MASSACHUSETTSINSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.l. Technical Report No. 1586 October, 1996
Reconfigurable Architecturesfor General-Purpose Computing

André DeHon
andre@mit.edu

Abstract: General-purpose computing devices allow us to (1) customize computation after
fabrication and (2) conserve area by reusing expensive active circuitry for different functions in
time. We define RP-space, arestricted domain of the general -purpose architectural space focussed
on reconfigurable computing architectures. Two dominant features differentiate reconfigurable
from special-purpose architectures and account for most of the area overhead associated with RP
devices: (1) instructions which tell the device how to behave, and (2) flexible interconnect which
supports task dependent dataflow between operations.

We can characterize RP-space by the all ocation and structure of theseresourcesand comparethe
efficiencies of architectural points across broad application characteristics. Conventional FPGAs
fall at one extreme end of this space and their efficiency ranges over two orders of magnitude across
the space of application characteristics. Understanding RP-space and its consequences allows us
to pick the best architecture for atask and to search for more robust design pointsin the space.

Our DPGA, afine-grained computing device which adds small, on-chip instruction memories
to FPGAs is one such design point. For typical logic applications and finite-state machines, a
DPGA can implement tasks in one-third the area of atraditional FPGA. TSFPGA, avariant of the
DPGA which focuses on heavily time-switched interconnect, achieves circuit densities close to the
DPGA, while reducing typical physical mapping times from hoursto seconds.

Rigid, fabrication-time organization of instruction resources significantly narrows the range
of efficiency for conventional architectures. To avoid this performance brittleness, we developed
MATRIX, thefirst architectureto defer the binding of instruction resources until run-time, allowing
the application to organize resources according to its needs. Our focus MATRIX design point is
based on an array of 8-bit ALU and register-file building blocks interconnected via a byte-wide
network. With today’s silicon, a single chip MATRIX array can deliver over 10 Gop/s (8-bit
ops). On sampleimage processing tasks, we show that MATRIX yields 10-20x the computational
density of conventional processors.

Understanding the cost structure of RP-space helps us identify these intermediate architectural
points and may provide useful insight more broadly in guiding our continual search for robust and
efficient general -purpose computing structures.

Acknowledgements: This report describes research done at the Artificial Intelligence Laboratory of the Mas-
sachusetts Ingtitute of Technology. This research is supported by the Advanced Research Projects Agency of the
Department of Defense under Rome Labs contract number F30602-94-C-0252.

Acknowledgments

Thiseffort grew out theintellectual backdrop of the Transit and Abacus projects. Years prototyping
Transit machines with Tom Simon and his specialization philosophy set the stage for my initial
interest in FPGAs for computing. The initial ideas for the DPGA grew out of dialogs with Mike
Bolotski in which we tried to reconcile Abacus, his SIMD architecture which he described as “a
bunch of one-bit processors,” with FPGAs, which looked to melike* abunch of one-bit processors.”

Tom Knight has been my research advisor since | was ajunior. He has always encouraged me
to focus on the big ideaand has been supportive as| explored sometimesradical points of view. He
gave me plenty of freedom to do the right thing, and hopefully, | have lived up to the confidence
and trust implied by that autonomy.

The efforts of Jeremy Brown, Derrick Chen, lan Edlick, Ethan Mirsky, and Edward Tau during
and after 6.371 made the DPGA prototype possible. lan’s perseverance to finalize the layout and
verification was particul ar responsible for the completion of that effort. Ed and 1an both helped see
the DPGA prototype through its final postmortem.

TSFPGA and MATRIX were both possible only because of Derrick Chen and Ethan Mirsky,
the Master of Engineering students who respectively took ownership of the microarchitecture and
VLS| portions of those designs. We were largely able to complement each other’s efforts in our
attempts to understand and devel op these architectures.

Discussion with Rich Lethin, Russ Tessier, and Jonathan Babb at MIT were useful in focusing
in on the key issues which needed addressing.

Regular interaction with the emerging reconfigurable computing community was valuable for
encouragement and for identifying key problemsand issues. Notably, discussionswith Brad Taylor,
Mike Butts, Brad Hutchings, Bill Magione-Smith, John Villasenor, Phil Kuekes, Steve Trimberger,
Mike Smith, and Carl Ebling have been helpful in identifying the questions which need answers
and cleaning up ideas for presentation.

Thomas McDermott provided valuable feedback on the early chapters of this work.

The availability of high-quality, experimental CAD toolsin sourceform from universities made
the experimental mapping work done here feasible. University of Toronto’s Chortle provided a
clean basis for severa early experiments in DPGA synthesis. UC Berkeley’s SIS was used for
standard, technology independent circuit mapping. UC Berkeley’s mustang was the workhorse
behind multicontext FSM mapping.

This research was supported by the Advanced Research Projects Agency of the Department of
Defense under Rome L abs contract number F30602-94-C-0252.

Contents

| Introduction and Background

11
12
13
14
15
16
17

21
22

23
24
25
2.6

31

32
33

Overview and Synopsis

Evolution of General-Purpose Computing with VLS| Technology
ThisThesis. e
Reconfigurable Device Characteristics,
Configurable, Programmable, and Fixed-FunctionDevices
KeyRelations e
New General-Purpose Architectures
PrognosisfortheFuture L

Basics and Ter minology

General-PurposeComputing
General-Purpose Computinglssues
221 Interconnect L
222 Instructions
Programmablesand Configurables
FPGA Introduction e
Regular and Irregular Computing Tasks
Metrics: Density, Diversity, and Capacity
26.1 Functiona Density
2.6.2 Functiona Diversity — InstructionDensity
26.3 DataDensity

Reconfigurable Computing Background

Successes of ReconfigurableComputing
3.1.1 Progranmable ActiveMemories. Lo
312 Splash
313 PRISM . . .
314 LogicEmulation

Lineage e
Technological Enablers

O ~NO1TOTWNN

6

7

Empirical Review

4 Empirical Review of General Purpose Computing Architectures in the Age of MOS

VLS

41 ProCessOrsS v v v o e e e e e
42 VLIWProcessors o v vttt e e
4.3 Digital Signal Processors(DSPs)o
44 MeEmMOries e
45 Field-Programmable Gate Arrays(FPGAS)
46 Vectorand SIMD Processors.
47 MultimediaProcessors e
48 MultipleContext FPGAS e
49 MIMDProcessors o v i it e
410 Reconfigurable ALUS
411 SUMMAENY . . . v o o e e e e e e e e e

Case Study: Multiply

51 CustomMultipliers.
52 Semicustom Multipliers L
5.3 General-Purpose Multiply Implementations
5.4 Hardwired Functional Unitsin “General-Purpose Devices”
55 MultiplicationGranularity
5.6 Specidized Multiplication
57 Summary e

High Diversity on Reconfigurables

Structure and Composition of Reconfigurable Computing Devices

I nterconnect
71 DominantAreaandDelay
711 FixedArea.
7.1.2 Interconnect and ConfigurationArea
713 Delay
7.2 Problemswith“Simple’” Networks
721 Crossbars e
722 MultistageNetworks.
723 Meshinterconnect
7.3 Issuesin Reconfigurable Network Design
74 Conventional Interconnect L
7.5 Switch Requirementsfor FPGAswith 100-1000LUTs
7.6 Channel andWireGrowth
7.6.1 Rent'sRule Based Hierarchical InterconnectModdel

26

1.7
7.8

7.9

7.6.2 WireGrowthinRent Hierarchy Model
7.6.3 Switch Growthin Rent Hierarchy Model
Network Utilization Efficiency
Interconnect Description L
781 Weak UpperBound
7.8.2 StructureBased-Estimateso
783 SignificanceandImpact
7.8.4 Instruction Growth versus Interconnect Growth
Effects of Interconnect Granularity
791 Wiring e
792 Switches

700 SUMMAENY o e e

8 Instructions

8.1
8.2
8.3

8.4
8.5
8.6
8.7

General CaseExample
Bitsper Instruction
Compressing Instruction Stream Requirements
8.3.1 WideWord Architectures
8.3.2 Broadcast Single Instruction to Multiple Compute Units
8.3.3 Locdly ConfigurelInstruction
8.34 Broadcast Instruction Identifier, LookupinLocal Store
8.3.5 EncodeLengthby Likelihood
8.3.6 ModeBitsfor Early Boundinformation
837 Themes
Compressibility
Control Streams
Instruction Stream Taxonomy
SUMMANY o o e e e e e e e e e

9 RP-space Area Model

9.1
9.2
9.3
94
9.5
9.6

Model and Assumptions L L L
Peak PerformanceDensity
Granularity
Contexts
Composition
SUMMANY o e e e e e e e e e e

IV New Architectures

10 Dynamically Programmable Gate Arrays
10.1 DPGA Introduction e
10.2 Related Architectures
10.3 Reamof Application

100
100
102
103
103
103
103
104
105
105
106
107
108
109
110

111
111
114
117
121
124
128

11

10.3.1 Limited Throughput Requirements 138

10.3.2 Latency LimitedDesigns 140
10.3.3 Temporadly Varying or Data Dependent Functional Requirements 141
10.3.4 Multicontext versus Monolithic and Partial Reconfiguration. 141
104 A Prototype DPGA o 145
10.4.1 Architecture L 145
10.4.2 Implementation 150
10.4.3 ComponentOperation 157
10.4.4 Prototype Context AreaModel 158
1045 PrototypeConclusions 158
105 Circuit Evaluation 160
10.5.1 Levelization 160
10.5.2 Latency LimitedDesigns 160
10.5.3 Limited Task Throughput 167
10.6 Temporadly Varying Logic — Finite State Machines 182
1061 Example 182
10.6.2 Full Temporad Partitioning, 184
10.6.3 Partial Temporal Partitioning 184
10.6.4 Comparison with Memory-based FSM Implementations 202
10.6.5 AreasforImprovement 204
10.6.6 Genera Technique 204
10.7 Additional ApplicationStyles oo 205
10.7.1 MultifunctionComponents oL 205
10.7.2 Utility Functions 205
10.7.3 Temporadly Systolic Computations 206
10.8 Control 208
10.8.1 Segregation 208
10.8.2 Distribution 209
1083 SOUCE e e 210
109 ConClUSIONS o o o 212
Dynamically Programmable Gate Arrayswith Input Registers 213
111 Input RegISters e 213
11.2 iDPGA Model 215
11.3 Example 216
11.4 Circuit Benchmarks: Input Depth 218
1141 Mapping o o 218
1142 DetalledExamplezalu2 220
11.4.3 Average Characteristics 224
11.4.4 Areaforimprovement 230
11.5 Other Input RetimingModels Lo 231
1.6 SUMMarY e e e e e 232
117 ReVIBW o o e 233

12 Time-Switched Field Programmable Gate Arrays 235

13

12.1 Time-Switched Input Registerso 236
12.2 Switched Interconnect—Folding oL 237
1221 Subarray Structure L 237
12.2.2 InterconnectFolding oL 238
12.3 Architecture 241
12.4 ArchitectureParameters 245
12.5 TSFPGA ImplementationEstimates 247
1251 Are€a o e e 247
1252 TimMiNg o o e 247
12.6 TSFPGA Fast CircuitMapping o it 249
12.7 Circuit Mapping e 251
128 Related Work 255
129 ConClUSIONS o o o 256
12.100penIssUes o e 256
MATRIX 258
131 MATRIX CONCEPLS. o o e e e e e 260
13.2 MATRIX ArchitectureOverview 261
1321 BRU . . . e 261
1322 Network 263
13.2.3 Port Architecture. 263
1324 PortContexts 264
13.2.5 Metaconfiguration Configuration 265
13.26 Time-Switching 266
13.2.7 Resource Deployment Granularity 266
13.2.8 Additional Information oo 267
13.3 Usage Example: Finite-lmpulse ResponseFilter 268
13.4 FHexiblelInstruction Distribution o oL 272
135 MATRIX Implementation, 277
13.6 Building Block Efficiency 279
1361 MeMOry o 279
13.6.2 DatapathElements. 279
13.7 ImageProcessingExampleso 281
1371 VSR . 281
13.7.2 RVF . e 284
1373 BFIR 288
1374 MFIR e 291
13.7.5 ImageProcessingSummary 292
13.8 Summary e 294
13.9 Areafor Improvement L 295

Vi

V Review and Extrapolation

14 Reconfigurable Processing Architecture Review

15 Projections

15.1 Roleof Memory in Computational Devices,
15.1.1 Memory for Instructionso
15.1.2 Memory for Retiming of IntermediateData

15.12.3 Implications . .

15.2 Reconfiguration: A Techniquefor the Computer Architect
15.3 Projecting General-Purpose ComputingontoRP-space

15.3.1 General Hazards

15.3.2 Processors, FPGAs, andRP-space
15.3.3 Genera-Purpose ComputingSpace
15.4 Trendsand Implicationsfor Conventional Architectures

15.4.1 Microprocessors
15.4.2 Multiprocessors

16 Review of Major Concepts

Vii

298
299

305
305
305
307
308
309
311
311
312
314
315
315
315

317

List of Figures

11
12
13
14

21
22
23
24
25
2.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

51

7.1
7.2
7.3
7.4
75
7.6
1.7
7.8
7.9
7.10
711

First Order Size Comparison for ConfigurableDesigns 7
LUT and Interconnect Primitives for Multicontext FPGA 9
TSFPGA Organization it 9
MATRIX Basic Functional Unit 10
Temporal Reuse of Limited Active Silicon on General-Purpose Computing Devices 14
High-Level FPGA Abstraction 15
FPGA Array o e 16
Canonical 4-LUT ProcessingElement 17
Parallddand 19
Serialand 19
Basic Organizationfor aProcessor 27
Inner Loop of Processor Implementation for Windowed Average 32
Processor Implemention for Parity Computation 33
Gate Implementation of any Function Computed by 7-input Lookup Table . . . 36
Windowed Average— Pipelined FPGA Implementation 43
32-bit Parity —4-LUT Implementation 44
Abacus (SIMD) Implementation of Windowed Average. 47
Windowed Average— MATRIX Implementation 52
32-bit Parity — MATRIX Implementation 52
Comparison of Programmable and Custom Multiply Functional Densities . . . 57
Conventional FPGA Interconnect Topology 69
FPGA Interconnect Caricature.. 70
Logical Structure of Hierchical Interconnect 73
Switching nodein 2-ary Hierarchical Interconnect 74
Switches per LUT — Equation versus Direct Calculation 77
Switches per LUT — Equation versus Direct Calculation 78
Overhead Growth versus Ny forvariouspe: « 0« . o o o o o 0 o o o 0 L 81
Overhead for paes VEISUS Dot + v v v v v o v e e e e e e e e e 82
Continuous Overhead for pges VEISUS Prct -« « v v v v v v v e e e e e e e e 83
Continuous Efficiency for pges VEISUS Pret -« « v v v v v v i v v i e e 84
Continuous Efficiency for pg.s versusp,.: (LogScae) 85

viii

7.12
7.13
7.14
7.15
7.16
7.17

9.1
9.2
9.3

94
9.5
9.6
9.7
9.8
9.9
9.10
911

101
10.2
10.3
104
10.5
10.6
10.7
10.8
10.9
10.10
10.11
10.12
10.13
10.14
10.15
10.16
10.17
10.18
10.19
10.20
10.21
10.22
10.23
10.24

Sample pges versusp,.: Overheads 87
E(overhead) versus p,,.; for Uniform py.; Distribution 88
Network Bits per LUT v/s Rent Exponent for Ny = 4096 (K=4) 92
Network Bitsper LUT v/sNumber of LUTsforn =2(K=4) 94
SingleContext FPGA Area 95
Multicontext FPGA Area 95
Peak Computational Density Versus Contexts and Datapath Width 115
Compute and Instruction Densities Versus Contexts and Datapath Width 116
Efficiency asaFunction of Architectural and Task Granularity for Single Context
Architectures.. L 118
Efficiency as a Function of Architectural and Task Granularity 119
Efficiency versus Task Data Width for a 1024-context, 32-bit Granularity Device 120
Efficiency as a Function of Task Path Length and Architectural Contexts 122
Efficiency versus Task Path Length for a 16-context, Single-bit Granularity Devicel23
Efficiency versus Task Path Length for a 256-context, 128-bit Granularity Device 123
Efficiency for Conventional FPGA Design Point (w = 1,¢=1) 125
Efficiency for Coarse-Grain, Deep Memory Design Point (w = 64, ¢ = 1024) . 126
Efficiency forFixedw =8,¢=64 127
Efficiency for DPGA DesignPoint(w =1,¢=16) 131
LUT and Interconnect Primitives for Multicontext FPGA 132
ASCIl Hex—Binary Task Description. 132
4-LUT Mapping of ASCIIl Hex—Binary 133
ASCIl—Hex Binary Circuit Retimed for Full Pipelining 135
Typical Multicomponent System 139
Multifunction ComponentinSystem 139
Function DistributioninSystem 140
Architecture and Compositionof DPGA 146
DRAM Memory Primitive. 147
ArrayElement L 148
Subarray Local Interconnecto 148
Inter Subarray Interconnect Lo 149
Annotated Die Photo of DPGA Prototype 151
Photo of DPGA Subarray and Crossbar Tile. 152
Plot of Array Element with ConfigurationMemory 153
Plot of Crossbar with ConfigurationMemory 155
ASCIlI Hex—Binary Subcircuit o 161
Area Breakdown versus Number of Contextsfor des Benchmark 166
Area Breakdown versus Number of Contextsfor C880 Benchmark 170
Area Breakdown versus Number of Contextsfor al u2 Benchmark 171
Areaversus Throughput for Multicontext Implemenations of al u2 Benchmark 174
W versus N,; for Coarse-grain Interleaved Contexts 180
SmpleFSM Example L 183

10.25
10.26

10.27

10.28
10.29
10.30
10.31
10.32
10.33
10.34

111
11.2
11.3
114
115
11.6
11.7
11.8
11.9

121
12.2
12.3
124
125
12.6
12.7
12.8
12.9

131
13.2
133
134
135
13.6
13.7
13.8
13.9
13.10
1311

Two Context Implementation of Smple FSM Example 183

Area and Delay versus Number of Contexts for cse FSM Benchmark (Area
Target) e 187
Area and Delay versus Number of Contexts for cse FSM Benchmark (Delay
Target)o 188
Memory-based Implementation for Smple FSM Example 202
Canonical Video Coding Pipeline 207
Temporaly Systalic Video Coding Pipeline 207
Control Distributionon DPGA Prototype 208
Multiple Controllers—Hardwired Control 209
Multiple Controllers— Configurable Control 210
Array Self Control Example oo 211
FPGA ArrayElement 214
DPGA ArrayElement 214
DPGA Array Elementwith Input Registers 214
iDPGA ArrayElemente =4,: =3 216
ASCIl—Hex Binary Implementation versus Contexts and Input Register Depth 217
al u2 Implementation Areaversus Throughput 222
al u2 AreaRatiosversus Throughput 223
Average AreaRatiosversus Throughput 225
Average Area Ratios versus Contextsand Throughput 226
4-LUT with Time-Switched Input Register 237
OutputFolding 239
Input Folding 239
Inputand Output Folding 240
Two-Context DPGA aslnputand Output Fold 240
TSFPGA Subarray Composition. 241
TSFPGA Array Element Composition. 242
Sample Inter-Subarray Network Connections 244
Sample Delay Increaseswith Context Packing 254
MATRIXBFU o 261
BFU Control Logic 262
MATRIX Network 263
BFU Port Architecture. Lo 264
Systolic Convolution Implementation 268
Microcoded Convolution Implementation 269
Custom VLIW Convolution Implementation 270
VLIW/MSIMD Convolution Implementation 271
ConfigurableDatapaths 273
Datapath Composition: MATRIX versus Conventional w = 8 Architecture. . . 274
ConfigurableInstructionStreams L. 275

13.12
13.13
13.14
13.15
13.16
13.17
13.18
13.19
13.20
13.21
13.22

141

151

ConfigurableControl Streams oL 276

MATRIX BFU Composition. 277
MATRIX Implemenation of Full 8-TAP, 4096 shift, VSR 282
Processor Implementationof VSR oo oL 282
MATRIX RVFATTay e e e e e e 285
RVF Dataslice and Logic for CellsBelow rthPostion 286
Control for MATRIX RVF for CellsBelow rthPostion 286
Processor Implementationof RVF 287
MATRIX BFIRDatapath 288
Processor Implementationof BFIR 289
Efficiency for MATRIX and Fixed 8-bit Architecture(p = 0.70) 296
FPGA and DPGA efficiency inRP-space 303
Comparing efficiency of FPGA and Processor idedlizationsin RP-space 313

Xi

List of Tables

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26

51
52
53
54
55
5.6

Basic ALU Operationsand Capacities. 28
Survey of Processor Capacity 29
Processor Capacity Summary o 30
Average Gate Evaluations/DatapathBit 31
Survey of VLIW Capacity« o 33
VLIW Capacity Summary oot 34
Survey of DSPCapacity 35
DSPCapacity Summaryo 35
Survey of Peak Memory Logic Capacity (SRAM) 38
Survey of Peak Memory Logic Capacity (DRAM) 39
Survey of Peak Memory Logic Capacity (Hybrid) 40
Survey of Processor On-Chip Memory Capacity 40
Survey of FPGA Capacity 41
FPGA Capacity Summary e 42
Survey of SIMD Processor Capacity 45
SIMD Processor Capacity Summary 45
Example Vector Processor Capacityo 46
Vector Processor Capacity Summary 46
MultimediaProcessor Capacity 48
Summary of MultimediaProcessor Capacity 48
Survey of Multi-Context FPGA Capacity 49
Multi-Context FPGA Capacity Summary 49
Survey of MIMD Processor Capacity« 49
Survey of Reconfigurable ALU Capacity 50
Survey of Reconfigurable ALU Capacity 50
Genera-Purpose Computational Capacity Summary 53
Survey of Multiplier Capacity 55
Sample Semi-Custom Multiplier Capacity 55
Survey of Programmable Multiply Capacity 56
Multiply Using Standard ALU Operations. 57
Yielded Multiply Capacity asa Function of Granularity 58
Survey of Specialized Programmable Multiply Capacity 58

Xii

6.1

7.1
7.2
7.3
7.4
75
7.6

8.1

9.1
9.2
9.3

101
10.2
10.3
104
10.5
10.6
10.7

10.8

10.9

10.10
10.11
10.12
10.13
10.14
10.15
10.16
10.17
10.18
10.19

10.20

10.21
10.22
10.23
10.24
10.25

Survey of FPGA-Implemented Processor Capacity 60
FPGA4-LUT Size. e 64
Bitsper 4-LUT e 64
FPGA Delay Breakdown 65
Parameters for a Sampling of Contemporary Programmable Devices 91
Configuration Bits — Requirement Upper Bound v/sActual 91
4-LUT in 2-ary Hierarchical Interconnectwithp =2 93
Instruction Control Taxonomy 109
Summary of AreaModel Parameters oL 112
Nsw(Np,w)forp=05k=4n=2... 113
Areafor Instruction Control Sampling. 113
DPGA Prototype Implementation Characteristics 150
Basic Component Sizesfor Prototype L. 150
Array Core Area Breakdown by Programmable Function 152
DRAM ColumnBreakdown 154
Memory AreaBreakdown L 154
Esimated Timings. 156
MCNC Circuit Benchmarks—Latency Limited — Two-Context DPGA Impleme-
NALION o e e 162
MCNC Circuit Benchmarks— Latency Limited — Four-Context DPGA Impleme-
NALION e e 163
MCNC Circuit Benchmarks — Latency Limited — Context per Level DPGA
Implemenation 164
Multicontext Implementations of al u2 versus Throughput (LUTs) 169
Multicontext Implementations of al u2 versus Throughput (Area) 172
Multicontext Implementations of al u2 versus Throughput (AreaRatios) . . . 173
Benchmark Set Area—Mapped Characteristics 175
Selected Area/Throughput Points for Benchmark Set (1 Clock/Result) 176
Selected Area/Throughput Points for Benchmark Set (10 Clock/Result) 177
Selected Area/Throughput Points for Benchmark Set (20 Clock/Result) 178
Full Partitioning of MCNC FSM Benchmarks (AreaTarget) 185
Full Partitioning of MCNC FSM Benchmarks (Delay Target) 186
Area and Delay versus Number of Contexts for cse FSM Benchmark (Area
Target) e 189
Area and Delay versus Number of Contexts for cse FSM Benchmark (Delay
Target) e 189
MCNC FSM Benchmarks LUTsv/s Number of Contexts (AreaTarget) 191
MCNC FSM Benchmarks Areav/s Number of Contexts (AreaTarget) 192
MCNC FSM Benchmarks Delay v/s Number of Contexts (AreaTarget) 193
MCNC FSM Benchmarks Area Ratio v/s Number of Contexts (AreaTarget) . . 194
MCNC FSM Benchmarks Delta Delay v/s Number of Contexts (Area Target) . 195

Xiii

10.26
10.27
10.28
10.29
10.30
10.31

111
11.2
11.3
114
115
11.6
11.7
11.8
11.9
11.10
1111

121
12.2
12.3
124

131
13.2
133
134
135
13.6
13.7

MCNC FSM Benchmarks Delay v/s Number of Contexts (Delay Target) 197
MCNC FSM Benchmarks LUTs v/s Number of Contexts (Delay Target) 198
MCNC FSM Benchmarks Areav/s Number of Contexts (Time Target) 199
MCNC FSM Benchmarks Delta Delay v/s Number of Contexts (Delay Target) . 200
MCNC FSM Benchmarks Area Ratio v/s Number of Contexts (Delay Target) . 201

Memory Implementationsfor MCNC FSM Benchmarks 203
Total Physial LUTs Required to Implement al u2 Benchmark 220
Total AreaRequired to Implemental u2 Benchmark 220
AreaRatiosfor al u2 Benchmark Implementation 221
Average Ratiosfor Benchmark Set 224
Average Ratiosfor Benchmark Set 226
Average Ratiosfor Benchmark Set 227
Average Ratiosfor Benchmark Set 227
Average Ratiosfor Benchmark Set 228
Average Ratiosfor Benchmark Set 228
Average Ratiosfor Benchmark Set 229
Average Ratiosfor Benchmark Set 229
TSFPGA Subarray Parameters Lo 245
TSFPGA Mappingsfor MCNC Circuit Benchmarks 251
TSFPGA Mappingsfor MCNC Circuit Benchmarks (Ratios) 252
Modulo Context Sharing for MCNC Benchmarks 253
Area Breakdown for Prototype MATRIX BFU Implementation 277
MATRIX BFU CompositionEstimate 278
VSR Implementation Comparison 283
RVF Implementation Comparison 284
BFIR Implementation Comparison, 290
FIR Survey —8x 8 multiply, 24-bit Accumulate 291
FIR Survey —8x 8 multiply, 16-bit Accumulate 293

Xiv

Part |

| ntroduction and Background

1. Overview and Synopsis

1.1 Evolution of General-Purpose Computingwith VL SI Technology

General-purpose computers have served us well over the past couple of decades. Broad
applicability has led to wide spread use and volume commoditization. Flexibility allows a single
machine to perform a multitude of functions and be deployed into applications unconceived at
the time the device was designed or manufactured. The flexibility inherent in general-purpose
machines was a key component of the computer revolution.

To date, processorshave been the driving engine behind general -purpose computing. Originally
dictated by the premium for active real estate, processors focus on the heavy reuse of a single or
small number of functional units. With Very Large Scale Integration (VLSI), we can now integrate
complete and powerful processors onto asingle integrated circuit, and the technology continuesto
provide agrowing amount of real estate.

As enabling as processors have been, our appetite and need for computing power has grown
faster. Despite the fact that processor performance steadily increases, we often find it necessary
to prop up these general -purpose devices with specialized processing assists, generally in the form
of specialized co-processors or ASICs. Consequently, today’s computers exhibit an increasing
disparity between the general -purpose coreand its specialized assistants. High performancesystems
are built from a plethora of specialized ASICs. Even today’s high-end workstati ons dedicate more
active silicon to specialized processing than to general-purpose compute. The general-purpose
processor will be only asmall part of tomorrow’s multi-media PC. Asthistrend continues, theterm
“general-purpose computer” will become a misnomer for modern computer systems. Relatively
little of the computing power in tomorrow’s computers can be efficiently deployed to solve any
problem.

The problem is not with the notion of general-purpose computing, but with the implementation
technique. For the past several years, industry and academia have focussed largely on the task
of building the highest performance processor, instead of trying to build the highest performance
general-purpose computing engine. When active area was extremely limited, this was a very
sensible approach. However, as silicon real estate continues to increase far beyond the space
required to implement acompetent processor, it istimeto re-eval uate general-purpose architectures
in light of shifting resource availability and cost.

In particular, an interesting space has opened between the extremes of general-purpose pro-
cessors and specialized ASICs. That space is the domain of reconfigurable computing and offers
all the benefits of general-purpose computing with greater performance density than traditional
processors. This space is most easily seen by looking at the binding time for device function.
ASICs bind function to active silicon at fabrication time making the silicon useful only for the
designated function. Processors bind functions to active silicon only for the duration of a single
cycle, arestrictive model which limits the amount the processor can accomplish in asingle cycle
while requiring considerable on-chip resources to hold and distribute instructions. Reconfigurable

devices alow functions to be bound at a range of intervals within the final system depending on
the needs of the application. Thisflexibility in binding time allows reconfigurabl e devices to make
better use of the limited device resources including instruction distribution.

Consequently, reconfigurable computing architectures offer:

M ore application-specific adaptation than conventional processors

Greater computational density than conventional processors

More and broader reuse of silicon than ASICs

Better opportunities to ride hardware and al gorithmic technology curves than ASICs

Better match to current technology costs than ASICs or processors

1.2 ThisThesis

This thesis characterizes a class of reconfigurable computing architectures and relates them
broadly to the more well understood conventional alternatives. Since technology costs dictate the
architectural tradeoffs involved, this characterization is performed in the context of MOS VLSI
implementations. The convergence of process technologies along with the large amount of silicon
real-estate available on a single die these days allows us to perform broad comparisons based
primarily on silicon area.

The thesis provides:

1. A high level characterization of a reconfigurable processing space which includes recon-
figurable architectures such as FPGAs. This characterization helps us understand the key
characteristics of reconfigurable devices, including when and what level of performance we
can extract from various architectural points.

2. Empirical relations on the key building blocksin CMOS VLS taken from existing designs
in the literature and our own experimental designs, include:

e sizes(e.g. How bigisa4-LUT?)
¢ performance density (operations per unit space-time)
¢ relativefeature sizes (e.g. interconnect versus configuration memory versus active com-

puting)
o first order modeling of key areafactors

3. Architecture designs and implementations which explore new pointsin the identified design
space based on the empirical characterization.

¢ architectures which exploit the identified cost structure to provide greater functional
density for reconfigurable devices
¢ architectureswhich allow diversity/density tradeoffs based on application characteristics

4. Lessons and observations for future device architects and systems designers
The major contributions of thisthesisinclude:

1. RP-space model for reconfigurable processing architectures— While many |oose taxonomies
exist for general-purpose computing, none are as systematic as the one presented here.

By focusing on the RP-space domain, this model provides size estimates and facilitates
pedagogical efficiency comparisons of architectureswithin the space.

2. DPGA — A novel hit-level architecture with multiple, on-chip instructions per compute
element, including the theory and concepts behind the architecture, an implementation, ex-
perimental CAD to support it, and validation of efficiency using standard circuit benchmarks.
For typical logic circuits and finite-state machines, the DPGA implementation is one-third
the size of the FPGA implementation.

3. TSFPGA — A model, possible implementation, and CAD for fine-grained, time-switched
interconnect with demonstrated fast physical mapping capabilities. TSFPGA exploits the
observations that most of the area benefits in DPGAs come from sharing the interconnect
and that most of the difficulty in mapping to traditional FPGAs is their limited interconnect.
By sharing interconnect resourcesin time, TSFPGA extracts more interconnect functionality
from less active switching resources. For typical applications, quick mapping can be done
in seconds. The mapped design area is smaller than comparable FPGAs and slightly larger
than comparable DPGAS.

4. MATRIX —Thefirst architectureto allow run-time binding of instructionresources. Focusing
on adesign point using an array of 8-bit ALU and register-file building bl ocksinterconnected
viaabyte-wide network, MATRIX yields 10-20x the computational density of conventional
processors on sampleimage processing tasks. With today’s silicon, we can place hundreds of
these 8-bit functional unitson alarge die operating at 100MHz, making it possible to deliver
over 10 Gop/s (8-bit ops) per component.

Theremainder of thischapter provides asynopsisof thekey results and rel ationships devel oped
in the thesis. This introductory part of the thesis continues with Chapter 2 which defines the
terminology and metrics used throughout the thesis. Chapter 3 reviews and highlightsthe existing
evidence for the high performance potential of reconfigurable computing architectures.

Part 11 sets the stage by examining the computational capabilities of existing general-purpose
computing devices. This starts with a broad, empirical, review of general-purpose architecturesin
Chapter 4. In Chapter 5, we compare hardwired and general -purpose multiplier implementations
as a case study bridging general-purpose and application-dedicated architectures. In Chapter 6,
we review processor architectures implemented on top of reconfigurable architectures to broaden
the picture and to see one way in which conventional reconfigurable architectures deal with high
operational diversity.

Part I11 takes amore compositional view of reconfigurable computing architectures. Chapter 7
looks at building blocks, sizes, and requirements for interconnect. Chapter 8 looks at resource
requirements for instruction distribution. Finally in Chapter 9, we bring the empirical data, in-
terconnect, and instruction characteristics together, providing afirst order model of RP-space, our
high-level model for reconfigurable processing architectures.

Part 1V includes three new architectures: DPGA (Chapters 10 and 11), TSFPGA (Chapter 12),
and MATRIX (Chapter 13), which are highlighted below in Section 1.6. The final chaptersin
Part V, review the results and identify promising directions for the future.

1.3 Reconfigurable Device Characteristics

Broadly considered, reconfigurable devicesfill their silicon areawith alarge number of comput-
ing primitives, interconnected via a configurable network. The operation of each primitive can be
programmed aswell astheinterconnect pattern. Computational tasks can be implemented spatially
on the device withintermediatesflowing directly from the producing function to the receiving func-
tion. Since we can put thousands of reconfigurable units on a single die, significant data flow may
occur without crossing chip boundaries. To first order, one can think about turning an entire task
into hardware dataflow and mapping it on the reconfigurable substrate. Reconfigurable comput-
ing generally provides spatially-oriented processing rather than the temporally-oriented processing
typical of programmable architectures such as microprocessors.

The key differences between reconfigurable machines and conventional processors are:

¢ Instruction Distribution — Rather than broadcasting a new instruction to the functional
units on every cycle, instructions are locally configured, allowing the reconfigurable device
to compress instruction stream distribution and effectively deliver more instructions into
active silicon on each cycle.

e Spatial routing of intermediates — As space permits, intermediate values are routed in
parallel from producing function to consuming function rather than forcing all communication
to take place in time through a central resource bottleneck.

¢ More, often finer-grained, separately programmable building blocks — Reconfigurable
devices provide a large number of separately programmable building blocks allowing a
greater range of computations to occur per time step. This effect is largely enabled by the
compressed instruction distribution.

¢ Distributed deployable resources, eliminating bottlenecks — Resources such as memory,
interconnect, and functional units are distributed and deployable based on need rather than
being centralized in large pools. Independent, local access allows reconfigurable designs
to take advantage of high, local, parallel on-chip bandwidth, rather than creating a central
resource bottleneck.

1.4 Configurable, Programmable, and Fixed-Function Devices

To establish an intuitive feel for the design point and role of configurable devices, we can
take a high-level look at conventional devices. Ignoring, for the moment multiplies, floating-point
operations, and table lookup computations, the modern processor has a peak performance on the
order of 256, 3-LUT gate-evaluations per clock cycle (e.g. two 64-bit ALUs). A modern FPGA
has a peak performance on the order of 2,048, 4-LUT gate-evaluations per clock cycle. The basic
clock cycletimeiscomparablegiving the FPGA at |east an order of magnitude larger raw capacity.

Note that both the processor ALUs and FPGA blocks are typically built with additional gates
which serve to lower the latency of word operations without increasing the raw throughput (e.g.
fast carry chainswhich alow afull 64-bit wideadd to completewithin one cycletime). Thislatency

reduction may be important to reducing the serial path length in tasks with limited parallelism, but
is not reflected in this raw capacity comparison.

The FPGA can sustain its peak performance level as long as the same 2K gate-evaluation
functionality is desired from cycle to cycle. Wiring and pipelining limitations are the primary
reason the FPGA would achieve lower than peak performance, and this is likely to account for,
at most, a 20-50% reduction from peak performance. If more diverse functionality is desired
from a single FPGA than the 1-2K gate-evaluations provided by the FPGA, performance drops
considerably due to function reload time.

The processor is likely to provide a much lower peak performance and the effect is much
more application specific. Due to the bitwise-SIMD nature of traditional ALUs, work per cycle
can be as low as a couple of gate-evaluations on compute operations. Since processors perform
al “interconnect” using shifts, moves, loads, and stores, many cycles yield no gate-evaluations,
only movement of data. The lower peak performance of processors comes from the fact that the
processor ALU occupies only asmall fraction of the die, with substantial area going to instruction
flow control and on-chip memory to support large sequencesof diverse operationswithout requiring
off-chip instruction or data access.

A comparably sized, dedicated piece of hardwired functionality, with no memory could provide
a capacity of 200,000-300,000 4-LUT gate-evaluations per clock cycle, at potentially higher clock
rates. While the raw gate delay on the hardwired logic can be 10x smaller than on the FPGA,
reasonable cycle times in equivalent logic processes are closer to 2x since it makes sense to
pipelined the FPGA design at a more shallow logic depth than the custom logic. Returning to the
multiplier, for example, such a chip might provide 64K multiply bit operations per cycle (eg. a
256 256 multiply pipelined at the byte level). The dedicated hardware provides 100-300 times
the capacity of the FPGA on the one task it was designed to solve. To first order, the dedicated
hardware can deliver very little capacity to significantly different applications. It isalso worthwhile
to note that the fixed granularity of hardwired devices often causes them to sacrifice much of their
capacity advantage when used on small dataitems. For instance, performing an 8x8 multiply on a
64 x 64 hardwired multiplier makes use of only 6—14’th of the multiplier’s capacity, removing much
of its 300x capacity advantage.

Combining these observations, we can categorize the circumstances under which the various
structures are prefered.

¢ Fixed Function, Limited Operation Diver sity, High Throughput —When the function and
data granularity to be computed are well-understood and fixed, and when the function can
be economically implemented in space, dedicated hardware provides the most computational
capacity per unit area to the application.

¢ Variable Function, Low Diversity — If the function required is unknown or varying, but
the instruction or data diversity is low, the task can be mapped directly to a reconfigurable
computing device and efficiently extract high computational density.

e SpaceLimited, High Entropy — If we are limited spatially and the function to be computed
has a high operation and data diversity, we are forced to reuse limited active space heavily
and accept limited instruction and data bandwidth. In this regime, conventional processor
organization are most effective since they dedicate considerabl e space to on-chip instruction

6

Active Configuration
Logic —={il l«—— Memory

Figure 1.1: First Order Size Comparison for Configurable Designs

storagein order to minimizeoff-chip instruction traffic while executing descriptively complex
tasks.

Reconfigurable devices have become increasingly interesting as aggregate 1C capacity has grown
large enough to adequately hold the computational diversity of many computing tasksor, at least, the
key kernels of these tasks. Asthe area available for general-purpose computing devicesincreases,
more tasks will fit conveniently on reconfigurable devices, increasing the range of applications
where the reconfigurable solution yields higher performance per unit area.

In Chapter 2 we define our evaluation and comparison metrics more carefully. Chapters 4
and 5 provide an empirical review of conventional general-purpose and specialized architectures,
focusing on their performance density.

15 Key Réations

While reconfigurable devices have, potentially, 100x less performance per unit area than hard-
wired circuitry, they provide 10-100x the performance density of processors. As noted above,
FPGAs offer a potential 10x advantage in raw, peak, general-purpose functional density over
processors. This density advantage comes largely from dedicating significantly less instruction
memory and distribution resources per active computing element. At the same time this lower
memory ratio allows reconfigurable devices to deploy active capacity at a finer grained level,
allowing them to realize ahigher yield of their raw capacity, sometimes as much as 10x, than con-
ventional processors. It is these two effects taken together which give reconfigurable architectures
their 10-100x performance density advantage over conventional processor architectures in many
situations.

From an empirical review of conventional, reconfigurable devices, we see that 80-90% of the
area is dedicated to the switches and wires making up the reconfigurable interconnect. Most of
the remaining area goes into configuration memory for the network. The actually logic function
only accounts for a few percent of the area in a reconfigurable device. This interconnect and
configuration overhead is responsible for the 100x density disadvantage which reconfigurable
devices suffer relative to hardwired logic.

To afirst order approximation, this gives us:

Areane; = 10 X Areconfig = 100 X ATeaogic (1.1)

7

It is this basic relationship (Shown diagrammatically in Figure 1.1) which characterizes the RP
design space.

o Since Areaconfig << Areay., devices with a single on-chip configuration, such as most
reconfigurable devices, can afford to exert fine-grained control over their operations — any
savings associated with sharing configuration bits would be small compared to the network
area.

o Since Areaconfig << Areane, t0 pack the most functiona diversity into a part, one can
allocate multiple configurations on chip. With the order-of-magnitude relative sizesgivenin
Relation 1.1, up to a10x increasein the functional diversity per unit areais attainablein this
manner.

o However, since Areay,; isonly 10 x Area,n:q, If the number of configurationsis large, say
100 or more, the configuration memory areawill becomethe dominant sizefactor. Processors
are essentially optimized into thisregime and that partially accountsfor their 10x lower raw
performance density compared to reconfigurable devices.

¢ Once we go to alarge number of contexts, such that the total configuration memory space
begins to dominate interconnect area, fine-granularity becomes costly. In this regime wide-
word operationsallow usto amortizeinstruction areaacross multiple bit processing elements.
This simultaneously allows machines with wide (e.g. 32 bit) datapaths to hold 1000's of
configurations on chip while making them only 10x less computationally dense than fine-
grained, single context devices.

After reviewing implementations in Chapter 4, Chapters 7 and 8 examine interconnect and
instruction delivery issues in depth. Chapter 9 brings these together, yielding a slightly more so-
phisticated model than the one aboveto explain the primary tradeoffsin the design of reconfigurable
computing architectures.

1.6 New General-Purpose Architectures

Fromthegeneral rel ationshipsabove, we seethat conventional conventional Field Programmable
Gate Arrays (FPGAS) represent one extreme in our RP-space. The spaceislarge, leaving consider-
able space for interesting architecturesin middle. Exploiting the relative area properties identified
above and common device usage scenarios, we have developed three new general -purpose com-
puting architectures. By judicious allocation of device resources, these architectures offer higher
yielded capacity over awide range of applications.

DPGA The Dynamically Programmable Gate Array (DPGA) is a multicontext FPGA, formed
by associating memory for several configurations with each active LUT and interconnect switch
(SeeFigure 1.2). From Relation 1.1, we see that the area associated with context memory is small
and can be replicated severa times without substantially impacting active device capacity. The
multicontext design alowsthe deviceto reuseits active capacity to provide additional functionality
rather than additional throughput. For the operations required by an application which are not

Context ID Context ID

Decode

,~

Memory

Interconnect

Figure 1.2: LUT and Interconnect Primitives for Multicontext FPGA

output
select

I
===
Iﬂ::?.r...il

TSFPGA
Array Element

Figure 1.3: TSFPGA Organization

the throughput bottleneck, the multicontext device yields higher device capacity than conventional
FPGA architectures. Chapter 10 describes our 4-context DPGA design and implementation, iden-
tifies several common usage scenarios, and details experimental mapping techniques for circuits
and finite-state machines. Chapter 11 extends the basic DPGA model and circuit mapping tools to
includeinput retiming registers. The resulting architecture achieves 3x the density of conventional

Timestep

Context

= Interconnect Memory

AE

AE

AE

AE

s
I
s
I
s
I
:
I

1

Crossbar

// HH+ - Xout0
7 - xoutl
- Ll xout2
pipeline l—I—>x0u13

registers : ; ; 7

< < < <

=] o o <]

2 2 2 2

3 =3 S @

FPGA s without sacrificing performance on typical applications.

TSFPGA A careful review of the DPGA implementation and Relation 1.1, reminds us that the
activelogic portion of areconfigurabledesign comprisesonly asmall fraction of the spacewhilethe
programmable network is the key area consumer. The Time-Switched FPGA (TSFPGA) focuses
on reuse of the critical switch and wire resources (See Figure 1.3). By pipelining the switching

9

Level-2, Level-3
Network

Network
Switch 1 (N1)

Network
Switch 2 (N2)

Level 2,3
Network Drivers

L3 Control
Lines

7

Floating
Port 1 (FP1

Floating |~

Network Port A

Incoming
Network Lines —
(L1,L2,L3)

g 110d Y IoMBN

Incoming
— Network Lines
- (L1,L2,L3)
Address/ A B Address/
Data A Data B
BFU
Core
ALU Memory
Function —={ Fa Fm =— Function
(Fa) Out N (Fm)

~~
-
Level 1 T~<_
Network Drivers ~<

Level-1 Network

ALU Function Port

7104 UOToUNg AJOUR N

Cary In

Level-1 Network

~
~
~
~
~
~
~
~~
~

~-
~
~
S

Figure 1.4: MATRIX Basic Functional Unit

operations TSFPGA allows us to extract higher capacity from the available switches and wires.
At the same time, the switched interconnect allows each individual switching element to play a
number of different roles. Consequently, TSFPGA compresses switching regquirements, providing
more effective switching capacity with less physical interconnect. The greater yielded switching
capacity allows physical design mapping to occur rapidly —in seconds rather than the hours typical
of conventional FPGA architectures. Chapter 12 details the TSFPGA design, implementation, and
experimental mapping software.

MATRIX All prior general-purpose computing architectures, including processors, FPGASs, and
the two previous architectures make a rigid distinction between instruction and control resources
which manage computation and the computing resources which perform computations for an
application. Consequently, one must make a fabrication time decision about the device's control
structure and the depl oyment of resources for control. We seein Chapters 8 and 9 that thisdecision
has alarge impact on the distribution of dedicated instruction resources in the design and the range
of applications where the device is efficiently employed. MATRIX is a novel, coarse-grained,
computing architecture which uses a multilevel configuration scheme to defer this binding to the
application (See Figure 1.4). Our focusimplementation usesan 8-bit primitive datapath element for
the basic functional unit. Rather than separate the resourcesfor instruction storage and distribution
from the resourcesfor data storage and computation and fix them at fabrication time, the MATRIX
architecture unifies these resources. Once unified, traditional instruction and control resources are
decomposed a ong with computing resourcesand can be depl oyed in an appli cati on-speci fic manner.
Chip capacity can be deployed to support active computation or to control reuse of computational
resources depending on the needs of the application and the available hardware resources. As a

10

result, MATRIX can beefficiently empl oyed acrossabroader range of computational characteristics
than conventional architectures. Chapter 13 introduces the MATRIX architecture and shows how
it obtains these unique characteristics.

1.7 Prognosisfor the Future

Ultimately, reconfiguration isatechniquefor compressing the resources dedicated to instruction
stream distribution while maintaining a general-purpose architecture. As such, it is an important
architectural tool for extracting the highest performancefrom our siliconreal estate. Characteristics
of an application which change slowly or do not change can be configured rather than broadcast.
The savingsin instruction control resources result in higher logic capacity per unit area.

With CMOS VLS| we have reached to the point where we are no longer so limited by the
aggregate capacity of a single IC die that the device must be optimized exclusively to maximize
the number of distinct instructions resident on a chip. Beyond this point spatia implementation of
all or portions of general-purpose computationsis both feasible and beneficial. From this point on
wewill see:

1. More applications and kernelsfit for spatial implementations on reconfigurable substrates

2. Reconfigurable techniques find their way into general-purpose and flexible computing de-
vices, changing the way we design even “nominally” conventional architectures

Reconfigurable architectures and techniques should be added to the modern computer architect’s
repertoire of design techniques, alongside more venerable ones such as microprogramming, trans-
lation, and caching.

Thethesisclosesin Part V by reviewing the key lessons from reconfigurable designs and their
implications for future general-purpose architectures.

11

2. Basicsand Terminology

In this chapter we introduce much of the terminology used throughout the document. We start
with a high-level review of general-purpose computing. We define the distinction between pro-
grammable and configurable devices and the various components of configurable devices. Much
of the discussion will take Field-Programmable Gate Arrays as a basis, so we introduce an initial,
conceptual FPGA model. Finaly, we define metrics for capacity, density, and diversity which
will be used when characterizing the various architectures reviewed. A glossary summarizing
terminology follows Chapter 16.

2.1 General-Purpose Computing

General-pur pose computing devices are specifically intended for those cases where, econom-
ically, we cannot or need not dedi cate sufficient spatial resourcesto support an entire computational
task or where we do not know enough about the required task or tasks prior to fabrication to
hardwire the functionality. The key ideas behind general -purpose processing are:

1. Defer binding of functionality until deviceis employed —i.e. after fabrication
2. Exploit temporal reuse of limited functional capacity

Delayed binding and temporal reuse work closely together and occur at many scalesto providethe
characteristics we now expect from general -purpose computing devices.

We are quite accustomed to exploiting these properties so that unique hardware is not required
for every task or application. This basic theme recurs at many different levelsin our conventional
systems:

¢ Market L evel —Rather than dedi cating amachine design to asingleapplication or application
family, the design effort may be utilized for many different applications.

e System Level — Rather than dedicating an expensive machine to a single application, the
machine may perform different applications at different times by running different sets of
instructions.

¢ Application Level — Rather than spending precious real estate to build a separate computa-
tional unit for each different functionrequired, central resources may be employed to perform
these functions in sequence with an additional input, an instruction, telling it how to behave
at each point in time.

¢ Algorithm Level — Rather than fixing the algorithms which an application uses, an existing
general-purpose machine can be reprogrammed with new techniques and algorithms as they
are devel oped.

12

e User Level — Rather than fixing the function of the machine at the supplier, the instruction
stream specifiesthe function, allowing the end user to use the machine asbest suitshisneeds.
Machines may be used for functions which the original designersdid not conceive. Further,
machine behavior may be upgraded in the field without incurring any hardware or hardware
handling costs.

In the past, processorswerevirtually the only deviceswhich had these characteristicsand served
as genera -purpose building blocks. Today, many devices, including reconfigurable components,
also exhibit the key properties and benefits associated with general-purpose computing. These
devices are economically interesting for all of the above reasons.

2.2 General-Purpose Computing I ssues

There are two key features associated with general-purpose computers which distinguish them
from their specialized counterparts. The way these aspects are handled plays a large role in
distinguishing various general-purpose computing architectures.

2.2.1 Interconnect

In general-purpose machines, the datapaths between functional units cannot be hardwired.
Different taskswill require different patterns of interconnect between the functional units. Withina
task individual routines and operations may require different interconnectivity of functional units.
General-purposemachines must providethe ability to direct dataflow between units. Inthe extreme
of a single functional unit, memory locations are used to perform this routing function. As more
functional units operate together on a task, spatial switching is required to move data among
functional units and memory. The flexibility and granularity of this interconnect is one of the big
factors determining yielded capacity on a given application.

