋ)

The Euler-Lagrange equation follows from the calculus of variations for the extremization of the
path s with fixed end points:

∂L

∂xa
− d

dt

∂L

∂ẋa
= 0

Substituting proper time for λ, It can be shown that the same Euler-Lagrange equation follows from
a simpler Lagrangian of the form:

L(x, ẋ) = gabẋ
aẋb

Since the metric function gab depends on x but not on ẋ:

∂L

∂ẋa
= 2gabẋ

b;
∂L

∂xc
=
∂gab
∂xc

ẋaẋb

11. Newtonian Limit

Gauss’ law for the Newtonian limit is:

∇ · g = −4πGρ

or
∇2φ = 4πGρ

which is equivalent to:

g = −GM er
r2

Since

g =
F

m
=
d2r

dt2

and because the gravitation force is conservative:

g = −∇φ
we get:

d2r

dt2
= −∇φ

How better to suggest that gravitation and acceleration are the same thing? Here it will be shown
that the geodesic equation yields the above equation for a particle moving at nonrelativistic speed
in a static, weak gravitational field φ. At the end, a “weak” gravitational field will be defined
quantitatively.

For nonrelativistic speeds:
dxi

dλ
<< c

dt

dλ
dt/dλ = dx0/dλ is the dominant term of the geodesic Eq. (6):

d2xµ

dλ2
+ Γµ00

dx0

dλ

dx0

dλ
= 0

The ∂/∂x0 terms in Eq. (5) vanish because the gravitational field is static so we have:

gµνΓν00 = −1

2

∂g00
∂xµ
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A small correction field hµν is added to the flat spacetime metric νµν :

gµν = ηµν + hµν

Since νµν is constant, ∂gµν/∂x
σ = ∂hµν/∂x

σ and to leading order:

νµνΓν00 = −1

2

∂h00
∂xµ

−Γ0
00 = −1

2

∂h00
∂x0

= 0; Γi00 = −1

2

∂h00
∂xi

Plugging these connections into the geodesic equation:

d2x0

dλ2
= 0 and

dx0

dλ
= const.

d2xi

dλ2
− 1

2

∂h00
∂xi

(
dx0

dλ

)2

= 0

Using

d2xi
dλ2

=

(
dx0

dλ

)2
d2xi

d(x◦)2

the (dx0/dλ)2 factor cancels and
d2xi

dt2
=
c2

2

∂h00
∂xi

Comparing this with the Newtonian equation for acceleration:

h00 = −2φ

c2

so that

g00 = −
(

1 +
2φ

c2

)
For the gravitational field at the surface of the earth, 2φ/c2 = 1.4 × 10−9. Therefore a weak
gravitational field means much less than one billion g’s.

12. Schwarzschild Metric

Birkhoff’s theorem is that the Schwarzschild metric is the only spherically symmetric vacuum
solution of Einstein’s field equations:

ds2 = −
(

1− r∗

r

)
c2dt2 +

(
1− r∗

r

)−1
dr2 + r2

(
dθ2 + sin2θ dφ2

)
r∗ ≡ 2GM

c2
= Schwarzschild radius

Consider the geometry of empty spacetime surrounding a spherically symmetric mass. The condi-
tions are: (1) gravitational field is spherically symmetric; (2) field is static, meaning metric compo-
nents are time-independent; (3) field is asymptotically flat, approaching flat spacetime at sufficiently
large r.

The most general form which satisfies these requirements is:

ds2 = −Uc2dt2 + V dr2 +Wr2
(
dθ2 + sin2θ dφ2

)
where U , V , W are unknown functions of r. Let W = 1, which alters the meaning of r but facilitates
the introduction of spherical symmetry:

ds2 = −Ac2dt2 +Bdr2 + r2
(
dθ2 + sin2θ dφ2

)
where A and B are new functions of r. Condition (2) is met. For fixed r and t, the line element
for the surface of a sphere is recovered so condition (1) is satisfied. The functions A and B must
approach unity as r →∞ to recover the Minkowski metric as demanded by condition (3).