2.2.2 Instructions

Since general-purpose devices must provide different operations over time, either within a
computational task or between computational tasks, they require additional inputs, instructions,
which tell the silicon how to behave at any point intime. Each general-purpose processing element
needs one instruction to tell it what operation to perform and where to find itsinputs. Aswe will
see, the handling of thisadditional input is one of the key distinguishing features between different
kinds of general-purpose computing structures. When the functional diversity is large and the
required task throughputislow, it is not efficient to build up the entire application dataflow spatially
in the device. Rather, we can realize applications, or collections of applications, by sharing and
reusing limited hardware resourcesin time (See Figure 2.1) and only replicating the less expensive
memory for instruction and intermediate data storage.

2.3 Programmablesand Configurables

The distinction between programmable devices and configurable devices is mostly artificial
— particularly since we show in Part 11l that these architectures can be viewed in one unified

13

I

I

_ I
Operation | |
I

I

I

In general, we cannot embed the entire dataflow for acomputational task (top) in hardware.
Consequently, we must reuse the limited active silicon resources availablein time (bottom),
using additional control inputs, instructions, to tell the active silicon how to behave at each
point in timeto realize the desired computational task.

Figure 2.1: Temporal Reuse of Limited Active Silicon on General-Purpose Computing Devices

design space. Nonetheless, it is useful to distinguish the extremes due to their widely varying
characteristics.

Programmable—we will use theterm “programmable” to refer to architectureswhich heavily
and rapidly reuse a single piece of active circuitry for many different functions. The canonical
example of a programmable deviceis a processor which may perform adifferent instruction on its
ALU on every cycle. All processors, be they microcoded, SIMD, Vector, or VLIW areincluded in
this category.

Configur able—weusetheterm“configurable” torefer to architectureswheretheactivecircuitry
can perform any of anumber of different operations, but the function cannot be changed from cycle
tocycle. FPGAsare our canonical example of a configurable device. Once theinstruction has been
“configured” into the device, it is not changed during an operational epoch.

One of the key distinction, then, is the balance between a piece of (1) active logic and its
associated interconnect, and (2) the local memory to configure the operation of the logic and
interconnect. We define one configuration context as the collection of bits which describe the
behavior of a general-purpose machine on one operation cycle. One programming stream for
a conventional FPGA containing instructions for every array element along with interconnect
composesa* configuration context.” Onemight aso think of each of thefollowing asaconfiguration

14

Processing Units

Interconnect

H.“T coo

Input/Output

Figure 2.2: High-Level FPGA Abstraction

context.
e oOneinstruction for scalar processor
¢ one VLIW word composed of instructions for all the parallel functional units
¢ onelineof horizontal microcode

2.4 FPGA Introduction

A Field-Programmable Gate Array (FPGA) is a collection of configurable processing units
embedded in aconfigurable interconnection network. Inthe context of general-purpose computing,
we concern ourselves here primarily with devices which can be reprogrammed. Figure 2.2 shows

the basic model.
From the high-level view shown in Figure 2.2, the FPGA looks much like a network of
processors. A conventional FPGA, however, differs from aconventional multiprocessor in several

ways:
¢ Granularity — Conventional FPGASs have single bit processing elements, each of which is
controlled independently.

¢ Instruction Control — Conventional FPGAS are configurable with a single instruction res-
ident per processing element. Changing instructionsis slow compared to the rate at which
the processing element can operate on data.

¢ Static Interconnect — With conventional FPGAS, interconnect is purely static, connecting
sources and sinks by locking down a path through the switching network.

15

Context
I I I l l l 3+ Memory

Configurable
Interconnect

-

~—_ Processing

Element

Figure 2.3: FPGA Array

Processing elements are generally organized in an array on the 1C die with less than complete
interconnect (See Figure 2.3). Since full connectivity would grow as O(n?), FPGAs employ
more restricted connection schemes to limit the resources required for interconnect which are,
nonetheless, the dominant area component in conventional devices. When processing elements
are homogeneous, as is typically the case, device placement can be used to improve interconnect
locality and accommodate the limited interconnect. The interconnect is typically arranged in a
hierarchical mesh.

The processing el ements, themselves, are simple functions combining asmall number of inputs
to produceasingleoutput. The most general such function being aLook-Up Table (LUT). We have
aready noticed that the active logic function typically makes up only a small portion of the area.
Further, it turns out that most of the configuration memory goesinto describing the programmable
interconnect. Consequently, for processing elementswith asmall number of inputs, the cost of using
afull look-up tablefor the programmabl elogic function, versus some morerestricted programmable
element, is small.

We will use 4-input lookup tables (4-LUTS), as the canonical FPGA processing element for
the purpose of discussion and comparisons. To first order, reconfigurable FPGAs from Xilinx
[CDF*86, Xil944d], Altera [Alt95], and AT& T [ATT95] use 4-LUTs as their basic, constituent

16

LUT Memory

a— LUT Mux

Optional
Flip-Flop

Figure 2.4: Canonical 4-LUT Processing Element

processing elements. Research at the University of Toronto [RFLC90] indicates that four input
LUTsyield the most area efficient designs across a collection circuit benchmarks. An optional flip-
flop is generally associated with each 4-L UT. Figure 2.4 shows the canonical, 4-LUT processing
element.

Throughout the thesis we make comparisons between processors and FPGAs. At timesit is
convenient to equate small LUTs (2 to 4-LUTSs) and ALU bits. It is therefore, worthwhile to note
that a 2-LUT can perform any logical operation including those provided by typical ALUs (e.g.
AND, OR, XOR, INVERT). A 3-LUT can act asahalf-adder. A pair of 3-LUTs can serve as an adder
or subtracter bit-slice with one bit providing the carry out the other the data bit output. Together
these cover al the standard arithmetic and logic operationsin atypical ALU, such that one or two
3-LUTs, with appropriate interconnect, can subsume any single ALU bit function.

25 Regular and Irregular Computing Tasks

Computing tasks can be classified informally by their regularity. Regular tasks perform the
same sequence of operations repeatedly. Regular tasks have few data dependent conditionals such
that all data processed requires essentially the same sequence of operations with highly predictable
flow of execution. Nested loops with static bounds and minimal conditionals are the typical
example of regular computational tasks. Irregular computing tasks, in contrast, perform highly
data dependent operations. The operations required vary widely according to the data processed,
and the flow of operation control is difficult to predict.

2.6 Metrics: Density, Diversity, and Capacity

Thegoal of general -purposecomputing devicesisto provideacommon, computational substrate
which can be used to perform any particular task. In this section, we look at characterizing the
amount of computation provided by a given general-purpose structure.

To perform a particular computational task, we must extract a certain amount of computational
work from our computing device. If we were ssmply comparing tasks in terms of afixed processor
instruction set, we might measure this computational work in terms of instruction evaluations. If
we were comparing tasks to be implemented in a gate-array we might compare the number of

17

gates required to implement the task and the number of time units required to complete it. Here,
we want to consider the portion of the computational work done for the task on each cycle of
execution of diverse, general-purpose computing devices of a certain size. The ultimate goal isto
roughly quantify the computational capacity per unit areaprovided to various application types by
the computational organizationsunder consideration. That is, we aretrying to answer the question:
“What is the general -pur pose computing capacity provided by this computing structure.”
We have two immediate problems answering this questions:

1. How do we characterize general-purpose computing tasks?
2. How do we characterize capacity?

Thefirst question is difficult since it placeslittle bounds on the properties of the computational
tasks. We can, however, talk about the performance of computing structures in terms of some
general propertieswhich variousimportant subclasses of general-purpose computing tasks exhibit.
We thus end up addressing more focussed questions, but ones which give us insight into the
properties and conditions under which various computational structures are favorable.

We will address the second question — that of characterizing device capacity — using a “ gate-
evaluation” metric. That is, we consider the minimum size circuit which would be required to
implement atask and count the number of gateswhich must be eval uated to realizethe computational
task. We assume the collection of gates available are all £-input logic gates, and use k£ = 4. This
models our 4-LUT as discussed in Section 2.4, as well as more traditional gate-array logic. The
resultswould not change characteristically using a different, finitevalueaslongask > 2.

2.6.1 Functional Density

Functional capacity is a space-time metric which tells us how much computational work a
structurecan do per unit time. Correspondingly, our “ gate-evaluation” metricisaunit of space-time
capacity. That is, we can get 4 “gate-evaluations’ in one “gate-delay” out of 4 parallel and gates
(Figure 2.5) or in 4 “gate-delays’ out of a single and gate (Figure 2.6).

That is, if a device can provide capacity D.,, gate evaluations per second, optimally, to the
application, atask requiring V,. gate evaluations can be completed in time:

Nye
Dcap

Ttask = (21)

In practice, limitations on the way the device's capacity may be employed will often cause the
task to take longer and the result in alower yielded capacity. If the task takestime 1%, s _actuai, 1O
perform Niqs 46, then the yielded capacity is:

thask_ge

Dyielded_cap = (22)

Ttask_actual

The capacity which a particular structure can provide generally increases with area. To un-
derstand the relative benefits of each computing structure or architecture independent of the area
in a particular implementation, we can look at the capacity provided per unit area. We normalize
areain units of A, half the minimum feature size, to make the results independent of the particular

18

One Gate Delay

a<0>

b<0>

a<l>

b<1>

a<2>

b<2>

a<3>

b<3>

Gate Delay 1
a<0>
b<0>
clk
Gate Delay 3
a<2>
b<2>
clk

2 =

:

c<0>

:l—> c<1>

:l—> c<2>

:l—> c<3>

clk

Figure 2.5: Parallel and

Gate Delay 2
c<0> a<1> c<1>
b<1>
clk
Gate Delay 4
c<2> a<3> c<3>
b<3>
clk
Figure 2.6: Serial and

19

process feature size. Our metric for functional density, then, is capacity per unit area and is
measured in terms of gate-evaluations per unit space-time in units of gate-evaluations/A?s. The
general expression for computing functional density given an operational cycletimet., ;. for aunit
of silicon of size A evaluating NV,. gate evaluations per cycleis:

:
Nye

—_— 2.3
tcycle x A ()

Fdensity =

This capacity definitionis very logic centric, not directly accounting for interconnect capacity.
We are treating interconnect as a generality overhead which shows up in the additional area
associated with each compute element in order to provide genera-purpose functionality. Thisis
somewhat unsatisfying since interconnect capacity plays abig rolein defining how effectively one
uses logic capacity. Unfortunately, interconnect capacity is not as cleanly quantifiable as logic
capacity, so we make this sacrifice to allow easier quantification.

As noted, the focus here is on functional density. This density metric tells us the relative
merits of dedicating a portion of our silicon budget to a particular computing architecture. The
density focus makes the implicit assumption that capacity can be composed and scaled to provide
the aggregate computational throughput required for atask. To the extent thisistrue, architectures
with the highest capacity density that can actually handle a problem should require the least size
and cost. Whether or not a given architecture or system can actually be composed and scaled to
deliver some aggregate capacity requirement is also an interesting issue, but one which is not the
focus here.

Remember al so that resource capacity is primarily interesting when the resourceislimited. We
look at computational capacity to the extent we are compute limited. When we are i/o limited,
performance may be much more controlled by i/o bandwidth and buffer space which is used to
reduce the need for i/o.

2.6.2 Functional Diversity —Instruction Density

Functional density alone only tells us how much raw throughput we get. 1t says nothing about
how many different functions can be performed and on what time scale. For this reason, it is
also interesting to look at the functional diversity or instruction density. Here we use functional
diversity to indicate how many distinct function descriptions are resident per unit of area. This
tells us how many different operations can be performed within part or al of an IC without going
outside of the region or chip for additional instructions. We thus define functional diversity as:

L¥instruction
Idensity = T (24)

Tofirst order, we count instructions as native processor instructions or processing element configu-
rations assuming a nominally 4-LUT equivalent logic block for the logic portion of the processing
element.
2.6.3 DataDensity

Space must also be allocated to hold data for the computation. This area also competes with
logic, interconnect, and instructions for silicon area. Thus, we will also look at data density when

20

examining the capacity of an architecture. If we put Ny;;s of datafor an application into a space,

A, we get adata density:
Niits

A

Ddensity = (25)

21

3. Reconfigurable Computing Background

This chapter briefly reviews reconfigurable computing including:

e Modern successes
¢ Intellectual lineage

¢ Technology trendswhich determine the circumstances when reconfigurabl e architectures are
viable and advantageous

3.1 Successes of Reconfigurable Computing

FPGAsfirst became availablein the middle of the 1980's (e.g. [CDF*86]). In thelate 80'sand
early 90's we began to see reconfigurable computing engines enabled by these new devices. Inthis
section we highlight the early reconfigurable computing “ successes.”

3.1.1 Programmable Active Memories

DEC PRL’s Programmable Active Memory (PAM) was one of the earliest platformsfor recon-
figurable computing. PAM is an array of Xilinx 3K components connected to a host workstation
[BRV89]. The Perle-1 board contained 23 XC3090's —roughly 15,000 4-L UTs. Using this compo-
nent as an accelerator, DEC PRL was able to speedup many application by an order of magnitude
and, in some cases, provide performancein excess of conventional supercomputersor customVLS|
implementations. Highlightsfrom [BRV92]:

¢ Large number multiply 16x faster than Cray-II

e 600kbit/s, 512-bit RSA decoding — fastest implementation in existence at time of development

—10x best software implementation on DEC Alpha

¢ String matching within afactor of two of custom implementation requiring 28 VLSI ICs

¢ Convolution and 3-D geometry at 200-300 MIPs

¢ Laplace equation at 25 GIPs

e DCT at 15 GIPs
Thetotal silicon in the Perle-1 board was comparable to the total silicon in the host workstation —
but the combination ran these applications and others 10x faster than the workstation alone. The
difference being that almost al of the silicon on the Perle-1 board was general -purpose and capable
of being deployed to the problem at hand.

3.1.2 Splash

SRC'’s Splash is a systolic array composed of 32 Xilinx XC3090's, ~20K 4-LUTs. On DNA
sequence matching Splash achieved over 300x the performance of a Cray-Il or over 200x the
performance of a 16K -processor CM-2 [GHK*91].

22

313 PRISM

Brown's PRISM architecture coupled a single Xilinx XC3090, 640 4-LUTs, with a Motorola
68010 node processor. The coupled FPGA could compute fine-grained, bitwise functions (e.g.
Hamming distance, bit reversal, ECC, logic evaluations, find first one), 20x faster than the 68010
host microprocessor [AS93].

3.1.4 Logic Emulation

Perhapsthe most commercially significant application of “reconfigurablelogic” to date has been
inthebusiness of logic emulation. One of the earliest FPGA -based | ogic emulatorswasthe Realizer
[VBB93] whichwasaprecursor to Quickturn System’s Enterprise Emulation System. The Realizer,
with 42 XC3090's (27K 4-LUTs) and 160 XC2018's serving exclusively for interconnect, was
ableto emulate = 10K gate designs at arate of several million clock cycles per second.

3.2 Lineage

While reconfigurable architectures have only recently begun to show significant application
viability, the basic ideas have been around almost as long as the idea of programmable general-
purpose computing.

John von Neumann, who is generally credited with developing our conventional model for
serial, programmable computing, also envisioned spatial computing automata — a grid of simple,
cellular, building blocks which could be configured to perform computational tasks [VNG6].

As computing implementation technology improved from vacuum tubes to diodes and tran-
sistors to integrated circuits, research continued into cellular computation. In [Min67] Minnick
reviewed the state of the art in microcellular computational arrays, suggesting a role for “pro-
grammable arrays.” Minnick’s own cutpoint cellular array in 1964 housed 48 cells less powerful
than a2-LUT ina6x8 cellular array with only right and down nearest neighbor connectionsin the
space of asuitcase. In 1971, Minnick reported a programmable cellular array which used flip-flops
to hold the configuration context which customized the array [Min71].

Jump and Fitschedetail theworkingsof aprogrammablecellular array [JF72] without describing
apossible technology realization.

Schaffner devel oped one of the earliest “ general -purpose,” “programmable hardware” machines
in 1969 [Sch71, Sch78]. Shaffner’s machine used ALU’s with reconfigurable interconnect for his
reconfigurable building blocks, including the facilitiesto swap in “hardware” pages. The machine
was employed primarily for real-time signal processing for radar and weather.

Theearly eightiessaw considerableinterest in systolic computing architectures[Kun82]. While
much of the research was concerned with deriving hardwired, application-specific arrays, this
research also spawned the development of programmable systolic components (e.g. [FKM83]
[HS84]). These components were some of the first “reconfigurable computing” devices built
in VLSI. Owing to the application focus and the silicon real estate available at the time, the
programmable systolic building blocksweremore coarse-grained than thecellular arraysor FPGAS,
placing a single 8-bit ALU per chip and relying predominantly on large, multichip or wafer-scale
arraysto build up significant spatial computations.

23

The most direct descendent of the programmable cellular array research is the Configurable
Array Logic (CAL) ICfrom Tom Kean and Algotronix [Kea89, GK89, Alg90]. CAL used aminimal
2-LUT for thebasic cellular element and mostly nearest-neighbor connectionsfor interconnect. This
givesit amuch finer grain than the contemporary FPGAsfrom Xilinx which use4-L UTs and richer
interconnect.

3.3 Technological Enablers

The basic idea of configurable array computation has been around as long as the ideas for
central processor, stored program execution. So, why have programmable processors become the
mainstream of general-purpose processing while “ reconfigurable computing” is only now emerging
as a competitive, general-purpose computing technol ogy?

The answer lies with technology costs and application requirements. Active computing re-
sources have been a premium since the days of the vacuum tube. To realize general-purpose
computers, it took thousands of tubesto build a general-purpose computer —making it infeasibleto
implement large, spatial computations. With the advent of core-memory, memory became moder-
ately dense compared to computing elements. To implement large, complex, computational tasks,
it was more efficient to store large programs densely in memory and reuse a small amount of fixed
logic.

The beginning of the MOS VLSI erareinforced these costs. Dense memories could be imple-
mented on silicon ICs. Because of high off-chip i/o costs, the critical unit became the amount of
logic or computation which could be placed on asingle IC. The driving force has been to localize
computation to one or a small number of 1Csto reduce costs and interchip communications. The
microprocessor was made successful by minimizing the amount of compute logic to the point
whereit would fit onto asingle I C. The critical turning point in processor development was when it
became possible put a competent processor on asingle IC. The RISC structure became so success-
ful because it enabled early integration of such capable processors. Once single-chip processors
became possible, they rapidly rose to dominate multichip implementations. While silicon areawas
apremium, exploiting the higher density of memoriesto store programs and reuse the limited space
on the processor die was necessary. Today, we still see some premium to fitting the kernel task
descriptions and their data into the limited memory available on the processor die.

The turning point for configurable hardware came when it was possible to place hundreds
of programmable elements on a single IC. At that point it became possible to realize regular
computations in space, dedicating each active computing element to a single task. Reconfigurable
computing began to take off as we could put 500-1,000 such programmable elements on a single
IC. Today welook at thousands of such elementsper IC and that number continuesto increase with
the silicon capacity. At thousandsto tens of thousands of programmable elements, tight application
kernels can be spatialy configured on one or a few configurable ICs without the need to share
activeresources. This, in effect, caches the kernel not just in on-chip memory for use by alimited
amount of active processing elements, but right with the active processing elements such that a
large number may operate simultaneously.

Therewill alwaysbesome premium for densetask representationto handlethe most complicated
tasks. However, as the silicon real-estate becomes larger, the premium for dense task packing

24

subsides making it more and more beneficial to increase the on-chip silicon available for active
processing and remove the on-chip bottleneck between memory and processing elements. This
transition moves us to reconfigurable architectures.

25

Part ||

Empirical Review

26

4. Empirical Review of General Purpose Computing Architecturesin the Ageof MOSVLSI

Here we review various general-purpose computing architectures by taking an empirical look at
their implementations during the past decade. In this section we draw from the whole realm of
general-purpose architectures — not just those which fit directly into our RP-space. This makes a
larger set of design points avilable for review, but also introduces considerably more variation in
architecturesthan we will focusoninlater chapters. We look primarily at general -purpose capacity
in this section, generally ignoring the effects of specialized functional units. The following chapter
will look at the effects of custom multipiers, the most common specialized functional unit added
to nominally general-purpose computing devices. The focus here is on integrated, single IC,
computational building blocks to keep the comparison as consistent as possible across such awide
variety of architectures. Additionally, wefocusentirely on MOS VLS| implementations since most
of these architecture have had multiple M OS VL Sl implementations and the effects of MOS feature
size device scaling are moderately well understood.

4.1 Processors

We start by looking at a simple RISC-style processor.

Mode The pedagogical processor model (Figure 4.1) is composed of :

e n-bit ALU (two read, one write port from register file) [for the sake of comparison, we do
include multiple ALU processorsin the empirical review]

o memory (Register File, Instruction/Data Cache)

¢ control (sequencer, cache control, load/store unit, etc.)

External 1/0
2 2
S &
3 - O
Q Register .
- File Q

NV
Lo \ALU(S) /

Figure 4.1: Basic Organization for a Processor

27

Gate
Instruction Evaluation Explanation
Capacity

LD, ST, MOVE 0 overhead allowing reuse and interconnect
ADD, SUB, CMP 2n Each full adder bit is 2 gate evaluations
AND, OR, XOR, n One gate evaluation per bit
BEQ,BNE x5 n-bit AND reduction + 75 +---+1
B, CALL, RETURN 0 flow control overhead
SHIFT 0 interconnect

Table 4.1: Basic ALU Operations and Capacities

The ALU is the sole source of general-purpose capacity. Table 4.1 shows the traditional ALU
operationsprovided by the ALU along with the computational capacity provided by each operation.
Ann-bit ALU providesn ALU bit operations. For thissimple processor, no multiplier or specialized
coprocessor isincluded. Wewill 1ook at hardwired multiply implementati ons separately in Chapter 5
as an example of such specialized coprocessors. Each ALU operation operates in one processor
clock cycle.

Capacity Provided We extract a maximum of 2n gate evaluations (n ALU bit operations) per
cycle. Modern processors are achieving cycle times as low as 2-5ns with n = 128. The fastest,
single-ALU processors today thus offer a peak capacity around 84 gate-evaluations/ns. Table 4.2
compares several processor implementations over the past decade. Results are summarized there
intermsof ALU bit opssincethat isthe native, and hence most accurate, unit for processors. From
Table 4.2, we see that conventional processors have provided a peak functional density of 3-9 ALU
bit operations/\%s over the past decade. We see from Table 4.1 and some simple weightings below
that an ALU bit op is somewhere between one half and two 3-LUT gate evaluations.

It isinteresting, and perhaps a bit unexpected, to note how consistent this capacity density has
been over time. We might have expected:

1. delaystoimprovewith processsuch that 27 would be abetter measure of process-normalized
capacity than A\?s [is the delay parameter for a process which nominally amounts to the
intrinsic RC' delay for gates. One 7 is the delay required for one inverter to drive a single
inverter of equal size|]

2. architectural or circuit design improvementsto have increased functional density over time
Given the displayed consistency, we may be seeing compensating effects from:

1. velocity saturation inthe CMOS devices, especially submicron CM OS preventsthe expected
7 scaling

2. decreasing relative performance of on-chip interconnect with scaling

28

U bit ops

Year ‘ Design Organization Die Size ‘ A ‘ A2 area ‘ cycle ‘ AL 73
1984 RISC I 1 x 32 (100%) 4.3mmx7.7mm 15u 15M 330ns 6.5
[SKPS84]
1984 MIPS 1 x 32 (100%) 5.5mmx6.1mm 154 15M 250 ns 8.5
[RPJ* 84]
1987 MIPS-X 1 x 32 (100%) 8mmx8.5mm 1.0p 68M 50 ns 9.4
[HHC* 87]
1987 PA-RISC 1 x 32 (100%) 8.4mmx 8.4mm 0.75u 125M 66 ns 3.9
[YFJ*87]
1988 SPARC 1 x 32 (100%) 12.1mmx12.7mm | 0.75u 273M 60 ns 20
[QC88, TFT85]
1990 PA-RISC 1 x 32 (100%) 14mmx 14mm 0.51 784M 11ns 3.7
[TLB*90]
1990 SPARC 1 x 64 (75%) 14.9mmx15.1mm | 0.4 1.4G 25ns 24
[MMN*90] |EEE FPU (25%)
1992 SuperSparc 2 x 32 (82%) 16mmx 16mm 0.4 1.6G 25ns 2.0
[ANABT92] |EEE FPU (18%)
1992 Alpha 1 x 64 (81%) 16.8mmx13.9mm | 0.38u 1.7G 5ns 9.5
[DWAT92] IEEE FPU (19%)
1994 PA-RISC 2 x 64 (88%) 14mmx 15mm 0.28u 2.8G 7ns 7.4
[RDB*94] IEEE FPU (12%)
1994 MIPS 1 x 32 (100%) 7.9mmx 8.8 mm 0.2u 1.7G 2ns 9.1
[SYNT94]
1995 PowerPC 2x 64 (87%) 18.2mmx17.1mm | 0.25pu 5G 7.5ns 3.9
[BBB*95] IEEE FPU (13%)
1995 UltraSparc 2x 64 (84%) 17.7mmx17.8mm | 0.25u 5G 6ns 5.0
[CDd* 95] 2x FPIGFU (16%)
1995 SPARCV9 4 x 64 (80%) 297mm? 0.2u 7.4G 6.5ns 6.6
[SPATO5] IEEE FPU (20%)
[CDF*95]
1995 Alpha 2x 64 (90%) 16.5mmx18.1mm | 0.25u 4.8G 3.3ns 9.0
[BAB'95] 2x |EEE FPU (10%)
1996 MIPS 1x32 9.1mmx 8.3mm 0.25u 1.2G 10ns 2.6
[KDS* 96]
1996 PA-RISC 2x 64 (80%) 17.7mmx19.1mm | 0.25u 5.4G 4ns 7.4
[LLNK96] IEEE FPU (20%)
1996 ARM 1x32 7.8mmx 6.4mm 0.18u 1.6G 5ns 4
[MWA™ 96]
1996 Alpha 2x 64 (95%) 14.5mmx 14.4mm | 0.18u 6.8G 2.3ns 8.6
[GBB*96] 2x |EEE FPU (5%)

Wa X Niaru

ALU Bit Ops/A*s = ———

2 X Pfraction X tcycle

Ppraction 1sthe fraction of the die not including any specialized coprocessors — primarily
omitting any FPUSs.

Table 4.2: Survey of Processor Capacity

29

Year | Des'gn | Ref. | Fdensity | Idensity | Ddesnsity

1984 | RISCII [SKPS84] 65 0 3.0x10-7
1984 | MIPS [RPJ*84] 85 0 3.4x 1075
1987 | MIPSX | [HHC*87] 9.4 7.5% 106 1.5%10-5
1987 | PA-RISC | [YFJ*87] 3.9 0 8.2x 106
1988 | SPARC [QCss] 2.0 0 1.9%10-5
1990 | PA-RISC | [TLB*90] 3.7 0 1.3x 106
1990 | SPARC | [MMN+90Q] 2.4 1.5% 106 1.9%10-5
1992 | SuperSparc | [ANAB*92] | 20 3.9x 106 1.0x 104
1992 | Alpha | [DWA+92] 95 12x10-¢ | 4.1x10-5
1994 | PA-RISC | [RDB+94] 7.4 0 7.5x 106
1994 | MIPS [SYN+94] 9.1 1.5x10-7 5.3x 10-6
1995 | PowerPC | [BBB+95] 3.9 1.9x10-6 6.0x 106
1995 | UltraSparc | [CDd*95] 5.0 9.7x10-7 3.3x 105
1995 | SPARCVO | [SPA*95] 6.6 0 1.1x10-5
1995 | Alpha [BAB+95] 90 | 4.857x10°7 | 1.5-18x 105
1996 | MIPS [KDS*96] 26 8.4x 107 2.8x 105
1996 | PA-RISC | [LLNK96] 7.4 0 4.7%x10°7
1996 | ARM [MWA*96] 4 2.5x10° 8.0x 105
1996 | Alpha [GBB+96] 86 | 3.1-38x10"7 | 1.0-12x10-5

Table 4.3: Processor Capacity Summary

3. increasing chip size implies increasing wire runs — the area occupied by long interconnect
wiresis not scaling with A2

4. increasing use of CAD — designers are giving up some density in order to manage the
complexity associated with the larger and larger designs

5. increasing gap between on-chip and off-chip performance necessitates dedicating more on-
chip area to non-active resources, particularly memory, to compensate for the i/o bottleneck

6. increasing area being dedicated to control and state management to prevent control and data
dependent stalls in the instruction stream

This peak computational density assumes that every operation on each n-bit ALU performsan
n-bit compute operation and the processor completes oneinstructions per ALU on every cycle. In
practice, a significant number of processor cycles are not spent executing compute operations.

¢ Limitedinstructionand databandwidth —coupled with long latenciesto off-chip resources,
limited bandwidth can cause the processor to stall waiting on the information which it needs
to determine the course of the computation or the data it needs to operate upon. As aresult,
the number of instructions completed per cycle is always less than the number of ALUs
available.

¢ Abstraction overhead and data movement consume capacity — procedure calls, data
marshaling, traps, and dataconversion consume capacity without, directly, providing capacity

30

Application Ga[g%t %\62‘! Halt%ﬁns
GCC 05
US Stedl 0.8
Average | 0.6

Table 4.4: Average Gate Evaluations/Datapath Bit

to the problem. Operations which simply move data around do not provide capacity to the
problem either. Since we have a mix of the instructions shown in Table 4.1, we will
never achieve the peak condition where every operation provides 2n gate-evaluationsto the
computational task.

Quantitative studies tell us, for given systems or application sets, average values for the number
of gate evaluations per instruction and the number of instructions executed per clock cycle. This
gives us an expected computational capacity:

E(Functional Density) =
Gate Evaluations " Datapath Bits y Instructions y Issue Slots y 1
Datapath Bit Instruction Issue Slot Clock Cycle area x tycie

For example, while Hal's SPARC64 should be ableto issue 4 instructions per cycle, in practice
it only issues 1.2 instructions per cycle on common workloads [EG95]. Thus T%J—ﬂ(jgcgl%L'[S ~ 30%,
resulting in a 70% reduction from expected peak capacity.

Assuming the integer DLX instructions mixes given in Appendix C of [HP90] are typical, we

can calculate Gaé%t%\ﬂﬁaégns by weighting the instructions by their provided capacities from

Table 4.1. In Table 4.4 we see that one ALU bit op in these applications is roughly 0.6 gate-
evaluations.

If thiseffect isjointly typical with the instructions per issue slot number above, then we would
yield at most 0.3 x 0.6 =~ 0.2 of the theoretical, functional density. For the Hal case, this reduces
6.6 ALU Bit Ops/\?s to 1.3 gate-evaluations/ \2s.

There are, of course, several additional aspects which prevent most any application from
achieving even this expected peak capacity and which cause many applications to not even come
closetoit.

1. Coarse-grained datapath/network — the word-oriented datapaths in conventional proces-
sors prevents efficient interaction of arbitrary bits — e.g. A simple operation like XOR-ing
together two fields in a data word requires a mask, shift, and XORrR operation even though
the whole operation may effect only a few gate evaluations. Returning to the HaL example
above, we note that the processor has a 64-bit datapath. When running code developed for
32-bit SPARCs, half of the datapath isidle, further reducing the yielded capacity by 50% to
0.7 gate-evaluations/ A?s.

31

/IR1 z; base pointer
IIR2 avg; base pointer
/IR3 working sum
//R6 buffer top

Id-32[R1],R4 //valuedropping out of window
sub R4,R3,R3 //subtract out

Id O[R1],R4 /Ivalue entering window

add R4,R3,R3 //addin

asr R4,R5#3 //divideby 8

st [R2],R5 //save new average

addi R1,#4,R1 //increment x ptr

bleR1,R6,top //branch to top

addi R2,#4,R2 //increment avg ptr (delay slot)

Figure 4.2: Inner Loop of Processor Implementation for Windowed Average

2. Limited control of ALU capacity — the n-bit ALU mostly functions as a collection of
n-bit processors controlled in SIMD fashion. Full capacity is only extracted when all » bits
arranged in a dataword need the same operation. Data with smaller ranges (less than 2™) do
not make full use of the capacity. Inhomogeneous operations (e.g. ADD the low 8-bits, XOR
bits 10-8, use this constant for bits 15-11, AND in bits 19-16, and OR together the remaining
bits) must be decomposed into sets of homogeneous operations.

Example: Average Calculation Consider a windowed average calculation performed on a pro-
Cessor:

1
avg; = (é) (Ti—z+ Tic2+ Tic1+ @+ Tip1 + Tig2 + Tig3 + Tiga)

Figure 4.2 shows a possible inner loop of the windowed average calculation on a standard RISC
processor. Assuming one instruction per instruction slot, this sequence takes 9 instruction slots to
perform two potentially 32 bit adds — for a total of 128 gate evaluations. The loads, stores, and
shifts are all data movement operations and do not contribute to the actual computational task at
hand. The branch and increments are control overhead. Assuming this operation is performend on
aMIPS-X processor at 1 CPl, we yield afunctional density:

dyield -

128 gate evaluations 5 (gate evaluati ons)
68MA2 x 9cyclesx 50ns A\2s

Example: Parity Calculation Consider calculating the parity of a 32-bit word.

p=d3z1®dzp® - - ®do

32

//IR1 d input

//R3 parity output
asr R1,R2,#16 //align half words
xor R2,R1,R3 //16b xor
asr R3R2,#8 //align bytes
xor R2,R3,R3 //8b xor
asr R3,R2#4 //align nibbles
xor R2,R3,R3 //4b xor
asr R3R2,#2 //align 2 bits
xor R2,R3,R3 //2b xor
asr R3R2#1 /lalign final bits
xor R2,R3,R3 //final xor

Figure 4.3: Processor Implemention for Parity Computation

Year ‘ Design ‘ Organization ‘ A ‘ DieSize ‘ A area ‘ cycle ‘ %lstops
1990 LIFE-1[LS90] 2x 32 0.75u 78mm? 139M | 20ns 23
1993 | VIPER [GNAB93] 4x 32 0.6¢ | 129mmx9.1mm | 326M | 40ns 9.8

AV
ALU Bit Ops/A%s = Wa X Niaru

Area

Y X Pfraction X tcycle
Table4.5: Survey of VLIW Capacity

In 10 operations (See Figure 4.3), the processor can perform the 32b XOR required for the
parity calculation — 32 2-input gate evaluations or 11 4-input gate evaluations. Again, assuming a
MIPS-X like processor and 1 CPI, weyidld:

11 gate evaluations gate evaluations
Fy = =032 —mF—
vield — 68M A2 x 10 cycles x 50ns A%

4.2 VLIW Processors

Very Long Instruction Word (VLIW) machines are processorswith multiple, parallel functional
units which are exposed at the architectural level. A single, wide, instruction word controls the
function of each functional unit on acycle-by-cycle basis. Pedagogicaly, aVVLIW processor looks
like a processor with multiple, independent functional units. At this level, the VLIW processor
does not look characteristically different from the modern superscalar processors included at the
end of the processor table.

Table 4.5 summarizes the characteristics of two VLIW processors. With only two datapoints it
isnot possible to assess general trends. These examples seem to have about 2x the peak capacity

33

Year | DeS'gn | Fdensity | Idensity | Ddesnsity
1990 LIFE-1[LS90] 23 ? ?
1993 | VIPER [GNAB93] 9.8 0 1.0x104

Table 4.6: VLIW Capacity Summary

of processors. To the extent this may be characteristic of VLIW designs, it may arise from the fact
that the separate functional units share instruction control and management circuitry more than in
superscalar processors.

VLIW processors may fail to achievetheir peak for the same reasonsas processors. 1n addition,
they may suffer from:

¢ Scheduling granularity — instructions must be statically scheduled in blocks at the VLIW
width. When this packing does not match the needs of the application, functional units may
goidle.

e Mismatch in Functional Unit Mix — some VLIWSs have a mix of functional units which
perform different operations. If the mix of operations in the application does not match the
functional unit mix at a fine-grained level, functional units may go idle, lowering yielded

capacity.

¢ Data Transfer —oneway VLIWs may achieve a higher functional density than superscalar
processors isto segregate the register files, reducing the interconnect required to deliver data
from theregister fileto the functional unitsand back. Some cycleswill berequired to transfer
data between register files as necessary to allow the various functional unitsto cooperate on
atask.

4.3 Digital Signal Processors (DSPs)

Digital Signal Processors (DSPs) are essentially specialized microprocessors which:
¢ Integrate a hardwired Multiplier Accumulator (MAC) unit

¢ Includes specialized datapaths allowing

e zero overhead loops
¢ parallel increment of counters and pointers

The net effect of these additions is generally to increase the percentage of yielded capacity and
particularly to increase the yielded capacity on tight loop multiply operations.

Table 4.7 reviews several DSP implementations. On non-multiply operations, the peak perfor-
mance is generally lower than the processors. For the kinds of operations typical of DSPs, these
processors will generally yield much closer to their peak capacity than processors.

Year ‘ Design ‘ Organization Die Size ‘ A ‘ A% area ‘ cycle ‘ %@tops
1985 [WDWT85] 1x16 15.5mm? 1.0u 16M 100 ns 10
1986 | [vMWvWT 86] 1x16 88.5mm? 1.0u 90M 125 ns 14
[Gol87]

1987 [KNK*87] 1x16 11.5mmx12.9mm | 0.65u 350M 50 ns 0.9
1987 [CBBF87] 1x32 6mmx8.5mm 0.5u 200M 60 ns 1.3
1989 [PMLT89] 1x16 71mm? 0.6 200M 100 ns 0.8
1992 [SKYH92] 1x16 9.5mmx 10.5mm 0.6p 275M 50 ns 1.2
1993 [USO* 93] 1x16 9.3mmx9.1mm 0.4 530M 93ns 0.33
1995 [NHK95] 1x32 8.5mmx8.5mm 0.25u 1.2G 10ns 2.8
1996 [KOT*96] 2x16 10mmx9.7mm 0.25u 1.6G 25ns 0.8

Wa X Niaru

Area

ALU Bit Ops/\?s =
12 X tcycle

Sizes above include MACs, which generally amount to 5-10% of the total DSP die area.

Table4.7: Survey of DSP Capacity

Year | Des'gn | Fdensity | Idensity | Ddesnsity
1985 [WDWT85] 10 0 15x107°
1986 | [vMWVW*86] 14 0 4.9x107°
1987 [KNK*87] 0.9 2.9x107% | 9.3x10°°
1987 [CBBF87] 13 1.0x107° | 41x10~°
1989 | [PML*89] 08 | 1.6x1075 | 41x1075
1992 [SKYH92] 12 1.4x10~° | 3.0x10~°
1993 [USOT93] 0.33 15x107° | 1.5x10~*
1995 [NHK95] 28 8.9x10~7 | 29x10°°
1996 [KOT*96] 0.8 ? ?

Table 4.8: DSP Capacity Summary

44 Memories

Most genera-purpose devices use memories to store instructions and data. A memory can
also be used directly to implement complex computational functions. For complicated functions,
a memory lookup can often provide high, programmable computational capacity. For just a few
examples see[Has87, HT95, RS92, Lev77].

Model We characterize amemory by:
¢ depth —either in terms of address bits («) or total number of memory words (2%)

e width —w, the number of bits read out for each « bits of address put into the memory

35

a<(Q>
a<g)
a<Z>

a<3>

e E —
a<4> |—| |_| '_I I—I
. ==

out

Figure 4.4: Gate Implementation of any Function Computed by 7-input Lookup Table

o 1.0 —the minimum time required between successive read operations

Capacity Provided The capacity provided by a memory is highly dependent on the inherent
complexity of thelogic function being computed. The lower bound istrivially zero since we could
program the identify function into amemory.

We can use a counting argument to determine how complicated the functions can get. We start
by observing that an «-input, one-output lookup table can implement 22° different functions. We
then consider how many gates it requires to implement any of these functions. Each gate can be
any function of four inputs, so each gate can implement 22" functions. A collection of n gates can
thus implement at most (224) " functions (less due to overcounting). In order to implement any of

the 22 functions provided by the table, we need at |east:

2 < (2 =2
2 < p. 2t
209 < g (4.1)

Conversely, by construction, we can show that any function computed by the « input lookup
table can be computed with 2(¢~3) — 1 gate evaluations. As suggested in Figure 4.4, we can use
2(¢—49 gates to select the correct functional value based on the low four bits of the address. We
then build a binary mux reduction tree to select the final output based on the remaining address
bits. This tree requires 2(*=% — 1 muxes. Together, the 2(*—3 — 1 gates compute any function
computable by the a-input lookup table.

An a input by one output table lookup can thus provide between 2(¢=4 4+ 1 and 2(*=3 — 1 gate
evaluationsper cyclefor the most complicated « input functions. Sincethe bounds are essentially a
factor of two apart, we can approximate the peak as 2(*~* gate evaluations per cycle. If thetableis

36

w bitswide, the table provides at most w times as many gate evaluations. Putting al this together,
we get:

w - 2(‘1_4)
Cmemor eak ¥ 4.2
y-peak area- {,y.. ()

Tables 4.9, 4.10 and 4.11 reviews memory implementations, showing the peak functional
density for each memory array. For the most complex functions, memories provide the highest
capacity of any general-purpose architecture. For less complex operations, however, memoriesare
inefficient, yielding very little of their potential capacity.

For example, an 8-bit add operation with carry output requires 16 gate evaluations. Performed
ina2® x 9 memory, such asa9-bit version of the 64K x 18 memory from [SMK*94], this provides
only 2.4 gate-eval uations/ \%s. Theinefficiency of the memory-based adder increaseswith operand
size since the number of gate evaluationsin an n-bit add increases as 2n whereas the memory area
increasesas 22" x (n + 1).

For all the memories listed, the capacity is based on continuous cycles of random access. In
particular, nibble, fast page, or synchronous access in DRAMSs is not exploited. For example,
[TNK*94] achieves 13,500 gate-evaluations/ A%s on random access. In sequential access mode,
the part can output 18 bits every 8ns. For large sequential access, this means an effective cycle
time of 8ns instead of the 48ns quoted — a factor of six improvement in cycle time and capacity.
Used in this mode, the peak performance is 81,000 gate-eval uations/ \%s.

It isalso worth noting that, unlike processors, the capacity of memorieshasincreased over time.
Thisislikely dueto:

¢ increased specialization of thefabrication processesto memories—especially theintroduction
of three-dimensional structuresin DRAMS, local interconnect, and high poly film resistors
for SRAMs

e increased pipelining of memory access

Modern processors actually dedicate a significant portion of their areato memory. Table 4.12
summarizes the peak capacity the processor can extract by using table lookupsin its D-cache. The
area used in calculating this capacity is the entire processor for the processors listed in Table 4.2.
Thispeak capacity can be thought of asthe peak capacity one could extract from each load operation
when using the on-chip D-cache for table lookup operations.

37

e-evals

Year ‘ Design ‘ Organization Size ‘ A ‘ A2 area ‘ cycle ‘ gat 75

1984 [BDN84] 16K x1 16.3mm? 1.0u 16M 35ns 1800
1984 | [SMIT84] 32K x 8 6.7mmx 8.9mm 0.6p 164M 46 ns 2200
1984 | [YKK*84] 64K x 1 4.7mmx6.6mm | 0.754 55M 25ns 3000
1984 | [SCLB84] 4k x 16 32.6mm? 0.75u 58M 30ns 2400
1984 | [MSMT84] 8K %8 6.0mmx 6.8mm 0.6p 113M 28ns 1300
1984 | [OKH*84] 2K x8 27mmx3.5mm | 0.75u 17M 16 ns 3800
1984 [CH84] 4K x4 11mm? 1.054 10M 18ns 5700
1984 | [MMSt84] 64K x 1 3.2mmx6.0mm | 0.65u 45M 20ns 4600
1985 | [YTN'85] 32K x 8 5.0mmx9.2mm | 0.65x | 110M 45ns 3400
1985 [SAIT85] 32K x 8 49.6mm? 0.65¢ | 120M 45ns 3100
1985 | [SGSt85] 8K %8 31.8mm? 0.75u 57M 35ns 2100
1985 | [KEK™*85] 32K x 8 40.7mm? 0.6p 110M 55ns 2600
1986 [CC86] 8K %8 45mm? 0.75u 80M 35ns 1500
1986 [KIK™ 86] 256k x 1 4.5mmx10.6mm | 0.5x 190M 25ns 3500
1986 | [FRV'8g] 64K x 1 3.4mmx8.9mm | 0.75u 54M 13ns 5900
1987 | [wWBS'87] 32K x 8 6.8mmx 9mm 0.6p 170M 21ns 4600
1987 | [KTO*87] 128K x 8 8mmx 13.7mm 0.5u 440M 35ns 4300
1987 | [WHSt87] 128K x 8 55mmx14.8mm | 0.4u 510M 34ns 3800
1987 | [MOTt87] 128K x 8 6.9mmx15.4mm | 0.4u 660M 25ns 4000
1987 | [GHS'87] 32K x 8 9.5mmx7.8mm | 0.65x | 175M 40ns 2300
1988 [SKIT88] 128K x 8 7.6mmx12.4mm | 0.4pu 590M 44 ns 2500
1988 | [WBEK'8g] IMx1 10.6mmx8.5mm | 0.35x | 730M 29ns 3100
1988 | [CDH*8g] 128K x 8 12.2mmx7.7mm | 0.35x | 770M 25ns 3400
1988 [STTT8g] 256K x4 7.5mmx 12mm 0.35¢ | 730M 18ns 5000
1988 | [SHUt8sg] 256K x4 6.2mmx15.2mm | 0.4u 580M 15ns 7500
1988 | [KWAT8S] IMx1 55mmx15.7mm | 0.35x | 710M 14 ns 6600
1988 | [ONN*8g] 32K x 8 4.4mmx 9.5mm 0.4u 260M 7.5ns 8400
1989 | [VPP'89] 256K x 1 3.9mMmx9.5mm | 0.35x | 300M 14 ns 3900
1989 | [MMKT 89| 512K x 8 7.5mmx17.4mm | 0.25x 21G 25ns 5000
1989 [SIY*89] IMx1 5.3mmx10.3mm | 0.25x | 870M 9ns 8300
1990 | [FPH'90] 256K x 1 11.6mmx3.7mm | 0.5x 170M 8ns 12000
1990 | [ASOt9Q] IMx1 7.7mmx18.6mm | 0.28u 1.9G 15ns 9200
1990 | [HKMT90] IMx1 8.4mmx18.0mm | 0.3y 17G 20ns 7800
1990 [SISt90] 512K x 8 7.2mmx16.9mm | 0.25x 1.9G 23ns 5900
1990 | [OHK*9Q] 512K x 8 7.8mmx17.4mm | 0.25u 222G 23ns 5200
1991 | [CCs'91] 32K x 16 11.1mmx10.1mm | 0.4u 700M 2ns 23500
1992 | [SSN192] 32K x 8 6mmx9mm 0.4u 340M | 200ns 240
1992 | [GOK*92] 2M x 8 18.3mmx12.5mm | 0.2u 5.7G 12ns 15300
1992 | [MKS'92] IM x4 10.4mmx21.5mm | 0.2u 5.6G 15ns 12500
1992 [SIUt92] 256K x4 4mmx 7.4mm 0.154 1.3G 7ns 7200
1993 | [SKS'93] IM x4 9.7mmx21.9mm | 0.18x 6.9G 9ns 16800
1993 | [SUT'93] IM x4 10.4mmx10.6mm | 0.13u 7.1G 20ns 7400
1994 | [IKMT94] IM x4 10.3mmx20.9mm | 0.2y 5.4G 30ns 6500

Table 4.9: Survey of Peak Memory Logic Capacity (SRAM)

38

gate-evals

Year ‘ Design ‘ Organization Size ‘ A ‘ A% area ‘ cycle ‘ g
1984 | [MKS'84] 256K x 1 6.3mmx 6.3mm 0.75u 70M 140 ns 1700
1984 | [BCH'84] 256K x 1 50mm? 1.0u 50M 150 ns 2200
1984 | [MKMT84] 256K x 1 30.2mmn? 0.8y 47M 116 ns 3000
1984 [KFO84] 256K x 1 46.8mm? 0.6 u 130M 100 ns 1250
1984 | [SNT*84] 128K x 8 9.4mmx8.1mm 0.5u 300M 120 ns 1800
1985 | [KCE*85] IMx1 5.5mmx 10.5mm 0.5 230M 160 ns 1800
1985 | [KFM*85] IMx1 5mmx 13mm 0.6 180M 260 ns 1400
1985 [SFO*85] IMx1 5mmx 12.5mm 0.6p 170M 190 ns 2000
1985 [TJ85] 256K x 4 6.0mmx 11.4mm 0.6 190M 190 ns 1800
1986 [FSO™ 86] IMx1 4.4mmx 12.3mm 0.6 150M 190 ns 2300
1986 [TTS* 86 IMx1 6.2mmx 16.0mm 0.4 620M 300 ns 1400
1986 | [FOW 86] IMx1 7.8mmx 17.5mm 0.5u 550M 200 ns 2200
1986 [KAIt 86 64K x4 3.1mmx6.9mm 0.6p 59M 200 ns 1400
1986 | [HOW™ 86] IMx1 4.8mmx 13.2mm 0.6 180M 260 ns 1400
1987 | [MNAT87] IMx1 4.9mmx 14.9mm 0.4 450M 220 ns 2600
1987 [KSE*87] IMx1 6.4mmx 17.4mm 0.4 690M 230ns 1600
1987 | [OFW*87] IMx1 6.9mmx16.1mm | 0.45yu | 550M 220 ns 2200
1987 | [MYMT87] 256K x 4 4.7mmx 13.8mm 0.5 260M 220 ns 1100
1988 | [YKMI8E] 256K x 16 7.5mmx 12.7mm 0.4 600M 200 ns 2200
1988 | [LCwH™8g] 128K x4 8.1mmx 9.6mm 0.5u 310M 36 ns 2900
1988 | [ANH*8g] 16M 8.2mmx 17.3mm 0.3p 1.6G 180 ns 3700
1988 [IYK*88] 16M x 1 5.4mmx17.4mm | 0.25u 1.5G 120 ns 5800
1989 | [wOI*89] AM x 4 17.5mmx12mm | 0.35u 1.7G 190 ns 3200
1989 [FOSt89] 16M x 1 7.9mmx 17.4mm 0.3p 1.5G 150 ns 4600
1989 | [CTK*89 16M x 1 8.0mmx 16mm 0.28u 1.7G 150 ns 4100
1989 | [AFM*89] 16M x 1 7.7mmx17.5mm | 0.254 2.2G 120 ns 4100
1989 | [CKC*89] 16M x 1 8.5mmx 18.4mm 0.3p 1.7G 190 ns 3200
1989 | [LBK*89 256K x 4 6.8mmx 12.3mm 0.5 335M 56 ns 3500
1990 | [TTK*90] 16M x 1 8.2mmx15.9mm | 0.28u 1.7G 150 ns 4100
1990 | [KDK*90] IMx1 5.6mmx15.2mm | 0.35x | 700M 120 ns 3100
1990 | [KSB*90] 16M x 1 7.8mmx18.1mm | 0.25u 2.3G 150 ns 3100
1991 | [NTT91] 16M x4 9.7mmx20.3mm | 0.154 8.8G 180 ns 2700
1991 | [MMM*91] 64M x 1 12.5mmx18.7mm | 0.2u 5.8G 120 ns 6000
1991 | [TTUT9L) 64M x 1 19.9mmx11.3mm | 0.2u 5.6G 120 ns 6200
1991 | [OTWT91] 64M x 1 9.2mmx 19.1mm 0.2u 4.4G N0 ns 11000
1991 | [YNH191] AM x 16 234mm? 0.2u 5.6G 95ns 7500
1991 | [NNO*91] IMx1 4.8mmx 11.1mm 0.3p 592M 60 ns 7400
1992 | [HAH192] 16M x 1 8mmx 16.6mm 0.3p 1.5M 120 ns 6000
1992 | [KDK192] 512K x 8 13.2mmx 6.4mm 0.4 525M 60 ns 8300
1993 [STN* 93] 16M x 16 13.6mmx24.5mm | 0.13pu 21G 60 ns 13100
1993 | [KHK*93] 64M x 4 14.4mmx33.2mm | 0.13x | 30.6G | 100ns 5500
1994 | [TNK*94] 1M x18 17.1mmx6.6mm | 0.25u 1.8G 48 ns 13500
1994 | [AOTT94] 32M x 8 13.3x22.8mm 0.13p | 195G N0 ns 9600
1994 [TTT94] 32M x 8 13.2mmx25.9mm | 0.13x | 21.9G 56 ns 13700
1995 | [SMK194] 32K %9 1.7mmx5.0mm 0.4 53M 50 ns 7000
1995 | [SMK*94] 64K x 18 2.1mmx4.9mm 0.25u 165M 40 ns 11200

Table 4.10: Survey of Peak Memory Logic Capacity (DRAM)

39

e-evals

Year ‘ Design ‘ Organization Size ‘ A ‘ A2 area‘ cycle ‘ gatAZS
Pseudostatic

1984 | [KSYT84] 32K x9 55mm? 1u 55M 125ns 2700
1991 | [SKK*91] 512K x 8 6.5mmx14.2mm | 0.4x | 580M | 116ns 3900
Virtually Static

1986 | [NSS' 86] | 128K x 8 | 6mmx 13.8mm | 0.5u | 330M | 150 ns | 1300

Table 4.11: Survey of Peak Memory Logic Capacity (Hybrid)

D-Cache
Year Design Ref. mw
1984 [RISCII [SKPS84] 0
1984 MIPS [RPJ+84] 0
1987 MIPS-X [HHC87] 0
1987 | PA-RISC | [YFJ*87] 0
1990 | PA-RISC [TLB*90] 0
1990 SPARC [MMN*90] 39
1992 | SuperSparc | [ANAB192] 250
1992 | Alpha [DWA*92] 610
1994 | PA-RISC [RDB*94] 0
1994 MIPS [SYNT94] 150
1995 | PowerPC [BBB*95] 510
1995 | UltraSparc | [CDd+95] 330
1995 | SPARC V9 [SPATO5] 0
1995 | Alpha [BAB*95] 580
1996 MIPS [KDST96] 170
1996 | PA-RISC [LLNK96] 0
1996 ARM [MWA*96] 1000
1996 | Alpha [GBB*96] 550
Table 4.12: Survey of Processor On-Chip Memory Capacity

40

45 Field-Programmable Gate Arrays (FPGAS)

Field-Programmable Gate Arrays (FPGAS) are composed of a collection of programmable
gates embedded in a programmable interconnect. Programmable gates are often implemented
using small lookup tables. The small lookup tables with programmable interconnect allow one to
take advantage of the structure inherent in many computations to reduce the amount of memory
and space required to implement a function versus the full memory arrays of the previous section.
Ultimately, this allows FPGA space required for an application to scale with the complexity of the
application rather than scaling exponentially in the manner of pure memories.

Mode For pedagogical purposes, we consider an FPGA composed of :

¢ n, four-input lookup tables (4-LUTS) for gates with an optional flip-flop on the output of each
LUT which can be used for pipelining or data storage

¢ “adequate” programmable interconnect to wire up functionsusing the 4-LUTs

e aminimum operating cycle time, ¢.,.;., which accounts for the time to travel through one
LUT and its associated interconnect.

Year ‘ Design ‘ Organization ‘ Size ‘ A ‘ A2 area ‘ cycle gat(;exslals
1986 | Xilinx 2K [CDF" 86] 1CLB (4-LUT) 693u x 715u 1p 500K | 20ns 100
1988 Xilinx 3K 64 CLBs 5mmx6mm 0.6u 83M 13ns 120
[Xil89, HDJ" 88] (2x4-LUT/CLB) (XC3020 die)
1991 | UTFPGA [CSAt 1] 34-LUTs 9004 x 800 0.61 M 7ns 210
1992 Xilinx 4K 49 CLBs 4.8mmx4.6mm 0.61 61M 7ns 230
[Xil94b] (2x4-LUT/CLB) | (XC4005 Quadrant)
1994 LEGO [Se094] 44-LUTs 12404 x 11844 0.6u 4M 41ns 240
1995 DPGA [TEC* 95] 16 4-LUTs 15004 x 17504 05¢ | 105M | 7 nsf 210
1995 Xilinx 5K 49 CLBs 3mmx3.3mm 0.3 | 110M 6 ns 290
[Xil91] (4x4-LUTS/CLB) | (XC5206 Quadrant)
1995 AlteraFlex 8K 1008 LEs 8mmx10.5mm 03x | 930M | 7.5ns 144
[Alt95] (4-LUT/LE) (81188A die)
1995 ORCA 2C 256 PLCs 10mmx 9.8mm 03p | L1GA* | 7ns 134
[ATT95] (4x4-LUT/PLC) (ATT2C10die)
 No context switch — 10 ns cycle for context switch
gate-evals/\%s = #
2 X tcycle

Table 4.13: Survey of FPGA Capacity

41

Year | DeS|gn | Fdensity | Idensity | Ddesnsity

1986 Xilinx 2K [CDF*86] 100 2.0x107° [2.0x10°°
1988 | Xilinx 3K [Xil89, HDJ*88] 120 15%x107% | 1.5x10°°
1991 UTFPGA [CSAT9]] 210 15%x107% | 1.5x10°°
1992 Xilinx 4K [Xil94b] 230 1.6x107% | 1.6x10°°
1994 LEGO [Se094] 240 9.8x10~7 | 9.8x10~’
1995 Xilinx 5K 290 1.8x107% | 1.8x10°°
1995 Altera8K [Alt95] 144 9.3x10~7 | 9.3x10~’
1995 ORCA 2C[ATT95] 134 11x107% | 1.1x10°°

Table 4.14: FPGA Capacity Summary

Capacity Provided Running at full capacity and minimum operating cycle, the FPGA provides
tC:de gate evaluations per cycle. Modern FPGAs can hold on the order of 2000 4-LUTs and run

at cycle times on the order of 5-10ns. Table 4.13 computes the normalized capacity provided by a
few representative FPGASs. From these numbers we see that an FPGAS provide a peak capacity on

the order of 200-300 SAE-evauations

FPGA capacity has not change dramatically over time, but the sample sizeissmall. Thereisa
dlight upward trend which is probably representative of the relative youth of the architecture.

This peak, too, is not achievable for every application. Some effects which may prevent an

application from achieving this peak include:

e Limited interconnect — When the network connectivity is inadequate, all of a device's
capacity cannot be used. Thismay require either that cells buffer and transmit data or simply
that cells go unused in the area. Conventional FPGA interconnect routes most applications
with over 80% utilization.

¢ Pipeline efficiency limits — In heavily pipelined systems, capacity can be required to pass
data across pipeline stagesto all of its points of consumption. Thistransit capacity consumes
device capacity without contributing to the evaluation capacity required for the application.

e Limited ability to pipelineoper ations— Some tasks have cyclic dependencieswherearesult
isrequired before the next round of computation can begin. Unless several, orthogonal tasks
are interleaved on the FPGA, the cyclic path length limits the rate at which resource can be
reused and, in turn, preventsthe application from fully utilizing the FPGAs capacity.

¢ Limited I/O Bandwidth — The 1/O cycle time on most FPGAs is higher than the logic cycle
time shownin Table 4.13. Datatransfer to and from the FPGA may limit the capacity which
can actually be applied to a problem.

¢ Limited need for thisfunctionality —If apiece of functionality implementedin an FPGA is
not required at the rate and frequency achievable on the FPGA, the FPGA can be employed
far below its available capacity.

42

Register
Register
y
'I-?egister
Register
Register
Register
Register
Register

— QUG

Figure 4.5: Windowed Average — Pipelined FPGA Implementation

¢ Need for additional functionality — When the FPGA cannot hold the required functional
diversity for atask and must be reprogrammed in order to complete the task, the device goes
partialy or entirely unused during the reprogramming cycle.

As one example of pipelining, i/o, and functionality limitations, DEC’s Programmable Active
Memoriesran from 15-33MHz for several application [BRV92]. At theserates, the peak functional

density extracted from the XC3090’s employed was 13-26 gatee\gelsuati ons, only about 10-20% of
the potential functional density.

Example: Average Calculation Consider, again, our windowed average calculation:

avg; = <%) izt wiot+ wic1+ @+ g1 F Tig2 + Tig3 + Tiga)
Figure 4.5 shows a pipelined datapath to compute this windowed average. A 16-bit add on an
XC4000 part is operates in 21ns. Thus a cycle time of 42ns should be achievableif the z;’s are 28
bits each —if they are 12-bit entitiesthe 21ns cycle would be feasible. With the 32-bit datapath, the
impementation requires:

¢ 8pipedineregistersof 16 CLBseach (128 CLBS)

¢ 1 adder of 17 CLBs

¢ 1 subtractor of 17 CLBs

128 gateevaluations <gate evaluati ons)
dvietd T 1 DEMAZ x 162 x 42ns A2s

The cycle time can easily be cut in half by pipelining the two halves of each 32b operation,
effectively doubling yielded functional density.

Example: Parity Calculation Consider also the FPGA implementation of the 32-bit parity

caculation.
p=d3z®dzp® - @do

43

data word input

Wit b W W S W W W

Yyvi Yyvi

y v

'

parity out

Figure 4.6: 32-bit Parity —4-LUT Implementation

The FPGA can build the 11 gate parity reduction (See Figure 4.6). The path isthree gateslong. At
~7ns/gate, the unpipelined version operatesin roughly 21ns.

_ 1lgateevaluations (gate evaluati ons)
Tyield T 1 DEMAZ x 11 x 21ns A%s

Pipelining the X OR-reduction, we can reducethe cycletime and increaseyield. If we pipelineat the

gate level and assume that we can only cycle the part at a 10ns cycle due to clocking limitations,

weyield:

11 gate evaluations < gate evaluati ons)

Fie = =
vielda = 798MA2 % 11 x 10ns \2s

4.6 Vector and SIMD Processors

Single-Instruction, Multiple-Data (SIMD) machines are composed of a number of process-
ing elements performing identical operations on different dataitems. Vector processors perform
identical operations on a linear ensemble of data items. At a pedagogical level vector processors
are essentially SIMD processors, though in practice the two architectures have traditionally been
optimized for different usage scenarios.

Model For pedagogical purposes, we consider a SIMD/Vector array composed of:
¢ n processing elements (or vector units) all of which perform the same operation on each cycle

¢ w-bitswide processing element

Year ‘ Design ‘ Organization Size ‘ A ‘ A\ area ‘ cycle ‘ %étops
1987 | DEC MP[Gro87] 32x4 10.4mmx 9.4 mm 1p 98M 100 ns 13
1990 MP1 [Nic90] 32x4 11.6mmx9.5mm | 0.8u 170M 70ns 11
1990 SLAP[FHR94] 4% 16 7.9mmx 9.2mm 1p 73M 100 ns 8.8
1990 | BLITZEN [HBD94] 128x1 11mmx11.7mm | 0.5x 514M 50 ns 5
1993 MP2 [KT93] 32x32 14mmx 14mm 0.5u 780M 80 ns 16
1994 | IMAP[YKF'94] 64x8 15.5mmx 15.6mm | 0.28 3G 25ns 6.6
1995 MIT Abacus 1000 PEs 6.5mmx 7.3mm 0.5u 190M 8ns 660
[BSV*95] (2 3-LUTSYPE)
1995 | MGAP-2[GOI95] 2x2 0.4mm? 0.4u 2.5M 10ns 160
1996 Sony [KHN 96] 4320 PEs 15.1mmx 15mm 0.2u 5.7G 20ns 38
1996 PIP[AKY*96] 128x 8 18.8mmx16.7mm | 0.19u 8.7G 33ns 3.6
ALU Bit Ops/\%s = V4 X NPE
2 X Pfraction X tcycle
Table 4.15: Survey of SIMD Processor Capacity

Year | Des'gn | Fdensity | Idensity | Ddesnsity

1987 DEC MP [Gro87] 13 0 3.4x10~%

1990 MP1 [Nic90] 11 0 2.4x1074

1990 SLAP[FHR94] 8.8 0 ?

1990 BLITZEN [HBD94] 5 0 2.5x10~4

1993 MP2 [KT93] 54 0 5.2x107°

1994 IMAP [YKF*94] 6.6 0 6.7x10~4

1995 | MIT Abacus [BSV195] 660 0 3.0x107%

1995 MGAP-2 [GOI95] 160 0 2.6x107°

1996 Sony [KHN*96] 38 7.4x1077 | 2.0x10~*

1996 PIP[AKY*96] 3.6 0 1.9x1073

e instruction control and distribution logic

Table 4.16: SIMD Processor Capacity Summary

e aminimum operating cycle time, ¢.,.;. —the rate at which new instructions can be initiated
in the array

Capacity Provided The SIMD/Vector array provides providesa peak of % ALU bit operations
cycle
per cycleor %”—Xlw gate-evaluationsper cycle. Abacus, amodern, fine-grained SIMD array, supports
cycle

1000 1-bit PEs and can operate at 125MHz. Abacus thus provides 660

A2S

ALU hit ops

. Table 4.15

computes the normalized capacity provided by several SIMD arrays of varying granularity, and
Table 4.17 shows the composition of a modern vector microprocessor.
SIMD/Vector arraysonly achievetheir peak capacity when every PE/VU iscomputing a useful

45

Year ‘ Design ‘ Organization ‘ Size ‘ A ‘ A2 area‘ cycle‘ ALUA?;tOPS

1995 | [ABIT95] | 1x32+16x32 | 16.75mmx16.75mm | 050 | 11G | 22ns | 22

Wsd X *Nscalarwvd X]Vvector units

Area

ALU Bit Ops/\2s =
2 X tcycle

Table 4.17: Example Vector Processor Capacity

Year | DeS'gn | Fdensity | Idensz'ty | Ddesnsity
1995 [[ABIT95] | 22 | 23x107 | 16x107°

Table 4.18: Vector Processor Capacity Summary

logic operation on every cycle. Limitations to achieving this peak include:

¢ Limited, local interconnect — PEs are typically connected only to afew neighbors. Every
communication operation occupies a PE without providing any gate-eval uation capacity. On
SIMD arrays, when datais moved into the array, around in the array, or out of the array, PEs
can be occupied for several cycles without performing any logical operations.

¢ Inhomogeneousoperation —All PEsare only usefully employed when the same operationis
required on every data bit. When thisisnot the case, many PEs sit idle or perform no useful
work. PEs are often masked out of operation in order to perform computations selectively
on data bits.

Flynn [Fly72] summarizes some of the limitations associated with SIMD processing.
Example: Average Calculation Returning to our windowed average calculation:

avg; = (%) (it w24+ wic1+ @+ g1 F Tig2 + Tig3 + Tiga)
Here, we assume the datais resident in PE memory on the array. It could have been loaded via a
background load operation during a previous operation if it started off chip. Groups of 32 PEs are
assigned to each word. To perform the average we shift the target data across the array the 8 times
and accumulate at each group of 32 PEs as shown in Figure 4.7. The average takes a total of 30
cycleson 32 PEsto perform what we determined earlier to be 128 gate evaluations:

7 B 128 gate evaluations B (gate evaluati ons)
duietd = 0 TOMA2 x 32 x 30 cycles x 8ns A2s

46

Operation cycles
initialize result with local value 1 (assumed)

shift 1
accumulate 3
shift 1
accumul ate 3
shift 1
accumul ate 3
shift 1
accumul ate 3
shift 1
accumul ate 3
shift 1
accumul ate 3
shift 1
accumul ate 3
storeresult 1 (assumed)

Figure 4.7: Abacus (SIMD) Implementation of Windowed Average

Example: Parity Calculation Consider also the Abacus implementation of the 32-bit parity
calculation.

Pp=d3z1®dzp® - - ®do

The SIMD array can perform a series 31 bitwise shift and xor operations to effect an XOR-scan.
The xor can be folded into the shift such that scan operation only takes 31 cyclesfor the shift-xoR
plus oneto configure the operation. At the end of the scan operation, the partiy result isin the high
(or low) processor of each 32-bit word.

11 gate evaluations gate evaluations
Fy. = =145(—F——
vietld — 0,19M A2 x 32 x 32 cycles x 8ns A%

The data memory can be preloaded with a sequence of bypass operationsto allow faster accumula-
tion. The scan can then be performed inlog,(32) = 5 operations, where each operation is 3 cycles
long.

11 gate evaluations gate evaluations
Fayig = 2 s
Y 0.19MA“ x 32 x 15 cycles x 8ns A“s

4.7 Multimedia Processors

Multimedia processors are a recent hybrid of microprocessors, DSP, and Vector/SIMD proces-
sors. Aimed at processing video, graphics, and sound, these processors support efficient operation
on data of various grain sizes by segmenting up their wide-word ALUs to provide SIMD parallel

47

Year ‘ Design ‘ Organization ‘ Size ‘ A ‘ A\ area ‘ cycle ‘ %lstops
1995 [Slags5] 128 hits 290mm? 0.254 4.6G 3.3ns 8

1995 [Slags5] 128 hits 100mm? O.25;ﬂL 1.6G 1ns 80
1996 | [Eps95, TNH* 96] 4x72 12.8mmx14mm | 0.254 2.9G 16 ns 6.3

 Experimental BiCMOS process

Wsd X *NscalaTWvd X *Nvector units

Area

ALU Bit Ops/\2s =
12 X tcycle

Table 4.19: Multimedia Processor Capacity

Year | DeS'gn | Fdensity | Idensity | Ddesnsity
1995 [Sla95] 8 1.8x10°° 5.6x10~°
1995 [Sla95] 80 5.1x1076 1.6x10~4
1996 | [Eps95, TNHT96] 6.3 2.2-8.9x1078 | 0.96-1.2x10~°

Table 4.20: Summary of Multimedia Processor Capacity

operation on the bytes within the word. This segmentation combats the increasing inefficiency
associated with processing small data values on wide-word processors.

From Table4.19, we seethe CMOS multimediaprocessor havethe same peak functional density
as processors. The major difference is that the segmentation allows these processor to operate on
16-bit and byte-wide data without discarding a factor of 4-8x in performance. Of course, thisis
true only as long as these finer-grained operations can be performed efficiently in a SIMD manner.

The BiCMOS multimedia processor promised by MicroUnity would have asignificantly higher
performance density by exploiting a novel process. The comparison between their architecture in
CMOS and BiCMOS makes it clear that this functional density advantage comes primarily from
the process and not from the architecture.

4.8 Multiple Context FPGAs

Like FPGAs, multicontext FPGAs are composed of a collection of programmable gates em-
bedded in a programmable interconnect. Unlike FPGASs, multicontext devices store several con-
figurationsfor the logic and the interconnect on the chip. The additional areafor the extra contexts
decreasesfunctional density, but it increases functional diversity by allowing each LUT element to
perform severa different functions.

Table 4.21 summarizes the capacities of some experimental, multiple-context FPGAs. Like
FPGASs, these devices may suffer from limited interconnect or application pipelining limits. The
additional context memory makes them less susceptible to functionality limits than traditional
components. Chapter 10 details the usage of multicontext devicesincluding their relative capacity
yield compared to single context devices.

48

Per
Year Design Composition | Cycle Size A A area | cycle gat%exslals
1995 VEGA 2048 4-LUT 1 144mm? 0.6p 400M | 10ns 0.25
[JL95] (1 PE)
1995 DPGA 64 4-LUTs 16 1500p x 17501 | 0.5u 105M | 10ns 150
[TEC* 95] (subarray)
1996 | TSFPGA 64 4-LUTs 2-8 | L.1mmx1.2mm | 0.254 21IM 5ns 19-76
[CD9%] (subarray)
Naru
gate-evals/\2s = 0T
12 X tcycle

Table 4.21: Survey of Multi-Context FPGA Capacity

Year | DeS'gn | Fdensity | Idensity | Ddesnsity
1995 VEGA [JL95] 0.25 51x107® | 51x10°°
1995 | DPGA [TEC*95] 150 6.1x107% | 1.5x10°°
1996 TSFPGA 19-76 | 3.0x107° | 3-12x 10~

Table 4.22: Multi-Context FPGA Capacity Summary

Year ‘ Reference ‘ Organization Size ‘ A ‘ A\ area ‘ cycle ‘ %?'Stips
1983 | [LRSS84] 1x16 6mmx 6mm 2.0p oM ~4x140ns 3

1991 [D*92] 1x32 150 mm? 05x | 600M 62.5ns 09
1991 | [FKS91] 2x32 18.85mmx9.85mm | 0.54 | 740M 20 ns 43
1992 [Sei92] 1x32 9.25mmx10.0mm | 0.6x | 257M 33ns 38

Wy X Npg
Area

ALU Bit Ops/\2s =
Y X Pfraction X tcycle

(4.3)

Table 4.23: Survey of MIMD Processor Capacity

49 MIMD Processors

Contemporary MIMD processors have largely been built from collections of microprocessors.
As such, the functional density of these multiprocessors is certainly no larger than that of the
microprocessorsemployed for thecomputenodes. Sincethesemachinestypically requireadditional
components for routing between processor and to connect processorsinto the routing network, the
average functional density is actually much lower.

Table 4.23 samples a few processors which were designed explicitly for multiprocessor im-
plementation. These processor integrate the basic network interface and, in some cases, a portion
of the routing network, onto the device. While the sample size is too small to draw any strong

49

Year ‘ Design ‘ Organization ‘ Size ‘ A ‘ A2 area ‘ cycle ‘ %lstops
1992 | [CR92] 8x 16 6.8mmx 6.7mm (core) 0.64 126M 40ns 25
1995 | [YR95] 48x 16 11.5mmx11.2mm (core) | 0.5x 515M 20ns 75
1996 | [MD96] 1x8 1.5mmx 1.2mm (PE) 0.25u 29M 10ns 28
. Wix N
ALU Bit Ops/A%s = 2= PP
rea X t
12 cycle

Table 4.24: Survey of Reconfigurable ALU Capacity

Year | DeS'gn | Fdensity | Idensity | Ddesnsity
1992 | [CR9Z] 25 5.1x10~7 1.2x107°
1995 | [YR95] 75 7.5x10~7 8.9x1076
1996 | [MD96] 28 0.14-1.1x107% | 7.1x10°°

Table 4.25: Survey of Reconfigurable ALU Capacity

conclusions, the highest capacity implementations show only about half the functional density of
the microprocessors we reviewed in Section 4.1.

4.10 Reconfigurable ALUs

Reconfigurable ALUs are composed of a collection of coarse-grain ALUs embedded in a
programmableinterconnect. Their word orientation and limitation to AL U operations distinguishes
them from FPGAS.

Mode For pedagogical purposes, areconfigurable ALU contains:
e 1, w-bit ALUs
¢ “adequate” programmable interconnect to wire up functions of the ALUs

e aminimum operating cycle time, ..., which accounts for the time to operate in one ALU
or traverse the interconnect between ALUSs.

¢ optionally, asmall instruction store associated with each ALU

Capacity Provided Running at full capacity and minimum operating cycle, the reconfigurable
ALU provides fyx—su ALU bit operations per cycle. Experimental reconfigurable ALUs achieve
roughly 50 ALU bit operations/\%s.

Like a processor D-cache, the memory on MATRIX can be used as alarge lookup table. Using
the MATRIX 256x8 memory for function lookup, MATRIX can achieve up to 440 4-LUT gate-
evaluations/\%s.

50

Like processor, reconfigurable ALUs may suffer lower yield due to:

¢ Mismatched grain-sizeand limited AL U control —When fine-grain operationsarerequired,
the word-wide interconnect limits which bits may interact with each other. ALU operations
are word-wide SIMD making sub-word operations awkward and inefficient.

Unlike processors, the reconfigurable interconnect alows these architectures to avoid much of
the data movement overhead necessary on processors. Like FPGAS, pipelining, interconnect, and
functionality limits may prevent full utilization.

Example: Average Calculation Returning to our windowed average calculation:

avg; = (%) : (%’-3 ‘e otx1ta+ Tt xig2+ i3t $i+4)
Figure 4.8 shows a pipelined datapath to compute this windowed average on MATRIX. In this
scheme, 4 BFUs (See Figure 1.4 and Chapter 13) are used to serve as an 8 value delay register, and
4 are used to perform the addition and subtration. Two cycles are required for each result so that a
single datapath can be used for the add and subtract and so that the single memory can provide one
read and one write cycle. The implementation yields:

Fy

B 128 gate evaluations _ 5 (gate evaluati ons)
vield - 28 8MA2 x 9 x 2cyclesx 10ns A2s

Example: Parity Calculation Consider aso the MATRIX implementation of the 32-bit parity
calculation.
p=d3z®dzxp®- @ do

The most straightforward implemenation, uses the memory as an 8-LUT to calculate the parity of
8 bit data chunks. A total of 5 such chunks will perform the entire calculation (See Figure 4.9).
Assuming pipelined operation of the first four and final reductions:

11 gate evaluations <gate evaluati ons)
Fyieta, = e

28.8MA2 x 5 x 10ns A2s

411 Summary

Table 4.26 summarizes the observed computational densitiesfor the general-purpose architec-
ture classes reviewed in this section.

M emoriesprovidethe highest programmabl e capacity of any of thedevicesreviewed. However,
they only yield this capacity on the most complex functions — those whose complexity is, in fact,
exponentia in the number of input bits. The capacity they provide is not robust in the face of less
complex tasks.

Reconfigurable devices provide the highest general-purpose capacity which can be deployed to
application needs. Unlike memories capacity consumption scales along with problem complexity.
Their peak performance is 10x all non-reconfigurable architectures, with the exception of large,

51

avg

ptr memory calculate

read <ptr> avg—avgtnew
increment ptr modulo 8 write <ptr><new avg—avg-old

Figure 4.8: Windowed Average— MATRIX Implementation

32b data word input

N B T

[—

v

parity output

Figure 4.9: 32-bit Parity — MATRIX Implementation

52

Architecture gatek-fes\mls Limitations
Memory | 1500-15000 | most complicated functions only
SIMD (1000’s of PEs) 60-1200 | highly homogenous computations only
FPGA 100-300 | regular, highly pipelined, computations only
RALUs 50-150 semi-regular, word-wide operations
Few context DPGAS 30-150 semi-regular operations
Vector/VLIW 20-50 coarse-grain, semi-regular operations
SIMD (100's of PES) 10-30 homogenous computations
Processors/Multimedia 4-20 word-wide operations
DSPs 2-20 word-wide operations
Highly multicontext FPGASs 0.25

Table 4.26: General-Purpose Computational Capacity Summary

well engineered SIMD arrays. Fine-grained devices, such as FPGAs, are robust to grain-size
variation, as well. Reconfigurable architectures are not, however, robust to tasks with functional
diversity larger than the aggregate device capacity. Multicontext devices, such as the DPGA,
sacrifice aportion of the peak FPGA capacity density to partially mitigate this problem — providing
support for much higher on chip functional diversity.

Large SIMD or vector arrays have high peak performance because they ammortize a single
stream of instruction control, bandwidth, and memory among alarge number of active computing
elements. They handle high diversity with the ability to issue a new instruction on each cycle.
However, they requirevery large granularity operationsin order to efficiently use the computational
resources in the array.

Processors are robust to high functional diversity, but achieve this robustness at a large cost
in available capacity — 10x below reconfigurable devices. They also give up fine-grain control of
operations, creating a potential for another 10x loss in performance when irregular, fine-grained
operations are required. Vector and VLIW structures provide slightly higher capacity density for
very stylized usage patterns, but are less robust to tasks which deviate from their stylized control
paradigm.

Here we see distinctions in granularity, operation diversity, and yieldable capacity. The key
issues we used to classify architectures was the way the devices store and distribute instructions to
processing elements. Characterizing instructions and interconnect i ssues with afocus on RP-space
isthe goal of Part I11.

53

5. Case Study: Multiply

In this segment we review hardwired, programmable, and configurable multiply implementations.
The custom multiplier implementations show us the functional density achievable by custom
hardware on its intended task for comparison with the general-purpose structures reviewed in
Chapter 4.

We use the multiply operation for this comparison becauseit isrelatively simple and important
to many computing tasks including signal processing. Because of its importance and regularity, it
has received much attention over the yearsincluding many, high quality, custom implementations.
Multiply is probably one of the first computational operators to be implemented in most new
VLS| processes. Considering the amount of attention given to custom multiply implementations,
the comparison between custom multiplies and configurable implementations represents an upper
bound on the performance disparity between custom and configurable implementations. Few
functions, if any, should show a larger disparity, and most show a significantly smaller disparity.
Multiply is also interesting since it is the first piece of custom logic added to “ general-purpose”
processors.

In this section we use adomain specific metric for functional capacity, the multiply bit operation
(MPY bit op). To allow us to compare multiplies of various sizes, we assume each n x m multiply
requiresn - m - MPY bit ops. As such, we metric multiply functional density in MPY Bit Ops/\%s
and compute it as shown in Equation 5.1.

mXn

Area

51
22 X tcycle ()

Dypy =

Ann x n multiply can be done in less than O(n?) operations (see for example [Knu81]), but, for
the multiplies reviewed here, all of the circuits and algorithms do scale as O(n?).

5.1 Custom Multipliers

Table 5.1 summarizes the performance of numerous custom multipliers according to Equa-
tion 5.1. Implementations range from sub 1000 to aimost 9000 MPY Bit Ops/A?s with 2000-
4000 MPY Bit Ops/\?s representing the range of typical, high-performance, custom multipliers.
Like processorsthereis no clear trend for improvement with time or decreasing feature size. The
latest designs, if anything, show atendency to emphasizelatency over throughput resulting in lower
functional density.

5.2 Semicustom Multipliers

Table5.2 showsafew, sample, semicustom multiplier implementations. At 330 and 560 MPY Bit Ops/A?s,
the gate array and standard cell implementations provide a factor of 5-10 less functional density
than the custom implementations.

Year ‘ Design ‘ Organization Size ‘ A ‘ A2 area ‘ cycle ‘ %bétops
1984 [[LGC84] 8x8 1.25mm? 154 | 0.56M | 120ns 960
16x 16 5mm? 1.5u 22M | 120ns 960
1984 | [UKY84] 24x24 3.8mmx 3.8mm 10p | 144M | Tins 560
1985 | [GGAT85] 32x32 5.3mmx5.7mm 1.0p 30M 56 ns 600
1985 | [HFMLS5] 16x 16 17mmx1.7mm | 075 | 5.1M 40ns 1250
1986 | [NSLKES6] 8x8 1.5mmx0.4mm 0.5u 2.4M 3ns 8900
1987 [LGS87] 8x8 0.61mmx0.58mm | 0.5 14M | 95ns 4800
1988 | [KKHY8g| 32x32 3.2mmx5.2mm 1.0p 17m 59 ns 1000
1988 [SJsg] 4x4 1.37mm? 1.0p 1.4M 16ns 730
1989 [SH89] 64x 64 3.8mmx 6.5mm 0.8 39M 47ns 2300
1989 | [SLM*89] 16x 16 155mmx1.44mm | 0254 | 36M | 6.75ns 1100
1990 | [ADD90] 32x32 9880 mil® 05 | 255M | 35ns 1150
24x16 3819 mil® 054 9.9M 28ns 1400
16x 16 2888 mil® 054 7.5M 22ns 1600
1990 | [YYNT9Q] 16x 16 1.3mmx3.1mm | 0.25u | 64M 3.8ns 1000
1990 [SA9Q] 5656 3.4mmx 6.5mm 0.5u 88M 30ns 1200
1991 | [MNH*91] 54x54 3.62mmx3.45mm | 0254 | 200M | 10ns 1500
1992 | [FHT*92] 24x24 3.42mmx4.5mm | 0.6u 43M 30ns 450
1992 | [GSNS9Z] 54x54 3.36mmx3.85mm | 0.4y 81M 13ns 2800
1993 [LS93] 12x12 2.5mmx 3.7mm 054 3™ 5ns 780
1993 [Sva3] 8x8 1.5mmx 1.4mm 0.8 33M | 43ns 4500
1994 | [KHANWY4] 11x11 1.53mm? 1.0p 1.5M 22ns 3600
11x 16 0.9mm? 0.6u 2.5M 19ns 3700
1995 | [OSS*t95] 54x54 3.77mmx3.41mm | 0.125u | 823M | 4.4ns 810
1995 [IIFt95] 16x 16 0.77mmx0.72mm | 0.125x | 35M 10ns 730
1996 | [HKKM96] 54x54 17mm? 0154 | 760M | 25ns 1500
1996 [LE96] 4x4 0.224mm? 05 | 0.90M | 17ns 1100
1996 | [MNS*96] 54x54 31mmx3.1mm | 025y | 150M | 8.8ns 2200
1996 | [MYOt96] 32x32 2.35mm? 0.2 59M 18ns 980
Table5.1: Survey of Multiplier Capacity
Year ‘ Design ‘ Organization ‘ Size ‘ A ‘ A\ area ‘ cycle ‘ %EOPS
Gate Array
1987 | [BMNWS87] | 16x16 | 144mm” [0.75x [26M [30ns | 330
Standard Cell
1993 | [FA93] | 16x16 | 3mm® [063p [7.7M [60ns | 560
Layout Generator
1993 | [FA93] | 16x16 | 1mm® [063u | 26M |40ns| 2500

Table 5.2: Sample Semi-Custom Multiplier Capacity

55

MPY bit ops

Architecture ‘ Reference ‘ Multiply Op areaand time 6
Processor
(basic ALU ops) [SKPS84] 8x8 41 instructions 0.3
16x16 81 instructions 0.7
(w/nmst ep) [Cho89] 8x8 10 instructions 2
16x16 18 instructions 4
32x32 34 instructions 9
(w/ booth step) [RPJ* 84] 16x16 9instructions 4
(w/ multiplier) [BBB*95] 64%64 2 per cycle 250
DSP(16x 16 MAC) [WDWT 85] 16x 16 1cycle 165
DSP(16x 16 MAC) [Gol87] 16x 16 1cycle 23
DSP(16x 16 MAC) [PML*89] 16x 16 1cycle 13
DSP (2x16x16 MAC) | [USO'93] 16x 16 0.5 cycles 10
DSP(32x32 MAC) [NHK95] 32x32 1cycles 89
Memory [SMKT94] 8x8 1 64K x 18 block 10
[SKSt93] 11x11 61Cs 0.3
SIMD [BSVTO5] 8x8 8 PEs, 66 cycles 80
16x 16 16 PEs, 126 cycles 84
32x32 32 PEs, 235 cycles 0
(ALU only) [YKFt94] 8x8 1PE, 40cycles 13
(w/ lookup) 8x8 1PE, 11 cycles 4.8
Vector
(w/ 16x 16 mpy) [ABIT95] 16x 16 8 per cycle 82
FPGA [ATT94] 8x8 27 PLCs, 19ns 30
[Alt96] 8x8 164 LEs, 49ns 8.6
[LE94] 8x8 66 CLBs, 102ns 7.6
16x 16 102 CLBs, 152ns 13
32x32 174 CLBs, 254ns 185
200x 200 930 CLBs, 1320ns 26
[ID95] 16x 16 316 CLBs, 26ns 25
[ID95] 16x 16 88 CLBs, 120ns 19
PADDI2 [YR95] 16x8 4 PEs, 50MHz 150
MATRIX 8x8 1BFU, 20 ns 110
16x 16 6 BFU, 20 ns 74

Table 5.3: Survey of Programmable Multiply Capacity

5.3 General-Purpose Multiply Implementations

For comparison, Table 5.3 summarizes the capacity density of severa configurable and pro-
grammable implementations. Processors without specialized multiply support show a factor of
10,000 lower performance density than hardwired multipliers. Processors, with multiply or booth
step operations have only a factor of 1,000x lower performance density. FPGAs are a factor of
100-300x less dense than custom hardware. Processors, DSPs, and reconfigurable ALUs with
integrated multipliers are only afactor of 10-20x lower in performance density. Figure 5.1 shows
these basic relationships.

56

//R1,R2 hold inputs
ADD RO,RO,R3

/Irepeated for number of bitsin R2 input
AND R1,#1,R4 //mask low bit
JUMPIlequ,ZBITn //skip add if zero
SLL R1,#1,R1 //delayed branch slot
ADD R3,R1,R3 /ladd in scaled term
ZBITn: SRA R2#1,R2 /Iscale for next add

/lresult in R3

Table 5.4: Multiply Using Standard ALU Operations

Processor Processor
w/ mstep w/ MPY WF;@'I[DL#

Processor .
ALU Ops Semicustom
N\ Custom
I
I I I I
0.1 10 100 1,000 10,000

I
I
1
Multiply Bit Op Density

Figure 5.1: Comparison of Programmable and Custom Multiply Functional Densities

5.4 Hardwired Functional Unitsin *“ General-Pur pose Devices’

Onething we note from Table 5.3 is that processors with integrated multipliers provide roughly
10% of the performance density of a custom multiplier. This comes about simply by dedicating
~10% of the processor real-estate to hold a custom multiplier. Because of the importance of
the multiply function in many applications and the 100-1,000x performance density differential
achievable by setting aside this 10%, many processors and all DSPs augment the general -purpose
corewith ahardwired multiplier. Custom multiply and fl oating-point | ogic are the two main piece of
custom logic which have been regularly integrated onto conventional “general-purpose” computing
devicesfor thisreason.

57

Structure \ Reference H 64x64 | 54x54 | 32x32 | 16x16 \ 8x8 \ 4x4

Custom 64x 64 [SH89] 2300 1600 560 140 35 9
Custom 54x54 | [GSNS92] 2800 970 240 60 15

Processor
(w/multiplier) | [BBB195] 250 180 63 16 4 1
(w/mstep) [Cho89] 9 4 2| 08
(ALU Ops) [SKPS84] 07| 03] 0.2

FPGA

[LE94] 23 21 19 13 8| 35

Table 5.5: Yielded Multiply Capacity as a Function of Granularity

Architecture ‘ Reference ‘ Multiply Op | areaandtime %@WS
Processor [Cho89] 8x8 8 instructions 2
16x 16 16 instructions 5
Memory [SMKT94] 16x16 2 64K x 18 block 19
[SKSt93] 22x22 111Cs 0.7
FPGA [Cha93] 8x8 22 CLBs, 25ns 93
16x16 84 CLBs, 40 ns 61

Table 5.6: Survey of Specialized Programmable Multiply Capacity

5.5 Multiplication Granularity

A custom multiplier isoften called upon to perform multipliesfor avariety of datasizes. When
multiplying operands smaller than the native multiply size, the custom multiplier yields lower
multiply functional density thanindicated in Table 5.1. Table 5.5 compares the yielded capacity of
the various custom and programmable multipliers reviewed above.

5.6 Specialized Multiplication

In many applications, one of the operands in the multiply is a constant — or changing slowly.
In these case, the operation complexity is slightly reduced, in general, and may be greatly reduce
in particular circumstances. Hardwired, 2-operand, multipliers cannot take advantage of this
reduced complexity whereas programmable and configurable devices can. Table 5.6 summarizes
the multiply capacity provided on specialized multiplies. For comparison with the previoustables,
the multiply capacity density is calculated asif it is performing afull » x m multiply. It might be
more accurate to say the complexity of the problem decreased rather than the density of multiply
bit ops increased, but the ratio of the performance density numbers is the same whichever way
we view it. Note that the densities shown in Table 5.6 apply for any constant operand. Particular

58

operands may admit to much tighter implementations.

5.7 Summary

In general, reconfigurable devices achieve 100-300x lower capacity density than their custom
multiply counterparts. At the sametime, they achieve 10-30x better performance than a processor
building a multiply out of ALU operations. For this particular operation, most processors include
a specialized multiply-step operation, which brings them closer to parity with the reconfigurable
devices, or integrate acustom multiplier, which givesthem a10x advantage over thereconfigurable
devices. Reconfigurable devices which aso include custom multiply support achieve about the
same multiply density as processor with integrated, custom, multipliers. When large, custom
multiplier arrays are used on small data, the gap between the custom devices and the reconfigurable
devicesnarrows. Similarly, whenamultiply operandis constant or slowly changing, reconfigurable
devices may exploit the reduction in operation complexity to narrow the density gap.

59

6. High Diversity on Reconfigurables

We have already noted that conventional FPGASs are poor at handling a functional diversity which
islarger than the aggregate functional capacity provided by asingle device (Section 4.5). Handling
larger diversity may require reloading the FPGA programming, a slow process for conventional
FPGAs. During the reload time, the device goes largely unused. Alternately, a more generic
processing unit can be built on top of the FPGA and microsequenced like a processor. 1n the most
extreme case of spatial limitations, we might end up building a processor-like design on top of the
FPGA. Table 6.1 summarizesthe capacity density provided by several processorswhich have been
built on top of FPGAS.

From Table 6.1, we see that such processors, when optimized for the FPGA, have a peak
capacity of about 2 ALU bit operations/A?s, or about one fourth the capacity of a custom processor.
The architecture for R16 and jr16 are moderately straight RISC processor architectures, and are
likely to yield about the same fraction of this capacity as most other RISC processors.

At a4x penalty from custom processors, for high diversity operations, one would certainly
be better off using, or building, a custom processor. As the commonality in the computational
task increases and the area available to the FPGA increases, the FPGA can build more application
specialized structures, realizing higher capacity density. Thissuggeststhereisacontinuum between
the most highly diverse functional operations, where FPGAs are 4x |ess dense than processors, to
the most regular operations, where FPGAS provide 10-100x more performance density.

It is also interesting to note that the performance density penalty for handling these highly
diverse operations on an FPGA is much less than the performance density penalty associated with
implementing a multiplication on the FPGA.

With only a 4x performance density penalty, an FPGA processor is roughly equivaent to a

Year ‘ Design ‘ Organization ‘ Design Size ‘ A2 area ‘ cycle ‘ %lstops
1991 | Fliptronics R16 [Fre94] 1x16 150 XC4K CLBs 190M 50 ns 17
1994 nP [WHG94] 1x8 40 XC3K CLBs 52M 3x30ns 17
1994 MacDLX [Dur94] 1x32 ~1000 XC4K CLBs | 1.2G 500 ns 0.05
1994 jr16 [Gra94] 1x16 ~200 XC4K CLBs | 250M 25ns 2.6
1996 j32 [Grag6] 1x32 ~ 250 XC4K CLBs | 310M 63 ns 16
1996 Hokie [GHH™T 96] 1x16 ~ 140 XC4K CLBs | 175M 63 ns 15
Wa X Niaru

ALU Bit Ops/\2s =

Area

22 X Pfraction X tcycle

Table 6.1: Survey of FPGA-Implemented Processor Capacity

60

4x smaller processor. From table 4.2, we have seen aggregate processor capacity increase from
15M A2 in 1984 to 5GA? in 1995, or about 70% per year. The 4x capacity density thus puts a
processor implemented on an FPGA implemented in a modern processes roughly equivalent to a
2.5-3 year old processor. As such, FPGA processors — which can ride the FPGA technology to
track technology advances — may be an attractive option for running legacy assembly code.

61

Part |11

Structure and Composition of
Reconfigurable Computing Devices

62

7. Interconnect

Programmabl e interconnect is the dominant contributor to die area and cycle time in configurable
devices. To support their large, active functional density, the computational units must be richly
interconnected and support highly parallel data routing. FPGAS, more than other general-purpose
devices, place most of their areainto interconnect.

We review interconnect issues in the context of on-chip networks for reconfigurable archi-
tectures. We establish typical size and delay contributions by analyzing conventional FPGA
implementations, then we look at how resource requirements grow with increasing array size.
Understanding conventional sizes and growth factors help us characterize the design space. It also
serves as background context for the architectural developments described in Part V.

In this chapter, we:

1. Decompose FPGA area into three component parts and establish the relative areas of each:
fixed logic, configuration memory, interconnect resources

2. Review issuesin configurable network design

3. Establish growth ratesfor interconnect and description requirementsas afunction of network
size

4. Establish relationships between network size and richness of network interconnect

5. Examine the efficiency of device utilization when viewed in relation to network resource
utilization rather than programmable gate utilization

6. Examine the effects of multibit granularity on interconnect resource requirements

7.1 Dominant Area and Delay

7.1.1 Fixed Area

Reviewing LUT-based FPGA implementations from Table 4.13, and calculating the area per
4-LUT (Table 7.1), we see that each 4-LUT is roughly 600K\2. The flip-flop and 16:1 LUT
multiplexor make up very little of this area, easily less than 20K A\2. [BFRV92] estimates the area
of the 4-LUT multiplexor with flip-flop as 13K A2. In our own DPGA implementation these items
occupied 15K A2 (See Chapter 10). The majority of the area associated with each 4-LUT (97%),
goesinto programmable interconnect and configuration memory

This breakdown, alone, shows us one reason why a full 4-input lookup table is often used as
the programmabl e logic element, rather than a more restricted gate. The area required for the full
LUT, including its configuration memory, is less than 10% of the area of the 4-LUT cell, such that
thereislittle advantage to reducing the cell’s functional size.

63

Year | Design | \area/4-LUT

1986 Xilinx 2K [CDF* 86] 500K
1988 | Xilinx 3K [Xil89, HDJ"88] 650K
1991 UTFPGA [CSAT91] 670K
1992 Xilinx 4K [Xi194b] 630K
1994 LEGO [Se094] 1020K
1995 DPGA [TEC*95] 660K
1995 Xilinx 5K [Xil91] 560K
1995 Altera 8K [Alt95] 930K
1995 Orca2C [ATT95] 1060K

Table 7.1: FPGA 4-LUT Size

Part Approximate Bits/4-LUT
Xilinx xc2k 160

Xilinx xc3k 100

Xilinx xc4k 200

Xilinx xcbk 120

UTFPGA 48

LEGO 120

DPGA 4x40

Altera 8k 190

Orca2C 120

Table 7.2: Bitsper 4-LUT

7.1.2 Interconnect and Configuration Area

The number of programming bits per 4-LUT for these devices is summarized in Table 7.2.
Using a rather large memory cell (~4.5K A\?/bit), the memory accounted for 35% of the area on
UTFPGA. With 4-contexts and 600\ 3T-DRAM memory cells, memory only occupied 33% of
the area on the DPGA.. If we assume 10002 static memory cells, for the Xilinx parts, memory

accounts for about 15-30% of that area (180K (3205), 100KAZ ' (150¢), 200K (3004), 120KA7,

(21%)). Making similar assumptions, memory accounts for 21% of an Altera 8K part (éggﬁii)

and 11% (11026%%22) of an Orca 2C part. Interconnect and routing occupies the balance of the area

(70-90%).

7.1.3 Delay

Most vendors lump interconnect timing in with lookup table evaluation, making it difficult to
distinguish the components of delay. Table 7.3 summaries interconnect and LUT logic delay for
Altera’s 8K series [AIt95] and our own experience with the DPGA (Chapter 10). From here, we

Design \ Path | Total Delay | LUT delay | Interconnect

Altera8K LUT-local-LUT 25ns 2ns 20%
[Alt95] LUT-row-local-LUT 75ns 2ns 73%

LUT-row-column-local-LUT 10.5ns 2ns 81%
MIT DPGA LUT-LUT (in subarray) 3.5ns 15ns 60%
[TECT95] LUT-xbar-LUT 7ns 15ns 80%

Table 7.3: FPGA Delay Breakdown

see that interconnect typically accounts for 80% of the path delay.

65

7.2 Problemswith “Simple’” Networks

FPGA networks, which already need to interconnect thousands of independent processing ele-
ments, do not, typically, look like conventional multiprocessor networks. In particular, anumber of
conceptually “simple” network structures commonly used as the basis for multiprocessor networks
do not scale properly for use in FPGASs. In this section, we review three typical organizations and
highlight their shortcomings on the scale required for FPGA networks.

1. crosshars
2. multistage networks
3. mesh networks

This review helps identify and motivate important design issues for reconfigurable interconnect
which wewill addressin the following section.

7.2.1 Crosshars

To guarantee arbitrary, full, connectivity anong elements, we could build aafull crossbar for
the interconnection network. In such a scheme we would not have to worry about whether or
not a given network could be mapped onto the programmabl e interconnect nor would we have to
worry about where logic elements were placed. Unfortunately, the cost for this full interconnect is
prohibitively high.

For an n element array where each element is a k-input function (e.g. £-LUT), the crossbar
would be an n x k - n crossbar. Arranged in aroughly square array, each input and output must
travel O(,/n) distance, before we account for saturated wire density. Since interconnect delay is
proportional to interconnect distance, thisimplies the interconnect delay grows at least as O(1/n).
However, the bisection bandwidth for any full crossbar is O(n). For sufficiently large n, this
bisection bandwidth requires that the side of an array be O(n) to accommodate the wires acrossthe
bisection. In turn, the O(n) bisection bandwidth dictates an area O(n?). This also dictates input
and output wires of length O(n). For large crossbars, wire size dominatesthe areas. These growth
rates are not acceptable even at the level of thousands of LUTs. If we were to build devices using
a single monolithic crossbar for interconnect:

¢ areagrowth would be as the square of the number of LUTs supported
¢ cycletime would slow down linearly with the number of LUTs in the network

Consider, for the sake of illustration, the size of a crossbar required to interconnect a 2,500
4-LUT device. We will assumethe minimum wire pitch is8A and the crossbar isimplemented with
two layers of dense metal routed at this minimum wire-pitch. The area of such an array, asdictated
simply by the wiring would be:

(8) x 4 x 2500) x (8) x 2500) = 1.6GA>

66

Making for an areaof L88)* — 640K A2 per 4-LUT just to handletherequisitewiring. Conventional

FPGAs use a single SRAM cell to configure each of the crosspoints in the crossbar. If this were
done, the areawould be memory bit dominated rather than wire dominated and take up:

1000A? x (4 x 2500) x 2500 = 25G\?

Which resultsin 10M A2 per 4-LUT just to hold the configuration memory. The area per LUT, of
course, continues to grow linearly in the number of LUTsfor larger networks.

7.2.2 Multistage Networks

M ultistage interconnection networks (e.g. butterfly, omega, CLOS, Benes) can reduce the total
number of switches required from O(n?) to O(nlog(n)), but have the same bisection bandwidth
problem. Between any two pair of stagesin a butterfly network, the total bisection bandwidth is
O(n), such that the wiring requirements dictate that areagrows at O(n?).