The Einstein equation is:

Rµν −
1

2
Rgµν =

8πG

c4
Tµν
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In empty space Tµν = 0 and:

Rµν −
1

2
Rgµν = 0

Multiplying both sides by gµν :

gµν(Rµν −
1

2
Rgµν) = 0

R− 1

2
Rδνν = R− 1

2
4R = 0

Since the Ricci scalar R vanishes, Rµν = 0. That does not necessarily imply that the underlying
Riemann tensor is zero, so the field equations can have non-trivial solutions even when the energy-
momentum tensor is zero.

Substitute for the functions A and B:

ds2 = −e2νc2dt2 + e2λdr2 + r2dθ2 + r2sin2θ dφ2

where µ and λ are unknown functions of r. The exponentials preserve the signature of the metric.
Diagonal values for the metric gµν are:

g00 = −e2ν ; g11 = e2λ; g22 = r2; g33 = r2 sin2θ

Since gµν is a diagonal matrix, its inverse gµν is:

g00 = −e−2ν ; g11 = e−2λ; g22 =
1

r2
; g33 =

1

r2 sin2θ
Connection coefficients are calculated from:

Γσµν =
1

2
gσρ

(
∂gρν
∂xµ

+
∂gµρ
∂xν

− ∂gµν
∂xρ

)
For σ = µ = 0 and ν = 1:

Γ0
01 =

1

2
g0ρ
(
∂gρ1
∂x0

+
∂g0ρ
∂x1

− ∂g01
∂xρ

)
g0ρ = 0 unless ρ = 0 so:

Γ0
01 =

1

2
g00
(
∂g01
∂x0

+
∂g00
∂x1

− ∂g01
∂x0

)
=

1

2

(
−e−2ν

) ∂
∂r

(
−e2ν

)
=

1

2
e−2νe2ν 2

dν

dr
=
dν

dr
≡ ν′

For µ = ν = 0 and σ = 1:

Γ1
00 =

1

2
g1ρ
(
∂gρ0
∂x0

+
∂g0ρ
∂x0

− ∂g00
∂xρ

)
g1ρ = 0 unless ρ = 1 so:

Γ1
00 =

1

2
g11
(
∂g10
∂x0

+
∂g01
∂x0

− ∂g00
∂x1

)
=

1

2
e−2λ(−1)

∂

∂r

(
−e2ν

)
=

1

2
e−2λe2ν(2)

dν

dr
= ν′e2(ν−λ)

For µ = ν = σ = 1:

Γ1
11 =

1

2
g1ρ
(
∂gρ1
∂x1

+
∂g1ρ
∂x1

− ∂g11
∂xρ

)
g1ρ = 0 unless ρ = 1 so:

Γ1
11 =

1

2
g11
(
∂g11
∂x1

+
∂g11
∂x1

− ∂g11
∂x1

)
=

1

2
g11

∂g11
∂x1

=
1

2
e−2λ

∂

∂r

(
e2λ
)

=
1

2
e−2λe2λ(2)

dλ

dr
= λ′

For µ = ν = 2 and σ = 1:

Γ1
22 =

1

2
g1ρ
(
∂gρ2
∂x2

+
∂g2ρ
∂x2

− ∂g22
∂xρ

)
g1ρ = 0 unless ρ = 1 so:

Γ1
22 =

1

2
g11
(
∂g12
∂x2

+
∂g21
∂x2

− ∂g22
∂x1

)
=

1

2
e−2λ(−1)

∂

∂r
(r2) = −re−2λ

For µ = ν = 3 and σ = 1:

Γ1
33 =

1

2
g1ρ
(
∂gρ3
∂x3

+
∂g3ρ
∂x3

− ∂g33
∂xρ

)
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g1ρ = 0 unless ρ = 1 so:

Γ1
33 =

1

2
g11
(
∂g13
∂x3

+
∂g31
∂x3

− ∂g33
∂x1

)
=

1

2
e−2λ(−1)

∂

∂r
(r2 sin2 θ) = −e−2λr sin2 θ

[home page, Alan L. Myers]

http://www.seas.upenn.edu/~amyers/index.html
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