7.2.3 Mesh Interconnect

Attheoppositeinterconnect extreme, wecan useonly local connectionswithin thearray between
adjacent, or close, array elements. By limiting all the connectionsto fixed distances, the link delay
does not grow as the array grows. Further, the bisection bandwidth in a mesh configuration is
O(4/n) and hence, never dominates the logical array element size. However, communicating a
piece of data between two pointsin the array requires switching delay proportional to the distance
between the source and the destination. Since switching delay through programmableinterconnect
is generally much larger than fanout or wire propagation delay along a fixed wire, this makes
distant communication slow and expensive. For example, in atopology where direct connections
are only made between an array element and its north, east, south, and west neighbors (typically
called a NEWS network), a signal must traverse a number of programmable switching elements
proportional to the Manhattan distance between the source and the destination (O(+/)). For the
interconnect network topologiestypically encountered in logic circuits, this can make interconnect
delay quite high — easily dominating the delay through the array element logic.

67

7.3 Issuesin Reconfigurable Network Design

With this background, we can begin to formulate the design requirements for programmable
interconnect:

1. Provide adequate flexible — The network must be capable of implementing the intercon-
nection topology required by the programmed logic design with acceptable interconnect
delays.

2. Use configuration memory efficiently — Space required for configuration memory can
account for areasonabl efraction of thearray real-estate, aswesaw in Section 7.2.1. However,
aswewill seein Section 7.8, configuration encodings can be tight and do not have to take up
substantial arearelative to that required for wires and switches.

3. Balancebisection bandwidth—Asdiscussed above, interconnect wiring takes space and can,
in sometopologies, dominatethe array size. Thewiring topology should be chosen to balance
interconnect bandwidth with array size and expected design interconnect requirements.

4. Minimize delays— The delay through the routing network can easily be the dominant delay
in aprogrammable technology (See Section 7.1.3). Careisrequired to minimizeinterconnect
delays. Two significant factors of delay are:

(a) Propagation andfanout delay —Interconnect delay onawireisproportional to distance
and capacitive loading (fanout). This makesinterconnect delay roughly proportional to
distance run, especially when there are regular taps into the signal run. Consequently,
small/short signal runs are faster than long signal runs.

(b) Switched element delay — Each programmable switching element in a path (e.g. cross-
bar, multiplexor) adds delay. Thisdelay is generally much larger than the propagation
or fanout delay associated with covering the same physical distance. Consequently,
one generally wants to minimize the number of switch elementsin a path, even if this
means using some longer signal runs.

Switching can be used to reduce fanout on aline by segmenting tracks, and large fanout can be
used to reduce switching by making a signal always available in several places. Minimizing
the interconnect delay, therefore, always requires technology dependent tradeoffs between
the amount of switching and the length of wire runs.

68

Interconnect

Figure 7.1: Conventional FPGA Interconnect Topology

7.4 Conventional | nterconnect

Conventional FPGA interconnect takes a hybrid approach with a mix of short, neighbor con-
nections and longer connections. Figure 7.1 shows a canonical FPGA LUT tile. Full connectivity
is not supported even within the interconnect of a single tile. Typically, the interconnect block
includes:

¢ A hierarchy of linelengths— someinterconnect lines span asingle cell, some a small number
of cells, and some an entire row or column

¢ Limited, but not complete, opportunity for corner turns
¢ Limited opportunity to link together shorter segmentsfor longer routes

¢ Options for the value generated by the LUT to connect to some lines of each hierarchical
length in each direction — perhaps including some local interconnect lines dedicated to the
local LUT output

¢ Opportunity to select the £-LUT inputs from most of the lines converging in the interconnect
block

The amount of interconnect in each of the two dimensions is not necessarily the same. Figure 7.2
shows these featuresin a caricature of conventional FPGA interconnect.

The University of Toronto has performed a number of empirical interconnect studies aimed at
establishing basic FPGA interconnect characteristics, including:

¢ How densely to populate the interconnect with switches and the number of routing tracks
required to route representative circuits[RB91]

¢ The merits of hierarchical interconnect [AL94]

69

O Switch between segments X Switch between orthogonal lines

Figure 7.2: FPGA Interconnect Caricature

e Thedistribution of line lengths [Se094]

One of the key differences between FPGAs and traditional “multiprocessor” networks is that
FPGA interconnect paths are locked down serving a single function. The FPGA must be able to
simultaneously route all source-sink connections using unique resourcesto realize the connectivity
required by the FPGA. Another key differenceisthat theinterconnection patternisknown aprior to
execution, so offline partitioning and placement can be used to exploit locality and thereby reduce
the interconnect requirements.

70

7.5 Switch Requirementsfor FPGAswith 100-1000 LUTs

Before we examine how network requirements scale with connectivity and network size, in
this section, we briefly review the number of switches conventionally employed by networks
supporting 100 to 1000 4-LUTs. Brown and Rose [RB91, BFRV92] suggest each 4-LUT in a
moderate sized FPGA with 100's of 4-LUTs will require 200-400 switches. Agarwal and Lewis
suggest approximately 100 switches per LUT for hierarchical FPGAs [AL94] with some reduction
inlogic utilization. Conventional, commercial FPGAsdo little or no encoding on their interconnect
bit streams — that is, each interconnect switch is controlled by a single configuration bit. From the
configuration bit summary in Table 7.2, we see that commercial devices also exhibit on the order
of 200 switches per 4-LUT. The fact that conventional FPGASs can, with difficulty, route most all
designs using less than 80-90% of the device LUTS, suggeststhat they chose anumber of switches
which provides reasonably “adequate” interconnect for the current device sizes — hundreds to a
couple of thousand 4-LUTs.

71

7.6 Channd and Wire Growth

In Sections 7.1 and 7.5, we have empirically established the size of conventional interconnect.
However, as we glimpsed in Section 7.2, the area which these resources occupy is not necessarily
independent of the number of LUTs interconnected. In this section we look at how interconnect
requirementswill grow with the number of LUTS supported.

The best characterization to date which empirically meters interconnect requirementsis Rent’s
Rule[LR71, Vil82]:

N;, = CN?

gates

(7.1)

N;, is the number number of interconnection in/out of aregion containing N,q:.s. C and p are
empirical constants. For logic functions 0.5 < p < 0.7, typicaly.

El Gamal used a stochastic model to estimate the interconnection requirements for channeled
gate arrays [Gam81]. He found that each routing channel requires O(R) tracksiif the average wire
length, R, growsfaster than O (log(n)). n hereisthetotal number of circuitsinthearray, generally
arranged in an v/n x y/n array. Brown used El Gamal’s routing model for FPGAs and found good
correspondence between it and FPGA interconnect requirements [Bro92]. For large numbers of

gates (Nyazes) and p > 0.5, Donath finds that B o« N7;,% [Don79]. Together this means the

gates
channel width grows as O(N;?(;Sf). From which we can derive the interconnect requirements
growth:

chha'rmels o8]Vgates

= */Vchannels X */Vchannel_width

jvinte'rconnect _width

7. — 2
N interconnect_area — IVinte’rconnect_width

/ p—0.5y2
]Vinterconnect_area X (lVgates X jvgates)

2p
{¥interconnect _area X *Ngates (72)

p= % isoften considered agood, conservative, valuefor p to handlemost interconnect requirements.

For p < 0.5, Donath finds that £ growsas O (log(N y4tc5)) or smaller. For B < O(IN(Ngqtes)),
El Gamal’s model suggeststhe the track width growsas O (In(N,4+e5)). In this case, total intercon-
nect requirements grow as O (N gqzes Iogz(Ngates)).

7.6.1 Rent’sRuleBased Hierarchical I nterconnect Model

To make this size estimate more concrete, let us consider a specific structure built according
to Rent's Rule. We build a fully hierarchical interconnect with inter-level signaling bandwidth
growing according to Rent’s Rule. To simplify analysis, we consider only unidirectional signal
wires.

The gates are recursively partitioned into n» equally sized sets at each level of the hierarchy.
The principal interconnect occurs at each node of convergence in the hierarchy (See Figure 7.3).
At alevel [in the hierarchy, each node has afan-in from below of n x n,,,_, sSignasand afan-in
from above of n;,,. Similarly, it has afan-out of » x n;,,_, toward the leaves and n,,;, towards

72

Nout, Nin

Figure 7.3: Logical Structure of Hierchical Interconnect

the root. At each level [, we have nryr, LUTS, n;,, externa inputs, and n.,, external outputs.
According to the hierarchical combining and Rent’s Rule growth, we have:

Ny, = n
Nin, = C’((n)l)p
o, = € ((0))" (7.3)

Wetake C' = K, the number of LUT inputs. When (€' ((n)')") > u!, whichwill be true for small
I, we take n,,;, = n' —that is, al outputs are passed out of the region when this Rent bandwidth
permits.

Logically, we have » + 1 distinct output directions from each node of convergence in the
interconnect — n for the n leaves, plus onefor theroot. Allowing full connectivity within each tree
node, each of the n leaves picks its n;,, inputs from the (n — 1) X n,,; outputs from its siblings
and from the n;,, inputs from the parent node. The n,,; outputs of this node are selected from

73

Nout Nin

Up XBAR

Down | |IDown
Nout ——_JXBAR XBARE_—— Nout

-1 -1

: :
Nin, _ j— = Nin, _

) 1

Figure 7.4: Switching node in 2-ary Hierarchical Interconnect

the n x n,,; outputs from al » subtrees converging at this point. Figure 7.4 shows this basic
arrangement for n = 2.

7.6.2 WireGrowth in Rent Hierarchy Model

First, let us consider how wiring resources grow in this structure. At each stage of the
hierarchy, there are n;,, = nou, = C ((n)l)p wires coming and leaving each subarray. This
makes the bisection width of O ((nl)p) = O ((Nrur,)"). For atwo-dimensional network layout,
this bisection width must cross out of the subarray through the perimeter. Thus the perimeter of
each subarray is O ((Nrur,)”). The areaof the subarrays will be proportional to the square of its
perimeter, making:

Asubarmy X (AT}jUT)z
Thearearequired for each LUT based on wiring constraints, then, goes as:

2
Asubar?"ay x (*NgUT>

Nrur Nrur
Apvr « (NFY) (7.4)

Not unsurprisingly, this matches the interconnect growth we derived in Equation 7.2. Of course,
if p < 0.5, wiring is not the dominant resource constraining LUT area. Aryr may be O(1) for
p < 0.5 asfar as strict wiring requirements are concerned.

Arur =

74

7.6.3 Switch Growth in Rent Hierarchy Model

We can also look at the number of switches required if each of the logical switching unitsisa
fully-populated crossbar. At each level, [, the total number of switchesis:

inputs to down xbar

NSW —total, = n X ((TL - 1) *Nout;_q + ninl) XNipy_4 + (noutl X (n . noutl_1)>

up xbar

each down xbar
% (((n = 1) 5w 4 wrt) 5 KnrD)) 4 Kt x (n- Kn?)

En X ((n—1+ np) . K Pt 1)) % Knp(l—l))) 4 Kt x (n ' Knp(l—l))
- (" (n—1+nP)- I(znz?“(l‘l)) + (np - Kznzp(z—l))

(n- K20209) (0 — 14 n2) 4 ?)
= (0 KZPD) (0 - 14 207) (7.5)

Amortizing across the number of LUTs supported at level [, we can count the number of switches
per LUT at each level:

(n . K2n2p(l_l)) -(n— 14 2n?)

nsw, = o
_ (I(ZH(Zpl—Zp—H-l)) - (n =1+ 2n?)
= (KZ@DD) (0 — 14 207) (7.6)

Summing across al levels, we can thus cal culate the number of switches per LUT asafunction of
the size of the network.

log, (NzuT)
nsw = 3 ([xz (2p=1)(1— 1)) - (n— 14 2n?)
=1

Substituting N7 for »!, and expanding sum:

1 1 \? 1 \!
, _ (2 p@2p=1) ,
nsw = (K2NY) - (n<zp—1) + <n<zp—1>> ot <n(2p—1))) (n—1420) (77)

For p > 0.5, thisgivesus:

1 (1)(IOgn(NLUT)+1)

o -2 A7(2p—1) n2e=0 — \ R0
o = (wengy) (P ()
n(ZP_l)

- (n— 1+ 2nP)

75

1

— 7@7)

r(2p-1)\ | g2, 1 (n — P
< (NFY) K <n(2p—1) - 1) (n— 1+ 2n?) (7.8)
For p = 0.5, each sum term in Equation 7.7 goes to one:
nswo = (NgUT log,, (NLUT)) cK?.(n—14 2nP)
nsw = log, (Nror)- K- (n— 14 2nP) (7.9)
For p < 0.5,
-2 nr(20-1) p (1-2p)\ 99 (NzoT) (1-2p))? (1-2p)
nsw = (Ii E\LUT)-(n—l—I—Zn) (n) —|—---—|—(n) —I—(n)

1

)IOgn(NLUT)

1 - n(l_ZP)

(n— 1+ 2nP)- ((n<1—2p>)'°9"‘NLUT)) . (1;1)

nsw o = (K°N{EY) - (n—14207) (((n(lzp))'ogn(NwT)) (1 (et

nsw <
- n(l_ZP)

(1-2p)
nsw < . (n 14+ an) . (n((l—zp)mgn(NLUT))) . ((?—T)l)
TI/ J—

(12)

(e i)
nsw <(K%ﬁ%%-m_1+%@,@meﬁﬂ)(Hg%?I)

nsw <)

(vitr") - (

(1-2p)
o py(n@=2p) [T
(n — 14 2nP) (NLUT) (n(l—Zp) — 1)

(1-2p)
-(2p—1 1-2 -2 n
AJSIZ}T)) : jVJSUTp)) K (n—1420F) - (n(l—zp) _ 1)

A

nsw

.2 zn(l_zp)
nsw < K- (‘TL -1 + Z‘np) . m
Putting these cases, together:

. 7(1—2p)
K2 (n = 14 207) - (g p<05
nsw < |Ogn (LNLUT) K2, (n -1+ Zﬁ) p=05
(V") - K2 (o) (0 -1+ 207) p> 05

Here, we see switching areaper LUT growsas O (1), for p < 0.5,and O (Nf{}}l)

Again, this matches our wiring growth expectations (Equation 7.2).

(7.10)

(7.11)

) forp > 0.5.

While Equation 7.11 gives the correct growth rates it overestimates the required number of

switches on two accounts:

76

Switches/LUT

9001
8001
7001
600+
5001
4001
3001
2001
1001

— === Rent p=0.50 equation Phe
| —— Rent p=0.50 direct .7

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

NLuT

k:4,n:2,p:0.5

Figure 7.5: Switches per LUT — Equation versus Direct Calculation

1. It doesnot take into account the limited number of distinct outputs at the lowest stages of the

network —i.e. when there are less outputs than the Rent i/o suggests.

2. It approximates each crossbar as requiring n x m switches. However, since each crossbar is
performing an n choose m operation, only n x (m — 1) crosspoints are actually required to

provide full connectivity at each tree interconnect node.

Figures 7.5 and 7.6 show the difference between Equation 7.11 and a direct calculations which
includes the above two effects. Asymptotically, the difference is in the constant factor. Note that
for p = 0.5, the number of switchesper LUT computed by the direct calculation in the 256-1024

LUT rangeis 190-250, which is on par with contemporary interconnects (Section 7.5).

77

D _ ’
—1 6000 --- Rentp=0.67 equation)
—— Rent p=0.67 direct)/
© 50001 ,
O V4
= V4
'% 40001 ,
,I
30001 L’
. 7
20001 - s
10001+ .- -
0. _1_d--"" L L 1 1 1 1
1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

NLuT
k=4,n=2p=0.67

Figure 7.6: Switches per LUT — Equation versus Direct Calculation

78

7.7 Network Utilization Efficiency

In the previous section, we saw that the amount of interconnect we need to provide depends
upon the connectivity of the network. This makes it difficult to design a single network which will
efficiently accommodate arbitrary designs. If the design has limited connectivity, but the network
provides a large amount of connectivity, the network is over designed relative to the design and
provides less functional density than achievable. If the design has considerable connectivity, but
the network providesless, the design must be routed sparsely on the interconnect, leaving many of
the device LUTs unusable.

Using the switching models derived in the previous section, we can examine the relative
inefficiencies of using a design with Rent exponent pg.s;,, 0N anetwork with Rent exponent pi,.¢.
We do this by looking at the ratio of the area occupied by a design with Nz LUTsand on top of
anetwork built using Rent exponent pj.c;. If ppe; > pdesign, thentheratioissimply theratio of the
areaper LUT of ap,. interconnect of Nrr LUTSto the areaper LUT of apges;4r iNterconnect
of Ny LUTs. However, if piesign > pret, We cannot simply map the design netlist on top of the
deviceLUTs. Here, we haveto figure out how much larger the network must be than the number of
LUTsin the design in order to accommodate the highly connected design. Let us call this scaling
factor C'. In order for the network to accommodate the design, it must have enough i/o bandwidth
into each subregion. Starting at the top level in the design, this means:

niodesign S nionet

The only way to accommodate this requirement with afixed p,.; isto scale up the network used.
Applying Rent’s Rule (Equation 7.1), this means:

KNpisem < K(C - Nppr)Pret

Solving this relation for equality:

NigE" = (C- Npppyr
Npgege e = O Ny
Pdest n/pne -1
¢ = NBaion/one1) (7.12)

Note that once we accommodate the top level of the design, all other levels are also accommodated
aswell. That is, once we have chosen ' as above, at the top level:

B’nlpdesign S]((Cn)lpnet (713)

SINCe Prer < Pdesign, et level [— 1, the connectivity required for the design will shrink faster than
the network connectivity, so lower level s are satisfied by the same scale up factor which satisfiesthe
top level in the design. The overhead ratio for the pyesign > pre: Case, then, istheratio of the size
of aC - Nppyr interconnect with Rent exponent p,,.; compared to the size of an Ny interconnect
with Rent exponent pgesigy, .

In making this area comparison, we assume that switching area dominates non-switching area,
and we approximate LUT areaas proportional to the number of switches. From Section 7.1, we saw

79

that thisistrue of conventional devices. Inthe previous section, we saw that switching requirements
grow at least asfast aswires, and generally faster than non-switching resources. This suggests that
switching areawill continue to dominate non-switching area as device capacities grow.

If we solve for ' strictly according to Equation 7.13, the ratios are continuous and do not
take into account the discretization affects associated with network size and levels. The continuous
approximation gives usasmooth way to compare general overhead growth trends. Figure 7.7 shows
both the discrete and continuous comparisons for various pgesigrs implemented on a network
with p,.; = 0.5 as afunction of Nyyr. Figure 7.8 similarly shows the relative overheads for
implementing p4.s designswith Ny = 4096 on p,,.; designs. Figure 7.9 plots the same data as
the continuous case from Figure 7.8 on three axes. Figure 7.10 plots the continuous efficiency, the
inverse of overhead, and Figure 7.11 plots the continuous efficiency on alogarithmic scale.

80

Overhead

Overhead

227
201
181
161
14+
121
101

o N A OO 0

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536131072

NLuT

16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536131072

NLuT

k=4,n=2 pu: =05
Top - discretized ratios; Bottom - continuous ratios

Figure 7.7: Overhead Growth versus Ny for various p,,.;

81

Overhead Ratio

Overhead Ratio

207
181
161
141
121
101

oo N A O ©

181
161
141
121

Pdes

N e
‘~ Nad

SR
l\ Nt A
|— T

(0

oo N A O ©

0.10 0.20 0.30 0.40 050 0.60 0.70 0.80 0.90 1.00

Pdes

k=4,n=2 Nryr = 4096
Top - discretized ratios; Bottom - continuous ratios

Figure 7.8: Overhead for pg.s VErsus p;,.:

82

Pret=0.20
Pnet=0.30
Pre=0.40
Pre=0.45
Pnet=0.55
Pnet=0.60
Pre=0.70
Pnet=0.80

Pret=0.20
Pnet=0.30
Pre=0.40
Pre=0.45
Pnet=0.55
Pnet=0.60
Pre=0.70
Pnet=0.80

k=4,n=2, Npyr = 4096

Figure 7.9: Continuous Overhead for pg.s VErsus pje:

83

0.10
1.0

0.8

0.6

efficiency 0.4

0.2

k=4,n=2, Npyr = 4096

Figure 7.10: Continuous Efficiency for pges Versus p,.;

k=4,n=2, Npyr = 4096

Figure 7.11: Continuous Efficiency for pges versus p,.: (Log Scale)

85

Ideally, we would like to match the programmable network connectivity to the design connec-
tivity. Unfortunately, we do not generally get that choice. Figures 7.7 through 7.11 show us that
itisjust asinefficient to provide too much interconnect for a design as it is to provide too little.
Thisisimportant to notice, since thereisa tendency to demand rich interconnect that provides high
gate utilization across all designs. However, since the non-interconnect area istrivial compared to
network area in FPGA devices, optimizing for gate utilization is often short sighted.

As afinad, illustrative example, let us consider the task of picking the network connectivity,
Pret, aSSUMING that we know typical designs will have a pg.si,,, between 0.4 and 0.8. Figure 7.12
shows the overheads for p,,.; values of 0.4, 0.58, and 0.8 as a function of pg.s;,r,, respectively.
If we further assume that the design Rent exponents are evenly distributed in this range, we can
calculate an expected overhead:

0.8
E (Overheaj(pnet)) = / overhead (pdesignvpnet) dpdesign

0.4
Figure 7.13 plotsthis expected overhead for the identified range. We see that the expected overhead
isquiteflat between p,,.,=0.5 and 0.6 with an expected overhead of just over 2x. At the endsof the
spectrum, the expected overhead is 8x worse. Note, in particular, if we choseto build p,,.; = 0.8
in order to guarantee full utilization of every LUT, we would pay a16x overhead on average, and
a56x overhead in the worst case. In contrast, choosing p,.; = 0.58 has a worst-case overhead of
4.2x and an average overhead of 2.2xx.

86

Overhead Ratio

Overhead Ratio

0.50

Pnet=0.40

oo B N W > O
I

060 070 0.80
Pdes

60T
501
401
307
207
101

Overhead Ratio

| I
0 ! . !
0.40 0.50 0.60 0.70 0.80

Pdes

Pnet=0.80
k=4,n=2 Nryr = 4096

Figure 7.12: Sample pg.; versus p,.: Overheads

87

40 050 060

Pner=0.58

0.70

0.80
Pdes

26
24
221
207
181
161
14+
121
101

E(Overhead Ratio)

I I I |
40 0.50 0.60 0.70 0.80

oo N A O ®

Pret

k=4,n=2 Nryr = 4096

Figure 7.13: E(overhead) versus p,,.; for Uniform p,., Distribution

88

7.8 Interconnect Description

We can also ask how the requirements for interconnect description will grow. Trivialy, we
know that it will grow no faster than the number of switchescomposing theinterconnect. However,
it can actually grow much slower. We start (Section 7.8.1) by using the full-connectivity model
of the crosshar to establish an upper bound on the necessary interconnect description length. We
then continue (Section 7.8.2) using the Rent’s rule based hierarchical interconnect, as in previous
sections, to derive a tighter approximation. By either metric, we see that the instruction sizes for
conventional FPGAs are significantly larger than necessary. This observation suggeststhat context
memory area and reload instruction bandwidth can be significantly reduced by judicious coding
(Section 7.8.3).

7.8.1 Weak Upper Bound

Assuming that the network may be arbitrarily connected, we can count the number of possible
interconnection patterns to get an upper bound on the number of interconnection bits which can
be usefully employed describing the input to each LUT. We start by assuming we have a device
composed of:

e Npyr k-input lookup tables

e n;, inputsto the network (from the chip i/0)

e n,,: outputs from the network (chip outputs and enables)
Each LUT input can come from any of the other LUT outputs (N 1) or any of then;,, inputs. We
can encode the source selection for a single input:

NLUT _input bits = 10Go(NLUT + 14) (7.14)

SinceaLUT has k inputs, the total number of interconnect bits needed is simply:

NLUT _interconnect_bits = k x NLUT _input _bits
NLUT _interconnect _bits — [k X |092(NLUT + nzn)—‘ (715)

e.g. A 1000 4-LUT device with 200 inputs would require only 41 bits (44 if we encode each input
separately) to specify each LUT’s interconnect. A 9000 4-LUT device with 600 inputs requires
only 53 bits (56 for separate input encodings).

If our functional elements aretruly 4-LUTSs, then this upper bound can be tightend by noticing
that we gain no additional functionality by being able to route a particular source into the LUT
multiple times and the assignment of the sources to LUT inputs is inconsequential. With this
observation, we really only need to choose k items from Nryr + n,, When specifying the LUT
interconnect. This gives:

N Tin
NLUT _input_bits — {(LUTk+ ")-‘ (7.16)

89

e.g. our 1000 4-LUT device with 200 inputs requires only 37 bits and our 9000 4-LUT device with
600 inputs requires only 49 bits. Here we save an additional 4 bits per 4-LUT. Asymptotically:

nk

M 7pits sqved = lim log, | ——
n—oo n—oo n

li I TLk
Im 109, n-(n—1)-(n—2)-(n—
n—c0 ((1)(k! 2)-(3))

n ~ n—-1laxn—-2~n-3
n >> k
. TLk
lim Npits_saved ~ |092 TEN
k!

~ logy(k!) (7.17)

So, we expect that exploiting the equivalence of the £ inputs on a k-LUT to save uslog,(k!) bits
from the number of bits required for full interconnect. For & = 4, this amounts to a savings of
4-5 bitsper LUT.

Commercia devicesare not purely composed up of LUTS, but we can draw a box around their
basic programming elements and use the above counting arguments to get a loose upper bound
on the number of interconnect programming bits they could require. Table 7.4 shows parameters
for each of several commercial device families along with a pedagogical reference. Using the
parameters given in Table 7.4, we can use the full connectivity assumption to compute an upper
bound on the network description length:

Ninterconnect_bits S [nb_ins . |092 (nmax’_b “Np_outs T Nmaz_io nio_outs)—‘ (718)

Table 7.5 calculates N;,terconnect_bits TOr €ach of the device families from Table 7.4 and contrasts
these numbers with the number of actual device bits per basic element. The comparison is
necessarily crude since vendorsdo not provide detailed information on their configuration streams.
However, we expect the unaccounted control bitsin Table 7.5 to not be more than 10% of the total
bits per block. With this expectation, we see that the commercial devices exhibit a factor of two
to three more interconnect configuration bits than would be required to provide full, placement-
independent, interconnect of the logic blocks.

7.8.2 Structure Based-Estimates

The upper bound derived in the previous section assumed full connectivity of the network.
However, the network is generally much more restricted. The restrictions imply a smaller class of
realizable connection patterns and fewer requisite interconnect bits. In this section we return to
our pedagogical, hierarchical interconnect from Section 7.6. For small Rent exponents, p, we can
derivetighter bounds.

90

Fam”y Np_ins Mb_outs Tio_ins Tio_outs Nb_logic bits Tmaz_b Tmaz_io

Xilinx2K CLB 4 2 2 1 16 100 74
Xilink3K CLB 9 2 2 2 32 484 176
Xilinx4K CLB 13 4 4 2 40 1024 256
Xilink5BK CLB 16 8 2 1 64 484 244
Altera8K LE 4 1 1 1 16 1296 208
Orca2C PFU 19 6 3 1 64 900 480
UTFPGA Tile 11 4 2 1 48 700t 256f
LEGO Tile 15 4 2f 1f 64 500t 2561
DPGA 4-LUT 4 1 2 1 16 144 48
Reference 4-LUT 4 1 2 1 16 20001 256f
T - assumed value

N ins number of inputs per basic logic element

b outs number of outputs per basic logic el ement

N _logic_bits NUMDEr of bits specifying the logic function per basic element

Mo _ins number of inputs from each i/o element

Tio_outs number of outputs to each i/o element

Tmaz_ b number of blocksin largest member of family

Nonaz_io number of i/o elementsin largest member of family

Table 7.4: Parametersfor a Sampling of Contemporary Programmable Devices

Part Logic Bits Net Bits Actual Bits (approximate)
Xilinx 2K 16 33 160
Xilinx 3K 16 94 190
Xilinx 4K 40 159 420
Xilinx 5K 64 193 510
Altera8K 16 43 190
Orca2C 64 247 480
UTFPGA 48 128 146
LEGO 64 167 492
DPGA 16 31 40
Pedagogical Reference 16 45 -

Table 7.5: Configuration Bits — Requirement Upper Bound v/s Actual

91

— 1001 -=-= Rentn=2
D] 28 [—— Rentn=4
5 604+— == Full Crossbar

501 f———— R i
~ 0} K-LUT Equivalence
o 301
= 201
LA) i o T Y Y I N B

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Rent Exponent (p)
NLUT:4096

Figure 7.14: Network Bitsper LUT v/s Rent Exponent for N r = 4096 (K=4)

Reconsidering, the hierarchical interconnect structurefrom Figures 7.3 and 7.4, we can cal culate
the number of bits required per level of the hierarchy.

nbuy, = (Iogz ((0 = D mowtyy + i)) - %Iogz(n!)) L (7.19)

Mini_y ni—1

T o
outy

Table 7.6 summarizes these values by level for p = % along with the number of bits according to

the earlier crossbar and K-LUT equivalence calculations. This scheme also gives only an upper
bound since the individual treatment of the permutations within each level counts more distinct
combinations than actually exist. For moderate values of p, though, thiswill give atighter bound
than the crossbar bound derived in the previous section.

The number of bits required will vary with the Rent exponent p. Figure 7.14 shows this
variation. It also shows the relationship among choices of the arity of the hierarchy, », and the
crossbar and K-LUT equivalence bounds. Figure 7.15 shows the growth rate versus the number of
LUTsfor several Rent exponents and the two crossbar bounds.

Note that Donath performs a similar calculation in [Don74]. He uses a more restrictive
interconnect model. Using 2- to 3-input, single-function gates, he calculates 7-10 bits of memory
per p = 0.5t0 0.8. In Donath’'s model, the required description bits does not grow with network
size.

7.8.3 Significance and I mpact

Resourcesfor instruction storage and distribution, as the next Chapter (Chapter 8) will address,
can take up significant areaand play a big role in the characteristics of an architecture. Notably, the
size of the instruction determinesthe size of the instruction store on and off chip and the bandwidth
required to load new instructions.

92

(integer) | (integer)
Nrur Nin Nout nbajbar nbklut Anbup Anbdown Aanent nbrent nbrent
1 4 1 0 0 0.0 0.0 0 0 0.00
2 7 2 12 6 0.0 5.6 6 6 5.63
4 11 4 15 10 0.0 5.1 6 12 | 10.75
8 17 8 18 13 0.0 45 5 17 | 15.23
16 26 16 21 16 0.0 3.8 4 21 | 19.06
32 41 32 24 20 0.0 3.3 4 25| 22.37
64 65 64 28 23 0.0 2.9 3 28 | 2522
128 | 102 | 102 38 27 0.7 2.4 4 32| 28.36
256 | 162 | 162 40 31 0.6 19 3 35| 30.87
512 | 257 | 257 43 34 0.5 16 3 38 | 32.89
1024 | 407 | 407 46 38 0.4 12 2 40 | 34.49
2048 | 646 | 646 49 41 0.3 1.0 2 42 | 35.76
4096 | 1025 | 1025 53 44 0.2 0.8 2 44 | 36.78
8192 | 1626 | 1626 56 48 0.2 0.6 1 45 | 37.58
16384 | 2581 | 2581 59 52 0.1 0.5 1 46 | 38.22
p = 0.67 (Rent Parameter); £ = 4 (K-LUT); n = 2 (2-ary hierarchy)
Nrur Total number of LUTsin level
Tiin number of inputsto level
Tout number of outputs from level
nbzbar number of bits per LUT for full crossbar interconnect
g1yt number of bits per LUT exploiting K-LUT input equivalence
Anby, number of bits per LUT to describe up connections this level
Anbiown number of bits per LUT to describe down connectionsthis level
Anb,.n: (int) integer number of bits per LUT to describe this level interconnect
nbren: (iNt) bitsper LUT to describe interconnect to thislevel with integer rounding
b ent total number of bitsper LUT to describe interconnect to thislevel

The bounds we derived in the previous sections show that the instruction sizes in traditional
FPGAsare higher than necessary, at least by afactor of 2-4x. For single context devicesaswe have
seen, instruction memory makes up only a small fraction of the area on a conventional FPGA. For
this reason, these bloated instructions do not adversely affect FPGA cell area (See Figure 7.16). In
fact, inwire limited regimes, they may help by localizing instruction bits to the values they control.

The most significant impact ison reconfigurationtime. Smaller instructionsmean we can reload
instructions in less time, given the same bandwidth for instruction reload. Alternately, it means
that correspondingly less resources can be dedicated to instruction distribution in order to achieve

Table 7.6: 4-LUT in 2-ary Hierarchical Interconnect with p = %

the same instruction reload time as the larger instructions.

93

=== Rentp=0.50

—— Rent p=0.67

-+ Rentp=0.75

== Full Crossbar (p=0.67)

== K-LUT Equivaence (p=0.67)

Network BitsLUT

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

NLuT

Figure 7.15: Network Bitsper LUT v/s Number of LUTsfor n = 2 (K=4)

Aswe begin to make heavy use of the reconfigurable aspects of programmable devices, device
reconfiguration time becomes an important factor determining the performance provided by the
part. Intheserapid reuse scenarios, instruction size can play asignificant rolein determining device
area and performance.

1. Off-chip context reloads for single- or multi-context devices are slow because alarge amount
of configuration data (typically, > 10° bits) must be transfered across a limited bandwidth
i/o path. Reducing the size of the instructions transmitted across the i/o will improve rel oad
performance.

2. One technique for reducing the reconfiguration time is to store multiple, on-chip contexts.
When we start replicating the instructions associated with each LUT, the relative area con-
sumed by instruction memory increases, making economy of instruction encoding more
important (See Figure 7.17).

7.8.4 Instruction Growth versus | nterconnect Growth

From the previous sections, we have seen that interconnect requirements grow faster than
interconnect description requirements. Specifically:

e For p > 0.5, the number of switches and the amount of wiring grow as O(N %) per LUT.
¢ The number of interconnect configuration bits grows at most as O(N7 10g(Nrur)).

We already see that the switch and wire resources occupy a significantly larger fraction of the are
per LUT than the interconnect description (Section 7.1.2). As N1 getslarge, the size disparity
will grow.

Thisis one reason that single context devices can afford to use sparse interconnect encodings.
Since the wires and switches are the dominant and limiting resource, additional configuration bits
are not costly. In the wire limited case, we may have free area under long routing channels for
memory cells. Infact, dense encoding of the configuration space has the negative effect that control
signals must be routed from the configuration memory cells to the switching points. The closer

94

Configuration

Interconnect Interconnect l
| 1
| (|

N ! |]

Logic Interconnect I I
Configuration Configuration : : ,'
[|,’

Interconnect |

For single context devices, the savings potential from denser interconnect description
encodings is small — maybe 5-10%.

Figure 7.16: Single Context FPGA Area

Interconnect Configurations
Interconnect l
[1 1
/
| | /
| | /
A ! | /
Logic Interconnect I I /
Configuration Configuration : : /
/
I I
Interconnect /

/
L]

For multicontext devices, the savings potential from denser interconnect description encod-
ings can be large — up to 50-75% as the number of configurations get large.

Figure 7.17: Multicontext FPGA Area

95

we try to squeeze the bit stream encoding to its minimum, the less locality we have available
between configuration bits and controlled switches. These control lines compete with network
wiring, exacerbating the routing problems on awire dominated layout.

96

7.9 Effectsof Interconnect Granularity

So far, we have looked entirely at single-bit level granularity networks and designs. In this
section, we look at how the multi-bit designs and networks effect the relations we have aready
devel oped.

In general, we will assume a w-bit datapath with Ny total bit processing elements. Groups
of w bit processing elementswill act as asingle compute node. We thus have N,,.4. = &~ LU such
compute nodes.

7.9.1 Wiring

We look at the wiring requirements, as we did before, by looking at the bisection bandwidth
implied by the network. Assuming Rent’s rule based hierarchical interconnect, at the top level we
have O(N,,.q4.) i/0 busses of width w. This makes for atotal bisection bandwidth:

Nrur
w

. _ 7P
Nbisect = CN node

p
XwIC<) XwaVLUpr(l_p)

Thismakes the wire dictated area growth go as:
Anet = O(nlzzisect) =0 (IVEZIDJTwZ(l_p))

Per LUT this makes:
Apvr = 0 (NG w?d=9) (7.21)

Noticethat thisisactually lar ger than the interconnect wiring arearequired for single-bit intercon-
nects (Equation 7.4).

This result makes the assumption that the w bits composing a node are tightly interconnected
or otherwise coupled such that the minimum bisection occurs between tree levels as before. If the
w bits in a node were not interconnected in any way, the network could be decomposed into w
single bit networks. In such a case, the size would simply be w times the size of an N,,4. Sihgle

bit network, making:
7 2p
Anet = 0 ((ALUT) X w)
w

Apr = O (NP w2 (7.22)

Equation 7.22 implies the area is actually smaller than the single bit network for p > 0.5. In
practice the earlier result (Equation 7.21) ismost redlistic.

Oneissuethisraisesisthat a w-bit design with Rent exponent p implemented on top of asingle
bit network will require more interconnect per level than asingle bit design with Rent exponent p.
Using the same technique asin Section 7.7, we can solve for the required scale up factor:

KNSOdew =K (C]VLUT)p
wl=P) — P

c=wiY (7.23)

97

7.9.2 Switches

Switching reguirements, in contrast, diminish with increasing w sincelessflexibility isrequired
of the network with a given number of bit processing elements. We can derive the switching
requirements by substituting N,,,4. infor Ny in Equation 7.11 then multiplying by the datapath
width:

K2 (n— 14 207) - (i) p<05
now < { log, (M) . K2 (n - 14 2/m) p=05 (7.24)
(ﬂVélejvj_wl)) . w(1_2p) .](2 . (72(2;7—711)_1) . (TL -1 + an) P > 0.5

For large w, wiring requirementswill asymptotically dominate switching requirementsin a bussed
interconnect scheme.

98

7.10 Summary

This section focussed on interconnect. We established viaan empirical review that interconnect
makes up the dominant area and delay in conventional FPGAs. We then went on to look at network
design issues. We established basic relations governing the interconnect requirements in terms of
network size and wiring complexity. In the processes we showed that it is not always best to build
the network with sufficient interconnect to accommodate the most heavily interconnected designs
at full gate utilization; rather, since interconnect is the dominant area contributor, more efficient
areautilization can be achieved with networkswith lower interconnect complexity. We also looked
at interconnect description requirements, noting that interconnect descriptions grow more slowly
than wire and switching requirements. Here, we pointed out that conventional devices use sparse
interconnect description encodings, using, at least a factor of 2-4x more configuration bits than
necessary; this observation suggests that we have an opportunity to reduce the area required to
hold descriptions in multicontext devices and the bandwidth required for configuration reload in
singleor multicontext devices. Finally, welooked at how theinterconnect size rel ationships change
with wider word operations and saw that greater word widths increase wiring requirements while
decreasing switching requirements.

99

8. Instructions

The need for instructions to control device operation is one distinguishing feature of general-
purpose computing devices. These instructions give general-purpose devices their flexibility to
solve avariety of problems. At the same time, instructions require dedicated resources for storage
and delivery.

General-purpose computing architectures must address anumber of important questions:

How are general-purpose processing resources controlled?

How much areais dedicated to holding the instructions which control these resources?

How many resources are controlled with each instruction?

How much bandwidth is provided for instruction distribution?

5. How frequently can instructions change?

There are many, different possible answers to these questions and the answers, in large part,
distinguish the various general-purpose architecture categories which we reviewed in Chapter 4
(e.g. word-wide uniprocessor, SIMD, MIMD, VLIW, FPGA, reconfigurable ALU). The answers
also play alarge role in determining the efficiency with which the architecture can handle various
applications.

In this chapter, we look at the problem of instruction control and the resources involved. We
start by looking at the extreme case where every bit operation is given auniqueinstruction on every
cycle. This example illustrates that instruction distribution resource requirements can be quite
large — dominating other areasin adevice. To combat these requirements, traditional architectures
have placed various, stylized restrictions on instruction distribution in order to contain its resource
requirements. Each of these restrictions also limits the realm of efficiency of the architecture.
We review these restrictions and their effects on device utilization efficiency in Section 8.3. Of
course, the opportunity to compress instruction distribution requirements depends on the inherent
compressibility of the instruction stream suggesting that some computationswill remain description
limited while others are compute limited (Section 8.4). We aso look at the issue of instruction
stream control (Section 8.5). Finally, Section 8.6 organizes the architectural parameters reviewed
in this chapter into an expanded taxonomy for multiple data processing architectures.

El A

8.1 General Case Example

Consider that we have N, bit processing elements. Each of these elements may be a4-LUT
as in the previous section or a one bit ALU. We want to provide a different instruction to each
processing element on every cycle of operation. From Section 4, we see that 100 MHz+ operating
frequencies are readily achievable today, with many devices already achieving higher frequencies.
We will consider a 200 MHz operating frequency as one that will be easily achievable in the very
near future. We saw from Section 7.8 that each 4-LUT needs 40-50 bits to describe its network
configuration and 16 bits to control the logic function. We will thus assume each LUT requires a
64-bit instruction to control it.

100

Let us further assume that we distribute the instruction, one per clock cycle, from all four
sides of the array of N, processing elements densely using 2 layers of metal with an 8\ wire
pitch. Of course, the assumption that we dedicate two full metal layers to instruction distribution
is extreme, but even making this best case assumption, we will see that the resources required for
full instruction control can dominate al other concerns. For the sake of easy comparison, we will
target a 1024\ x 1024\ = 1IM)? array element, which is on par with large, conventional 4-LUT
FPGA implementations (Table 7.1).

Acrossthewidth of oneprocessing el ement, we can runinstruction distribution bussesto control
two such elements:

2x 64 x 8\A =1024)\
~~ =~

bitsLUT wire pitch
This means, we can support an array with 2x as many processing elements (V,,) as it has edge
widths. That is:
2x4x/N,=N,
From which we conclude N, = 64.
At this point, we have fully saturated the i/o bandwidth into the compute array. Any further

increasein the number of elements supported in the array must be accompanied by a corresponding
increasein LUT size. Thatis:

VAL
LLTX4><./Np = N,

64 x 8\
VAwr v
128" ~ VP
Appr = 16384)%N, (8.1)

Consequently, LUT areaincreaseslinearly with the number of processing elementssupported in the
array. The instruction distribution bandwidth requirement is the dominante size effect determining
the density with which computational elements can be built. Notice that the LUT area growth
rate dictated by instruction bandwidth is larger than the interconnect growth rate for any value of
p < 1and, ultimately, both interconnect and instruction distribution compete for the same limited
resource — wire bandwidth.

Further, we can calculate the actual instruction bandwidth requirements. At 200 MHz and
64-bit instructions, each LUT requires 1.6GBytes/s of instruction distribution. For the N, = 64
case above, this amountsto over 100GBytes/s.

Thiskind of bandwidth could not, reasonably, be supported from off chip with any contemporary
technology, necessitating on-chip instruction memory. At 1000\ per SRAM cell, 16 64-hit
instructions will occupy the same space as each 1M A? processing element. |f more than 16 unique
instruction setsarerequired, instruction memory will occupy more areathan the processing elements
and interconnect.

101

8.2 Bitsper Instruction

In the previous section we assumed 64 bits per instruction. This seems to be a reasonable,
ballpark estimate of the number of bits required to describe a single bit operation, including
interconnect.

Processors Modern processors generally employ 32 bits per instruction. However, aswe saw in
Section 4.1, about half of the instructions issued by a microprocessor are interconnect operations.
Particularly, when we looked at gate evaluations, we saw that each processor instruction describes,
on average, about 0.5-0.6 gate evaluations.

FPGAs Modern FPGAsuse 120-200 hits per 4-LUT. We pointed out in the previous chapter that
this was due to non-sparse encoding, and much denser encodings were possible. Simply using the
crossbar bound from Section 7.8.1, we see that we can handle 24000 4-LUT device with 48 bits of
interconnect description and 16 bits of logic description. VEGA, a heavily multicontexted FPGA,
with 85 bits per instruction, comes closer to this range [JL95].

102

8.3 Compressing I nstruction Stream Requirements

Section 8.1 showed us that we cannot afford to have full, independent, cycle-by-cyle control
of every bit operation without instruction storage and distribution requirements dominating all
other resource requirements. Consequently, we generally search for application characteristics
which allow us to describe the computation more compactly. In this section, we review the most
common techniques generally employed to reduce instruction size and bandwidth. We see that
every architecture reviewed in Chapter 4 exploits one or more of these compression techniques.

8.3.1 WideWord Architectures

Processors do not, commonly, operate on single bit dataitems. Rather, sets of w bit elements
(w = {8, 16, 32, 64}) aregrouped together and controlled by asingleinstructionin SIMD style. This
has the effect of reducing instruction bandwidth requirements and instruction storage requirements
by afactor of w. Thiscompression scheme takes advantage of the fact that we commonly do want
to operate uniformly on multibit quantities. We can, therefore, effectively amortize instruction
resources across multiple bit processing elements.

Returning to our opening example, we can support w2 more processing el ements beforereaching

the same point of wire saturation:
7 AP
2x4x /N, = "

8w = N,
N, = 64w?

The utilization efficiency of the resulting architecture depends on the extent to which all
operations are w-bit operations, or even multiples thereof. When smaller operations, wy < w, are
required, w — wy bit processing unitswill sit idle while only wy units provide useful work.

8.3.2 Broadcast Single Instruction to Multiple Compute Units

SIMD and vector machines take this instruction sharing one step further. They arrange so that
multiple functional units operating on nominally different words share the same instruction. This
allows them to scale up the number of bit operators without increasing the word granularity or
instruction bandwidth. It does, however, increase the operation granularity. To remain efficient
now, the application requires n,, w-bit operations, where n,,, isthe number of word-wide datapaths
controlled by each instruction.

8.3.3 Locally Configure Instruction

Reconfigurable architectures, such as FPGAS, take advantage of the fact that little instruction
bandwidth is needed if the instructions do not change on every cycle. Each bit processing element
gets its own, unique, instruction which is stored locally. However, this instruction cannot change
from cycleto cycle. A limited bandwidth path is used to change array instructions when necessary.

There are two viewpoints from which to approach the efficiency of this restriction:

103

1. Frequency of Instruction Change— Given alower bandwidth path, /gy, and V,, compute
elements with n;;;s long instructions, each context reload will take % If the inter
arrival time between reloadsis n.,.., the efficiency of operationsis equal to the fraction of
time spent computing versus total compute and reload time:

Ncycle - tcycle
Tibits-IV,
(ncycle . tcycle) + (M)

Ipw

Efficiency =

This, of course, assumesthat every processor is doing useful work on each cycle.

2. Task Critical Path Length — Alternately, if we assume the computing array is sufficiently
large to perform thetask, the efficiency isthe fraction of compute elements performing useful
work on each cycle. If the device has N, processors and must perform atask with Ny;;_ops
which has a critical path of length L..;;, then the efficiency is the number of useful bit
operations divided by the total number of processors and the critical path length:

. *Nbit_ops
Efficiency = m

For thefrequency of change case, partial reconfiguration can reducetherel oad timeby allowing
individual processing units to change instructions without requiring an entire reload of all instruc-
tions in the array. This can increase reload efficiency if alarge fraction of the instructions does
not change. Partial reconfiguration can also allow portions of the array to change their instructions
while other portions of the array continue to operate. Modern FPGAs from Plessey [Ple90], Atmel
[Atm94], and Xilinx [Xil96] support partia reconfiguration for these reasons.

8.34 Broadcast Instruction Identifier, Lookup in Local Store

A hybrid form of instruction compression is to broadcast a single instruction identifier and
lookup its meaning locally. Thisallowsusto use amoderately short, single“instruction” acrossthe
entire array in amanner similar to SIMD instruction broadcast. Each processing element performs
alocal lookup from the broadcast instruction identifier to generate afull length instruction. DPGASs
(Chapter 10), PADDI [CR92], and VLIW machines with an independent cache for each functional
unit, exhibit thiskind of hybrid control.

This technique is similar to a dictionary compression scheme where the set of entries at each
“instruction” addressmakesup oneelement in thedictionary. Theinstruction addressisthe encoded
symbol which can now be transmitted into the array with minimal bandwidth. The key benefit here
isthat the parallel instruction sets can be tailored to each application in the sameway the dictionary
can betailored to a message or message type.

Efficiency in this scheme is similar to the task critical path length case above. The difference
being, that each single processor need not be dedicated to asingleinstruction. With local instruction
stores each holding »;,,; instructions, an array of V,, processing nodes can perform upto n;,, 5 - N,
different bit operations. In the single instruction configuration case, a critical path of L..;; > 1
implied a peak, achievable efficiency of —2—. In this case, the peak, achievable efficiency is

Leris
i Ninst
min (Lmt , 1).

104

Viewed in terms of instruction change frequency, the additional local configurations can serve
as a cache, diminishing the need to fetch array instruction from outside the array. Like a cache
if each instruction set required is unique, it will provide no benefit. However, when an array
instruction can be kept in the array and used several times before being replaced, we reduce the
required instruction bandwidth. Use of aloaded instruction can occur at the operational cycle rate
rather than at the bandwidth limited reload rate.

With multiple configurations it is possible to arrange for instruction reload to occur as a
background task operating in parallel with operation. If the reload time, % is less than
the run time within the balance of the loaded instruction memory, n.ycie - toycte, and the next
instruction can be predicted sufficiently in advance, rel oad time can be compl etely overlapped with
computation.

8.3.5 EncodeLength by Likelihood

Since it is unlikely that al instructions will be used with equal frequency, one can break
instructions into a series of smaller words, giving common instruction short encodings. If we
huffman encodeour instruction into aseriesof s-bit words, wecan, potentially, reducetheinstruction
distribution bandwidth by afactor of Tog; nstrsuctlons) (thatis, & if we assume 64 hit instructions.

The efficiency now depends on the expected number of s-bit words required to construct a
single, logical instruction. If the instruction stream entropy is low, this kind of encoding can
be very efficient — asymptotically approaching one symbol per instruction. Counterwise, if the
instruction stream entropy is high — or even flat, it may take a full '092(“”5”8”(:“0”3) cycles to
built up asingle instruction. Worse, if the instruction frequency is substantially different from the
instruction frequency for which the encoding was optimized, it can actually take more cycles, on
average, to build an instruction. Of course, the huffman encodings could be variable, as well, to
avoid this mismatch, but the space required to handle programmable huffman encodingswill likely
exceed the area of several computational units.

8.3.6 ModeBitsfor Early Bound information

All of the bits in an instruction do not always need to change at once — or portions of an
instruction may change at different rates. Rather than include the infrequently changing portions
of the instruction in the word which is broadcast from cycle to cycle, these portions can be
factored out of the broadcast instruction and explicitly loaded with new values only when they
need to change. This alows us to describe richer instructions with less bandwidth. These locally
configured instructions can be seen as a special case of the previous section on likelihood encoding
— but in this case we exploit the low frequency of change rather than simply the low frequency of
occurrence of some instructions.

M ode bits such as these are used to define operational modesin several architectures. Floating
point coprocessors often use mode bits to define rounding modes. Segmented SIMD architectures
such as Abacus [BSV+95] and the dynamic computer groups of [KK79] use mode bits to define
segmentation of the SIMD datapaths.

Bandwidth savings depends on the number of bits factored out of the broadcast instruction
stream. Efficiency depends on the frequency with which non-broadcast instruction values need to

105

change. Typicaly, it takes an instruction cycle to load each mode value —which is an instruction
cycle which does not serve a purpose towards execution.

8.3.7 Themes
Two major themes emerge from the techniqueslisted here:

1. Granularity—How many resourcesarecontrolled by aeachinstruction? From aresourcecost
standpoint, this isthe motivation behind word-wide datapaths, SIMD, and vector processors.
processing

2. Local Configuration Memory — How many instructions are stored locally per active com-
puting element? Similarly, this isthe motivation behind configurable architectures and local
memories.

In the next chapter, we will look effects which these techniques have both on resource requirements
and on utilization efficiency.

106

8.4 Compressibility

Of course, we can only succeed in compressing theinstruction bandwidth whenthereisstructure
tothetask descriptionfor usto exploit. If thetask descriptivecomplexity really isaslargeasimplied
in Section 8.1, we are instruction bandwidth limited, and instruction distribution does determine
achievable, computational density.

This suggests we have two extremes in the characterization of computing tasks:

1. Descriptive Complexity Limited — the instruction bandwidth to describe the computation
limits the rate of execution.

2. Compute Limited — the active computing elements performing the required computation
[imit the rate of execution.

Regular tasks such assignal and stream processing, systolic computations, and computational inner
loops are typically compute limited. Irregular, run once, tasks such as initialization, cleanup, and
exception handling are typically descriptive complexity limited. Of course, applications tend to
have a mix of both elements. It has long been observed that only a small fraction of the codein a
typical application accounts for most of the computational time [Knu71]. The regions composing
this small fraction are heavily reused, allowing the computation to be described compactly. The
code outside of the heavily used fraction, does not benefit from the heavy reuse amortization and
will tend to be more description limited.

As with most compression schemes, the amount of compression achievable, in practice, aso
depends heavily on the frequency of repetition and storage space available. For example, if atask
performs a sequence of one million, unique operations, then restarts the sequence, the stream is
very repetitive, and an infinite sequence of such such repetitions contains a constant amount of
information. However, unless we have space to hold all one million instructions on chip, we will
not be able to take advantage of this regularity and low information content in order to compress
instruction bandwidth requirements. Further, holding one million instructions on chip is a large
cost to pay for instruction storage, even by today’s standards.

107

85 Control Streams

In Sections 8.1 and 8.3, we viewed the set of processing elements as having a single, large,
array-wide, instruction. In general, the array-wide instruction context may be decomposed into
anumber of independent instruction streams. This decomposition does not change the aggregate
instruction bandwidth which may berequiredinto thearray, but it may change the number of distinct
contexts used by the array and hence the requirements for instruction distribution and storage.

Let us assume, as in the case of Section 8.3.4, that each processing element has a local store
of n;,s iNStructions. Let us also assume we have a series of m independent tasks, each composed
of at most n4, s instructions. The total number of distinct, array-wide contexts may be aslarge as
(n:q5)™, Since the tasks are independent and any combination of instructionsis possible. If each
of the tasksis controlled separately, we need only n;,s; = n4qsk instructionsto describe and control
the tasks. If we must control the m tasks with a single instruction stream, that stream requires all
(nsqsx)™ contexts and hence alarger number of instructions, n;,s: = (n4qs:)™, @e required.

This example demonstrates that there is a control granularity which is a distinct entity from
the operation granularity introduced in Sections 8.3.1 and 8.3.2. Aswith operation granularity, we
can compress instruction control requirements by sharing the control among a number of operating
units. However, if we control too many units by the same control stream, we are forced to use the
deviceinefficiently. Intheworst case, we may pay an efficiency or compaction penalty in proportion
to the product of the instruction sets of the independent operations which must be combined into a
single control stream.

The separate streams of control are, of course, what distinguishes MIMD architectures (Sec-
tion 4.9), aswell asMSIMD (e.g. [Bri90, Nut77]) or MIMD multigauge [Sny85] architectures.

108

Control Threads (PCs)
Instructionsper Control Thread
Instruction Depth
Granularity
| Architecture/Examples

0| 0| n/a | Hardwired Functional Unit

0 (e.g. ECC/EDC Unit, FP MPY, Hardware Systolic)
1 FPGA, Programmable Cellular Automata

n|1l w Reconfigurable ALUs

Programmable Systolic Datapath Arrays

n, -1 | Bitwise SIMD

1|¢ w Traditional Processors

n, - w | Vector Processors

1 c 1 DPGA
n|8 16 PADDI
c w VLIW
m|1l|c|n, w| MSIMD
¢ 1 VEGA
m| 1|8 16 PADDI-2
c w MIMD (traditional)

Table 8.1: Instruction Control Taxonomy

8.6 Instruction Stream Taxonomy

Table 8.1 categorizes the various architectures we have reviewed in Chapter 4 according to the
granularity (w,n,), loca instruction storage depth (c¢), number of distinct instructions per control
thread (n), and number of control threads (m) supported. This taxonomy elaborates the multiple
data portion of Flynn's classic architecture taxonomy [Fly66] by segregating instructions from
control threads and adding granularity.

109

8.7 Summary

In this section, we have seen that the requirements for instruction distribution and storage can
dominateall other resources on general -purpose computing devices, dictating the size and density of
computing elements. A major distinguishing feature of modern, general -purposearchitecturesisthe
way in which they compress the requirements for instruction control. Traditional microprocessors,
SIMD, and vector machines reduce the requirements by sharing a single instruction across many
bits or words. FPGAs and programmable systolic arrays reduce requirements by maintaining the
same instruction from cycle to cycle. VLIW-like architectures use small, local instruction stores
addressed by short addresses so that limited instruction distribution bandwidth can effect cycle-
by-cycle changes in non-uniform instructions. Each of the techniques used to reduce instruction
control resources comes with its own limitations on achievable efficiency should the needs of the
application not meet the stylized form in which the instruction bandwidth reduction is performed.
Some instruction sequences are more compressible than others, suggesting we have a continuum
of task descriptive complexities such that some tasks are, by nature, instruction bandwidth limited
while othersare parallel computing resourcelimited. In thischapter we reviewed both the nature of
theresource reductionsand the efficiency limitswhich arise from these techniques. Inthefollowing
chapter, wewill combinethese effects with our size and growth observationsfrom Chapters4 and 7
to model the size and efficiency of reconfigurable computing architectures.

110

9. RP-space Area Model

In this chapter, we put together the sizings from Chapter 4 and 7, the growth rates from Chapter 7,
and the instruction regquirements from Chapter 8 to form a unified area model for RP-space, a
large class of reconfigurable processing architectures. The area model gives us afirst order size
estimatefor reconfigurabl e computing devicesbased on the key parametersidentifiedin the previous
chapters. We use this model to estimate peak computational density as a function of granularity
and on-chip instruction store sizes. We also use it to characterize the way computational efficiency
decreases as application granularity and path lengths differ from the architecture’s optimal points.

9.1 Mode and Assumptions

We assume an array of homogeneous, general-purpose processing elements. For pedagogical
purposes, no special-purpose processing units are included. The area for each bit processing
element istaken to include:

¢ Fixed areafor the computational function
¢ Amortized storage space for instructions
¢ Storage space for data

¢ Space for interconnect resources

¢ Amortized space for control
We compute the area per bit processing element as:

Cc
w

Abit_elm = Afixed +]VSW'(ATp, w) . ASW/ + () * Nibits * Amem_cell +

i nterconnect . .
instruction memory

*th'rl
7
N,

d- Amem_cell + (
——————
data memory

) . Actrl(ctotal) (91)

control area

Table 9.1 summarizes the parameters used in Equation 9.1.

Apem_cetl = 1200A? is typical of static memory, which we will assume here. Memory cells
packed into large arrays are likely to be denser, on average, than small arrays or isolated memory
cells. Dynamic memory cells may be afactor of four smaller in large arrays, where appropriate.

Equation 9.1 assumes that interconnect area is proportional to the number of switches. In
Sections 7.6 and 7.9, we saw that switch growth rates match or determine interconnect growth rate.
In Section 7.9, we did see that wiring might dominate switch growth for large w, which is not
accounted by Equation 9.1. Agyy = 25002 is aconstant of proportionality intended to match the
number of switches to the empirical interconnect areas typically seen rather than a model of any
particular interconnect geometry. Table 9.2 summarizes the number of switches as a function of

111

Assumed

Parameter Role Value
Apit_elm Area per bit processing element
Afived Fixed areaper compute element 20K \2
(LUT mux, output flip-flop, buffers)
w Datapath width — number of bit elements
controlled by oneinstruction
¢ Contexts — number of instructions stored
per group of w processing elements
Ciotal Total number of instruction or data contexts
addressed by controller
TUibits Number of bitsin each instruction 64
Ao _cell Area of a configuration or data memory cell 1200\2
N, Number of bit processing elementsin the array
Nsw(N,, w) Number of switches per bit processing element [Eq. 7.24]
n Tree arity in modeled hierarchical interconnect 2
k Number of LUT inputs 4
P Rent parameter for network 05
Asw Amortized area of each switch 25002
d Number of data bits per bit processing element
Nl Number of independent stream controllers
Acri(ciorar) Areaof instruction stream controller 0.3MA? - l0g, (¢totat)

Table 9.1: Summary of AreaModel Parameters

N, and w for p = 0.5, as will be used here. Thisis the same data which was plotted in Figure 7.5;
for p = 0.5, the only differenceisthat we use % as the network size when determining N sy (See
Equation 7.24).

For devices with multiple contexts, a controller manages the selection and sequencing of
instructions in the array. The area we use for A.;,; is a rough estimate based on a sampling of
processor implementations (See Table 9.3). We assumethat theareain the controller is proportional
to the number of instruction address bits, 109, (c:.tq1). FPGASs traditionally have a single context,
making N.:; = 0, while processorshave controllers composing the program counter and branching
logic.

FPGA Example Traditiona FPGAshave w = 1 and ¢ = 1. Equation 9.1, for N, = 4096,
computes Ap;; .1, ~ 870K 2. Comparingwith Table 7.1, weseethisisintherangeof conventional
devices.

PADDI-2 Example PADDI-2 is made from 48, 16-bit units. Each has an 8 instruction memory
(¢ = e10tar = 8) and effectively 6 words of data per compute element, d = 6. PADDI-2 has

112

% Nsw H % Nsw H % Nsw
1 0 32 100 1024 252
2 16 64 131 2048 281
4 31 128 162 4096 311
8 49 256 192 8192 340
16 69 512 222 16384 370

Table9.2: Ngw (N,, w)forp=05k=4,n =2

\ Design | Controller Area |
MIPS-X [HHC 87, Chos9] 8M)2
PA-RISC [YFJ*87] 12M)2
VIPER [GNAB93] 12M)2

Table 9.3: Areafor Instruction Control Sampling

3-inputs per EXU, k& = 3, and an initial convergence of n = 4. Equation 9.1 predicts 370K \? per
bit operation or 284M A\? for the entire array, which is about half the size of the prototype PADDI-2
diewhichis 576M)2,

113

9.2 Peak Performance Density

Using the model, we can examine the peak computational densities from various architectural
configurationsin RP-space. Figure 9.1 plots computational density against datapath width, w, and
the number of instructions per function group, ¢. Asw increasesthereismore sharing of instruction
memories and less switches required in the interconnect resulting in smaller bit processing element
cell sizes or higher densities. As ¢ increases, there are more instructions per compute element
resulting in lower densities. The effect of more instructions is more severe for smaller datapath
widths, w, sincethere are less processing el ements against which to amortize instruction overhead.

For single context designs, thereisonly afactor of 2.5x differencein density between single bit
granularity and 128-bit granularity. At this size, network effects dominate instruction effects, and
the factor of difference comes almost entirely from the difference in switching requirements. For
heavily multicontext devices at the same number of instruction contexts, the difference between fine
and coarse granularity is greater since the instruction memory areadominates (See also Figure 9.2).
At 1024 contexts, the 128 bit datapath is 36:x denser than an array with bit-level granularity.

As the number of contexts, ¢, increase, the device is supporting more loaded instructions; that
is, alarger on chip instruction diversity. Figure 9.2 shows how instruction density increases with
increasing numbers of contexts alongside the decrease in peak computational density.

These same density trends holdif we set aside afixed amount of data memory. The areaoutside
of the data memory will follow the same density curves shown here.

114

128

0.8

. 0.6
Density

1024

k=4n=2,p=05c=d, Ny =0, N, = 16384
Reference Density of 1.0 correspondsto w = 128,¢ = 1

Figure 9.1: Peak Computational Density Versus Contexts and Datapath Width

115

1024

Left — Computational Density; Right — Instruction Density
k=4n=2,p=05c=d, Ny =0, N, = 16384

Figure 9.2: Compute and Instruction Densities Versus Contexts and Datapath Width

116

9.3 Granularity

As noted in the previous chapter, we can use larger granularity datapaths to reduce instruction
overheads. The utility of this optimization depends heavily on the granularity of the data which
needs to be processed. As noted in the previous section, the coarser the granularity the higher the
peak performance. However, if the architectural granularity islarger than the task data granularity,
portions of the device's computational power will go to waste.

We can model the effects of pure granularity mismatches using the areamodel devel oped above.
First, we note that the optimal configuration for a given word size will aways be the architecture
which has the same word size as the task. We can then determine the efficiency associated with
running tasks with word size wy.; on an architecture with word size w,..,, by dividing the area
required to support the task on a wg.s architecture by the area required on a w,,.., architecture.
For wyes = C - wyrehn, fOr some integer C', the efficiency is simply the ratio of the bit processing
element areas. For wyes > wqrcn, thetask can run on top of thelow wy. s bit processing elementsin
the architecture datapath, leaving the remaining processing elements unused. The efficiency here
isthe ratio of the area of w5 bit processing elements from a wy.; architecture versus w,,., bit
processing elements from a w,,..;, architecture.

Abit_etm|w=wg,,

Wdes = C- Warch

Abit_elm|w=waTch

Efficiency = 1 Wdes = Warch (9.2)

wdes'Abit_el'm|w:wdes,Np:Npo

oW = w
warch'Abit_elm| w A C des arch
w:warcthP:< wadrc)Npo

es

Note that a single-chip implementation is assumed for comparison so that there are no boundary
effects between components.

Figure 9.3 shows the efficiency for various architecture and task granularities. At ¢ = 1, the
active switching areadominates. Thefinegranularity (w = 1) hasthe most robust efficiency across
task granularities. The efficiency drops off quickly for large grain architectures supporting fine

grain tasks.
Figure 9.4 shows that the robustness shifts as the numbers of contextsincreases. For ¢ = 1024,

the instruction memory space dominates the area. Consequently, the redundancy which arises
when fine-grained architectures run coarse-grain tasks is quite large, leading to rapidly decreasing
efficiency with increasing task grain size. In this regime, the coarse-grain architectures are more
robust, since the extra datapath and networking elements are moderately inexpensive compared to
the large area dedicated to instruction memory. For ¢ = 1024, w = 32, is the most robust datapath
width as shown extracted in Figure 9.5.

117

Design w 64
16

0.8

0.6

Efficiency 04

0.2

128

16
Architecture w

1

k=4n=2,p=05c=d=1 Ny =0,N, =16384

Figure 9.3: Efficiency as a Function of Architectural and Task Granularity for Single Context
Architectures

These robust points correspond to the mix where the context memory makes up roughly half
the area of the device.

1

Abit_elm|c:0,w:w* = <§> Abit_elm|c:c,w:w* (93)

At this point:

¢ Finer grain devices running coarser granularity tasks waste, at most, alittle over half of their
area—the memory area plus the switching overhead associated with finer granularity.

e Coarser grain devices running fine-grain tasks waste at most half of their area— the unused
datapath area.

118

Design w 64

Design w

Efficiency 0.4

Efficiency 0.4

16 16
Architecture w

Architecture w

Left—c = 1; Right—¢c = 16

Design w 64

Design w

1.0
0.8

0.6
Efficiency 0.4

Efficiency 0.4

16

16
Architecture w

Architecture w

Left—e = 256; Right —c¢ = 1024
k=4n=2,p=05c=d, Ny =0, N, = 16384

Figure 9.4: Efficiency as aFunction of Architectural and Task Granularity

119

Efficiency

OO00000000O0r

OFRPNWAUIONOOO

'_\
N
»
oo
I~
o
W]
N
=Y
N
[e9)

Figure 9.5: Efficiency versus Task Data Width for a 1024-context, 32-bit Granularity Device

120

9.4 Contexts

We saw in Section 9.2 that the computational density is heavily dependent on the number
of instruction contexts supported. Architectures which support substantially more contexts than
required by the application, allow alarge amount of silicon areadedicated to instruction memory to
gounused. Architectureswhich support too few contextswill |eave active computing and switching
resources idle waiting for the time when they are needed.

We can model the effects of varying application requirements and architectural support in an
ideal setting using the area model. We assume we have a repetitive task requiring V., operations

which has a path length /,,;,. In an ideal packing, an architecture with N, = zNoi processing

pat
units and ¢ = [, instruction contexts can support the task optimally. If ¢ > 1,41, the area per
processing element is larger than necessary to support the application. If ¢ < l,q4, it will be

necessary to use more processing elements simply to hold the total set of instructions.

Abit_etmle=1,,4:5

T o Tme [<c
Abit_elm|c=carch path arch

Efficiency = { * Ipath = Careh (0.4

Carch'*lbit_elm|c:l Np=N
path*'P Po
lpath > Carch

l
_ _ path
C_CarcthP_ (Carch) NPO

lpath'Abit_elm |

Thisrelation is shown for several datapath widths, w, in Figure 9.6. Again, single chip implemen-
tations are assumed for comparison.

The efficiency dropoff for /¢, < ¢ is less severe for large datapaths, large w, than for small
datapaths. Similarly, the dropoff for ¢ < 1,4 is less severe for small datapaths than for large
datapaths. This effect is due to the relative area contributed by instructions. In the small w case,
the instruction area takes up relatively more area than in the large w case, so costs of extra active
areaisrelatively smaller than in the large w case. In the large datapath case, the instructions make
up alower percentage of the area so the overhead for extrainstructionsis relatively smaller.

The 16 instruction context case is the most robust across this range for single bit datapaths (See
Figure 9.7). Similarly, 256 instruction contexts is the most robust for w = 128 (See Figure 9.8).
Neither of these cases drops much below 50% efficiency at either the [, < ¢ Or ¢ < lyan
extremes. These “robust” cases correspond to the points where the instruction memory area is
roughly equal to the active network and computing area. In either extreme, at most half of the
resources are being underutilized. ¢*, our robust context selection, can be defined as:

1
Abit_elm =0~ (E) Abit_elm|c:c* (95)

Remember that the network resource requirements grow with array size. Inthec < I, case,
where we must deploy more processing elementsto handle the task, the total number of processing
elements increases causing the switching area per processing element to increase as well. This
effects acounts for the fact that the efficiency can drop below 50% and the approximate relation in
Equation 9.5.

121

Left—w = 1; Right—w = 8

Left—w = 64; Right—w = 128
k=4n=2,p=05c=d, Ny =0, N, = 16384

Figure 9.6: Efficiency asaFunction of Task Path Length and Architectural Contexts

122

Efficiency

CO0O00O0000Or
oRrNwhUION®WOO

i+ 111
1 2 4 8 16 32 64 128 256 5121024
I path

Figure 9.7: Efficiency versus Task Path Length for a 16-context, Single-bit Granularity Device

Efficiency

OO00000000O0r

OFRPNWAUIONOOO

1 {1 1 | | | 1 1
2 4 8 16 32 64 128 256 5121024

[EEY

I path

Figure 9.8: Efficiency versus Task Path Length for a 256-context, 128-bit Granularity Device

123

9.5 Composition

In general, we see cumul ative effects of the grain size and context depth mismatches between
architecture and task requirements. Figure 9.9 showsthe yielded efficiency versus both application
path length and grain sizefor the conventional FPGA design point of asingle context and asingle bit
datapath. The FPGA dropsto 1% efficiency for large datapaths with long path lengths. Similarly,
Figure 9.10 shows the efficiency of awideword (w = 64), deep memory (¢ = 1024) design point.
While this does well for large path lengths and wide data, its efficiency at a path length and data
sizeof oneis0.5%. Notice here, that thewide, coarse-grain design point isover 100x |ess efficient
than the FPGA when running tasks whose requirements match the FPGA, and the FPGA is 100
less efficient than said point when running tasks with coarse-grain data and deep path lengths.

In the previous sections we saw that it was possible to select reasonably robust choices for
datapath width or number of instruction contexts given that the other parameter was fixed. We
also saw that the robustness criterion followed the same form; that is, the inefficiency overhead
can be bounded near 50% if half of the areais dedicated to instruction memory and half to active
computing resources. This does not, however, yield a single point optimum since the partitioning
of the instructions between more contexts and finer-grain control is handled distinctly in the two
Cases.

Figure 9.11, for instance, shows the yield for a single design point, w = 8, ¢ = 64, across
varying task path lengths and datapath requirements. While the w = 8 and ¢ = 64 cross-sections
are moderately robust, the efficiencies at the extremas are low. At [,,,¢, = 1, w = 1, the efficiency
isjust under 8%, and at the /,,.;;, = 1024, w = 128, the efficiency is just over 8%. This design
point is, nonethel ess, more robust across the whole space than either of the architectures shown in
Figures 9.9 and 9.10.

124

128
Design w 64

16

0.6
Efficiency

64

Path Length 256

1024

k=4n=2,p=05¢c=d=1024, w = 64, Ny, = 0, N, = 16384

Figure 9.10: Efficiency for Coarse-Grain, Deep Memory Design Point (w = 64, ¢ = 1024)

126

128
Design w 64

16

0.6
Efficiency

64

Path Length 256

1024

k=4n=2,p=05c=d=64,w=8 Ny =0, N, =16384

Figure 9.11: Efficiency for Fixed w = 8, ¢ = 64

127

9.6 Summary

Theareamodel showsushow peak capacity depends on granularity organization and instruction
support. We see that the penalty for fine-granularity is moderate, 2.5x difference between w = 1
and w = 128, in the configurable domain where there is only instruction memory for a single
context. Thepenalty islarge, 36, in the heavy multicontext domain. We also looked at the effects
of application granularity and path length. In both cases, we found that, given a priori knowledge
of either the task granularity or context requirements, we could set the other parameter such that
the efficiency did not drop significantly below 50% for any choice of the unknown parameter. This
is significant since the peak performance densities across the range explored differed by roughly a
factor of 200x . For both of these cases, the robust selection criterionisto choose the free parameter
such that instruction memory accounts for one half of the processing cell area. We saw that the
effects of granularity and path length mismatches were cumulative and that FPGAS running tasks
suited for deep memory, coarse-grained architectures can be only 1% efficient. If we must select
both the datapath granularity and the number of contexts obliviously, we cannot obtain a single
design point with as robust a behavior as when we only had one free parameter. A good design
point across this region of the RP-space suffersa 13x worst-case overhead.

128

Part |V

New Architectures

129

10. Dynamically Programmable Gate Arrays

In Chapter 9 we demonstrated that if we settle on a single word width, w, we can select a robust
context depth, ¢*, such that the area required to implement any task on the architecture with fixed
¢ = ¢* isa most 2x the area of using an architecture with optimal ¢. Further, for single bit
granularities, w = 1, the model predicted arobust context depth ¢* = 16. In contrast, the primary,
conventional, general -purpose devices with independent, bit-level control over each bit-processing
unit are Field-Programmable Gate Arrays (FPGAS), which havec = 1. Our analysisfrom Chapter 9
suggests that we can often realize more compact designs with multicontext devices. Figure 10.1
shows the yielded efficiency of a 16-context, single-bit granularity device for comparison with
Figure 9.9, emphasizing the broader range of efficiency for these multicontext devices.

In this chapter, we introduce Dynamically Programmable Gate Arrays (DPGAS), fine-grained,
multicontext devices which are often more area efficient than FPGAs. The chapter features:

¢ acharacterization of where DPGAs are most area efficient and why
¢ adetailed prototype DPGA implementation

¢ design automation for two realms of DPGA application: (1) levelized circuit evaluation and
(2) Finite-State Machine mapping

¢ an identification of major, pragmatic limitations to achieving the full benefits which look
possiblein theory

130

Path Length

1024

k=4n=2,p=05c=d=16,w =1, Ny =0, N, = 16384

Figure 10.1: Efficiency for DPGA Design Point (w = 1, ¢ = 16)

131

10.1 DPGA Introduction

The DPGA is a multicontext (¢ > 1), fine-grained (w = 1), computing device. Initially, we
assume a single control stream (N.;,; = 1). Each compute and interconnect resource has its own,
small, memory for describing its behavior (See Figure 10.2). These instruction memories are read
in paralel whenever a context (instruction) switch isindicated.

The DPGA exploits two facts:

1. Thedescription of an operation is much smaller than the active area necessary to performthe
operation.

2. It is seldom necessary to evaluate every gate or bit computation in a design simultaneously
in order to achieve the desired task latency or throughput.

Toillustratetheissue, consider thetask of convertingan ASCII Hex digit into binary. Figure10.3
describes the basic computation required. Assuming we care about the latency of this operation, a
mapping which minimizes the critical path length using SIS [SSL*92] and Chortle [Fra92] has a

Context ID Context ID)
Representative
Area Breakdown
[} | [}
° Il °
3 a 8 Memory Interconnect
(a) (@)

\L Context
Memory

} }

i Logic Interconnect
Description Description

Fixed Logic

,~

Figure 10.2: LUT and Interconnect Primitives for Multicontext FPGA

if (c >= 0x30 && c <= 0x39)
res = c-0x30;

else if (c >= 0x40 && c <= 0x46)
res = c - 0x40 + 10;

else if (c >= 0x60 & & c <= 0x66)
res = c - 0Ox60 + 10;

el se
res = 0;

Figure 10.3: ASCIl Hex— Binary Task Description

132

INORDER = C[7] C[6] C[5] C[4] C[3] C[2] C[1] C[0] ;
OUTORDER = 0O[3] O[2] O[1] O[] ;

stage 1 — 8 LUTs[C[3:0] pass through]
i0=1C[1] * !C[2] ;

i1=C[4] * C[5] * !C[6] * !C[7] ;
i3=C[0] * C[1] * !C[2] ;

i4=1C[3] * !C[4] * C[6] * !C[7] ;

i6=1C[0] * C[2] ;
i7=1C[0] * C[1] ;
i8=C[0] * IC[1] ;

i11=!C[7] * C[6] * !C[4] * !C[3] ;
#stage 2 -9 LUTs[i1,C[3],C[1] pass through]
i5=i0*il1l +i3*i4;
i9=i6*i4+i7*i4+i8* i4,
i10=C[3] +i3* i4;
i12=i3*i4+i6* i4;

i13=i1*IC[3] * C[2];

i14=C[2] * IC[1] * i11;
i15=i8*i4+i7*i4;
i16=i7*i4+i6* i4;

i17=i1*IC[3] * C[O] + C[O] *i0*i1;
#stage3—-4 LUTs

O[3] = (i10+i9)* (i5+i9);

O[2] =i12+i13+i14;

O[1] =i1*!C[3] * C[1] +il5;

O[0] =i16 +i17;

Figure 10.4: 4-LUT Mapping of ASCIl Hex— Binary

path length of 3 and requires 21 4-LUTs. Figure 10.4 shows the LUT mapping both in equations
and circuit topology.

Traditional Pipeliningfor Throughput If we cared only about achieving the highest throughput,
we would fully pipeline thisimplementation such that it took in anew character on each cycle and
output itsencoding threecycleslater. Thispipeliningwould requirean additional 7 LUTsto pipeline
datawhich is needed more than one pipeline stage after being generated (i.e. 4toretimec<3: 0>
for presentation to the second stage and 3to retimec<3>, c<1> andi 1 for presentation to the
final stage—SeeFigure 10.5). Consequently, weeffectively evaluateadesignwith Npur,, ., ., = 21
4-LUTswith N, = 28 physical 4-LUTs. Typical LUT delay, including a moderate amount of local
interconnect traversal, is 7 ns (See Table 4.13). Assuming thisis the only limit to cycle time, the
implementation could achieve 140 MHz operation. Notice that the only reason we had to have any
moreLUTsor LUT descriptionsthan strictly required by the task descriptionwasin order to perform
signal retiming based on the dependency structure of the computation. Using our FPGA areabased

133

on themodel in the previous chapter, an FPGA LUT in alarge array occupies Ap;; i, ~ 880KA2.
Consequently, thisimplementation requires:

Apipe = 28 - 880KA? = 24.6M)2

Multicontext Implementation — Temporal Pipelining If, instead, we cared about the latency,
but did not need 140 MHz operation, we could use a multicontext device with 3 LUT descriptions
per active element (¢ = 3). To achieve the target latency of 3 LUT delays, we need to have
enough active LUTs to implement the largest stage — the middle one. If the inputs are arriving
from some other circuit which is also operating in multicontext fashion, we must retime them as
before (Figure 10.5). Consequently, we require 3 extraLUTsin the largest stage, making for atotal
N, = 12. Note that the 4 retiming LUTs added to stage 1 also bring its total LUT usage up to 12
LUTs. We end up implementing Nrzir7_design, = 21, With N, = 12 and ¢ = 3. If c<7: 0> were
inputswhich did not change during these three cycles, we would only need oneextraretiming LUT
instage2fori 1, alowing usto use N, = 10.

The multicontext LUT is dlightly larger due to the extract contexts. Two additional contexts
add 160K \? to the LUT area, making for Ay i, ~ 1.04MA2. The multicontext implementation
requires:

Atime—pipe = 12- IMA? = 12.5M)?

In contrast, a non-pipelined, single-context implementation would require N, = 21 LUTSs, for an
areaof:
Aponpipe = 21 - 880KA? = 18.5M)\?

If we assume that we can pipeline the configuration read, the multicontext device can achieve
comparable delay per LUT evaluation to the single context device. Thetotal latency thenis 21 ns,
asbefore. Thethroughput at the 7 ns clock rate is 48 MHz. If we do not pipeline the configuration
read, as was the case for the DPGA prototype (Section 10.4), the configuration read adds another
2.5nstothe LUT delay, making for atotal latency of 28.5 ns and a throughput of 35 MHz.

General Observations Wewereableto realizethisareasavingsbecausethe single context device
had to deploy active compute and interconnect area for each portion of the task even though the
task only required a smaller number of active elements at any point in time. In general, we have
two components which combine to define the requisite area for a computational device:
1. Ny —thetotal number of 4-LUTsin the design — the descriptive complexity
2. N, —thetotal number of 4-LUTswhich must be evaluated simultaneously in order to achieve
the desired task time or computational throughput — the parallelism required to achieve the
temporal requirements
Inanideal packing, acomputation requiring N, active compute elementsand N, total 4-LUTs,
can beimplemented in area:

Acompute = lVa . ALUT + [Vd . ALUT_config_mem (101)

134

Figure 10.5: ASCII—Hex Binary Circuit Retimed for Full Pipelining

135

Equation 10.1 is a simplification of our area model (Equation 9.1). Using the typical values
suggested in the previous chapter:

X

Arur 800K \? (10.2)
ALUT_config_mem ~ 78KA2 (103)

In practice, a perfect packing is difficult to achieve due to connectivity and dependency re-
quirements such that N/ > N, configuration memories are required. In the previous example, we
saw N) = 3-12 = 36 for N; = 21 due to retiming and packing constraints. In fact, with the
model described so far, retiming requirements prevent us from implementing this task on any fewer
than 12 active LUTs. Retiming requirements are one of the main obstacles to realizing the full,
ideal benefits. We will see retiming effects more clearly when we look at circuit benchmarks in
Section 10.5.

136

10.2 Related Architectures

Several hardware logic simulator have been built which share a similar execution model to the
DPGA. These designs were generally motivated to reduce the area required to emulate complex
designs and, consequently, took advantage of the fact that task descriptions are small compared to
to their physical realizationsin order to increase logic density.

The Logic Simulation Machine [BLMR83], and later, the Yorktown Simulation Engine (Y SE)
[Den82] were the earliest such hardware emulators. The Y SE was built out of discrete TTL and
MOS memories, requiring hundreds of components for each logic processor. Processors had an
8K deep instruction memory (¢ = 8192), 128 bit instructions (n;;:s = 128, ns;:s = 136 once
processor-to-processor interconnect is included) and produced two results per cycle (w = 2).
The Y SE design supported arrays of up to 256 processors (N, = 256), with a single controller
(Netrr = 1) running the logic processors in lock step, and a full 256x 256, 2-bit wide crossbar
(r=1).

The Hydra processor which Arkos Design’s developed for their Pegasus hardware emulator is
acloser cousin to the DPGA [Mal94]. They integrate 32, 16-context, bit processors on each Hydra
chip (N, = 32, ¢ = 16, w = 1). Thelogic function is an 8-input NAND with programmable input
inversions.

VEGA uses 1K-2K context memories to achieved a 7x logic description density improvement
over single context FPGASs. At ¢ > 1024, VEGA is optimized to be efficient for very large ratios,
Ng4 : N4, and can be quite inefficient for regular, high-throughput tasks. With n;;;s =~ 86, and a
separate controller per processor (N, = N.), Equation 9.1 predictsac = ¢4, = 2048 VEGA
processing element will have Ap;; .1, ~ 218MA?, whichisabout 8.5x smaller than the 2048 single
context processing elements which it emulates — so the area savings realized by VEGA is quite
consistent with our areamodel developed in Chapter 9.

Hydra and VEGA were developed independently and concurrently to the DPGA, which was
first described in [BDK94].

Dharma[BCK 93, Bha93] was designed to solve the FPGA routing problem. Logicisevaluated
in strict levels similar to the scheme used for circuit evaluation in Section 10.5 with one gate-delay
evaluation per cycle. Dharmais based on a few, monolithic crossbars (p = 1) which are reused
at each level of logic. Once gates have been assigned to evaluation levels, the full crossbar makes
placement and routing trivial. While this arrangement is quite beneficial for small arrays, the
scaling rate of the full crossbar makes this scheme less attractive for large arrays, N,,, aswe saw in
Section 7.2.1.

137

10.3 Realm of Application

DPGAs, as with any general -purpose computing device supporting the rapid selection among
instructions, are beneficial in cases where only alimited amount of functionality is needed at any
point intime, and whereit is necessary to rapidly switch among the possiblefunctionsneeded. That
is, if weneedall thethroughput we can possibly get out of asinglefunction, asin thefully-pipelined
ASCII Hex—Binary converter in Section 10.1, then an FPGA, or other purely spatial reconfigurable
architecture will handle the task efficiently. However, when the throughput requirements from a
function are limited or the function is needed only intermittently, a multicontext device can provide
amore efficient implementation. In this section, we look at several, commonly arising situations
where multicontext devices are preferable to single-context devices, including:

¢ Taskswith limited throughput requirements
¢ Latency limited tasks
¢ Time or datavarying logical functions

We also briefly revisit instruction bandwidth to see why partia reconfiguration, alone, is not an
adequate substitute for many of these tasks.

10.3.1 Limited Throughput Requirements

Often the system environment places limits on the useful throughput for a subtask. As we
saw in the introduction to this chapter, when the raw device supports a higher throughput than that
regquired from the task, we can share the active resources in time among tasks or among different
portions of the same task.

RelativeProcessing Speeds Most designsare composed of several sub-componentsor sub-tasks,
each performing a task necessary to compl ete the entire application (See Figure 10.6). The overall
performance of the design is limited by the processing throughput of the slowest device. If the
performance of the slowest deviceis fixed, there is no need for the other devices in the system to
process at substantially higher throughputs.

In these situations, reuse of the active silicon area on the non-bottleneck components can
improve performance or lower costs. If we are getting sufficient performance out of the bottleneck
resource, then we may be able to reduce cost by sharing the gates on the non-bottleneck resources
between multiple “components’ of the original design (See Figure 10.7). If we are not getting
sufficient performance on the bottleneck resource and its task is parallelizable, we may be ableto
employ underused resources on the non-bottleneck components to improve system performance
without increasing system cost (See Figure 10.8).

Fixed Functional Requirements Many applications have fixed functional requirements. Input
processing on sensor data, display processing, or video processing al have task defined processing
rateswhich are fixed. In many applications, processing faster than the sample or display rate is not
necessary or useful. Once we achieve the desired rate, the rest of the “capacity” of the device is

138

System Throughput: 25M Ops/s

60M B-Ops/s
——t A D E—
60M A-Ops/s 35M D-Ops/s
25M C-Ops/s

Figure 10.6: Typical Multicomponent System

System Throughput: 25M Ops/s

— B D pr—
30M A-Ops/s 35M D-Ops/s
30M B-Ops/s C
25M C-Ops/s

Figure 10.7: Multifunction Component in System

not required for the function. With reuse of active silicon, the residual processing capacity can be
employed on other computations.

I/O Latency and Bandwidth Device /O bandwidth often acts as a system bottleneck, limiting
the rate at which data can be delivered to a part. This, in turn, limits the useful throughput we
can extract from the internal logic. Even when the 1/O pins are heavily reused (e.g. [BTA93)]),
components often have less 1/0O throughput than they have computational throughput. Reviewing
technology costs, we expect this bottleneck to only get worse over time.

139

System Throughput: 30M Ops/s

/ -
A 25M C-Ops/s

— B D pr—
30M A-Ops/s 35M D-Ops/s
30M B-Ops/s C
25M C-Ops/s

Figure 10.8: Function Distributionin System

¢ Sincel/O’smust drive off-chip capacitances, theinherent bandwidth through each pinisoften
lower than the logic cycle time. With on-chip logic speeds scaling faster than 1/O speeds,
this bandwidth gap will only increase as technol ogy advances.

¢ Handling signals above ~ 30 MHz becomes difficult at the PCB level, requiring more
expensive packaging and more complex design. On-chip handling of high speed clocksis
much more manageable.

¢ With conventional perimeter 1/O pads, the number of I/O’s scales as the sgquare root of the
internal logic area. As device capacity continues to increase, the disparity between internal
logic real estate and I/O’s provided grows larger.

When data throughput is limited by I/O bandwidth, we can reuse the internal resources to
provide alarger, effective, internal gate capacity. This reuse decrease the total number of devices
required in the system. It may also help lower the 1/O bandwidth requirements by grouping larger
sets of interacting functions on each I C.

10.3.2 Latency Limited Designs

Somedesignsarelimited by latency not throughput. Here, high throughput may be unimportant.
Oftenitisirrelevant how quickly we can begin processing the next datum if that timeis shorter than
the latency through the design. This is particularly true of applications which must be serialized
for correctness (e.g. atomic actions, database updates, resource allocation/deal |l ocation, adaptive
feedback contral).

By reusing gates and wires, we can use device capacity to implement these latency limited
operations with less resources than would be required without reuse. This will allow us to use
smaller devicesto implement afunction or to place more functionality onto each device.

140

Cyclic dependencies Some computations have cyclic dependencies such that they cannot con-
tinue until the result of the previous computation is known. For example, we cannot reuse a
multiplier when performing exponentiation until the previous multiply result isknown. Finite state
machines (FSMs) a so have the requirement that they cannot begin to calculate their behavior in the
next state, until that stateis known. In apurely spatial implementation, each gate or wire performs
its function during one gate delay time and sits idle the rest of the cycle. Active resource reuseis
the most beneficial way to increase utilization in cases such as these.

10.3.3 Temporally Varying or Data Dependent Functional Requirements

Another characteristic of finite state machines is that the computational task varies over time
and as a function of the input data. At any single point in time, only a small subset of the
total computational graph is needed. In a spatial implementation, al of the functionality must
be implemented simultaneously, even though only small subsets are ever used at once. Thisisa
general property held by many computational tasks.

Many tasks may perform quite different computations based on the kind of datathey receive. A
network interface may handle packets differently based on packet type. A computational function
may handle new data differently based on its range. Data objects of different types may require
widely different handling. Rather than providing separate, active resources for each of these
mutually exclusive cases, a multicontext device can use a minimum amount of active resources,
selecting the proper operational behavior as needed.

10.3.4 Multicontext versus M onolithic and Partial Reconfiguration

Multicontext devices are specifically tailored to the cases where we need a limited amount of
activefunctionality at any point in time, but we need to be able to select or change that functionality
rapidly. This rapid switching is necessary to obtain reasonable performance for the kinds of
applications described in this section. This requirement makes reconfigurations from a central
memory pool, on or off chip, inadequate.

In this section, we draw out this point, reviewing the application domains identified in the
previous section. We also look at cases where one can get away without multicontext devices. At
the end of this section, we articulate areconfiguration rate taxonomy which alows usto categorize
both device architectures and applications.

Tasks with limited throughput requirements As we discussed in Section 10.3.1, tasks with
limited throughput requirements can be implemented in less areausing multicontext devices. If, we
placed the configuration contexts off-chip, the context-switch rate would be paced by the limited
bandwidth into configuration memory. Returning to our ASCII Hex— Binary converter, in thethree
context case, we would have to reload 12 LUT instructions between contexts 1 and 2, 4 between
contexts 2 and 3, and 12 between contexts 3 and 1. If we assume a 500MB/s RAMBUS I/O port
[Ram93] operating at peak burst performance, we can load one byte/2 ns. The evaluation time
would be:

y 12 mgps L i 12 nipiss L n 4 ngpits L
of f _context — 8b/2 ns LUT _delay 8b/2 ns LUT _delay 8b/2 ns LUT _delay

141

Assuming n;p;:s = 64, asin Section 8.2 and Chapter 9, and t1,u7_getay = 7 NS:

B 12-64+7ns+ 12-64+7ns+ 4.64
~ 8b/i2ns 8b/2 ns 8b/2 ns

= (192ns+192ns+64ns)+ (21nsg)
N—_——

instruction load time operation time
= 448ns+ 21ns

= 469ns

+7ns

Such a solution is simultaneously: (1) over an order of magnitude slower than the multicontext
implementation, which operated at 21-28 ns, and (2) over two order of magnitude larger when
you consider the 500-700M \? occupied by a4Mb RAMBUS DRAM. Arguably, the DRAM could
be smaller than 4Mb, but it is not economical to build, package, and sell such small memories.
Further, noticethat thisisatiny subtask with 12 active LUTs, whilereasonably sized FPGAscontain
hundreds to thousands of LUTS, making the reconfiguration time orders of magnitude slower. As
noted in Chapter 8, reconfiguration bandwidth limitations will dictate the rate of operation rather
than the circuit path length.

Latency limited tasks The same effect described above occursin latency limited designs. If we
want to save real-estate by reusing active area, the time to load in the next instruction may pace
operation. Off-chip memory, or an on-chip central memory pool, will suffer from the memory
bandwidth bottleneck just noted.

Data varying logical functions In finite-state machines, or other tasks which may change the
function they perform at each point in time based on the data arriving, this reconfiguration latency
also determines cycletime. Many taskswill exhibit the characteristicsidentified here —in response
to anew dataitem, hundreds of LUT instructions must be loaded before the actual task, which may
take only afew LUT delaysto evaluate, can be performed.

Infrequent temporal change Of course, if the distinct pieces of functionality required change
only infrequently, and can operationally tolerate long reload latencies, then off-chip reconfigura-
tions may be acceptable and efficient. For example, the UCLA configurable computing system
for automatic target recognition [VSCZ96] takes advantage of the fact that a loaded correlation
configuration can be used against an entire image segment before a new correlation is required.
With 128x 128 pixel images, a complete filter match of a 16x 16 correlation template across the
full image requires roughly 1282 correlations amounting to 16K clock cycles on the correlator.
Operating at a 60 ns clock rate, this full correlation takes roughly 1 ms. The conventional FPGA
actually used for the UCLA implementation, a Xilinx XC4010, takes 10 msto reload its configu-
ration [Xil94b]. However, as we noted in Section 7.8, the sparse encoding used by conventional
devices makes them excessively slow at reconfiguration. Assuming a RAMBUS reconfiguration
port and 64-bits/4-LUT, the 1600 4-L UTs on the XC4010 can be reloaded in roughly:

1600 - 64

treload = ——=—— = 25.6uS
foad 8b/2 ns H

142

Here, the reload time is small compared to the loaded context operating time (¢,cioad << toperate),
such that reload has a small effect on the rate of operation. In fact, as the UCLA paper notes,
when the next context is predictable in advance and ¢,coq4 < toperate, @two context FPGA would
be able to completely overlap the loading of the next instruction with the operation in the current
configuration.

Large-grain, data-dependent blocks Similarly, when performing data dependent computations
and the type of data changes slowly compared to the processing rate, long reconfiguration times
might be acceptable. For example, a video display which can handle different video data formats
(e.g. PAL, NTSC, MPEG-1, MPEG-2, HDTV), will only have to process and display one kind of
video stream at atime. For human consumption, it will typically display the same data stream for
along time and the 10’s of milliseconds of latency it may take to load the configuration with the
appropriate display engine would not be noticeable to the human observer.

Minor configuration edits Sometimes configurations need only minor edits in order to evolve
over time or be properly configured for different data types. For example, an n-character text
matching filter may only require the configuration of a n/4 4-LUTsto change to handle a different
n-character search target. If these only represent a small portion of the entire configuration, the
reconfiguration can be described as an edit on the existing configuration with less bandwidth than
a full context reload. In cases like this where the edits are small, partial reconfiguration — the
ability to efficiently change small portions of the configuration while leaving the rest in place —
may be adeguate to reduce context switch bandwidths sufficiently to keep reload latency low. We
see partial reconfiguration support in modern devices from Plessey [Ple90], Atmel [Atm94], and
Xilinx [Xil96] to support configuration edits such asthis.

Reconfiguration Rate Taxonomy From the above, we see three cases for configuration man-
agement based on the rate at which the task requires distinct pieces of functionality and the rate at
which it isefficient to change the configuration applied to the active processing elements:

1. Static — the configuration does not change within an operational epoch

e Usage Scenario: Traditional ASIC and FPGA applications where all the functionality
is needed all the time. Particularly appropriate for throughput limited cases where one
wants all the throughput one can get out of a devicefor every function it provides.

¢ Architectures: single-context FPGASs
2. Quasistatic — the configuration changes slowly compared to the rate of operation upon data

e Usage Scenario: Context load time is amortized across long periods of processing
with the loaded context (e.g. UCLA wirelessvideo [JOSV95], UCLA ATR [VSCZ96],
BYU DISC [WH95], BY U run-time reconfigurable neural networks [EH94]).

e Architectures: FPGAs with rapid reconfiguration (e.g. Atmel [Atm94], Xilinx 6200
[Xil96]) aong with traditional, in-circuit reprogrammable FPGASs for very coarse-
grained tasks

143

3. Dynamic — configuration changes at the same rate as data, potentially on a cycle-by-cycle
basis

e Usage Scenario: Limited active resources are shared among multiple operations to

extract full usage of the active resources when the task throughput requirements are

low compared to the potential device throughput. (e.g. multicontext circuit evalu-

ation introduced above and detailed in Section 10.5, finite-state machine evaluation
(Section 10.6), interleaved, multifunction components (Section 10.7.1)).

¢ Architectures: DPGAS, traditional processor architecturesincluding DSPsand VLIW
processors, SIMD and Vector array processors

We can further subdivide configuration management capabilities of architectureand application
reguirements based on whether they can take advantage of limited bandwidth configuration edits:

1. Atomic —the vector of instructions across the array must change all at once

¢ Architectures: Traditional FPGAs(e.g. Xilinx 2K, 3K, 4K, 5K [Xil94b], AlteraFLEX
8K [Alt94]), VLIW processors

2. Non-atomic —small subsets of the array instructions can be changed independently

¢ Architectures: FPGAS supporting partial reconfiguration (e.g. Xilinx 6200 [Xil96],
Atmel [Atm94])

Strictly speaking, theatomicity of configuration changesisorthogonal to therate of reconfiguration.
For statically configured applications, the atomicity of reload is irrelevant since the context does
not change. The atomicity is most relevant for quasistatic configuration changes since those are
the cases which benefit from reduced bandwidth requirements. Dynamic architectures can change
their active instruction on a cycle-by-cycle basis so non-atomic changes do not allow an array-
wide context switch to occur any faster. However, edits to the non-active contexts on dynamic
architecturesmay still benefit from the bandwidth reduction enabled by non-atomic updates.

144

10.4 A Prototype DPGA

Jeremy Brown, Derrick Chen, lan Edlick, and Edward Tau started a first-generation prototype
DPGA prototype while they were taking MIT’s introductory VLSI course (6.371) during the Fall
of 1994. The chip was completed during the Spring of 1995 with additional help from Ethan
Mirsky. André DeHon helped the group hash out the microarchitecture and oversaw the project.
The prototype was first presented publicly in [TECT95]. A project report containing lower level
detailsis available as [BCET 94].

In this section, we describe this prototype DPGA implementation. The design represents a
first generation effort and contains considerable room for optimization. Nonetheless, the design
demonstrates the viability of DPGAS, underscores the costs and benefits of DPGASs as compared
to traditional FPGAs, and highlights many of the important issues in the design of programmable
arrays. The fabricated prototype did have one timing problem which prevented it from functioning
fully, but our post mortem analysis suggests that the problem is easily avoidable.

Our DPGA prototype features:

4 on-chip configuration contexts

DRAM configuration cells

non-intrusive background loading

automatic refresh of dynamic memory elements

wide bus architecture for high-speed context |oading

two-level routing architecture

We begin by detailing our basic DPGA architecture in Section 10.4.1. Section 10.4.2 pro-
vides highlights from our implementation including key details on our prototype DPGA IC. In
Section 10.4.3, we describe several aspects of the prototype's operation. Section 10.4.4 extracts a
DPGA area model based on the prototype implementation. Section 10.4.5 closes out this section
on the DPGA prototype by summarizing the major lessons from the effort.

10.4.1 Architecture

Figure 10.9 depicts the basic architecture for this DPGA. Each array element is a conventional
4-input lookup table (4-LUT). Small collections of array elements, in this case 4x4 arrays, are
grouped together into subarrays. These subarrays are then tiled to compose the entire array.
Crossbars between subarrays serve to route inter-subarray connections. A single, 2-bit, global
context identifier isdistributed throughout the array to select the configurationfor use. Additionally,
programming lines are distributed to read and write configuration memories.

DRAM Memory The basic memory primitive is a4x 32 bit DRAM array which provides four
context configurations for both the LUT and interconnection network (See Figure 10.10). The
memory cell is a standard three transistor DRAM cell. Notably, the context memory cells are
built entirely out of N-well devices, allowing the memory array to be packed densely, avoiding the
large cost for N-well to P-well separation. The active context data is read onto a row of standard,
complementary CMOS inverters which drive LUT programming and selection logic.

145

Context<1> configuration bits

Context<2> configuration bits Hierarchy 3

Context<3> configuration bits ‘ Input/Output Pads ‘

Context<4> configuration bits ‘CroSsBor‘ ‘CrossBcr‘ ‘CrosSBor‘

[[5] [5] [5] 5] []
Memory Block containing fox sl sl sl
Multiple Configurations Hierarchy 2 g SubArray § SubArray g SubArray g
S [S) [S) [S)

Array Array Array Array ‘CrossBcr‘ ‘CrossBcr‘ ‘CrossBor‘

Blement| | Blement| |Hlement| | Blement|

SubArray SubArray SubArray

‘CrossBar‘
‘CrossBor‘
\CrossBor\

Array Array Array Array
Blement| | Blement| |Hlement| | Blement|

Iﬂput/OL%ut Pads
‘CrossEor‘
[nput/Output Pads

Hieararchy 1 \CrossBor\ \CrossBor \CrossBur

Array Array Array Array
Blemeny | Blement| |Hlement| | Blement|

1 Lookup | | Array Array Array Array

Table Hlement| | Blement| |Blement| |Blement]

[SubArray| SubArray SubArray

[CrossBar]
[CrossBar]
[CrossBar]
\CrossBor\

‘CrossBor‘ ‘CrossBor‘ ‘CrossBur‘

‘ Input/Qutput Pads ‘

Array Element SubArray Full DPGA
4-Input Lookup Table 4x4 composition of Array Element 3x3 Composition of SubArrays
with Programmable CrossBar

Figure 10.9: Architecture and Composition of DPGA

Array Element Thearray element isa4-LUT which includes an optional flip-flop on its output
(Figure 10.11). Each array element contains a context memory array. For our prototype, thisisthe
4x 32 bit memory described above. 16 bits provide the LUT programming, 12 configure the four
8-input multiplexors which select each input to the 4-LUT, and one selects the optional flip-flop.
The remaining three memory bits are presently unused.

Subarrays The subarray organizes the lowest level of the interconnect hierarchy. Each array
element output isrunvertically and horizontal ly acrosstheentire span of thesubarray (Figure10.12).
Each array element can, in turn, select as an input the output of any array element in its subarray
which shares the same row or column. This topology allows a reasonably high degree of loca
connectivity.

This leaf topology is limited to moderately small subarrays since it ultimately does not scale.
The row and column widths remains fixed regardless of array size so the horizontal and vertical
interconnect would eventually saturate the row and column channel capacity if the topology were
scaled up. Additionally, the delay on the local interconnect increases with each additional element
in arow or column. For small subarrays, there is adequate channel capacity to route all outputs
across a row and column without increasing array element size, so the topology is feasible and
desirable. Further, the additional delay for thefew elementsin therow or column of asmall subarray
is moderately small compared to the fixed delays in the array element and routing network. In
general, the subarray size should be carefully chosen with these propertiesin mind.

146

4<j ewv

Charge
Storage T _ewe [%4{ }*‘G clk
WriteValue Dfﬁ_,i‘i\—l_t_,ﬁD ReadValue ; -
= R »
WriteBnable Dierite Reod—L@ ReadBnable =wa DRAM Cell 35 I=! G re<g>
Port Port s RVIE-®
£+ DRAM Cell T q re<t>
— 1 =) RVE-®
3-Transistor by DRAM Cell [Q re<2>
DRAM Cell 3 Rl
by DRAM Cell 1 (] re<3>

Context<1>
Context<2>

Context<3>
Context<4>

iwe [%—{
we<4> [%—{

Refresh
Inverter

32—Column by 4-Context
Memory Block

Output
Buffer

4—-Bit Menﬂoryij
Column

Figure 10.10: DRAM Memory Primitive

Non-L ocal Interconnect In addition to the local outputswhich run across each row and column,
a number of non-local lines are also allocated to each row and column. The non-local lines are
driven by the global interconnect (Figure 10.12). Each LUT can then pick inputs from among the
lineswhich crossits array element. Inthe prototype, each row and column supports four non-local
lines. Each array element could thus pick its inputs from eight global lines, six row and column
neighbor outputs, and its own output. Each input is configured with an 8:1 selector as noted above
(Figure 10.11). Of course, not al combinations of 15 inputs taken 4 at atime are available with
this scheme. The inputs are arranged so any combination of local signals can be selected along
with many subsets of global signals. Freedom available at the crossbar in assigning global linesto
tracks reduces the impact of this restriction, but complicates placement.

Local Decode Row select linesfor the context memories are decoded and buffered locally from
the 2-bit context identifier. A single decoder serviceseach row of array elementsin asubarray. One
decoder also services the crossbar memories for four of the adjacent crossbars. In our prototype,
this placed five decoders in each subarray, each servicing four array element or crossbar memory
blocksfor atotal of 128 memory columns. Each local decoder also contains circuitry to refresh the
DRAM memory on contexts which are not being actively read or written.

147

4X16—bit Memory Block

yio

— o>
RS ?:‘ A%:W Multiplexor
) >
-
c [
O
O
O —
L (emory]

> 1< 4 sets of emery

o 16—Hntry D
© Lookup .
— op

1 self v Table

6 local <

38 global ||

15 interconnects CLK

Figure 10.11: Array Element

8 Global Inputs from North

Up 2 Array H Array H Array H Arroy H
Array Hlement| Blement|| Blement| | Blement]
Hlement| u N N n
[T 11 | I I [T 1T [T 11
Up 1 Array H Array H Arroy H Array H
Array || Blement|| Blement|| Blement|| Blement
Hlement| u N N n

V Array H Array = Array = Array :\]7

Blementd Blement) | Hlement| Blement

Right 3 Self Right 1| | Right 2
Array Array Array Array
Hlement|}| Blement|{| Blement| |Blement

Up 3 Array H Array H Array H Array H
Array | | Blement| | Blement| | Blement|| Blement
Hlement] u N n

= %>

8 Global Inputs from South

‘ 8 Global Inputs from West ‘

Figure 10.12: Subarray Local Interconnect

148

‘ 8 Global Inputs from Hast ‘

‘Memory‘

16
‘Memory‘

16
‘Memory‘

16
‘Memory‘

16
‘Memory‘

16
‘Memory‘

16
‘Memory‘

16

4 16:1 4
Mux

16:1
Mux

4

16:1
Mux

16:1 4
ux

16:1 4
Mux

16:1
Mux

[nput/Output Pads

‘CrossBor‘

‘CrossBor‘

‘CrossBor‘

SubArray

CrossBar]

CrossBar|

SubArray|

CrossBar|

SubArray

‘CrossBor‘

% [CrossBar] [CrossBar] [CrossBar] é

\g SubArray SubArray @ SubArray % EL

AB|AB|AB|AE AB|AB|AB|AE S S S S

= CrossBar| CrossBar| =

AD|AB|AB|AD AB|AB|AT|AD = c = |
AB|AB|AB|AB AB|AB|AB|AB Sublrray E SubArroy| | 8
o 8}

AB|AB|AB|AR AB|AB|AB|AB | [CrossBar] [CrossBar] ’m‘i T

Input/Output Pads

Figure 10.13: Inter Subarray |nterconnect

Global Interconnect Between each subarray apair of crossbars route the subarray outputs from
one subarray into the non-local inputs of the adjacent subarray. Note that al array element outputs
are available on all four sides of the subarray. In our prototype, this means that each crossbar is a
16x 8 crossbar which routes 8 of the 16 outputs to the neighboring subarray’s 8 inputs on that side
(Figure 10.13). Each 16x 8 crossbar is backed by a 4x32 DRAM array to provide the 4 context
configurations. Each crossbar output is configured by decoding 4 configuration bitsto select among
the 16 crossbar input signals.

While the nearest neighbor interconnect is sufficient for the 3x3 array in the prototype, a
larger array should include a richer interconnection scheme among subarrays. At present, we
anticipate that a mesh with bypass structure with hierarchically distributed interconnect lines will
be appropriate for larger arrays.

Programming The programming port makes the entire array look like one large, 32-bit wide,
synchronous memory. The programming interface was designed to support high-bandwidth data
transfer from an attached processor and is suitable for applications where the array isintegrated on
the processor die. Any non-active context may be written during operation. Read back is provided
in the prototype primarily for verification.

149

Technology 1 CMOS, 3 metal

Subarray Area 17504 x 14601=2.6M 112 (10.2M A?)
LUTs/subarray 16

LUT inputs 4

Array Element Area 640K \?

Contexts 4

Configuration Bits/LUT 40
Context Memory Area/lLUT 24K)2
Subarrays 9
Typica Cycle 9.5ns

Table 10.1: DPGA Prototype Implementation Characteristics

\ Unit \ Size \ Composition |
Die 6.8mmx 6.8mm Core with pads
Core 5.6mmx4.7mm All internal logic except pads
Array Core 5.25mmx4.4mm 3x 3 subarrays including crossbars (no pads)
Subarray+crossbar tile 1460px 1750 Subarray + 4 adjacent crossbars and memory
Crossbar (Xbar) 495, x 270u 16x 8 Crosspbar including memory
Local Decode (LD) 253ux167u
Array Element (AE) 275ux240u Includeslocal routing channels

Table 10.2: Basic Component Sizesfor Prototype

10.4.2 Implementation

The DPGA prototypeistargeted for alu drawn, 0.85u effective gate length cMos process with
3 metal layers and silicided polysilicon and diffusion. Table 10.1 highlights the prototype’s major
characteristics. Figure 10.14 shows the fabricated die, and Figure 10.15 shows a closeup of the
basic subarray tile containing a 4x4 array of LUTs and four inter-subarray crossbars. Table 10.2
summarizesthe areas for the constituent parts.

Table 10.3 breaks down the chip area by consumers. In Table 10.3, configuration memory is
divided between those supporting the LUT programming and that supporting interconnect. All
together, the configuration memory accounts for 33% of the total die area or 40% of the area
used on the die. The network area, including local interconnect, wiring, switching, and network
configuration area accounts for 66% of the die area or 80% of the area actually used on the die.
L eaving out the configuration memory, the fixed portion of the interconnect areais 45% of the total
areaor over half of the active die area.

Layout Inefficiencies The prototype could be packed more tightly sinceit haslarge blank areas
and large areasdedicated to wirerouting. A more careful co-design of theinterconnect and subarray
resources would eliminate much or all of the unused space between functional elements. Most of

150

[7.1mm

TR L B N G B N el B B S BN e B b Wi B e BN RN

O A 4

.!5 EQE 555‘55‘ '-[ik de i 4 B 1. 1. B
4 4 ds ! K=
' : 2 =
- s
I | pe=
T n=
E_; =
—_ =
§_ E #=
E B . 5‘““
> [4 & =
ST

N \ pr- :
[e B
e y =1 =
> | = W=
siinl D
N I =F B
I =¥ s A
T_Wlék_]

E =N Ba=
St o =
g Eal 3
. s =
_L I 2F =
=N ;35
5 @
e e

- — '
mlﬂl U} U P Hﬂﬁﬂmlﬂﬂm]ﬂﬂ ﬂll ﬂllmlﬂﬂ FUITR’U& UL PO T O U T

i—mm o o e

|— 1750um —] 2|7‘5ij 2'\-1>‘3:;|m 495um

Figure 10.14: Annotated Die Photo of DPGA Prototype

6.8mm

the dedicated wiring channels are associated with the local interconnect within a subarray. With
careful planning, it should be possibleto route al of these wires over the subarray cellsin metal 2
and 3. Asaresult, acareful design might be 40-50% smaller than our first generation prototype.

Memory

Area From the start, we suspected that memory density would be a large determinant of array
size. Table 10.3 demonstrates this to be true. In order to reduce the size of the memory, we
employed a 3 transistor DRAM cell design as shown in Figure 10.10. To keep the aspect ratio on

the 4x 32 memory small, we targeted a very narrow DRAM column (See Figure 10.16).

151

Rt
4
|

i of
E_t8 —rromle o Se. o re— B
— P AT e —i— =t 3
ﬁi i " | ’ SRS et - ddba

»e 4

n i 0

-

f: .
1

14 ET b
4
ol

'.'. 'fl.i_.* RS

£

-
.
. ‘t'dnt{ e

Y
" e | e |

TR TR Ty
-
-
o

n

vmnd- b &0

P,
LE 1
v
\"L’-un ke m
il
» ; e
i =EET

ot 0m -"l“ o = MU R~
a— s TIIIRERE] Ry - .=

1

Figure 10.15: Photo of DPGA Subarray and Crossbar Tile

| Function | Elements | Percent |

Logic Total 16
Memory array 10
Memory decode | 3
Fixed Logic 3
Network | Total 66
Memory array 15
Memory decode | 5
Switching 19
Wiring 27
Blank 18
[Total [100

Table 10.3: Array Core Area Breakdown by Programmable Function

152

Figure 10.16: Plot of Array Element with Configuration Memory

Unfortunately, this emphasis on aspect ratio did not allow us to realize the most area efficient
DRAM implementation (See Table 10.4). In particular, our DRAM cell was7.64:x 19.2., or almost
600)2. A tight DRAM should have been 75-8042, or about 300A2. Our tall and thin DRAM was
viaand wirelimited and hence could not be packed as area efficiently as amore square DRAM cell.

One key reason for targeting a low aspect ratio was to balance the number of interconnect
channels available in each array element row and column. However, with 8 interconnect signals
currently crossing each side of the array element, we are far from being limited by saturated
interconnect area. Instead, array element cell size islargely limited by memory area. Further, we
route programming lines vertically into each array element memory. This creates an asymmetric
need for interconnect channel capacity since the vertical dimension needs to support 32 signals
while the horizontal dimension need only support a dozen memory select and control lines.

For future array elements we should optimize memory cell areawith less concern about aspect
ratio. In fact, the array element memory can easily be split in half with 16 bits above the fixed
logic in the array element and 16 below. This rearrangement will also alow us to distribute only
16 programming lines to each array element if we load the top and bottom 16 bits separately. This
revision does not sacrifice total programming bandwidth if we load the top or bottom half of apair

153

| Element | #] Size |
DRAM Cel | 4| 7.6ux19.21
Output Buffer | 1 | 7.6ux28.0u
PassGates | 1| 7.6ux26.4u

| Column | | 7.6px131.2y |

Table 10.4: DRAM Column Breakdown

Function Percent
of Total | of Memory
Memory decode 8 25
Memory cells 15 44
Buffer and gate 10 31
\ Total \ 33 \ 100 \

Table 10.5: Memory Area Breakdown

of adjacent array elements simultaneously.

Table 10.5 further decomposes memory area percentages by function. We have already noted
that atight DRAM cell would be half the areaof the prototype DRAM cell and an SRAM cell would
be twice as large. Using these breakdowns and assuming commensurate savings in proportion to
memory cell area, the tight DRAM implementation would save about 7% total area over the
current design. An SRAM implementation would be, at most, 15% larger. In practice, the SRAM
implementation would probably be only 5-10% larger for a 4-context design since the refresh
control circuitry would no longer be needed. Of course, as one goesto greater numbers of contexts,
the relative area differences for the memory cells will provide a larger contribution to overall die
size.

Memory Timing The memory in the fabricated prototype suffered from atiming problem dueto
the skew between theread precharge enableand theinternal writeenable. Asshownin Figure10.10,
the read bus is precharged directly on the high edge of the clock signal cl k. The internal write
enable, i we, controlswrite-back during refresh. i we and thewrite enablesignals, we<4: 0>, are
generated by the local decoder and driven across an entire row of four array elementsin asubarray,
which makes for a 128-bit wide memory. Both i we and we<4: 0> are pipelined signals which
transition on the rising edge of cl k. On the rising edge of cl k, we have a race between the turn
on of the precharge transistor and the turn off of i we andwe<4: 0>. Sincecl k directly controls
the precharge transistor, precharge begins immediately. However, sincei we and we<4: 0> are
registered, it takes a clock-to-q delay before they can begin to change. Further, since there are
128 consumers spread across 1100y, the signal propagation time across the subarray is non-trivial.
Consequently, it is possible for the precharge to race through write enables left on at the end of

154

FEEF
d484

FEREFREFREERE
d444

Figure 10.17: Plot of Crossbar with Configuration Memory

a previous cycle and overwrite memory. This problem is most acute for the memories which are
farthest from the local decoders.

Empirically, we noticed that the memories farthest from the local decoder lost their values after
short time periods. Intheextreme cases of theinput and output pads, which were often very far from
their configuration memories, the programmed values were overwritten almost immediately. The
memoriescloser to thelocal decoder were more stable. The array elementsadjacent to the decoders
were generally quite reliable. After identifying this potential failure mode, we simulated explicit
skew between cl k and the write enables in sPICE. In simulation, the circuit could tolerate about
1.5 ns of skew between cl k and the write enables before the memory values began to degrade.

We were able to verify that refresh was basically operational. By continually writing to single
context, we can starve other contexts from ever refreshing. When we forced the chip into this
mode, data disappeared from the non-refreshed memories very quickly. The time constant on this
decay was significantly different from the time constants observed due to the timing decay giving
us confidence that the basic refresh scheme worked aside from the timing skew problem.

Obvioudly, the circuit should have been designed to tolerate this kind of skew. A simple and
robust solution would have been to disable the refresh inverter or the writeback path directly on
cl k to avoid simultaneously enabling both the precharge and writeback transistors. Alternately,
the precharge could have been gated and distributed consistently with the write enables.

Crossbar Implementation

To keep configuration memory small, the crosshar enableswere stored encoded in configuration
memory then decoded for crossbar control. The same 4x 32 memory used for the array element

155

Delay
Path symbol | slow-speed | nominal
CLK—configuration memory stable trnem 4ns 25ns
CLK—XBAR out trbarl 85ns 5ns
XBAR in—XBAR out tobar 4.5ns 25ns
LUT in—LUT output (1 level) tru 9ns 3.5ns
CLK—CLK (maximum, DRAM leakage) | t.k,,.. 200 ns

Table 10.6: Estimated Timings

was used to control each 16x 8 crossbar. Note that the entire memory is 128K A\2. The crossbar
itself is 535K \2, maki ng the pair 660K A2, Had we not encoded the crossbar controls, the crossbar
memory alone would have occupied 512K A2 before we consider the crossbar itself. This suggests
that the encoding was marginally beneficial for our four context case, and would be of even greater
benefit for greater numbers of contexts. For fewer contexts, the encoding would not necessarily be
beneficial.

Timing
Table 10.6 summarizes the key timing estimates for the DPGA prototype at the slow-speed
and nominal process points. As shown, context switches can occur on a cycle-by-cycle basis and
contribute only a few nanoseconds to the operational cycle time. Equation 10.4 relates minimum
achievable cycle time to the number of LUT delays, n;, and crossbar crossings, n.. in the critical
path of adesign.
tcycle = lmem + M - it + Mg Labar (104)

These estimates suggest a heavily pipelined design which placed only one level of lookup table
logic (n; = 1) and one crossbar traversal (n,, = 1) in each pipeline stage could achieve 60-100MHz
operation alowing for a context switch on every cycle. Our prototype, however, does not have a
suitably aggressive clocking, packaging, or i/o design to actually sustain such a high clock rate.
DRAM refresh requirements force a minimum operating frequency of 5SMHz.

Pipelining Two areas for pipelining are worth considering. Currently, the context memory read
time happens at the beginning of each cycle. In many applications, the next context is predictable
and the next context read can be pipelined in paralel with operation in the current context. This
pipelining can hide the additional latency, t,..,. Also, notice that the inter-subarray crossbar
delay is comparable to the LUT plus local interconnect delay. For aggressive implementations,
allowing the non-local interconnect to be pipelined will facilitate small microcyclesand very high
throughput operation. Pipelining both the crossbar routing and the context reads could potentially
allow a3-4 ns operational cycle.

156

10.4.3 Component Operation

Inter-context Communication The only method of inter-context communication for the proto-
type is through the array element output register. That is, when a succeeding context wishes to
use a value produced by the immediately preceding context, we enable the register output on the
associated array element in the succeeding context (See Figure 10.11). When the clock edge occurs
signaling the end of the preceding cycle, the signal value islatched into the output register and the
new context programming is read. In the new context, the designated array element output now
providesthe value stored from the previous context rather than the value produced combinationally
by the associated LUT. This, of course, makesthe associated LUT alogical choiceto useto produce
valuesfor the new context’s succeeding context since it cannot be used combinationally in the new
context, itself.

In the prototype, the array element output register is also the only means of state storage.
Consequently, it is not possible to perform orthogonal operations in each context and preserve
context-dependent state.

Note that a single context which acts as a shift register can be used to snapshot, offload, and
reload the entire state of a context. In an input/output minimal case, all the array elementsin the
array can be linked into a single shift register. Changing to the shift register context will allow
the shift register to read al the values produced by the preceding context. Clocking the devicein
this context will shift data to the output pin and shift data in from the input pin. Changing from
this context to an operating context which registers the needed inputs will insert loaded values for
operation. Such a scheme may be useful to take snapshots during debugging or to support context
switches where it is important to save state. If only a subset of the array elements in the array
produce meaningful state values, the shift register can be built out of only those elements. If more
input/output signal s can be assigned to data onload and offload, aparallel shift register can be built,
[imiting the depth and hence onload/offload time.

Context Switching Context switchesare signaled by acontext strobe. If context strobeis asserted
at aclock edge, a context read occurs. If context strobe is not asserted, the component remainsin
the same context.

DRAM Refresh DRAM memory is refreshed under one of two conditions:
1. Context Read — Whenever acontext is read, that context will be refreshed.

2. Clocked in Same Context — Whenever a clock cycle occurs but the context strobe is not
asserted and there is no read or write to any of the memories serviced by a particular local
decoder, the“next” context isrefreshed. Each local decoder maintains a modul o four counter
which it increments each time it is able to perform a context refresh in this manner. If the
array staysinthe same context for morethat four cycles, every fourth cycle, the active context
value s refreshed through we <4 > (See Figure 10.10).

This refresh scheme does place some restrictions on the context sequencing, but it allows most
common patterns. In particular, proper refresh occursif we:

¢ continually cyclethrough all contexts, switching on each clock cycle

157

¢ stay in each context for several clock cycles

If one continually changes contexts on every clock cycle and only walks through a small subset
of the entire set of contexts, the non-visited contexts will be starved from refresh. For example,
switching continually between context zero and context one would prevent contextstwo and three
from ever getting arefresh.

The context memory typicaly gets very stylized usage. For any single memory, writes are
infrequent. Common usage patterns are to read through al the contexts or to remain in one context
for anumber of cycles. Assuchtheusage patterniscomplementary to DRAM refresh requirements.

Background Load Notice from Figure 10.10 that the write path is completely separate from the
read path. This allows background writes to occur orthogonally to normal operation. Data can be
read through the refresh inverter and we<4> with i we disabled to prevent refresh or writeback.
At the same time, new data arriving on ewv may be loaded through ewe and written into memory
usingwe<3: 0>.

10.4.4 Prototype Context Area Model

Using the prototype areas, we can formulate a smplified model for the area of an n-context
DPGA array element.
Aae = Abase +c- Acontewt

From the prototype:
Apase = B54KN2
Acomewtn‘ght_DRAM = 12K\?
Acontel‘tproto_DRAM = 24KA2
AcontextSRAM = 48KA2

Based on this area model, our robust context point, ¢*, is 45, 23, and 11, respectively for each of
the various memory implementations.

10.4.5 Prototype Conclusions

The prototype demonstrates that efficient, dynamically programmable gate arrays can be im-
plemented which support a single cycle, array-wide context switch. As noted in Chapter 9 and
the introduction to this chapter, when the instruction description area is small compared to the
active compute and network area, multiple context implementations are more efficient than single
context implementations for a large range of application characteristics. The prototype bears out
this relationship with the context memory for each array element occupying at least an order of
magnitude less area than the fixed logic and interconnect area. The prototype further shows that
the context memory read overhead can be small, only a couple of nanoseconds.

The prototype has room for improvement in many areas:

158

¢ Tighter layout — Both the memory cells and the fixed portions of the array elements are
larger than necessary for the function provided and can be improved with more careful layout
and a better understanding of the relative areas of constituent components.

¢ Pipeline interconnect — Over half of the cycle time on a minimum, typical cycleisin the
non-local interconnect, suggesting it may be worthwhile to optionally pipeline the non-local
interconnect to increase the achievable computational density.

¢ Overly limited routing — The routing in the prototype is limited and probably inadequate
for automated mapping.

e Amortizerefresh logic — Separate refresh control is provided for every four memory blocks.
This function can likely be moved to higher levels and the associated area amortized over a
larger number of memory blocks.

Additional, architectural, areas for improvement over the prototype are identified in the following
sections and in the next chapter.

159

10.5 Circuit Evaluation

One large class of workloads for traditional FPGASs is conventional circuit evaluation. In this
section, we look at circuit levelization where traditional circuits are automatically mapped into
multicontext implementations. In latency limited designs (Section 10.5.2), the DPGA can achieve
comparable delaysin less area. In applicationsrequiring limited task throughput (Section 10.5.3),
DPGASs can often achieve the required throughput in less area.

10.5.1 Levdization

Levelized logicisaCAD techniquefor automatic temporal pipelining of existing circuit netlists.
Bhat refers to this technique as temporal partitioning in the context of the Dharma architecture
[Bha93]. The basic ideaisto assign an evaluation context to each gate so that:

¢ with atotal ordering on contexts, all the inputs to context ¢; are computed in that context or
one of its predecessors (i.e. inacontext ¢; such that j < ¢)

¢ weminimizetotal capacity required for the cal culation by minimizing the maximum resource
usage per context

With latency constraints, we may further require that the levelized network not take any more
tmin_cir StEPS than necessary. With this assignment, the series of contexts cg, c1, ..., Cnazr_1
evaluatesthe logic netlist in sequence over maxz microcycles. With afull levelization scheme, the
number of contexts used to evaluate a netlist is equal to the critical path in the netlist.

For sake of illustration, Figure 10.18 shows a fraction of the ASCII—Hex binary circuit
extracted from Figure 10.4. The critical paths (e.g. c<1>—i8—i15—0<1>) isthree elements
long. Spatially implemented, this netlist evaluates a 6 gate function in 3 cycles using 6 physical
gates. In three cycles, these three gates could have provided 6 x 3 = 18 gate evaluations, so we
underutilize al the gatesin the circuit. The circuit can be fully levelized as shown in Figure 10.18
(co =HiL,i4,i7,i8}, 1 = {i15}, ¢2 = {o<1>}) or partialy levelized combining the final two stages
(co ={iL,i4,i7,i8}, c1 = {i15,0<1>}). If theinputs are held constant during evaluation, we need
only four LUTsto evaluate either case. Inthiscase, if the inputsare not held constant, we will need
two additional LUTsin ¢q for retiming so thereis no benefit to multicontext evaluation. However,
as we saw in Section 10.1, for the whole circuit, even with retiming, the total nhumber of LUTs
needed for levelized evaluation is smaller than the number neededin afully spatial implementation.

Recall also from Section 10.1, that grouping is one of the limits to even levelization. When
there is slack in the circuit network, the slack gives us some freedom in the context placement
for components outside of the critical path. In general, this dack should be used to equalize
context size, minimizing the number of active LUTsrequired to achieve the desired task latency or
throughput. Aswe seein both thissubcircuit and the full circuit, signal retiming requirements also
serve to increase the number of active elements we need in each evaluationslevel.

10.5.2 Latency Limited Designs

As noted in Section 10.3.2, many tasks are latency limited. This could be due to data depen-
dencies, such that the output from the previous evaluation must be available before subsequent

160

INORDER = C[7] C[6] C[5] C[4] C[3] C[1] C[]] ;
OUTORDER = O[1] ;

#stage 1 -8 LUTS[C[3], C[1] pass through]
i1=C[4] * C[5] * IC[6] * IC[7];

i4=1C[3] * IC[4] * C[6] * !C[7] ;

i7=1C[0] * C[1] ;

i8=C[0] * !IC[1] ;

#stage 2 -9 LUTs[i1,C[3],C[1] pass through]
i15=i8*i4+i7*i4;

#stage3 -4 LUTs

O[1] =i1*!C[3] * C[1] +i15;

Figure 10.18: ASCII Hex— Binary Subcircuit

evaluation may begin. Alternately, this subtask may be the latency limiting portion of some larger
computational task. Further, the task may be one where the repetition rate is not hight, but the
response timeis critical. In these cases, multicontext evaluation will allow implementations with
fewer active LUTs and, consequently, less implementation area.

We use the MCNC circuit benchmark suite to characterize the benefits of multicontext evalua-
tion. Each benchmark circuit is mapped to anetlist of 4-LUTsusing si s [SSL*92] for technology
independent optimization and Chor t | e [Fra92] [BFRV92] for LUT mapping. Since we are as-
suming latency is critical in this case, both si s and Chort| e were run in delay mode. No
maodifications to the mapping and netlist generation were made for |evelized computation.

LUTs are initially assigned to evaluation contexts randomly without violating the circuit
datafl ow requirements. A simple, annealing-based swapping scheduleisthen used to minimizetotal
evaluation costs. Evaluation cost is taken as the number of 4-LUTs in the final mapping including
theLUTsadded to perform retiming. Table 10.7 showsthe circuits mapped to atwo-context DPGA,
and Table 10.8, afour-context DPGA. Table 10.9 shows the full levelization case — that is circuits
are mapped to an n-context DPGA, where n is equal to the number of LUT delaysin the circuit’s
critical path. The tables break out the number of active LUTs in the multicontext implementations
to show the effects of signal retiming requirements.

161

Single Context 2-Context Area
Circuit || 4-LUTs | levels | Model Area || 4-LUTs | 4-LUTs | Modd Area || Ratio
(MA2) wi/retime MY || ZSX
5xpl 55 6 48.3 35 42 40.2 || 0.831
9sym 155 5 136.1 140 144 137.7 || 1.012
9symml 130 5 114.1 115 119 113.8 || 0.997
C499 406 7 356.5 219 219 209.4 || 0.587
C880 289 9 253.7 153 161 153.9 || 0.607
au2 323 10 283.6 214 224 214.1 || 0.755
apex6 454 5 398.6 277 284 271.5 || 0.681
apex7 158 5 138.7 91 96 91.8 || 0.662
b9 55 3 48.3 33 43 41.1 || 0.851
clip 162 6 142.2 127 136 130.0 || 0.914
cordic 529 8 464.5 426 435 415.9 || 0.895
count 128 4 112.4 83 101 96.6 || 0.859
des 2749 8 2413.6 1397 1653 1580.3 || 0.655
€64 385 4 338.0 229 271 259.1 || 0.766
f51m 152 7 1335 104 112 107.1 || 0.802
misex1 24 3 21.1 14 15 14.3 || 0.681
misex2 58 4 50.9 31 40 38.2 || 0.751
rd73 157 5 137.8 117 124 118.5 || 0.860
rds4 381 5 3345 317 322 307.8 || 0.920
rot 398 8 349.4 217 263 251.4 || 0.720
sa02 98 5 86.0 61 71 67.9 || 0.789
vg2 92 5 80.8 51 65 62.1 || 0.769
z4ml 13 4 11.4 8 10 9.6 || 0.838
Active LUT Ratio 0.65 \
Averages || LUT+Retime/FPGA-LUT Ratio 0.73 |
Area Ratio 0.79 |
Acircuit = *Nactive_LUTs X ALUT
ALUT = Abase + */Vcontez’t X Acontex’t

Apuse = B00KN?
Acontext = 78KA2

Table 10.7: MCNC Circuit Benchmarks— Latency Limited — Two-Context DPGA Implemenation

162

Single Context 4-Context Area
Circuit || 4-LUTs | levels | Model Area || 4-LUTs | 4-LUTs | Modd Area || Ratio
(MA2) wi/retime MY || X
5xpl 55 6 48.3 19 24 26.7 || 0.553
9sym 155 5 136.1 66 75 83.4 || 0.613
9symml 130 5 114.1 53 63 70.1 || 0.614
C499 406 7 356.5 119 150 166.8 || 0.468
C880 289 9 253.7 91 121 134.6 || 0.530
au2 323 10 283.6 107 125 139.0 || 0.490
apex6 454 5 398.6 127 246 273.6 || 0.686
apex7 158 5 138.7 49 87 96.7 || 0.697
b9 55 3 48.3 24 40 445 || 0.921
clip 162 6 142.2 56 65 72.3 || 0.508
cordic 529 8 464.5 226 243 270.2 || 0.582
count 128 4 112.4 44 70 77.8 || 0.693
des 2749 8 2413.6 854 1110 1234.3 || 0.511
€64 385 4 338.0 128 186 206.8 || 0.612
f51m 152 7 1335 58 66 73.4 || 0.550
misex1 24 3 21.1 9 14 15.6 || 0.739
misex2 58 4 50.9 17 32 35.6 || 0.699
rd73 157 5 137.8 57 64 71.2 || 0.516
rds4 381 5 3345 152 161 179.0 || 0.535
rot 398 8 349.4 119 214 238.0 || 0.681
sa02 98 5 86.0 33 43 47.8 || 0.556
vg2 92 5 80.8 34 50 55.6 || 0.688
z4ml 13 4 11.4 6 9 10.0 || 0.877
Active LUT Ratio 0.36 \
Averages || LUT+Retime/FPGA-LUT Ratio 0.49 |
Area Ratio 0.62 |
Acircuit = Jvactive_LUTs X ALUT
ALUT = Abase + A/Vcontez’t X Acontex’t
Apgse = 8B00KN?
Acontext = 78KA2

Table 10.8: MCNC Circuit Benchmarks— Latency Limited — Four-Context DPGA Implemenation

163

Single Context Context/Level Area
Circuit || 4-LUTs | levels | Model Area || 4-LUTs | 4-LUTs | Modd Area Ratio
(MA2) wi/retime (M) || levelcix
5xpl 55 6 48.3 13 23 29.2 || 0.604
9sym 155 5 136.1 102 111 132.1 || 0.971
9symml 130 5 114.1 85 93 110.7 || 0.970
C499 406 7 356.5 93 144 193.8 || 0.544
C880 289 9 253.7 55 106 159.2 || 0.627
alu2 323 10 283.6 55 92 1454 || 0.513
apex6 454 5 398.6 128 256 304.6 || 0.764
apex7 158 5 138.7 40 92 109.5 || 0.789
b9 55 3 48.3 22 45 46.5 || 0.964
clip 162 6 142.2 54 63 79.9 || 0.562
cordic 529 8 464.5 136 184 262.0 || 0.564
count 128 4 112.4 48 69 76.7 || 0.683
des 2749 8 2413.6 456 915 1303.0 || 0.540
€64 385 4 338.0 132 186 206.8 || 0.612
f51m 152 7 1335 45 55 74.0 || 0.555
misex1 24 3 211 12 15 15.5 || 0.736
misex2 58 4 50.9 19 33 36.7 || 0.721
rd73 157 5 137.8 60 67 79.7 || 0.578
rds4 381 5 334.5 187 195 232.1 || 0.694
rot 398 8 349.4 66 204 2905 || 0.831
sa02 98 5 86.0 33 43 51.2 || 0.595
vg2 92 5 80.8 34 51 60.7 || 0.751
z4ml 13 4 114 6 9 10.0 || 0.877
Active LUT Ratio 034 |
Averages || LUT+Retime/FPGA-LUT Ratio 0.50 |
Area Ratio 0.70

Acircuit
Arur
fibase

Acontext

= Noctive_urs X ALuT
= Abase ‘|’ ATconteo:t X Acontext

800K \?

= 78K)\2

Table 10.9: MCNC Circuit Benchmarks — Latency Limited — Context per Level DPGA Impleme-

nation

164

From the mapped results, we see a 30-40% overall area reduction using multicontext FPGAS,
with some designs achieving almost 50%. For this collection of benchmark circuits, which has
an average critical path length of 5-6 4-LUT delays, a four context DPGA gives the best, overall,
results. Note that retiming requirements for these circuits dictates that each context contain, on
average, 50% of the LUTsin the original design. Without the retiming regquirements, 60-70% area
savings look possible without increasing evaluation path length.

In addition to task delay requirements, three effects are working together here to limit the
number of contexts which are actually beneficial for for these circuits:

1. packing limitations
2. retiming requirements
3. non-trivid, finite instruction area

The annealing step explicitly minimized total LUT throughput including retiming. Nonetheless,
looking at the total number of LUTs actually used, we see the number of active LUTsactually used
for computation continues to decrease as the number of contexts increase, while the total number
of LUTstendsto level out due to retiming saturation. Figure 10.19 shows the area breakdown of
these effects in terms of the number of LUTs and total arearequired as afunction of the number of
contexts used for the des benchmark. Figures 10.20 and 10.21 show similar data for C880 and
al u2.

Timing There are two potential sources of additional latency for the multicontext cases versus
the single context cases.

1. stage balancing time
2. context-switch time

When the number of LUT delaysin the path is not an even multiple of the number of contexts,
it is not possible to allocate an even number of LUT delays to each context. For example, since
thedes circuit takeseight LUT delaysto evaluate, athree context implementation will place three
LUT delays in two of the three contexts and two LUT delaysin the third. In a simple clocking
scheme, each context would get the same amount of time. In the des case, that would be three
LUT delays, making the total evaluationtime nine LUT delays.

Changing contextswill add some latency overhead at least for registering values during context
switches. Inthecircuit eval uation case, the next context isalwaysdeterministic and could effectively
be pipelined in parallel with evaluation of the previous context. From the DPGA prototype, we
saw that LUT-to-LUT delay was roughly 6 ns and the context read was 2.5 ns. Register clocking
overhead islikely to be on the order of 1 ns. Thisgives:

tit = 6nNS
(Pipelined Read) t.:p switen = 1nNS
(Non-Pipelined Read) t.:0—switen = 2.5nS

tone—ctz = lcrit—path X trut

165

ﬁ 3000 — LUTst+retime & L30T~
5 2700 = Ll401—
_|2400 - = LUTs 130
2100 |deal LUTs = L
1800 - 1201
1500 a‘g 1101
1200 N L 1004
900 CNel < ;o0 —— LUTArea
e I 2 osol L1 1 ||
123456 7 8 123456738
Contexts Contexts
3\1—-2500'_ —— Mapped Area
Ideal Area
L1
5 6 7 8
Contexts

Ideal Case = Perfect packing and no retiming overhead

Figure 10.19: AreaBreakdown versus Number of Contextsfor des Benchmark

lnulti—cte = lcrit—path X Liut + Netzt X Letz—switch

In the pipelined read case, we add 1 ns per context switch or at most % ~ 17% delay to the critical
path. In the non-pipelined read case, we add 2.5 ns per context switch, or at most % ~ 42% delay
to the critical path.

The area for the multicontext implementation is smaller and the number of LUTs involved is
smaller. Asaresult, theinterconnect traversed in each context may bemore physically and logically
local, thus contributing lessto the LUT-to-LUT delay.

166

Area Inthe mode used, we assume that the basic interconnect area per LUT is the same in the
single and multiple context case. Since the total number of LUTs needed for the multicontext
implementation is smaller, the multicontext implementation can use an array with fewer LUTsthan
the single context implementation. We saw in Section 7.6 that interconnect area grows with array
size, so the area going into interconnect will be less for the multicontext array assuming the Rent
parameter remains the same.

Areafor Improvement Theresults presented in this section are based on:
1. LUT areamodel numbers
2. DPGA architecture resembling the DPGA prototype
3. conventional circuit netlist mapping

It may be possible to achieve better results by improving each of these areas.

1. component area — The model assumes an instruction storage cost based on 64 instruction
bitLUT and conventional SRAM memory cells. Smaller context area can be achieved by
tighter instruction encoding (e.g. Section 7.8) or smaller memory cells (e.g. DRAM used in
the prototype DPGA described in Section 10.4).

2. architecture — The largest gap between the ideal case and practice is in retiming. The
architecture can be modified to better handle retiming (See Chapter 11).

3. mapping—LUT mapping whichissensitivetotheretiming costsmay be capableof generating
netlists with lower retiming requirements.

10.5.3 Limited Task Throughput

In Section 10.3.1, we saw that system and application regquirements often limit the throughput
required out of each individual subtask or circuit. When throughput requirements are limited, we
can often meet the throughput requirement with fewer active LUTSs than design LUTS, realizing a
smaller and more economical implementation.

To characterize this opportunity we again use the MCNC circuit benchmarks. si s and
Chort | e are used for mapping, as before. Since we are assuming here that the target crite-
riais throughput, both si s and Chor t | e arerunin delay mode. As before, no modifications to
the mapping and netlist generation are made.

For baseline comparison in the single-context FPGA case, we insert retiming registers in the
mapped design to achieve the required throughput. That is, if we wish to produce a new result
every n LUT delays, we add pipelining registers every » LUTs in the critical path. For example,
if the critical path on acircuit is 8 LUT delays long and the desired throughput is one result ever
2LUT delays, we break the circuit into four pipeline stages, adding registersevery 2 LUT delaysin
the original circuit. We use a simple annealing algorithm to assign non-critical path LUTsin order
to minimize the number of retiming registers which must be added to the design.

Similarly, we divide the multicontext case into separate spatial pipeline stages such that the
path length between pipeline registersis equal to the acceptable period between results. The LUTs

167

within a phase are then evaluated in multicontext fashion using the available contexts. Again, if the
critical path onacircuitis8 LUT delayslong and the desired throughput is one result every 2 LUT
delays, we break the circuit into four spatial pipeline stages, adding registersever 2 LUT delaysin
theoriginal circuit. Thespatial pipelinestageisfurther subdividedinto two temporal pipelinestages
which are evaluated using two contexts. This multicontext implementation switches contextson a
oneLUT delay period. Similarly, if the desired throughput was only oneresult every 4 LUT delays,
the design would be divided into 2 spatia pipeline stages and up to 4 temporal pipeline stages,
depending on the number of contexts available on the target device. The same annealing algorithm
isused to assign spatial and temporal pipeline stagesto non-critical path LUTsin a manner which
minimizesthe number of total design and retiming LUTsrequired in the levelized circuit.

As the throughput requirements diminish, we can generally achieve smaller implementations.
Unfortunately, as noted in the previous section retiming requirements prevent us from effectively
using a large number of contexts to decrease implementation area. For the al u2 benchmark,
Table 10.10 shows how LUT requirements vary with throughput and Table 10.11 translates the
LUT requirements into areas based on the model parameters used in the previous section. Fig-
ure 10.22 plots the areas from Table 10.11. Table 10.12 recasts the areas from Table 10.11 as
ratios to the the best implementation area at a given throughput. For this circuit, the four or five
context implementation is ~45% smaller than the singl e context implementation for low throughput
reguirements.

Tables 10.14 through 10.16 highlight area ratios at three throughput points for the entire
benchmark set. For reference, Table 10.13 summarizes the number of mapped design LUTs and
path lengthsfor the netlistsused for these experiments. We seethat the 2-4 context implementations
are 20-30% smaller than the single context implementations for low throughput requirements.

168

clocks LUTsincluding Retiming
per Contexts

result 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8
585 | 585 | 585 | 585 | 585 | 585 | 585 | 585
353 | 347 | 347 | 347 | 347 | 347 | 347 | 347
286 | 252 | 252 | 252 | 252 | 252 | 252 | 252
240 | 207 | 161 | 161 | 161 | 161 | 161 | 161
216 | 188 | 161 | 139 | 139 | 139 | 139 | 139
212 | 185 | 156 | 139 | 126 | 126 | 126 | 126
189 | 145 | 143 | 139 | 124 | 118 | 118 | 118
189 | 145 | 143 | 137 | 124 | 118 | 110 | 110
189 | 145 | 134 | 125 | 124 | 118 | 110 | 110
10 178 | 138 | 129 | 122 | 120 | 106 | 96 | 86
11 178 1138 | 128 | 120 | 99 | 99 | 96 | 86
12 178 1138 | 128 | 120 | 99 | 99 | 96 | 86
13 178 1128 | 128 | 120 | 99 | 99 | 96 | 86
14 178 1128 | 127 | 116 | 99 | 99 | 96 | 86
15 178 | 127 | 124 | 116 | 99 | 99 | 86 | 86
16 178 |1 126 | 116 | 116 | 99 | 99 | 86 | 86
17 178 1125|116 | 116 | 99 | 99 | 86 | 86
18 178 1125|116 | 116 | 99 | 99 | 86 | 86
19 169| 91 | 86 | 73 | 70 | 69 | 68 | 68
20 169 | 91 | 86 | 73 | 68 | 67 | 67 | 66

=

O©CoO~NOOULhWN

Design Luts | 169
Critical Path | 19

Table 10.10: Multicontext Implementations of al u2 versus Throughput (LUTS)

169

—— LUTstretime
-.= LUTs
Ideal LUTs

270

LUTs

2101
1501+ *-
N
01— RN
20 [| | ! ['I'--!..l
1 2 3 4 5 6 7 8 9
Contexts
e 250 —— Mapped Area
< 2201 -+« |ded Area

Contexts

Ideal Case = Perfect packing and no retiming overhead

Figure 10.20: Area Breakdown versus Number of Contexts for C880 Benchmark

170

330

—— LUTstretime
-.= LUTs
Ideal LUTs

LUTs

2701
2104+

1504 -

e -~

Contexts

280
2501
2201
190+
1601
1301
1001

701

40

—— Mapped Area
Ideal Area

Areain[M A?]

Contexts

Ideal Case = Perfect packing and no retiming overhead

Figure 10.21: Area Breakdown versus Number of Contextsfor al u2 Benchmark

171

clocks Model Areain M2
per Contexts
reult || 1 | 2 | 3 | 4 | 5| 6 | 7 | 8
1 513.6 | 589.7 | 635.3 | 680.9 | 726.6 | 772.2 | 817.8 | 863.5
2 309.9 | 349.8 | 376.8 | 403.9 | 431.0 | 458.0 | 485.1 | 512.2
3 251.1 | 254.0 | 273.7 | 293.3 | 313.0 | 332.6 | 352.3 | 372.0
4 210.7 | 208.7 | 174.8 | 187.4 | 200.0 | 2125 | 225.1 | 237.6
5 189.6 | 189.5 | 174.8 | 161.8 | 172.6 | 183.5 | 194.3 | 205.2
6 186.1 | 186.5 | 169.4 | 161.8 | 156.5 | 166.3 | 176.1 | 186.0
7 165.9 | 146.2 | 155.3 | 161.8 | 154.0 | 155.8 | 165.0 | 174.2
8 165.9 | 146.2 | 155.3 | 159.5 | 154.0 | 155.8 | 153.8 | 162.4
9 165.9 | 146.2 | 145.5 | 1455 | 154.0 | 155.8 | 153.8 | 162.4
10 156.3 | 139.1 | 140.1 | 142.0 | 149.0 | 139.9 | 134.2 | 126.9
11 156.3 | 139.1 | 139.0 | 139.7 | 123.0 | 130.7 | 134.2 | 126.9
12 156.3 | 139.1 | 139.0 | 139.7 | 123.0 | 130.7 | 134.2 | 126.9
13 156.3 | 129.0 | 139.0 | 139.7 | 123.0 | 130.7 | 134.2 | 126.9
14 156.3 | 129.0 | 137.9 | 135.0 | 123.0 | 130.7 | 134.2 | 126.9
15 156.3 | 128.0 | 134.7 | 135.0 | 123.0 | 130.7 | 120.2 | 126.9
16 156.3 | 127.0 | 126.0 | 135.0 | 123.0 | 130.7 | 120.2 | 126.9
17 156.3 | 126.0 | 126.0 | 135.0 | 123.0 | 130.7 | 120.2 | 126.9
18 156.3 | 126.0 | 126.0 | 135.0 | 123.0 | 130.7 | 120.2 | 126.9
19 1484 | 91.7 | 934 | 85.0 | 869 | 91.1 | 95.1 | 100.4
20 1484 | 91.7 | 934 | 850 | 845 | 884 | 93.7 | 974

Acircuit
Apur
fibase

Acontext

800K \?

78K \?2

NactiveLUTs X ALUT
Abase + chontez’t X Acontext

Table 10.11: Multicontext Implementations of al u2 versus Throughput (Area)

172

clocks Area/Best Area
per Contexts

result 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8
100|115|124 133|141 |150| 159 | 1.68
100|113 (122|130 |139|148| 157 | 1.65
100101109117 |125|132|140| 148
1211119|100|1.07|114| 122|129 | 1.36
117117108 | 1.00 | 1.07 | 1.13 | 1.20 | 1.27
119119 |108|1.03| 100|106 | 1.13| 1.19
114 1100|106 |111|105|107| 113|119
1141100 | 106|109 | 105|107 |105]| 111
1141100 | 100|100 | 106|107 | 106 | 1.12
10 1231110|110| 112|117 | 110 1.06 | 1.00
11 1271113113114 | 100|106 | 1.09 | 1.03
12 1271113113114 | 100|106 | 1.09 | 1.03
13 1.271105|113|114|1.00| 106 | 1.09 | 1.03
14 1.271105|112|110| 1.00| 106 | 1.09 | 1.03
15 130|106 | 112|112 | 102|109 | 1.00 | 1.06
16 130|106 | 105|112 | 102|109 | 1.00 | 1.06
17 130 105|105|112|1.02| 109 | 1.00 | 1.06
18 130 105|105|112|1.02| 109 | 1.00 | 1.06
19 1751108 | 110|100 | 102|107 | 112|118
20 176 1109|111 (101 |100|105| 111|115

=

O©oOo~NOO Ok WwWN

Table 10.12: Multicontext Implementations of al u2 versus Throughput (Area Ratios)

173

&
< 1 context
E 2 context
S -.— 4 context
8
<
B -‘..‘.-.I.-.I-.‘\‘._-.-_' ek
0 | | | | |
0 5 10 15 20 25

Clocks per Result

Figure 10.22: Areaversus Throughput for Multicontext Implemenations of al u2 Benchmark

174

| Circuit

| Mapped Design LUTs | Path Length |

5xpl
9sym
9symml
C499
C880
au2
apex6
apex’
b9
clip
cordic
count
des
e64
f51m
misex1
misex2
rd73
rd84
rot
san2
vg2
z4ml

46
123
108
85
176
169
248
77
46
121
367
46
1267
230
45
20
38
105
150
293
73
60

10
7
8

10

21

19
9
7
7
9
13
16
13
9
17
6
8
10
9
16

~N © ©

Table 10.13: Benchmark Set Area— Mapped Characteristics

175

Area/Best Area
Circuit Contexts
1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8
5xpl 100 | 115|124 |133|141| 150|159 | 1.68
9sym 100 | 115|124 |133|141| 150|159 | 1.68
9symml || 1.00 | 1.15 | 1.24 | 1.33 | 1.41 | 1.50 | 1.59 | 1.68
C499 100 | 115|124 |133|141|150| 159 | 1.68
C880 100 | 115|124 |133|141| 150|159 | 1.68
au2 100 | 115|124 |133|141| 150|159 | 1.68
apex6 | 1.00| 115|124 | 133|141 | 150|159 | 1.68
apex7 | 1.00| 115|124 | 133|141 | 150|159 | 1.68
b9 100 | 115|124 |133|141| 150|159 | 1.68
clip 100 | 115|124 |133|141| 150|159 | 1.68
cordic || 1.00| 115|124 | 133|141 | 150|159 | 1.68
count || 1.00| 115|124 | 133|141 | 150|159 | 1.68
des 100 | 115|124 |133|141| 150|159 | 1.68
€64 100 |115|124|133|141|150| 159 | 1.68
f51m 100 | 115|124 |133|141| 150|159 | 1.68
misex1 || 1.00 | 1.15 | 1.24 | 1.33 | 1.41 | 1.50 | 1.59 | 1.68
misex2 || 1.00 | 1.15 | 124 | 1.33 | 1.41 | 1.50 | 1.59 | 1.68
rd73 100 | 115|124 |133|141| 150|159 | 1.68
rds4 100 | 115|124 |133|141| 150|159 | 1.68
rot 100 | 115|124 |133|141| 150|159 | 1.68
san2 100 | 115|124 |133|141| 150|159 | 1.68
vg2 100 | 115|124 |133|141| 150|159 | 1.68
z4ml 100 | 115|124 |133|141| 150|159 | 1.68

Clocks per Result = 1

Table 10.14: Selected Area/Throughput Points for Benchmark Set (1 Clock/Result)

176

Area/Best Area
Circuit Contexts
1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8
5xpl 130|117]105|1.01|1.00]| 106 | 113 | 1.14
9sym 169|104 | 1.00|1.05|1.07| 113|120 | 1.27
9symml || 1.59 | 1.00 | 1.00 | 1.06 | 1.07 | 1.13 | 1.20 | 1.19
C499 113|106 | 1.06 | 1.04 | 1.00 | 1.06 | 1.13 | 1.19
C880 124|115 116 | 115|119 | 1.07 | 1.00 | 1.06
au2 123|110 110|112 | 117|110 | 1.06 | 1.00
apex6 | 1.10|1.00|1.04 112 |114|120|127|134
apex7 || 1.10|1.00|1.02|1.08|113|120|127|132
b9 103|100|105|113|120|128| 135 | 143
clip 164|120 | 1.04| 105|100 | 1.00| 106 | 1.12
cordic || 1.58 | 1.21| 127 | 100|101 | 102 | 1.00 | 1.06
count 100|104 |112|110|118| 125|117 | 1.24
des 119|100 | 105|106 |112| 114|116 | 1.22
€64 142|100 | 1.07|115|122| 130|138 | 145
f51m 117|100 | 105|104 | 111 | 115|115 | 1.07
misex1 | 1.24 | 1.00 | 1.08 | 1.15| 123 | 1.31 | 1.39 | 1.36
misex2 | 1.23 | 1.00|1.08| 115|119 | 121|128 | 1.36
rd73 163|100 |1.00|107|110| 112|119 | 120
rds4 178|102 | 1.00 | 1.07 | 1.14 | 1.22 | 1.29 | 1.34
rot 100|101 |103|103|110|113 115|120
san2 155(100|102|110|111|118| 125|132
vg2 134|100 |102|104 111|114 | 121|128
z4ml 100 | 115|124 |133|141|150| 159 | 1.68

[average [1.31[1.05[1.07 | 1.09 [1.13[1.17 | 1.21 | 1.25 |

Clocks per Result = 10

Table 10.15: Selected Area/Throughput Points for Benchmark Set (10 Clock/Result)

177

Area/Best Area
Circuit Contexts
1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8
5xpl 148 | 1.03 | 1.03 | 1.02 | 1.00 | 1.06 | 1.13 | 1.19
9sym 169|104 | 100|104 |1.07| 113|120 | 1.27
9symml || 1.77 | 1.09 | 1.10 | 1.00 | 1.07 | 1.13 | 1.20 | 1.27
C499 121|104 |100|102|106|111| 115|122
C880 116 | 1.02 | 1.00 | 1.06 | 1.05 | 1.02 | 1.04 | 1.10
au2 176 | 1.09 | 1.11 | 1.01 | 1.00 | 1.05| 1.11 | 1.15
apex6 | 1.16 | 1.00|1.08 | 1.08|1.15| 123|130 1.37
apex7 || 1121001042110 |115|122|129]| 134
b9 105|100 |105|112|120| 128|135 | 143
clip 1.79 | 110 | 1.06 | 1.00 | 1.07 | 1.09 | 1.15 | 1.17
cordic || 1.96| 1.15| 1.05| 100 | 1.07 | 1.10 | 1.11 | 1.17
count 100|105|105|110|114| 121|125 132
des 147|100 |101|102|109| 113|117 | 123
€64 143|100 |1.08|115|123|131|139| 146
f51m 152|108 |1.00|1.03|105| 106 | 1.13| 1.13
misex1 | 1.34 | 1.00 | 1.08 | 1.15| 123 | 1.31 | 1.39 | 1.46
misex2 | 1.23] 1.00|1.08|1.11|119| 121|128 | 1.36
rd73 1.72|105|1.03|1.00|1.07 | 113 | 1.20 | 1.27
rds4 178|102 | 1.00| 1.06 | 1.09 | 1.16 | 1.23 | 1.30
rot 127|101 |100| 105|109 | 115|122 | 1.27
san2 155|100 |1.00|1.04|108|115| 115|122
vg2 139|103|100|104|111|115|121| 128
z4ml 100 | 115|124 |133|141|150| 159 | 1.68

[average [143 1.04 [1.05 [1.07 | 1.12 [1.17 | 1.23[1.29 |

Clocks per Result = 20

Table 10.16: Selected Area/Throughput Points for Benchmark Set (20 Clock/Result)

178

Areafor Improvement Theresultsshown here are moderately disappointing. Retiming require-
ments prevent us from collapsing the number of active LUTs substantially as we go to deeper
multicontext implementations. As with the previous section, the results presented in this section
are based on our area model, the prototype DPGA architecture, and conventional circuit netlist
mapping. More than in the previous section, the results here also depend upon the experimental
temporal partitioning CAD software. Groupings into temporal and spatial pipelining stages are
morerigid than necessary, so better packing may be possible with more flexible stage assignment.

Theretiming limitationsidentified here al so motivate architectural modifications which wewill see
in the next chapter.

179

S &%
E 0.80
0.70
8 060
= 050
< 040
0.30
0.20
0.10
0.00 I I I I I I I I

0246 81012141618202224
Number of Contexts (C)

Figure 10.23: ﬁde“’gﬂ versus N.; for Coarse-grain Interleaved Contexts
FPGA_LUT

Time-Sliced Interleaving The retiming limitation we are encountering here arises largely from
packingthecircuit into alimited number of LUTsand serializing the communication of intermediate
results. An alternate strategy would be to share a larger group of LUTs more coarsely between
multiple subcircuits in a time-sliced fashion. That is, rather than trying to sequentialize the
evaluation, we retain the full circuit, or a partially sequentialized version, and only invoke it
periodically.

Considering again our al u2 example, for moderately low throughput tasks, one context may
hold the 169 mapped design LUTs, while other contexts hold other, independent, tasks. A two
context DPGA could alternate switch between evaluating theal u2 example and some other circuit
or task. Inthistwo context case, the amortized areawould be:

1
AZinterleaUe = E -169 - Athx_LUT = 81M Az

Note that 81M A2 is smaller than the 91M \? area which the two context, non-interleaved imple-
mentation achieved and smaller than the 84-85M \? for the four and five context implementation
(Table 10.11). Further interleaving can yield even lower amortized costs. e.g.

1
A4interleave = Z - 169 - A4ctx_LUT = 47M Az

This coarse-grain interleaving achieves a more ideal reductionin area:

1
Adesign_LUT = T—Abase + Aconteact (105)

N ctz

Figure 10.23 plotsthe arearatio Adecign_LUT \1orq g N+ Notethat theratio is ultimately bounded

AppGA_LUT

by the -Aeenteat _ rgtio, which is roughly 10% for the model parameters assumed throughouit this
AppGA_

. LUT . .
section. On the negative side,

180

e Coarse-grained interleaving is only suitable for very low throughput or when the tasks
themselves have a moderately short evaluation path to begin with.

¢ Each task cannot be given its own, independent set of LUTSs, but must share alarger number
of LUTs with separate tasks.

181

10.6 Temporally Varying L ogic — Finite State Machines

Aswenoted in Sections 10.3.2 and 10.3.3, the performance of afinite state machineis dictated
by its latency rather than its throughput. Since the next state cal culation must complete and be fed
back to theinput of the FSM beforethe next state behavior can begin, thereisno benefit to be gained
from spatial pipelining within the FSM logic. Temporal pipelining can be used within the FSM
logic to increase gate and wire utilization as seen in Section 10.5.2. Finite state machines, however,
happen to have additional structure over random logic which can be exploited. In particular, one
never needs the full FSM logic at any point in time. During any cycle, the logic from only one
state is active. In atraditional FPGA, we have to implement all of this logic at once in order to
get the full FSM functionality. With multiple contexts, each context need only contain a portion
of the state graph. When the machine transitions to a state whose logic resides in another context,
we can switch contexts making a different portion of the FSM active. National Semiconductor,
for example, exploits this feature in their multicontext programmable logic array (PLA), MAPL
[Haw91].

10.6.1 Example

Figure 10.24 shows a simple, four-state FSM for illustrative purposes. The conventional,
single-context implementation requires four 4-LUTS, one to implement each of Dout and NS1
and two to calculate NSO. Figure 10.25 shows a two-context DPGA implementation of this same
FSM. The design is partitioned into two separate circuits based on the original state variable S1.
The two circuits are placed in separate contexts and NS1 is used to select the circuit to execute as
appropriate. Each circuit only requires three 4-LUTs, making the overall design smaller than the
flat, single context implementation.

182

FSM Description

Idle (00):
if (Acyc & nyAddr & Read)
goto Wait1l
el se
goto Idle o
Waitl (01): D
goto Data S
Data (10): Acyc =
Assert Dout myAddr 0 Dout
goto Wait2 Read
Wait2 (11):
goto Idle
FSM Logic
Dout = S1*/ SO
NSO = /S1*/SO*Acyc*nmyAddr*Read + S1*/ SO
NS1 = /S1*S0 + S1*/ SO
Figure 10.24: Simple FSM Example
Context 0 (S1=0)
Dout =0
NSO = / SO* Acyc* nyAddr * Read 1
NS1 = SO
2
(@]
Context 1 (S1=1) Acyc 9
Dout = 0 myAddr = Dout
NSO = /S0 Read e
NS1 = /SO

Figure 10.25: Two Context Implementation of Simple FSM Example

183

10.6.2 Full Temporal Partitioning

In the most extreme case, each FSM state is assigned its own context. The next state computa-
tion simply selects the appropriate next context in which to operate. Tables 10.17 and 10.18 show
the reduction in area and path delay which results from state-per-context multiple context imple-
mentation of the MCNC FSM benchmarks. FSMs were mapped using nust ang [DMNSV8§].
Logic minimization and LUT mapping were done with espr esso, si s, and Chortl e. For
single context FSM implementations, both one-hot and dense encodings were synthesized and the
best mapping was selected. The multicontext FSM implementations use dense encodings so the
state specification can directly serve asthe context select. For multicontext implementations, delay
and capacity aredictated by thelogic required for thelargest and slowest state. On average, thefully
partitioned, multicontext implementation is 35-45% smaller that the single context implementation.
Many FSMsare 3-5x smaller.

Timing From Tables 10.17 and 10.18, the multicontext FSM implementations generally have
one or two fewer logic levelsin their critical path than the single context implementations when
mapped for minimum latency. The multicontext implementations have an even greater reductionin
path length when mapped for minimum area. The multicontext FSMs, however, require additional
time to distribute the context select and perform the multi-context read. i.e.

Tsingle—context = (Le\/eIS) “tlut (106)
Tmulti—conteojt = (Le\/eIS) “tiut + tdistribute + Letz—switch (107)

Recall t.1,_switen = 2.5 ns from the prototype and #;,; = 6 ns with a typical amount of switch-
ing. Properly engineered, context distribution should take a few nanoseconds, which means the
multicontext and single-context implementations run at comparable speeds when the multicontext
implementation hasonefewer LUT delaysinitscritical path than the single-context implementation.

10.6.3 Partial Temporal Partitioning

The capacity utilization and delay are often dictated by afew of the more complex states. It is
often possible to reduce the number of contexts required without increasing the capacity required
or increasing the delay. Tables 10.19 and 10.20 show the cse benchmark partitioned into various
numbers of contexts and optimized for area or path delay, respectively. These partitions were
obtained by partitioning along must ang assigned state bits starting with afour bit state encoding.
Figures 10.26 and 10.27 plot the LUT count, area, and delay datafrom the tables versus the number
of contexts employed.

One thing we note from both the introductory example (Figures 10.24 and 10.25) and thecse
exampleisthat the full state-per-context case is not always the most area efficient mapping. In the
introductory example, once we had partitioned to two contexts, no further LUT reduction could be
realized by going to four contexts. Consequently, the four context implementation would be larger
than the two context implementation owing to the deeper context memories. In the cse example,
the reductionin LUTs associated with going to going from 8 to 11 or 11 to 16 contexts saved less
areathan the cost of the additional context memories.

184

Single Context Context per State Ratio | Delta
FSM States || Levels | Napyr | Area || Levels | Napur | Area AMT“ZE Levels
[MAZ] [MA2] ’
bbara 10 6 25 22.0 1 6 9.5 0.43 5
bbsse 16 4 50 439 3 12 24.6 0.56 1
bbtas 6 3 7 6.1 1 5 6.34 1.0 2
beecount 7 4 14 12.3 1 7 9.4 0.77 3
cse 16 6 83 72.9 2 15 30.7 0.42 4
dk14 7 4 58 50.9 1 8 10.8 0.21 3
dk15 4 12 25 22.0 1 7 7.8 0.35 11
dk16 27 5 80 70.2 1 8 23.2 0.33 4
dk17 8 6 19 16.7 1 6 85 0.51 5
dk512 15 2 20 17.6 1 7 13.8 0.79 1
donfile 24 2 46 40.4 1 6 16.0 0.40 1
exl 20 7 120 | 1054 2 26 61.4 0.58 5
ex4 14 7 21 184 1 13 24.6 1.33 6
ex6 8 5 57 50.0 1 11 15.7 0.31 4
keyb 19 7 112 98.3 4 14 32.0 0.32 3
mc 4 2 8 7.0 1 7 7.8 1.10 1
modulo12 12 6 12 105 1 5 8.7 0.82 5
planet 48 6 150 | 131.7 1 25| 113.6 0.86 5
pma 24 6 82 72.0 2 15 40.1 0.56 4
sl 20 5 137 | 120.3 5 25 50.0 0.49 0
51488 48 6 152 | 1335 3 27 | 122.7 0.92 3
sla 20 5 72 63.2 7 21 49.6 0.78 -2
s208 18 4 38 334 1 7 154 0.46 3
27 6 2 5 44 1 4 51 1.20 1
s386 13 5 42 36.9 2 12 21.8 0.59 3
420 18 3 40 35.1 1 7 154 0.44 2
sb10 47 5 54 47.4 1 13 58.1 1.22 4
s8 5 4 12 105 1 4 4.7 0.45 3
s820 25 6 92 80.8 3 30 82.5 1.02 3
sand 32 7 178 | 156.3 5 30 98.9 0.63 2
sse 16 4 50 439 3 12 24.6 0.56 1
styr 30 7 186 | 163.3 4 21 65.9 0.40 3
tbk 32 8 340 | 298.5 6 33| 108.8 0.36 2
| Average | 064] 3

Table 10.17: Full Partitioning of MCNC FSM Benchmarks (Area Target)

185

Single Context Context per State Ratio | Delta
FSM States || Levels | Napyr | Area || Levels | Napur | Area AMT“ZE Levels
[MAZ] [MA2] ’

bbara 10 3 40 35.1 1 6 9.5 0.27 2
bbsse 16 3 60 52.7 2 14 28.7 0.54 1
bbtas 6 2 9 7.9 1 5 6.3 0.80 1
beecount 7 2 19 16.7 1 7 9.4 0.57 1
cse 16 4 97 85.2 2 15 30.7 0.36 2
dk14 7 3 67 58.8 1 8 10.8 0.18 2
dk15 4 3 37 325 1 7 7.8 0.24 2
dk16 27 3 83 72.9 1 8 23.2 0.32 2
dk17 8 2 26 22.8 1 6 85 0.37 1
dk512 15 2 20 17.6 1 7 13.8 0.79 1
donfile 24 2 46 40.4 1 6 16.0 0.40 1
exl 20 4 151 | 1326 2 26 61.4 0.46 2
ex4 14 2 25 22.0 1 13 24.6 1.12 1
ex6 8 3 62 54.4 1 11 15.7 0.29 2
keyb 19 4 150 | 131.7 3 26 50.3 0.45 1
mc 4 2 8 7.0 1 7 7.8 1.10 1
modulo12 12 1 13 114 1 5 8.7 0.76 0
planet 48 4 172 | 151.0 1 25| 113.6 0.75 3
pma 24 4 139 | 122.0 2 15 40.1 0.33 2
sl 20 4 195 | 171.2 3 30 70.8 0.41 1
51488 48 4 183 | 160.7 2 28 | 127.2 0.79 2
sla 20 3 107 93.9 4 30 70.8 0.75 -1
s208 18 3 40 35.1 1 7 154 0.44 2
27 6 2 5 44 1 4 50 1.16 1
s386 13 4 54 47.4 2 12 21.8 0.46 2
420 18 3 40 35.1 1 7 154 0.44 2
sb10 47 3 76 66.7 1 13 58.1 0.87 2
s8 5 2 13 114 1 4 4.8 0.42 1
s820 25 3 137 | 120.3 3 30 82.5 0.69 0
sand 32 4 224 | 196.7 3 43 | 141.7 0.72 1
sse 16 3 60 52.7 2 14 28.7 0.54 1
styr 30 5 285 | 250.2 3 23 72.2 0.29 2
tbk 32 5 510 | 447.8 4 42 | 1384 0.31 1

| Average | 056 1.36]

Table 10.18: Full Partitioning of MCNC FSM Benchmarks (Delay Target)

186

o1
0 2 4 6 8 10 12 14 16
Number of Contexts (C)

&
=
2,
=
< — -
pob——tT 1 | | |
0 2 4 6 8 10 12 14 16
Number of Contexts (C)
~—~ °h
= st
(2} .
A
2
- 9]
IS
g i :
11 1 [| |

0 2 4 6 8 10 12 14 16
Number of Contexts (C)

Figure 10.26: Areaand Delay versus Number of Contextsfor cse FSM Benchmark (Area Target)
187

1604
140
1201
1001
801
601
401

4 T T i
0 2 4 6 8 10 12 14 16
Number of Contexts (C)

Ny uT

Area in [M AZ]
S
[

N e s
0 2 4 6 8 10 12 14 16
Number of Contexts (C)

Logic Levels (L)
= N w &~ (6} (o))

|||] |
0 2 4 6 8 10 12 14 16
Number of Contexts (C)

Figure 10.27: Areaand Delay versus Number of Contextsfor cse FSM Benchmark (Delay Target)
188

Multicontext Implementations for CSE FSM
Contexts‘ Levels | Nyt ‘ Area ‘ 7 ‘ Delta
(one-hot)

1 6 83| 729 1.00 0
(dense)
1 8 102 | 89.6 1.23 -2
2 6 56 | 535 0.73 0
4 5 35| 389 0.53 1
8 5 19| 271 0.37 1
11 2 18 | 29.8 041 4
16 2 15| 30.7 0.42 4

Table 10.19: Areaand Delay versus Number of Contextsfor cse FSM Benchmark (Area Target)

Multicontext Implementations for CSE FSM
Contexts ‘ Levels | Napur ‘ Area ‘ #’:gle Delta
(one-hot)

1 4 97 | 852 1.00 0
(dense)
1 5 156 | 137.0 1.60 -1
2 4 83| 793 0.93 0
4 4 36| 400 0.47 0
8 4 22| 313 0.37 0
11 2 18 | 29.8 0.35 2
16 2 15| 307 0.36 2

Table 10.20: Areaand Delay versus Number of Contextsfor cse FSM Benchmark (Delay Target)

189

Tables 10.21 through 10.25 show the benchmark set mapped to various multicontext imple-
mentations for minimum area. All partitioning is performed along nust ang state bits. For these
results, we examined all possible state bits along which to split and chose the best set. On average
across the benchmark set, the 8-context mapping saves over 40% in area versus the best single-
context case. The best multicontext mapping is often 3-5x smaller than the best single context

mapping.

190

Best LUTs by Number of Context

FSM States | Single Dense Encodings
Context 1\ 2\ 4\8\16\32\64
bbara 10 25| 25| 19| 12| 8| 6| 6| 6
bbsse 16 50| 68| 39| 20|15|12| 12|12
bbtas 6 7 7 5 5/ 5| 5| 5|5
beecount 7 14 14| 11 T 7| 7] 7|7
cse 16 83102 | 56| 35|19 |15|15| 15
dk14 7 58 || 58| 22 8|/ 8/ 8| 8| 8
dk15 4 25 25 7 T 7| 7] 7|7
dk16 27 80| 162 | 57| 27| 8| 8| 8| 8
dk17 8 19| 19 6 6| 6| 6| 6| 6
dk512 15 20 21 7 T 7| 7] 7|7
donfile 24 46162 | 57| 31| 6| 6| 6| 6
ex1l 20 120|193 | 85| 59|39 |31|26| 26
ex4 14 21| 21| 20| 14|13 |13 | 13|13
ex6 8 57| 83| 31| 17|11 11|11 |11
keyb 19 112 | 173 | 65| 37|22 |17 |14 | 14
mc 4 8 8 7 T 7| 7] 7|7
modul 012 12 12| 12 5 5/ 5| 5| 5|5
planet 48 150 || 346 | 122 | 80|38 |29 |27 |25
pma 24 82| 8| 78| 45|24 |18 |15 15
sl 20 137 || 196 | 144 | 57 |44 |28 | 25| 25
51488 48 152 || 305 | 153 | 129 | 52 | 34 | 28 | 27
sla 20 721136 | 73| 5138|2421 |21
s208 18 38| 55| 3| 14| 9|, 8| 7| 7
s27 6 5 5 5 4| 4| 4] 4| 4
s386 13 421 64| 35| 19|13 |12 |12 12
420 18 40| 54| 33| 15|10| 8| 7| 7
s510 47 54 1133 | 95| 35|18 | 13| 13|13
s8 5 12 12| 13 9| 4| 4| 4| 4
s820 25 92 (1245 | 92| 62|45|32|30|30
sand 32 178 || 358 | 139 | 95|44 | 33|30 | 30
sse 16 50| 68| 39| 20|15|12| 12|12
styr 30 186 || 387 | 133 | 67 |40 |28 |21 |21
tbk 32 340 || 513 | 137 | 75|48 35|33 33

Table 10.21: MCNC FSM Benchmarks LUTs v/s Number of Contexts (Area Target)

191

Best Area[MA?] by Number of Context

FSM States | Single Dense Encodings
Context 1| 2 | 4] 8| 16| 32| 64
bbara 10 219 | 219| 182 | 133|114 |123| 198 | 3438
bbsse 16 439 || 59.7| 373| 222|214 |246| 396 | 695
bbtas 6 6.1 6.1 4.8 56| 71]102| 165 | 29.0
beecount 7 123 | 123 | 105 78 100|143 | 231 | 405
cse 16 729 || 89.6| 535| 389 |271|30.7| 494 | 86.9
dk14 7 509 || 509 | 21.0 89 114|164 | 264 | 463
dk15 4 219 || 219 6.7 78 100|143 | 231 | 405
dk16 27 70.2 || 1422 | 545| 300|114 | 164 | 264 | 46.3
dk17 8 16.7 | 16.7 5.7 67| 85|123| 198 | 348
dk512 15 176 | 184 6.7 78 100|143 | 231 | 405
donfile 24 404 || 1422 | 545| 345| 85123 | 198 | 3438
ex1l 20 1054 || 1695 | 813 | 65.6 | 555 | 63.5| 85.7 | 150.6
ex4 14 184 | 184 | 191 | 156 |185| 266 | 428 | 753
ex6 8 500 || 729 | 296 | 189|157 | 225| 363 | 63.7
keyb 19 983 | 1519 | 621 | 411 |313|348| 461 | 811
mc 4 7.0 7.0 6.7 78 100|143 | 231 | 405
modul 012 12 105 | 105 4.8 56| 71]102| 165 | 29.0
planet 48 131.7 || 303.8 | 1166 | 89.0 | 54.1 | 59.4 | 89.0 | 144.8
pma 24 720 || 720| 746 | 50.0|342|369| 494 | 86.9
sl 20 120.3 || 172.1 | 137.7 | 634 | 62.7 | 57.3 | 824 | 144.8
51488 48 1335 || 267.8 | 146.3 | 1434 | 74.0 | 69.6 | 92.3 | 156.4
sla 20 63.2 || 1194 | 698 | 56.7 | 541|492 | 69.2 | 121.6
s208 18 334 | 483 | 335| 156|128 | 164 | 231 | 405
s27 6 44 44 4.8 44| 57| 82| 132 | 232
s386 13 369 | 562| 335| 211|185|246| 396 | 695
420 18 351 | 474 | 315| 167|142 | 164 | 231 | 405
s510 47 474 | 1168 | 908 | 389|256 | 26.6 | 428 | 753
s8 5 105| 105| 124 | 100| 57| 82| 132 | 232
s820 25 808 || 2151 | 880 | 689 |641|655| 989 | 173.8
sand 32 156.3 || 314.3 | 1329 | 105.6 | 62.7 | 67.6 | 989 | 173.8
sse 16 439 | 59.7| 373| 222|214 |246| 396 | 695
styr 30 163.3 || 339.8 | 127.1 | 745|57.0| 573 | 69.2 | 121.6
tbk 32 2985 || 4504 | 131.0 | 834|684 | 71.7 | 108.8 | 191.1

Table 10.22: MCNC FSM Benchmarks Area v/s Number of Contexts (Area Target)

192

e FFO T TN A A A A A AN A AT A A AN O A ANA A A OO OT O
w. N[O AANAAAAAANAAT AANNDON~N AANA A A MO O O
o M
O o—
BEQIHO A AN AAAA A AT A AD AATOTOOLNANN A AT ON
T 33—
mrm8331151111115114115555531333 © ©mOoN~
S BIMTAA DD A A D AADONNILTO AADOD OO O AT M ~o S ~Q
Sl
a
> N|TOATOLT AL AAONMON—AAO©OONOONOWLMNSNON
3 —
QO H[OOMTOITNTOOIINOTNOLTOLOWLTANOWDOTIOWOLWO
PE[OTOTOTYOLONNNNONNOOOLODTNDMOTONTNS®
82z
®)
B COOMNOMNTNONTOTOATNOLTONVOWWO©M®ONLILWNOQN
g = - = N T EHANA dJ AFTANTAA Ada NOAG®
n
= v R
o 3 won~ Y= o o)
> 8823388583195 0y885888382885x
P |less XXXX3 500830 E8F DYAR TR mm% 7=
(8 00no TTTTSY X 8 s 7!
© S

Table 10.23: MCNC FSM Benchmarks Delay v/s Number of Contexts (Area Target)

193

Best Area Ratio by Number of Context

FSM States | Single Dense Encodings
Context 1 \ 2 \ 4 \ 8 \ 16 \ 32 \ 64
bbara 10 1.00 || 1.00 | 0.83 | 0.61 | 0.52 | 0.56 | 0.90 | 1.58
bbsse 16 100 | 136 | 0.85| 051|049 | 0.56 | 0.90 | 1.58
bbtas 6 100 | 1.00 | 0.78 | 090 | 1.16 | 1.67 | 2.68 | 4.71
beecount 7 1.00 | 1.00 | 0.86 | 0.63 | 0.81 | 1.17 | 1.88 | 3.30
cse 16 100 | 123 |0.73| 053|037 | 042|068 | 119
dk14 7 1.00 | 1.00 | 041 | 017 | 0.22 | 0.32 | 0.52 | 0.91
dk15 4 1.00 | 1.00 | 0.30 | 0.35| 045 | 0.65 | 1.05 | 1.85
dk16 27 1.00 || 202 | 0.78 | 0.43 | 0.16 | 0.23 | 0.38 | 0.66
dk17 8 1.00 | 1.00 | 0.34 | 040 | 051 | 0.74 | 1.19 | 2.08
dk512 15 100 | 105|038 | 044 | 057|082 | 131|231
donfile 24 100|352 |135|085| 021 030|049 | 0.86
ex1l 20 100 | 161 |0.77 | 0.62 | 053 | 0.60 | 0.81 | 1.43
ex4 14 100 | 1.00 | 1.04 | 0.84 | 1.00 | 1.44 | 2.32 | 4.08
ex6 8 100 | 146|059 | 038|031 |045|0.72 | 1.27
keyb 19 100 | 154 | 063 | 042|032 | 035|047 | 0.82
mc 4 100 | 1.00 | 095 | 1.11 | 142 | 2.04 | 3.28 | 5.77
modul 012 12 1.00 || 1.00 | 045 | 0.53 | 0.68 | 0.97 | 1.56 | 2.75
planet 48 100 | 231|089 | 068|041 | 045|068 | 1.10
pma 24 100 | 1.00 | 1.04 | 0.70 | 0.47 | 051 | 0.69 | 1.21
sl 20 100 | 143|114 | 053|052 | 048 | 0.69 | 1.20
51488 48 100|201 |110| 107|055 | 052|069 | 117
sla 20 100|189 |110| 090|086 | 0.78 | 1.09 | 1.92
s208 18 1.00 || 1.45|1.00 | 047 | 0.38 | 049 | 0.69 | 1.22
s27 6 100 | 1.00 | 1.09 | 1.01 | 1.30 | 1.87 | 3.00 | 5.28
s386 13 100 | 152 | 091 | 0.57 | 0.50 | 0.67 | 1.07 | 1.88
420 18 100 | 1.35 | 0.90 | 047 | 0.41 | 0.47 | 0.66 | 1.15
s510 47 100 | 246|192 | 082|054 | 0.56 | 0.90 | 1.59
s8 5 100 | 1.00 | 1.18 | 0.95| 054 | 0.78 | 1.25 | 2.20
s820 25 100 | 266 | 1.09 | 0.85| 0.79 | 0.81 | 1.22 | 2.15
sand 32 100|201 |085| 068|040 | 043|063 | 111
sse 16 100 | 136 | 0.85| 051|049 | 0.56 | 0.90 | 1.58
styr 30 100 | 208 | 0.78 | 0.46 | 0.35 | 0.35 | 042 | 0.74
tbk 32 100 | 151|044 |028|023|0.24|0.36 | 0.64

\ average \ H 1.00 H 151 \ 0.86 \ 0.63 \ 0.56 \ 0.70 \ 1.09 \ 1.92 \

Table 10.24: MCNC FSM Benchmarks Area Ratio v/s Number of Contexts (Area Target)

194

Best Delay Reduction by Number of Context

FSM States | Single Dense Encodings
Context 1 \ 2 \ 4 \ 8 \ 16 \ 32 \ 64
bbara 10 0 0 2 3 3 5 5 5
bbsse 16 0 -2 -2 0 1 1 1 1
bbtas 6 0 0 2 2 2 2 2 2
beecount 7 0 0 0 3 3 3 3 3
cse 16 0 -2 0 1 1 4 4 4
dk14 7 0 0 0 3 3 3 3 3
dk15 4 0 Of(12| 11| 12| 11| 11| 11
dk16 27 0 1 0 -3 4 4 4 4
dk17 8 0 0 5 5 5 5 5 5
dk512 15 0 -8 1 1 1 1 1 1
donfile 24 0 -2 -4 -3 1 1 1 1
ex1l 20 0 3 0 0 2 3 5 5
ex4 14 0 0 4 5 6 6 6 6
ex6 8 0 -3 -1 1 4 4 4 4
keyb 19 0 3 0 2 3 2 3 3
mc 4 0 0 1 1 1 1 1 1
modul 012 12 0 0 5 5 5 5 5 5
planet 48 0 2 0 1 1 2 4 5
pma 24 0 0 -2 1 1 3 4 4
sl 20 0 0 0 -1 0 1 0 0
s1488 48 0 -3 -1 1 1 1 3 3
sla 20 0 0 -1 0 0 0 -2 -2
s208 18 0 0 -2 1 1 2 3 3
s27 6 0 0 0 1 1 1 1 1
s386 13 0 0 0 1 2 3 3 3
420 18 0 -2 -2 -1 0 1 2 2
s510 47 0 -1 0 2 2 4 4 4
3 5 0 0 1 1 3 3 3 3
s320 25 0 1 -1 -1 0 2 3 3
sand 32 0 2 0 1 1 2 2 2
sse 16 0 -2 -2 0 1 1 1 1
styr 30 0 2 0 0 1 1 3 3
tbk 32 0 2 -3 -2 1 1 2 2

\ average \ H 0.00 H -0.27 \ 0.33 \ 1.27 \ 2.18 \ 2.70 \ 3.03 \ 3.06 \

Table 10.25: MCNC FSM Benchmarks Delta Delay v/s Number of Contexts (Area Target)

195

Tables 10.21 through 10.25 show the benchmark set mapped to various numbers of context im-
plementationswith delay minimization asthetarget. All partitioning isperformed along nust ang
state bits. For these results, we examined all possible state bits along which to split and chose the
best set. On average across the benchmark set, the 8 context mapping are half the area of the best
single-context case while achieving comparable delay.

196

M I[N AT ANAA A A A AN A A AAANONT A ANAAAO O N O T
L
m _ |
C%% AN -AANAAAAAAN A AN AT NN T AANAAAON O N O <
55 |
FYQINAANAAAAA AN A AT A AN O OOTNANN A OT N0
o
g W —
SO AATAAAAAAN A AT AAOOTIONANNNAT IO ©
zZ —
Ww4 OO AAdTAAD AA O FTANO D AANTEINOOAOOOO T O O
B Nt N TN AT A AT TOAADOODTOONSIO ST OO S~
d JE—
a) AT T O OO T LT TOTLTNTTNNTTOOODSTNTLD TN S OO

em OO NN NNNTANNTNATTILILTIONONTOON®N MO LW
B2e

®)

B COUOMNOMNSTINONITOTONTNRTONOWMOMOMWMNLILLN OO N

& — - — o~ = IR S I AFTANT N A o< NMHA®O

)]

= o S
© N Qo o0

> E883339800Evy el e 8988839828 gsx

n o6 8 kkkk%nﬁﬁﬁwmwm ﬂA.ﬂQQmwmm_%mwmw% # 8

L felio o] ddddd.m X~ 85 & 7!

o IS

Table 10.26: MCNC FSM Benchmarks Delay v/s Number of Contexts (Delay Target)

197

Best LUTs by Number of Context

FSM States | Single Dense Encodings
Context 1\ 2\ 4\8\16\32\64
bbara 10 40| 33| 24| 12| 8| 6| 6| 6
bbsse 16 60| 8| 53| 24|15|14| 14| 14
bbtas 6 9 7 5 5/ 5| 5| 5|5
beecount 7 19| 18| 12 T 7| 7] 7|7
cse 16 97 ||156 | 83| 36|22 |15|15| 15
dk14 7 67| 58| 26 8|/ 8/ 8| 8| 8
dk15 4 37| 38 7 T 7| 7] 7|7
dk16 27 83| 162| 8| 35| 8| 8| 8| 8
dk17 8 26 || 31 6 6| 6| 6| 6| 6
dk512 15 20 || 52 7 T 7| 7] 7|7
donfile 24 46162 | 199 | 31| 6| 6| 6| 6
ex1l 20 151 || 193 | 136 | 80|47 | 32|26 | 26
ex4 14 25| 28| 20| 14|13 |13 | 13|13
ex6 8 62| 97| 42| 18|11 11|11 11
keyb 19 150 || 173 | 202 | 37 |22 | 22|26 | 26
mc 4 8 8 7 T 7| 7] 7|7
modul 012 12 13| 21 5 5/ 5| 5| 5|5
planet 48 172 || 346 | 202 | 93|38 |30 |27 |25
pma 24 139 || 97148 | 67 (33|18 | 15|15
sl 20 195 || 196 | 144 | 80|56 |40 |30 | 30
51488 48 183 || 455|264 | 99 |57 | 35|28 |28
sla 20 107 || 136 | 73| 51|38 |33|30|30
s208 18 40| 55| 64| 14|11 | 8| 7| 7
s27 6 5 5 5 4| 4| 4] 4| 4
s386 13 54| 84| 46| 20| 15|12 |12 |12
420 18 40| 54| 33| 20|11} 8| 7| 7
s510 47 76|18 | 97| 35|20 |13 | 13|13
s8 5 13| 13| 13 9| 4| 4| 4| 4
s820 25 137 || 245|154 | 90|60 | 39|30 |30
sand 32 224 || 358 | 219 | 130 | 67 | 61 | 43 | 43
sse 16 60| 8| 53| 24|15|14|14 | 14
styr 30 285|387 | 211|129 |60 | 34 | 23 | 23
tbk 32 510 || 513 | 676 | 353 | 71 | 52 | 42 | 42

Table 10.27: MCNC FSM Benchmarks LUTs v/s Number of Contexts (Delay Target)

198

Best Area[MA?] by Number of Context

FSM States | Single Dense Encodings
Context 1| 2 | 4 | 8| 16| 32| 64
bbara 10 351 29.0| 229 | 133 | 114 | 123 | 198 | 348
bbsse 16 52.7 || 746 | 507 | 26.7| 214 | 287 | 461 | 8l1
bbtas 6 7.9 6.1 4.8 5.6 71| 102 | 165| 29.0
beecount 7 16.7 || 158 | 115 78| 100 | 143 | 231 | 405
cse 16 85.2 || 137.0| 793 | 40.0| 313 | 30.7| 494 | 86.9
dk14 7 588 || 509 | 249 89| 114 | 164 | 264 | 463
dk15 4 325 | 334 6.7 78| 100 | 143 | 231 | 405
dk16 27 729 || 1422 | 784 | 389 | 114 | 164 | 264 | 46.3
dk17 8 228 || 27.2 5.7 6.7 85| 123 | 198 | 348
dk512 15 176 || 457 6.7 78| 100 | 143 | 231 | 405
donfile 24 404 || 1422 | 190.2 | 345 85| 123 | 198 | 348
ex1l 20 1326 || 169.5 | 1300 | 89.0| 669 | 655 | 857 | 150.6
ex4 14 219 || 246| 191 | 156| 185 | 26.6| 428 | 753
ex6 8 544 || 82| 402 | 20.0| 157 | 225| 36.3| 637
keyb 19 131.7 || 1519 | 1931 | 411 | 313 | 451 | 857 | 150.6
mc 4 7.0 7.0 6.7 78| 100 | 143 | 231 | 405
modul 012 12 114 | 184 4.8 5.6 71| 102 | 165| 29.0
planet 48 1510 || 303.8 | 193.1 | 1034 | 541 | 614 | 89.0 | 1448
pma 24 1220 || 852 |1415| 745| 470| 369 | 494 | 86.9
sl 20 171.2 || 1721 | 137.7 | 89.0| 79.7| 819 | 989 | 1738
51488 48 160.7 || 399.5 | 252.4 | 1101 | 812 | 71.7| 923 | 162.2
sla 20 939 || 1194 | 698 | 56.7| 541 | 676 | 989 | 1738
s208 18 351 | 483| 612 | 156| 157 | 164 | 231 | 405
s27 6 44 44 4.8 44 5.7 82| 132 | 232
s386 13 474 || 738 | 40| 222 | 214 | 246 | 396 | 695
420 18 351\ 474| 315| 222 | 157 | 164 | 231 | 405
s510 47 66.7 || 1624 | 927 | 389 | 285 | 26.6| 428 | 753
s8 5 114 | 114 | 124 | 100 5.7 82| 132 | 232
s820 25 120.3 || 215.1 | 147.2 | 1001 | 854 | 79.9| 989 | 173.8
sand 32 196.7 || 314.3 | 209.4 | 144.6 | 954 | 1249 | 141.7 | 249.1
sse 16 52.7 || 746 | 507 | 26.7| 214 | 287 | 461 | 8l1
styr 30 250.2 || 339.8 | 201.7 | 1434 | 854 | 69.6 | 75.8 | 1332
tbk 32 447.8 || 450.4 | 646.3 | 3925 | 101.1 | 106.5 | 138.4 | 243.3

Table 10.28: MCNC FSM Benchmarks Area v/s Number of Contexts (Time Target)

199

Best Delay Reduction by Number of Context

FSM States || Single Dense Encodings
Context 1 \ 2 \ 4 \ 8 \ 16 \ 32 \ 64
bbara 10 0 0 0 0 0 0 0 0
bbsse 16 0 -1 -1 0 0 1 1 1
bbtas 6 0 -1 1 1 1 1 1 1
beecount 7 0 -1 0 1 1 1 1 1
cse 16 0 -1 0 0 0 2 2 2
dk14 7 0 -1 0 2 2 2 2 2
dk15 4 0 -2 2 2 2 2 2 2
dk16 27 0 0 0 0 0 0 0 0
dk17 8 0 -2 1 1 1 1 1 1
dk512 15 0 -3 1 1 1 1 1 1
donfile 24 0 -2 -3 -3 1 1 1 1
ex1l 20 0 0 0 0 1 1 2 2
ex4 14 0 -1 -1 0 1 1 1 1
ex6 8 0 -1 -1 0 2 2 2 2
keyb 19 0 0 -2 -1 0 0 1 1
mc 4 0 0 1 1 1 1 1 1
modul 012 12 0 -2 0 0 0 0 0 0
planet 48 0 0 -1 1 1 1 2 3
pma 24 0 0 -1 0 1 1 2 2
sl 20 0 -1 -1 0 0 1 1 1
s1488 48 0 -1 0 -3 0 1 1 2
sla 20 0 -2 -3 -2 -2 -1 -1 -1
s208 18 0 -1 -2 0 1 1 2 2
s27 6 0 0 0 1 1 1 1 1
s386 13 0 0 0 1 2 2 2 2
420 18 0 -2 -2 0 1 1 2 2
s510 47 0 -1 -1 0 1 2 2 2
3 5 0 0 -1 -1 1 1 1 1
s320 25 0 -2 -1 -1 -1 0 0 0
sand 32 0 -1 -1 0 0 0 1 1
sse 16 0 -1 -1 0 0 1 1 1
styr 30 0 0 1 1 1 1 2 2

\ average \ H 0.00 H -0.91 \ -0.48 \ 0.06 \ 0.64 \ 0.91 \ 1.15 \ 121 \

Table 10.29: MCNC FSM Benchmarks Delta Delay v/s Number of Contexts (Delay Target)

200

Best Area Ratio by Number of Context

FSM States | Single Dense Encodings
Context 1 \ 2 \ 4 \ 8 \ 16 \ 32 \ 64
bbara 10 1.00| 083|065 | 038|032 035|056 | 0.99
bbsse 16 100 | 142|096 | 051|041 | 054 | 0.88 | 1.54
bbtas 6 1.00 || 0.78 | 0.60 | 0.70 | 0.90 | 1.30 | 2.09 | 3.66
beecount 7 1.00 || 095 | 0.69 | 0.47 | 0.60 | 0.86 | 1.38 | 2.43
cse 16 1.00 | 1.61 | 0.93 | 047 | 0.37 | 0.36 | 0.58 | 1.02
dk14 7 100 | 087|042 | 015|019 | 0.28 | 045 | 0.79
dk15 4 100|103 021|024|031|044|071|125
dk16 27 100 | 195|108 | 053|016 | 0.22 | 0.36 | 0.64
dk17 8 100|119 025|029 | 037 | 054|087 | 1.52
dk512 15 100 | 260 | 0.38 | 0.44 | 057 | 0.82 | 1.31 | 2.31
donfile 24 100 | 352 |4.71|085| 021 030|049 | 0.86
ex1l 20 100 | 1.28 | 0.98 | 0.67 | 0.50 | 0.49 | 0.65 | 1.14
ex4 14 100|112 087 | 071|084 | 121|195 | 343
ex6 8 100 | 156 | 0.74 | 0.37 | 0.29 | 041 | 0.67 | 1.17
keyb 19 100 | 115|147 031|024 034|065 | 114
mc 4 100 | 1.00 | 095 | 1.11 | 142 | 2.04 | 3.28 | 5.77
modul 012 12 100 | 162 | 042 | 049|062 | 0.90 | 1.44 | 254
planet 48 100 | 201|128 | 0.68| 0.36 | 041 | 0.59 | 0.96
pma 24 100| 070|116 | 061|039 | 030|041 | 0.71
sl 20 100 | 101|080 | 052|047 | 048|058 | 1.01
51488 48 100 | 249 | 157 | 069 | 051 | 045 | 057 | 1.01
sla 20 100 | 1.27 | 0.74 | 0.60 | 0.58 | 0.72 | 1.05 | 1.85
s208 18 100 | 1.38 | 1.74 | 044 | 0.45 | 0.47 | 0.66 | 1.15
s27 6 100 | 1.00 | 1.09 | 1.01 | 1.30 | 1.87 | 3.00 | 5.28
s386 13 1.00 || 1.56 | 0.93 | 047 | 0.45 | 0.52 | 0.83 | 1.47
420 18 100 | 1.35|0.90 | 0.63 | 0.45 | 0.47 | 0.66 | 1.15
s510 47 100 | 243|139 | 058|043 | 040|064 | 1.13
s8 5 1.00 || 1.00 | 1.09 | 0.88 | 0.50 | 0.72 | 1.16 | 2.03
s820 25 100 | 179|122 | 083|071 066|082 144
sand 32 100 | 160 | 1.06 | 0.74 | 0.49 | 0.64 | 0.72 | 1.27
sse 16 100 | 142|096 | 051|041 | 054 | 0.88 | 1.54
styr 30 100 | 136 | 081 | 057|034 | 0.28 | 0.30 | 0.53
tbk 32 100 | 101|144 |088|023|0.24|031|054

\ average \ H 1.00 H 1.45 \ 1.05 \ 0.59 \ 0.50 \ 0.62 \ 0.95 \ 1.67 \

Table 10.30: MCNC FSM Benchmarks Area Ratio v/s Number of Contexts (Delay Target)

201

Acyc
myAddr
Read state

K
32x3 Memory

Y
Dout

Figure 10.28: Memory-based Implementation for Simple FSM Example

10.6.4 Comparison with Memory-based FSM Implementations

A memory and a state register can also be used to implement finite-state machines. The
data inputs and current state are packed together and used as addresses into the memory, and the
memory outputs serve as machine outputs and next state outputs. Figure 10.28 shows a memory
implementation of our simple FSM example from Figures 10.24 and 10.25.

Used for finite-state machines, the DPGA is a hybrid between a purely gate (FPGA) imple-
mentation and a purely memory implementation. The DPGA takes advantage of the memory to
realize smaller, state-specific logic than an FPGA which must implement all logic simultaneously.
The DPGA uses the restructurable interconnect in the array to implement next-state and output
computationsout of gates. Aswe noticed in Section 4.5, the gate implementation alow the DPGA
to exploit regularitiesin the computational task. In this case, we avoid the necessarily exponential
areaincrease associated with additional inputsin amemory implementation, thelinear-log increase
associated with additional states, and the linear increase associated with additional outputs.

Assuming we could build just the right sized memory for agiven FSM, the areawould be:

Amemory—fsm = (*Nstate . ZNMPMS) X (A/Voutputs + “ng (*Nstates)—‘) X Amem_cell

Table 10.31 summarizes the areas of the best memory-based FSM implementations along with the
areas for FPGA and 8-context DPGA implementations. The “Min area” column indicates the area
assuming amemory of exactly theright sizeisused, whilethe“Memory Area” field showsthe area
for the smallest memory with an integral number of address bits as shown in the “organization”
column. When the total number of state bits and input bits is less than 11, the optimal memory
implementations can be much smaller than the FPGA or DPGA implementation. Above 11 input
and state bits, the DPGA implementation issmaller. Sincethe DPGA implementation sizeincreases
with task complexity rather than number of inputs, whilethe memory implementationisexponential
in the number of inputs and state bits, the disparity grows substantially asthe number of inputs and
state bits increase.

202

Min Integral Memory || FPGA || 8-ctx DPGA

FSM states | ins | outs area Addr. & Data area area area

[MA?] | Organization | [MA?] [MA?] [MA?]
bbtas 6| 2 2 0.1 2°x5 0.2 6.1 7.1
dk15 4| 3 5 0.3 257 0.3 219 10.0
dk17 8| 2 3 0.2 25x6 0.2 16.7 8.5
dk512 15 1 3 0.3 257 0.3 17.6 10.0
mc 4| 3 5 0.3 25x7 0.3 7.0 10.0
modulo12 12| 1 1 0.1 25x5 0.2 105 7.1
beecount 71 3 4 0.5 26x7 0.5 12.3 10.0
dk14 71 3 5 0.5 26x8 0.6 50.9 11.4
dk16 27| 2 3 1.0 2'x8 13 70.2 11.4
donfile 24| 2 1 0.7 2'x6 0.9 40.4 8.5
s27 6| 4 1 0.5 2'x4 0.6 4.4 5.7
s8 5| 4 1 0.4 2'x4 0.6 105 5.7
bbara 10| 4 2 12 28x6 18 219 11.4
ex6 8| 5 8 34 28x11 34 50.0 15.7
ex4 14| 6 9 14.0 210%13 16.0 18.4 185
bbsse 16| 7 7 27.0 21111 27.0 439 21.4
cse 16| 7 7 27.0 2% 11 27.0 72.9 27.1
tbk 32| 6 3 19.7 21«8 19.7 || 2985 68.4
sse 16| 7 7 27.0 2111 27.0 439 21.4
s386 13| 7 7 229 2% 11 27.0 36.9 185
keyb 19| 7 2 20.4 2127 34.4 98.3 313
planet 48| 7| 19 184.3 213% 25 2458 || 1317 54.1
pma 24| 8 8 95.8 21313 127.8 72.0 34.2
sl 20| 8 6 67.6 213x 11 108.1 || 120.3 62.7
sla 20| 8 6 67.6 213x11 108.1 63.2 54.1
exl 200 9| 19 294.9 21424 4719 | 105.4 55.5
51488 4| 8| 19 368.6 214% 25 4915 || 1335 74.0
styr 30| 9| 10 276.5 21415 2949 || 163.3 57.0
s208 18| 11 2 309.7 2167 550.5 334 12.8
sand 32| 11 9 1101.0 21614 1101.0 || 156.3 62.7
s820 25| 18| 19 || 188743.7 223%24 241591.9 80.8 64.1
420 18 | 19 2 || 79272.3 2247 140928.6 35.1 14.2
s510 47 | 19 7 || 384408.9 2% 13 523449.1 47.4 25.6

N.b. —benchmarks reordered by the sum of the number of inputs and densely encoded state bits

Table 10.31: Memory Implementationsfor MCNC FSM Benchmarks

203

10.6.5 Areasfor Improvement

Timing Inthissection, we assumed that the context read occurred in serieswith execution within
the target context and state. It is possible to overlap context reads with execution by using amore
sophisticated FSM mapping model. On state transition, instead of reading a context with the target
statelogic, we read a context with all thelogic for any state which may follow the target state. This
can be viewed as speculatively fetching just the set of logic which may be needed by thetimeit has
been read acyclelater. Using this scheme, we can reduce the time to the actual delay in the context
rather than the context delay plus the read time. For heavily branching FSMs, the target logic will
often have to include more state logic per context than with this style of mapping than it was with
the simple division described here. Aswe see here, including more state logic increases the delay
so it isnot immediately obvious which case will generally have superior performance.

Partitioning For the partial temporal partitioning above, we partitioned strictly along must ang
state bits. Thisislikely to give less than optimal partitions since must ang’s cost model isaimed
at multi-level logicimplementations. It assumesall logic must be availableat onceandisnot trying
to maximize the independence among state groups. A more sophisticated mapping would go back
to the original state-transition graph and partition states explicitly to minimize the logic required
in each partition. Informally, the goal would be to group states with similar logic together and
separate states performing disparate logical functions.

10.6.6 General Technique

While demonstrated in the contexts of FSMs, the basic technique used here is fairly general.
When we can predict which portions of anetlist, circuit, or computational task are needed at agiven
point in time, we can generate a more specialized design which only includes the required logic.
The specialized design is often smaller and faster than the fully general design. With amulticontext
component, we can use the contexts to hold many specialized variants of a design, selecting them
as needed.

In the synthesis of computations, it is common to synthesize a controller along with datapaths
or computational elements. The computations required are generally different from state to state.
Traditional, spatial implementations must have hardware to handle all the computations or gener-
alize a common datapath to the point where it can be used for all the computations. Multicontext
devices can segregate different computational elementsinto different contexts and select them only
as needed.

For example, in both dbC [GM93] and PRISM-II [AWG94] a genera datapath capable of
handling all of the computational subtasksin computation is synthesized alongside the controller.
At any point in time, however, only asmall portion of the functionality contained in the datapath is
actually needed and enabled by the controller. The multicontext implementation would be smaller
by folding the disparate logic into memory and reusing the same active logic and interconnect to
implement them as needed.

204

10.7 Additional Application Styles

10.7.1 Multifunction Components

With multiple, on-chip contexts, adevice may beloaded with several different functions, any of
whichisimmediately accessible with minimal overhead. A DPGA can thus act as a“multifunction
peripheral,” performing distinct tasks without idling for long reconfiguration intervals. In asystem
such as the one shown in Figure 10.7, a single device may perform several tasks. When used
as a reconfigurable accelerator for a processor (e.g. [AS93] [DeH94] [RSA4]) or to implement a
dynamic processor (e.g. [WH95]), the DPGA can support multiple loaded acceleration functions
simultaneously. The DPGA is more efficient in these alocations than single-context FPGAs
becauseit allows rapid reuse of resources without paying the large idle-time overheads associated
with reconfiguration from off-chip memory.

In a data storage or transmission application, for instance, one may be limited by the network
or disk bandwidth. A single device may be loaded with functions to perform:

¢ (De)compression
¢ Cryptographic (e.g. DES) (de)encoding
e ECC Calculation, error detection, and correction
The device would be then called upon to perform the required tasks as needed.

Within aCAD application, such asespr esso [RSV87], one needsto perform several distinct
operations at different times, each of which could be accelerated with reconfigurable logic. We
could load the DPGA with assist functions, such as;

¢ ASCII decoding (e.g. [Raz94])

¢ Bitvector manipulation

¢ Findfirst one(e.g. [AS93])

¢ Hamming distance calculation (e.g. [AS93])
Since these tasks are needed at distinct times, they can easily be stacked in separate contexts.
Contexts are selected as the program needs these functions. To the extent that function usage is
interleaved, the on-chip context configurations reduce the rel oad idle time which would be required
to share a conventional device among as diverse a set of functions.

10.7.2 Utility Functions

Some classes of functionality are needed, occasionally but not continuously. In conventional
systems, to get the functionality at all, we have to dedicate wire or gate capacity to such functions,
even though they may be used very infrequently. A variety of data loading and unloading tasks fit
into this “infrequent use” category, including:

¢ Data offload

Debugging snapshot
Testing observability
Fault recovery snapshot
Context data offload

e Dataonload

205

Configuration setting

Valueinitiaization

Debugging value injection

Testing accessibility

Fault recovery

Context datareload (after coarse-grain context switch)

e Operation idlie/enable

¢ Conditional operation
¢ Exception handling
o Stall

In a multicontext DPGA, the resources to handle these infrequent cases can be relegated to a
separate context, or contexts, from the “normal” case code. The wiresand control required to shift
in (out) dataand load it are allocated for use only when the respective utility context isselected. The
operative circuitry then, does not contend with the utility circuitry for wiring channels or switches,
and the utility functions do not complicate the operative logic. In this manner, the utility functions
can exist without increasing critical path delay during operation.

A relaxation algorithm, for instance, might operate as follows:

Load in starting point and boundary conditions

Calculate relaxation updates

Check for convergence, return to 2 if not converged

. Offload result

Each of these operations may be separate contexts. The relaxation computation may even be
spread over several contexts. This general operation style, where inputs and outputs are distinct
and infrequent phases of operation, is common for many kinds of operations (e.g. multi-round
encryption, hashing, searching, and many optimization problems).

AwWDNPE

10.7.3 Temporally Systolic Computations

Figure 10.29 shows atypical video coding pipeline (e.g. [JOSV95]). In a conventional FPGA
implementation, we would lay this pipeline out spatially, streaming data through the pipeline. If
we needed the throughput capacity offered by the most heavily pipelined spatial implementation,
that would be the design of choice. However, if we needed less throughput, the spatially pipelined
version would require the same space while underutilizing the silicon. In this case, a DPGA
implementation could stack the pipeline stagesin time. The DPGA can execute a number of cycles
on one pi peline function then switch to another context and execute afew cyclesonthenext pipeline
function (See Figure 10.30). In this manner, the lower throughput requirement could be translated
directly into lower device requirements.

Thisisthe samebasic organi zational schemeused for levelizedlogic evaluation (Section 10.5.1).
The primary difference being that evaluation levels are divided according to application subtasks.

This is a general schema with broad application. The pipeline design style is quite familiar
and can be readily adapted for multicontext implementation. The amount of temporal pipelining
can be varied as throughput requirements change or technology advances. Assilicon feature sizes

206

context
switch

'

Motion
Estimation

Y

Transformation

Y

Quantization

Y

Coding

Y

context
switch

Figure 10.29: Canonica Video Coding Pipeline

context
switch

context
switch

Motion
Estimation

Transformation

Time

I
I
[Quantization
I
I

o

Figure 10.30: Temporally Systolic Video Coding Pipeline

shrink, primitive device bandwidth increases. Operations with fixed bandwidth requirements can

increasingly be compressed into more temporal and less spatial evaluation.

When temporally pipelining functions, the data flowing between functional blocks can be
transmitted in time rather than space. This saves routing resources by bringing the functionality to
the data rather than routing the data to the required functional block. By packing more functions
onto achip, temporal pipelining can aso help avoid component 1/0 bandwidth bottlenecks between

function blocks.

207

Context Select

Sub
Array

Figure 10.31: Control Distribution on DPGA Prototype

10.8 Control

In the prototype DPGA (Section 10.4), we had asingle, array-wide control thread, the context
select line, which was driven from off-chip. In general, as we noted in Chapter 8, the array may
be segregated into regions controlled by a number of distinct control threads. Further, in many
applicationsit will be beneficial to control execution on-chip — perhaps even from portions of the
array, itself.

10.8.1 Segregation

In the prototype subarrays were used to organize local interconnect. The subarray level of
array decomposition can also be used to segregate independent control domains. As shown in
Figure 10.31, the context select lineswere simply buffered and routed to each subarray. The actual
decoding to control memoriesin the prototype occured in the local decode block. We can control
the subarraysindependently by providing distinct sets of control linesfor each subarrays, or groups
of subarrays.

208

Control Control Control
One Two Three

Sub
Array

Figure 10.32: Multiple Controllers— Hardwired Control

10.8.2 Distribution

Hardwired Control Inthe simplest case, separate control streams can be physically assigned to
each subarray or subarray group. For example, Figure 10.32 shows a 3x 3 subarray design with a
separate control stream for each column.

ConfigurableControl Alternately, multiple control streams can be physically routed to each sub-
array with local configuration used to select the appropriate onefor use. For example, Figure 10.33
shows a 3x 3 subarray design with three controllers where each subarray can be configured to
select any of the three control streams. The configurable control may even be integrated with the
configurable interconnection network.

M etaconfiguration In scenarioswherearray control can be configured it will often be necessary
to have aseparate level of configuration from the array itself. Thismeta-level configurationisused
to define the sources for control data and perhaps control distribution paths. It does not change
from cycle-to-cycle as does regular array configuration data. The MATRIX design described in
Chapter 13 deals explicitly with this kind of a multi-level configuration scheme.

209

Control Control Control

One Two Three
I
Sub
1 | o 1 |2 Array 1 | o
i i i

Figure 10.33: Multiple Controllers— Configurable Control

10.8.3 Source

Off-Chip The control stream can be sourced from off-chip, asin the prototype, providing consid-
erableflexibility to the application or system. Off-chip control, however, implies additional latency
in the control path and the additional cost of a separate controller component. It also requires
preciousi/o pins be dedicated to control rather than data. Tasks which benefit from rapid feedback
between datain the computation stream and the control stream are hindered by the data— control
path which most cross first off-chip then back on-chip.

Local Dedicated Controller A dedicated, programmable controller can be integrated on-chip
to manage the control stream. The controller could come in the form of a simple counter, a
programmable PLA, a basic microcontroller, or a core microprocessor. Integrated on-chip, it has
low latency and high bandwidth to the array and avoids consuming i/o pins. In order to integrate
such controllers on chip, we must decide how much space to dedicate to them, how many separate
controllers to provide, and what form the controller will take. Recall from Section 8.5, that we
would like to match the number of control streamswith the needs of the application, but we cannot

210

Controller

,__h_ﬁffi}_

Sub
LS} H Array [H

I

Figure 10.34: Array Self Control Example

do that if the controllers must be allocated prior to fabrication.

Feedback Self Control For mapped FSMs (Section 10.6), we saw that it was beneficial to route
some of the design outputs back into the control port (e.g. Figure 10.24). As noted above, this
entails some integration of the reconfigurable network and the control distribution path.

Self Control We can also build the controller out of FPGA/DPGA logic. Thecontroller generally
implements an FSM. It would be plausible, then to allocate one or more subarrays to build a
controller which is, in turn, used to control the other subarrays on the component. With this
scheme, we can partition the array and build just as many controllers as are required for the task at
hand. Figure 10.34 shows a case where two subarrays are used to build the controller which isthen
responsiblefor controlling the rest of the array.

211

10.9 Conclusions

Conventional FPGAs underutilize silicon in most situations. When throughput requirements
are limited, task latency is important, or when the computation required varies with time or the
data being processed, conventional designs leave much of the active LUTs and interconnect idle
for most of the time. Since the area to hold a configuration is small compared to the active LUT
and interconnect area, we can generally meet task throughput or latency requirements with less
implementation area using a multicontext component.

In this section we introduced the DPGA, a bit-level computational array which stores several
instructions or configurations along with each active computing element. We described a com-
plete prototype of the architecture and some elementary design automation schemes for mapping
traditional circuits and FSMs onto these multicontext architectures.

We showed how to automatically map conventional tasks onto these multicontext devices. For
latency limited and low throughput tasks, a4-context DPGA implementationis, on average, 20-40%
smaller than an FPGA implementation. For FSMs, the 4-context DPGA implementationisgenerally
30-40% smaller than the FPGA implementation, while the 8-context DPGA implementation is 40-
50% smaller. Signal retiming requirements are the primary limitation which prevents the DPGA
from realizing greater savings on circuit benchmarks, so it is worthwhile to consider architectural
changes to support retiming in aless expensive manner. We will look at one such modification in
the next chapter. All of these results are based on a context-memory area to active compute and
interconnect arearatio of 1:10. The smaller the context memories can be implemented relative to
the fixed logic, the greater the reduction in implementation area we can achieve with multicontext
devices.

For hand-mapped designs or coarse-grain interleaving, the potential area savings is much
greater. With the 1:10 context memory to active ratio, the 4-context DPGA can be one-third the
sizeof an FPGA supporting the same number of LUTs. An 8-context DPGA can be 20% of thesize
of the FPGA. Several of the automatically mapped FSM examples come close to achieving these
areareductions.

212

11. Dynamically Programmable Gate Arrayswith Input Registers

In Chapter 10 we noticed that retiming requirements often prevented usfrom realizing as significant
areduction in active LUTs as should be possible. Asaresult of retiming, we often had to dedicate
active LUTssimply to pass data through intermediate contexts. Retiming requirments also created
a saturation level below which no further reduction in active LUTs was possible even if we were
willing to take more time or add more context memories.

In this chapter we introduce input registers to the smple DPGA model used in the previous
chapter. Theseinput registersallow usto store valueswhich need to traverse LUT evaluation levels
in memories rather than having them consume active resources during the period of time which
they are being retimed. This addition reduces the retiming limit we encountered in the previous
chapter.

We introduce input registers to the base DPGA architecture (Section 11.1) and expand our
computing device model accordingly (Section 11.2). Section 11.3 provides abasic example of the
benefits of adding input registers. We expand our experimental, multicontext mapping software
from the previous chapter to handleinput registers (Section 11.4) and examine the aggregate results
of mapping circuit benchmarksto these devices. In Section 11.5, we briefly relate theinput register
model used in this chapter to potential alternatives. At the end of this chapter (Section 11.7) we
review the key points about multicontext devices as developed over the last several chapters.

11.1 Input Registers

We established in Chapter 7 that most of the active area in conventional FPGAS goes into
interconnect. When a signal must cross multiple succeeding contexts between the producer and
the final consumer, in the existing model, we must dedicate precious, active routing resources to
the signal for all intervening contexts. Note that this property is essentially true of single context
FPGAs, aswell. If avalueis produced early in some critical path, but not consumed until several
LUT delayslater, the wires and switches between the producer and consumer are tied up holding
the value for the entire time. Tying up switches and wiresto transport avalueintimeisapoor use
of a scarce resource.

The conventional model results from storing values in registers on the output of each computa-
tional element (See Figures 11.1 and 11.2). With this arrangement, we must hold the value on the
output and tie up switches and wires between the producer and the consumer until such time asthe
final consumer has used the value. Since values are produced at different times, and several values
from different sources must converge at a consuming LUT in order for it to produce its output
value, this givesrise to the situation where switches and wires are forced to sit idle holding values
for much longer than the time it takes for them to transport the values from their sources to their
destinations.

The aternative is to move the value registers to the inputs of the computational elements (See
Figure 11.3). In the simplest case, this means having four flip-flops on the input of each 4-LUT

213

FPGA
Array Element

Figure 11.1: FPGA Array Element

context
select

DPGA
Array Element

Figure11.2: DPGA Array Element

IDPGA
Array Element

Figure 11.3: DPGA Array Element with Input Registers

214

rather than one flip-flop on the output. This modification allows us to move the data from the
producer to consumer in the minimum transit time — atime independent of when the consumer will
actually usethe data. We now tie up space in aregister to perform the retiming function rather than
tying up all the wires and interconnect required to route the value from producers to consumers.
Since the register can be much smaller than the intervening interconnect, this resultsin a tighter
implementation.

Conceptually, thekey ideahereisthat signal transport and retiming are two different functions:

1. Spatial Transport —moves data in space — route data from source to destination

2. Temporal Transport (Retiming) — moves datain time — make data available at some later
time when it is actually required

By segregating the mechanismswe usefor these two functions, we can optimize themindependently
and achieve atighter implementation.

We can view this multicontext progression as successively relaxing the strict interconnect
requirements for this class of devices:

¢ In atraditional, single-context FPGA we must have enough wires and switches to simulta-
neously route al the connectionsin the entire task description graph.

¢ In aprototype-style DPGA as described in the previous section, we must have enough LUT
outputs, switches, and wiresto carry one temporal slice through the computation.

¢ In a DPGA with input registers, in the extreme, we need only a single wire. More wires
facilitate more parallelism in transport and hence higher throughput and lower latency im-
plementations, but are not required for functionality.

11.2 iDPGA Modél

A DPGA with input registers (iDPGA) associates an -bit long shift register with each LUT
input in addition to the ¢ instructions per active LUT. The LUT instruction tellsthe LUT which of
the ¢ values on the shift register to actually select on each cycle. Each LUT input can thus retime
avalue by up to i cycles. That is, values may arrive at the destination LUT up to 7 clock cycles
before they are consumed. Figure 11.4 shows apossibleiDPGA array element with 4 contexts and
an input register with depth 3.

The input registers do place arestriction on the grouping of logical LUTs into physical LUTs
which was not present in the original DPGA. Multiple LUTs cannot have inputs arriving at the
same input position on the same cycle. Fortunately, LUT input permutability often allows us to
rearrange the inputs to avoid such potential conflicts. Nonetheless, the restriction does complicate
LUT placement.

The additional resources required for this model are :-additional register cells for each input
and one: x 1 multiplexor for each input. For ak-LUT, theareathenis:

AiDPGA_LUT = Abase +c- Acontex‘t + v k- Ashiftreg + k- Amuz’ (111)
Apase = 800K)?

215

context
select

IDPGA
Array Element

Figure 11.4: iDPGA Array Elementc = 4,: =3

Acontest = T8KA?
Aghifireg = 4KN?
Apuz = 1 Asw
Asw = 2.5K)\?

Composing areas for a4-LUT, we have:

AippPGa aruTr = Abase + ¢ Acontest + 1+ Ainput (11.2)
Apase = B00KA?
Acontest = T8KA?
Aipput = 26KA?

Note here that we assume the total number of context description bits does not change. Rather,
the bits that indicate which of the ¢ inputs to select are bits which have been shuffled from spatial
routing to temporal routing. That is, this scheme reduces the spatial interconnect requirements by
performing temporal retiming in these registers. We are assuming that the bits are shuffled from
one task to another without any significant change in the overall number of bits required.

11.3 Example

Recall from Section 10.1, that our ASClI—hex binary circuit could be mapped to three contexts,
but could not, viably, be mapped to fewer contexts. By adding the i-input register as suggested
above, the active LUT requirements continue to decline with throughput reductions. Figure 11.5
showsthis same circuit mapped with varying input register depth. Asthe number of input registers
increases from 1 to 4, the saturation point reduces from 7 active LUTs to 4. Using our area model

216

LUTs

-.- FPGA
\ WP — DPGA (i=1)
--- iDPGA (i=2)
... iDPGA (i=3)
-.- iDPGA (i=4)

Contexts

-.- FPGA
— DPGA (i=1)
--- iDPGA (i=2)
... iDPGA (i=3)
-.- iDPGA (i=4)

Areain[M A?]

Contexts

Figure 11.5: ASCll—Hex Binary Implementation versus Contexts and | nput Register Depth

from the previous section, the: = 4, ¢ = 6 iDPGA is5.5M A2, or over 3x smaller than the single
context FPGA implementation at 18.4M A2 and over 2x smaller than the smallest DPGA without
input registers at 12.5M \2.

217

11.4 Circuit Benchmarks: Input Depth

To examine the merits of input registers, we return to our throughput optimized circuit bench-
marks as we originally visited in Section 10.5.3 for DPGAs. We use the same MCNC circuit
benchmark set and the same input netlists as synthesized and mapped by si s and Chortl e.
Again, since we are assuming here that the target criteriais throughput, both si s and Chortl e
netlists were synthesized in area mode. As before, no modifications to the mapping and netlist
generation are made.

1141 Mapping

As before, we divide the multi-context case into separate spatia pipeline stages such that the
path length between pipeline registersis equal to the acceptable period between results. The LUTs
within a phase are then evaluated in multicontext fashion using the available contexts. The main
difference from Section 10.5.3 is the cost metric for retiming. Since each LUT can retime up to ¢
cycles, we only charge for retiming registers every i temporal stages between the original source
and the final destination.

When we do need to placeretiming registers, they are placed in astylized fashion. Starting from
the final consumer, we walk back through the circuit toward the primary inputs, placing aretiming
repeater LUT every «th stage. In practice, we often have much more freedom in the placement of
retiming registers, but this freedom was not exploited in our experimental mapping tools. During
the annealing step, whenever the final consumer for aparticular value is moved, the retiming chain
is stripped out and replaced based on the consumer’s new |ocation.

After al levelization has been done, agrouping pass is performed. The grouping pass attempts
to group together ¢ logical LUTs within a spatia partition to reside on one physical LUT. For a
group of LUTsto be compatible, it must be possible to permute the LUTS' inputs such that no two
LUTs require a different value to arrive on the same input on the same clock cycle. Rather than
trying al (4!)(c~1 permutations, we use a randomized, greedy placement scheme. We randomly
pick which input in a LUT to placefirst, then greedily place it in a non-conflicting location. Other
inputs within a LUT are placed sequentially after the initial random selection. The compatibility
routine will make several attempts to find a satisfying assignment before declaring the grouping
incompatible.

Grouping is performed independently on each spatial partition. The grouping routine starts by
packing al thelogical LUTsin aspatia partition into the minimum number of physical LUTs—i.e.
the number of physical LUTsrequired toimplement thelargest temporal stage. The attempt ismade
by first randomly assigninglogical LUTsto physical LUTSs, then randomly selecting logical LUTsto
swap in order to reduceincompatibility conflicts. Swapswhich do not increasetheincompatibilities
in the grouping are greedily accepted. Swapping continues until a satisfying set of groupings is
found or the swapping runs longer than a predetermined time limit which is proportional to the
number of logical LUTs which can be described in the spatial partition. When packing fails, we
increment the number of target physical LUTs and retry packing.

In review, circuit mapping proceeds through the following steps:

1. Technology Independent Optimization (si s)

218

2. LUT Mapping (Chortl e)
3. Spatia and Tempora Levelization (ssmulated annealing)

4. Physical LUT Grouping (greedy swapping with heuristic compatibility verification)

219

\ al u2 at 4 clocks/result throughput |

LUTs by Number of Contexts (c)
7 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8
(1) || 240 | 207 | 161 | 161 | 161 | 161 | 161 | 161
2 149 | 104 | 104 | 104 | 104 | 104 | 104
3 81| 81| 8| 81| 81| 81
4 81| 81| 8| 81| 81
5 791 79| 79| 79
6 791 79| 79
7 78| 78
8 78

Table 11.1: Total Physial LUTs Required to Implement al u2 Benchmark

\ al u2 at 4 clocks/result throughput |

Areain MA? by Number of Contexts (c)

1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 ‘ 7 ‘ 8
210.7 | 208.7 | 174.8 | 187.4 | 200.0 | 2125 | 225.1 | 237.6
150.2 | 1129 | 121.1 | 129.2 | 137.3 | 145.4 | 153.5
90.1 | 96.4 | 102.7 | 109.0 | 1153 | 121.7
9851048 | 111.1 | 1174 | 1238
104.3 | 1104 | 116.6 | 122.8
1125 | 118.7 | 124.8
119.2 | 125.3
127.3

—~
-
=

coONO O~ WN

Table 11.2: Total Area Required to Implement al u2 Benchmark

11.4.2 Detailed Example: al u2

Table 11.1 showsthe total LUTsrequired after retiming and packing for the al u2 benchmark
mapped to provide a throughput of one result every four LUT delays. The table shows mappings
for various values of ¢« and ¢. We constrain i < ¢ in the current mapping software, so there are
no configurationswith : > ¢. Upto: = 3, we see that each additional input register allows us to
further reduce the total number of physical LUTs required in the implementation. Table 11.2 uses
the areamodel from Section 11.2 to trandate the LUT counts into areas, and Table 11.3 showsthe
area savings versus a traditional FPGA implementation (¢ = ¢« = 1). The: = 3, ¢ = 3, iDPGA
implementation is smallest at 43% of the area of the FPGA implementation.

Figure 11.6 showsthe area of the family of al u2 implementations as a function of context (¢)
and input (z) depth. Figure 11.7 plotsthe areas asratios versusthe FPGA implementation. Thefirst

220

\ al u2 at 4 clocks/result throughput \
Ratio (%) by Number of Contexts (c)

1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 ‘ 7 ‘ 8
1.000 | 0.991 | 0.830 | 0.889 | 0.949 | 1.009 | 1.068 | 1.128
0.713 | 0.536 | 0.575 | 0.613 | 0.652 | 0.690 | 0.729
0.428 | 0.458 | 0.487 | 0.517 | 0.547 | 0.578
0.467 | 0.497 | 0.527 | 0.557 | 0.588
0.495 | 0.524 | 0.553 | 0.583
0.534 | 0.563 | 0.592
0.566 | 0.595
0.604

00 ~NO O1lh WN R -

Table 11.3: Area Ratiosfor al u2 Benchmark Implementation

couple of input registers (: goesfrom1 — 2 and 2 — 3) show significant gainsfor this benchmark.
Gainsdiminish for greater input register depth. The best implementations are one-third the size of
the FPGA implementation.

221

900
800
700
600
500
400
300
200
100

Areain [M A2]

900
800
700
600
500
400
300
200

Areain [M A2]

1

900
800
700
600
500
400
300
200

Areain[M A?Z]

1001
I I

1001

135 7 911131517 19
Throughput Target (cycles/result)

900
800
700
600
500
4001
300
2001
1004~

Areain [M A2]

=3

..... gy
I

135 7 911131517 19
Throughput Target (cycles/result)

&
<
=
£
3
<

900
800
700
600
500
400
300
200
100

| .
|

135 7 9 11131517 19
Throughput Target (cycles/result)

900
800
700
600
500
400
300
200
100

Areain [M A2]

C=4

T T e T = — = =

o el ol o

1 35 7 9 11131517 19

Throughput Target (cycles/result)

900
800
700
600
500
400
300
200
100

Areain[M AZ]

O e —{———(——
1 35 7 91113151719

Throughput Target (cycles/result)

S= = -
______ -

IR 1 it s e s s

1 35 7 9 11131517 19

Throughput Target (cycles/result)

900
800
700
600
500
400
300
200
100

Areain [M A2]

O e ———(——
1 35 7 91113151719

Throughput Target (cycles/result)

C=8

073 5 7 9 111315 17 19
Throughput Target (cycles/result)

Figure11.6: al u2 Implementation Area versus Throughput

222

T w W
ONOUAWN R

Ratio Aippca/Arpca

2.0
18
16
14
12
1.0
0.8
0.6
0.4
0.2
0.0

Ratio Aippca/Arpca

=1

1 35 7 91113151719

Throughput Target (cycles/result)

Ratio Aippca/Arpca

1 35 7 9 11131517 19

Throughput Target (cycles/result)

Ratio Aippca/Arpca

1 35 7 9 11131517 19

Throughput Target (cycles/result)

C=7

Ratio Aippca/Arpca

135 7 9 11131517 19
Throughput Target (cycles/result)

Ratio Aippca/Arpca

A O
1 35 7 91113151719

Throughput Target (cycles/result)

Ratio Aippca/Arpca

T KL S P . L]

]
1 3 5 7 9 1113151719

Throughput Target (cycles/result)

Ratio Aippca/Arpca

2.0
18
16
14
12
1.0
0.8
0.6
0.4
0.2

1 35 7 91113151719

Throughput Target (cycles/result)

0 ~NOOhs WNPRE

Y1 3 5 7 9 1113 1517 19
Throughput Target (cycles/result)

Figure 11.7: al u2 AreaRatios versus Throughput

223

\ Average Ratio at 1 clock/result throughput \
Ratio (%) by Number of Contexts (c)

1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 ‘ 7 ‘ 8
1.000 | 1.148 | 1.237 | 1.326 | 1.415 | 1.503 | 1.592 | 1.681
1148 | 1.237 | 1.326 | 1.415 | 1.503 | 1.592 | 1.681
1.267 | 1.355 | 1.444 | 1.533 | 1.622 | 1.711
1385 | 1.474 | 1.563 | 1.651 | 1.740
1503 | 1.592 | 1.681 | 1.770
1.622 | 1.711 | 1.800
1.740 | 1.829
1.859

00 ~NO O1lh WN R -

Table 11.4: Average Ratios for Benchmark Set

11.4.3 AverageCharacteristics

Figure 11.8 shows the average area ratios across the entire benchmark set (See Table 10.13)
analogously to Figure 11.7. We see here that an input register depth of four provides ailmost all of
the benefits of input registers, with most of the benefit realized by a depth of three, aswe saw with
theal u2 casein the previous section.

Figure 11.9 plots area versus throughput for various context depths (c), at a single values
for input depth (). Here, ¢ was chosen to give the best results for low throughputs. For lower
throughput values, the 5-8 context cases differ by only 10%. At the extreme of 20 clocks per resullt,
thec = 8,i = 6 caseis 33.7% thesize of the single context case, versusthec = 5,7 = 4 casewhich
is 37.6%.

Tables 11.4 through 11.11 record implementation area ratio for all values of ¢ and ¢. Each
table reportsimplemenation areas for a different fixed throughput target in analog with Table 11.3.
For the maximum throughput of one result per LUT delay, the traditional, single-context FPGA
providesthe best implementation. For al other cases, the multicontext implementations are always
smaller than the single-context implementation. With aLUT-cycledelay in the 7-9.5 nsrange, even
today’s* high” throughput implementationsin the 30-50 MHz range are producing new results only
once ever 3-5 LUT delays. At these speeds 3-4 context devices are 40-50% smaller than the single
context implementation. At lower throughputs, the multiple context implementations are almost
one-third the size of the single-context implementation on average.

224

Ratio Aippca/Arpca

2.0
18
16
14
12
1.0
0.8
0.6
0.4
0.2
0.0

§18: §18:
LL1:6— :1 LL1:6— :2
$<1.4— $<1.4—
121 121
81.0 81.0\—
2 o8t 2 osfy
g & I
< o6t L e T
2 0.4 2 0.4
g 2T g 2
021 021
e T e T O A

135 7 911131517 19
Throughput Target (cycles/result)

135 7 911131517 19
Throughput Target (cycles/result)

3 1ol 3 1ol

o 161 =3 T 164 =4

i(144+ i(144

9 Tok 2 ol

9 0.8'\" Q 0.8_‘

< el - < ek

o Y N TTrsmsrosm-s OO Y N i Sunsooons
T 041 T 041 =
S I T T Ty T I B B

135 7 9 11131517 19
Throughput Target (cycles/result)

135 7 9 11131517 19
Throughput Target (cycles/result)

3 1ol 3 1ol
L 161 — L 161 =
s(. C=5 s<1_4 C=6

. 1.2
¥ g 1o
S =hhed &
< o DTS SN
S5 S gl NGiIiiiziziiio
S I T Ty T I R

135 7 9 11131517 19
Throughput Target (cycles/result)

Ratio Aippca/Arpca

Y1 3 5 7 9 1113 1517 19
Throughput Target (cycles/result)

C=8

1
1

TR T TR T TR

O NOUAWN P

135 7 9 11131517 19
Throughput Target (cycles/result)

Y1 3 5 7 9 1113 1517 19
Throughput Target (cycles/result)

Figure 11.8: Average Area Ratios versus Throughput

225

Ratio Aippea/Arpca

9 11 13

15
Throughput Target (cycles/result)

17

19

Figure 11.9: Average Area Ratios versus Contexts and Throughput

Aver age Ratio at 2 clocks/result throughput

Ratio (%) by Number of Contexts (c)
) 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 ‘ 7 ‘ 8
11 1000 | 1.108 | 1.194 | 1.279 | 1.365 | 1.451 | 1.536 | 1.622
2 0.680 | 0.733 | 0.785 | 0.838 | 0.890 | 0.943 | 0.996
3 0.749 | 0.801 | 0.854 | 0.907 | 0.959 | 1.012
4 0.827 | 0.880 | 0.933 | 0.986 | 1.039
5 0.897 | 0.951 | 1.004 | 1.057
6 0.960 | 1.013 | 1.066
7 1.036 | 1.089
8 1117

Table 11.5: Average Ratios for Benchmark Set

226

c=1,i=1
c=2,i=2
c=3,i=3
c=4,i=4
c=5,i=4
c=6,i=5
c=7,i=5
c=8,i=6

Aver age Ratio at 3 clocks/result throughput

Ratio (%) by Number of Contexts (c)

1‘ 2‘ 3‘ 4‘ 5‘ 6‘ 7‘ 8

00 ~NO Ul WN =

1.000 | 1.054 | 1.129 | 1.211 | 1.292 | 1.373 | 1.454 | 1.535
0.695 | 0.690 | 0.739 | 0.789 | 0.838 | 0.888 | 0.937
0.538 | 0.576 | 0.613 | 0.651 | 0.689 | 0.727
0.597 | 0.635 | 0.674 | 0.712 | 0.750
0.648 | 0.686 | 0.725 | 0.763
0.686 | 0.723 | 0.761
0.751 | 0.789
0.790

Table 11.6: Average Ratios for Benchmark Set

Aver age Ratio at 4 clocks/result throughput

Ratio (%) by Number of Contexts (c)
1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 ‘ 7 ‘ 8

00O ~NO O1Th WN -

1.000 | 1.001 | 0.886 | 0.949 | 1.013 | 1.076 | 1.140 | 1.204
0.680 | 0.530 | 0.560 | 0.598 | 0.635 | 0.673 | 0.710
0.459 | 0481 | 0.513 | 0.544 | 0.576 | 0.607
0.461 | 0.491 | 0.520 | 0.550 | 0.579
0.504 | 0.534 | 0.564 | 0.594
0.529 | 0.558 | 0.587
0.586 | 0.616
0.616

Table 11.7: Average Ratios for Benchmark Set

227

Aver age Ratio at 5 clocks/result throughput

Ratio AiDPGA(i,c)

) by Number of Contexts (c)

AFPpGa
i 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8
1 1.000 | 0.972 | 0.960 | 0.938 | 1.002 | 1.065 | 1.129 | 1.191
2 0.680 | 0.580 | 0.570 | 0.635 | 0.675 | 0.714 | 0.755
3 0.488 | 0.460 | 0.484 | 0.514 | 0.543 | 0.573
4 0.430 | 0.434 | 0.460 | 0.486 | 0.513
5 0.432 | 0.457 | 0.482 | 0.508
6 0.461 | 0.485 | 0.511
7 0.487 | 0.512
8 0.523
Table 11.8: Average Ratios for Benchmark Set
Aver age Ratio at 6 clocks/result throughput
Ratio (%) by Number of Contexts (c)
i 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8
1 1.000 | 0.956 | 0.972 | 0.941 | 0.917 | 0.975 | 1.033 | 1.091
2 0.643 | 0.600 | 0.561 | 0.514 | 0.539 | 0.571 | 0.603
3 0.493 | 0.447 | 0.401 | 0.424 | 0.449 | 0.473
4 0.422 | 0.390 | 0.394 | 0.416 | 0.439
5 0.396 | 0.386 | 0.408 | 0.429
6 0.379 | 0.400 | 0.421
7 0.422 | 0.444
8 0.451

Table 11.9: Average Ratios for Benchmark Set

228

Aver age Ratio at 10 clocks/result throughput

1]

Ratio AiDPGA(i,c)
ArpGa

2]

3

4]

5|

6/

) by Number of Contexts (c)

7

8

00 ~NO Ul WN =

1.000

0.825
0.616

0.844
0.571
0.501

0.862
0.553
0.458
0.446

0.896
0.558
0.445
0.406
0.410

0.928
0.576
0.444
0.397
0.3%4
0.392

0.959
0.565
0.450
0.398
0.398
0.388
0.408

0.993
0.589
0.460
0.413
0.3%4
0.400
0.413
0.416

Table 11.10: Average Ratiosfor Benchmark Set

Aver age Ratio at 20 clocks/result throughput

1

Ratio (%) by Number of Contexts (c)

2]

A
3

4|

5

6

il

00O ~NO O1Th WN -

1.000

0.758
0.581

0.765
0.518
0.448

0.784
0.500
0.425
0.400

0.821
0.510
0.418
0.376
0.380

0.861
0.525
0.419
0.369
0.355
0.364

0.904
0.544
0.427
0.372
0.346
0.356
0.358

0.950
0.566
0.442
0.380
0.349
0.337
0.343
0.355

Table 11.11: Average Ratiosfor Benchmark Set

229

11.44 Areafor Improvement

As noted previously (Sections 10.5.2 and 10.5.3), netlist mapping is oblivious of the final
temporal implementations. The allocation of temporal and spatial pipeline stagesismorerigid than
strictly necessary. As we noted above (Section 11.4.1), retiming LUTSs are inserted in a stylized
fashionwhich isnot likely to be optimal. Compatibility testing is stochastic and may declare many

compatible LUT groupsincompatible. Consequently, tighter packing of LUTs s likely with more
sophisticated mapping tools.

230

11.5 Other Input Retiming Models

Register File LSM, Y SE, and VEGA all usearegister fileto hold dataval ues between production
and consumption like most processors. These machines are also targeted at significantly more
sequentiaization (1K—8K contexts). Consequently, they manage to use only a single port into
the register file. The register file organization has a more general access pattern since any value
can be written to any memory location and read from any location to any output. The generality
avoids packing compatibility restrictions, allowing datato be packed more tightly into memories.
However, the more general access is aso significantly more expense to support; LSM and Y SE
replicate the entire memory bank, storing four copies of every data value, in order to achieve four
read ports. The restriction to a single write port is a simplification which these machines use in
order to make the register file implementation viable.

Time Matching Instead of shifting data through a continually advancing shift register, we can
make each of theinput registerstake its value from the input line and load it at a specified time. In
this scheme, the input registers hold a finite number of values (z), but are not be limited to only the
last « values. Such a scheme would require a unit to match input times, making each input larger
than the iDPGA, but the increased range and packing density relaxes timing constraints on data
arrival which are useful for smplifying the task of physical mapping. Thisisthe scheme used by
TSFPGA and it will be explored more fully in the following chapter.

231

11.6 Summary

Typical tasks require two, different kinds of data transport — spatial transport to move data
from the processing element that generated it to the ones which will consume it and temporal
transport to take data from the time when it is generated to the times when it is consumed. It is
inefficient to tie up expensive, spatial transport resources such as wires and switches, to perform a
temporal transport task. Tasks such as circuit evaluation have sufficient requirements for temporal
transport that input retiming registers are clearly a worthwhile architectural feature to include in
a multicontext device. Implementations with multiple retiming registers are more compact than
implementations with no additional retiming resources.

As with multiple contexts, the extent to which we can save area with deep input registers
depends on the area ratio between the active interconnect and the retiming registers. Here, we
assumed the ratio between active area and instruction area was 10:1 (800K A2:78K \?), as in the
previous chapter. We assumed, the ratio between the active area and context area including both
instruction and retiming was roughly 8:1 (800K A2:104K A?). At these ratios, 4-5 context iDPGA
implementations were, on average, half to one-third the size of the single context alternative.

The best implementation varies with target throughput. At these size ratios, the : = 4,
¢ = 4 case is moderately good across throughput ranges. It is only worse than the single context
implementation at the highest throughput, and is within 20% of the best implementation at the
lowest throughput measured here.

232

11.7 Review

In the development since Chapter 7, we have seen that the area required to implement a
general-purpose computational task is composed of four parts:

1. Active interconnect area

2. Active computational processing element area
3. Task description (instruction storage) area

4. Intermediate value storage for temporal retiming

While traditional FPGA architectures have a one-to-one mapping between these components, this
resource ratio is neither necessary or efficient. We further saw that active interconnect area is, by
far, the largest single component of this area, while task description and value storage areas are
small in comparison.

For a given computational task, we saw that the requirementsfor each of these four parts arise
from different sources. The number of instructions required to describe the task and number of
intermediates held during computation arise from the basic computational task, itself. The size
of the active interconnect and processing are dictated by the task’s target throughput. For the
highest possible throughput, the conventional FPGA strategy of allocating a single instruction to
each piece of active interconnect and processing is an efficient alocation of resources. However,
as throughput requirements drop below this extreme, multicontext implementations compress the
implementation into less space by sharing and reusing a smaller number of active resources. This
sharing increases the ratio of instructions and intermediates to active resources. DPGAS are the
practical implementation of such a sharing scheme, assigning multiple instructions and multiple
intermediate val ues to each active resource.

Note that the amount of compressibility we achieve with DPGAs s critically dependent upon
how small we can make the non-active residue. That is, when we remove active interconnect and
processing elements, we are left with the instruction and the intermediate values. The amount
of area savings we can readlize depends on how much smaller the space to hold instructions and
intermediatesis than the space for the active area necessary to actually process the instruction and
itsdata. It isthiseffect which motivates our interestsin reducing the number of bits used to describe
each instruction (Section 7.8) and in reducing the area required to store those hits (e.g. DRAM
context implementationsin the DPGA prototype — Section 10.4).

It is also worthwhile to note that the style of compression used in the last two chapters (Chap-
ters 10 and 11), makes instructions and data readily accessible and is largely independent of task
structure. While densely encoded instructions need some decoding, each instruction is encoded
separately so that it can be stored locally and used immediately upon being read. If we are willing
to pay additional access latency and work with variable size encodings, block and structure-based
encoding schemes can be used, making it is possible to compress the instruction regquirements
further. Ultimately, the minimum task description area will depend on the descriptive complexity
of the task (See Section 8.4). Exploiting structure, such as, data widths, operation commonality,
and task recurrence requires more general instruction distribution datapaths and more sequential

233

decoding of task instructions. Nonethel ess, variants on these techniques may be valuablein further
compressing instruction and data residues and hence reducing task implementation size.

234

12. Time-Switched Field Programmable Gate Arrays

We established in Chapter 7 that activeinterconnect areaconsumed most of the space on traditional,
single-context FPGAs. In Chapter 10, we saw that adding small, local, context memories allowed
us to reuse active area and achieve smaller task implementations. Even in these multicontext
devices, we saw that interconnect consumed most of the area (Section 10.4.2). In Chapter 11, we
added architectural registers for retiming and saw more clearly the way in which multiple context
evaluation saves area primarily by reducing the need for active interconnect. In this chapter,
we describe the Time-Switched Field Programmable Gate Array (TSFPGA), a multicontext device
designed explicitly around theideaof time-switching theinternal interconnect in order to implement
more effective connectivity with less physical interconnect.

One issue which we have not addressed in the previous sections is the complexity of physical
mapping and, consequently, thetimeit takesto perform said mapping. Because of the computational
complexity, physical mapping time can often be the primary performance bottleneck in the edit-
compile-debug cycle. 1t can aso be the primary obstacle to achieving acceptable mapping time for
large arrays and multi-chip systems.

In particular, when the physical routing network provides limited interconnectivity between
LUTSs, it is necessary to carefully map logical LUTs to physical LUTs in accordance with both
netlist connectivity and interconnect connectivity. The number of wayswe can map a set of |ogical
LUTs to a set of physical LUTs is exponential in the the number of mapped LUTSs, making the
search for an acceptable mapping which simultaneously satisfiesthe netlist connectivity constraints
and the limited physical interconnect constrains—i.e. physical place and route — computationally
difficult. Finding an optimal mapping is generally an NP-complete problem. Conseguently, in
traditional FPGAS, this mapping time can be quite large. It often take hours to place and route
designs with a couple of thousand LUTs. The computational complexity arises from two features
of the mapping problem:

1. Asnotedin Section11.1, traditional FPGAsmust haveenough routing resourcesto physically
route all task connections simultaneously.

2. Since interconnect is the dominant area in FPGAs (Chapter 7), conventional FPGAs try to
use aslittle interconnect as feasible to provide high computational density.

The result is a large set of simultaneous constraints which must be satisfied during mapping,
making the task of physical mapping computationally intensive. TSFPGA virtually eliminatesthe
simultaneous constraint satisfaction required to successfully route a component, making it possible
to rapidly map tasks to the array. Simultaneous constraint satisfaction is still necessary to achieve
the highest performance mappings on TSFPGA, but is not necessary to achieve any mapping. This
gives the device user control over mapping time and quality.

This chapter details a complete TSFPGA design including:

1. Time-switched input register

235

2. Techniques used by TSFPGA to avoid constraints
3. Sampleinterconnect model for time-switched routing
4. Complete gate-array architecture built around:

(a) time-switched input register
(b) switched interconnect
(c) pipelined interconnect

5. Areaand time estimates for TSFPGA building blocks
6. Experimental, quick mapping software
7. Mapped benchmark results using experimental software and a sample design point

TSFPGA was developed jointly by Derrick Chen and André DeHon. Derrick worked out VLSI
implementation and layout issues, while André developed the architecture and mapping tools.

121 Time-Switched Input Registers

As noted in Section 11.1, if all retiming can be done in input registers, only a single wire
is strictly needed to successfully route the task. The simple input register model used for the
previous chapter had limited temporal range and hence did not quite provide this generality. Inthis
section, we introduce an alternative input strategy which extends the temporal range on the inputs
without the linear increase in input retiming size which we saw with the shift-register based input
microarchitecture in the previous chapter.

Thetrick we employ hereisto haveeach logical input oad its valuefrom the activeinterconnect
at just the right time. As we have seen, multicontext evaluation typically involves execution of a
series of microcycles. A subset of the task is evaluated on each microcycle, and only that subset
reguiresactive resourcesin each microcycle. We call each microcycleatimestep and, conceptually
at least, number them from zero up to the total number of microcyclesrequired to compl etethe task.
If we broadcast the current timestep, each input can simply load its value when its programmed
load time matches the current timestep.

Figure 12.1 shows a4-LUT with this input arrangement which we will call the Time-Switched
Input Register. Each LUT input can load any value which appears on its input line in any of the
last 7 cycles. Thetimestep valueis [log,(7)] bits wide, asis the comparator. With this scheme, if
the entire computation completesin : timesteps, all retiming isaccomplished by simply loading the
LUT inputs at the appropriate time —i.e. loading each input just when its source value has been
produced and spatially routed to the destination input. Since the hardware resources required for
this scheme are only logarithmic in the total number of timesteps, it may be reasonable to make :
large enough to support most al desirable computations.

With this input structure, logical LUT evaluation time is now decoupled from input arrival
time. This decoupling was not true in FPGAs, DPGAS, or even iDPGAs. With FPGAs, the LUT
is evaluated only while the inputs are held stable. With DPGAS, the LUT is evaluated only on the
microcycle when the inputs are delivered. With the iDPGA, the LUT must be evaluated on the

236

in0
inl
in2

(9]
LUT Memory = =
Timestep \I\L ‘
Timestep
Memory \
Timeste \ LUT Mux
Comparg Input Register 'y

out

Figure 12.1: 4-LUT with Time-Switched Input Register

correct cycle relative to the arrival of the input, and the range of feasible cycles was limited by .
Further, with the time-switched input register, the inputs are stored, allowing the LUT result to be
produced on any microcycle, or microcycles, following the arrival of thefinal input. Inthe extreme
case of asinglewirefor interconnect, each LUT output would be produced and routed on aseparate
microcycle. Strictly speaking, of course, with a single wire there need be only one physical LUT,
aswell.

This decoupling of the input arrival time and LUT evaluation time allows us to remove the
simultaneous constraints which, when coupled with limited interconnectivity, made traditional
programmable gate array mapping difficult. We areleft with asingle constraint: scheduletheentire
task within 7 timesteps.

12.2 Switched I nterconnect — Folding

Now that we no longer need to involve the physical interconnect in temporal transport, we are
freeto reuse physical interconnect resources at their minimum operating time. Thisreuse allowsus
to employ less physical interconnect than traditional FPGAs, while simultaneously providing more
connectivity.

12.2.1 Subarray Structure

Conceptually, let us consider array interconnect as composed of a series of fully interconnected
subarrays. That is, we arrange groups of LUTs in subarrays, as in the DPGA prototype (See
Section 10.4). Within a subarray, LUTs are fully interconnected with a monolithic crossbar. Also
feeding into and out of this subarray crossbar are connectionsto the other subarrays.

The subarray contains a number of LUTS, N, ryr, where we consider Ny, rpr = 64 as
typical. Connecting into the subarray are N, ;, inputs from outside. Similarly, Ny, ,,: connect
out. Nyo_in, and Ny, s aretypicaly governed by Rent's Rule. With N, rpr = 64, k = 4, and
0.5 < p < 0.7, wemight expect 32 < Ny in = Ngg_our < 74, and consider Ny i = Ngg_out =

237

64 typical and convenient.

Together, this suggests a (Nsq 1T + Nsa_in) X (K X Nso_rur + Nsa_our) Crossbar, which is
128 x 320 for the typical values listed above. This amounts to 640 switches per 4-LUT, which
is about 2-3x the values used in conventional FPGA architectures as we reviewed in Section 7.5.
Conventional architectures, effectively, only populate 30-50% of the switches in such a block
relying on placement freedom to make up for the missing switches. It is, of course, the complexity
of the placement problem in light of this depopulation whichislargely responsiblefor the difficulty
of place and route on conventional architectures.

We also need to interconnect these subarrays. For small arrays it may be possible to simple
interwirethe connections between subarrayswithout substantial, additional switching. Thisislikely
the case for the 100-1000 LUT cases reviewed in Section 7.5. For larger arrays, more, inter-array
switching will be required to provide reasonable connectivity. Aswe derived in Section 7.6, the
interconnect requirements will grow with the array size.

12.2.2 Interconnect Folding

With switched interconnect, we can realize a given level of connectivity without placing all of
the physical switches that such connectivity implies. Rather, with the ability to reuse the switches,
we effect the compl ete connectivity over a series of microcycles.

We can view thisreuse asafolding of theinterconnect intime. For instance, we could map pairs
of LUTs together such that they share input sets. This, coupled with cutting the number of array
outputs (N s, o) in half, will cut thenumber of crossbar outputsin half and hence halvethe subarray
crossbar size. For full connectivity, it may now takes us two microcycles to route the connections,
delivering the inputs to half the LUTs and half the array outputs in each cycle. In this particular
case we have performed output folding by sharing crossbar outputs (See Figure 12.2). Notice that
the time-switched input register allows us to get away with this folding by latching and holding
values on the correct microcycle. The input register also alows the non-local subarray outputs to
be transmitted over two cycles. Inthe most trivial case, the array outputswill be connected directly
to array inputs in some other array and, through the destination array’s crossbar, they will, in turn
be connected to LUT inputswhere they can be latched on the appropriate microcycleasthey arrive.

There is one additional feature worth noting about output folding. When two or more folded
LUTsshareinput values al the LUTs can load the input when it arrives. For heavily output folded
scenarios, these shared inputs can be exploited by appropriate grouping to allow the task to be
routed in less microcyclesthan the total network sharing.

We can aso performinput folding. Withinput folding, we pair LUTsso that they shareasingle
LUT output. Here we cut the number of array inputs (Vs,) in half, aswell. The array crossbar
now requiresonly half as many inputs as before and is, consequently, also half aslarge in this case.
Again, the latched inputs allow us to load each LUT input value only on the microcycle on which
the associated value is actually being routed through the crossbar. For input folding, we must add
an effective pre-crossbar multiplexor so that we can select among the sources which sharea single
crossbar input (See Figure 12.3).

It is also possible to fold together distinct functions. For example, we could perform an input
fold such that the 64 LUT outputs each shared a connection into the crossbar with the 64 array
inputs. Alternately, we could perform an output fold such that LUT inputs shared their connections

238

Figure 12.3: Input Folding

with array outputs.

Finally, note that we can perform input folding and output folding simultaneously (See Fig-
ure 12.4). We can think of the DPGAs introduced in Chapter 10 as folded interconnect where we
folded both the network input and output ¢ times. Each DPGA array element (See Figure 11.2)
shared ¢ logical LUT inputs on one set of physical LUT inputs and shared ¢ logical LUT outputs
onasingle LUT output. Figure 12.5 shows how atwo context DPGA results from a single input
and output fold. Inthe DPGA, we had only ¢ routing contextsfor this ¢? total folding. To get away
with this factor of ¢ reduction in interconnect description, we had to restrict routing to temporally
adjacent contexts. As we saw, in Chapter 10 this sometimes meant we had to allocate LUTs for
through routing when connections were needed between contexts.

Routing on these folded networks naturally proceeds in both space and time. This gives the
networks the familiar time-space-time routing characteristics pioneered in telephone switching
systems.

239

Figure 12.4: Input and Output Folding

=

b

Figure 12.5: Two-Context DPGA as Input and Output Fold

240

12.3 Architecture

In this section, we detail acomplete TSFPGA architecture. The basic TSFPGA building block
is the subarray tile (See Figure 12.6) which contains a collection of LUTs and a central switching
crossbar. LUTs share output connections to the crossbar and input connections from the crossbar
in the folded manner described in the previous section. Communication within the subarray can
occur in one TSFPGA clock cycle. Non-local input and output lines to other subarrays aso share

crossbar 1/O’s to route signals anywhere in the device. Routes over long wires are pipelined to
maintain a high basic clock rate.

Array Element The TSFPGA array element is made up of a number of LUTs which share the
same crossbar outputs and input (See Figure 12.7). The LUT output into the crossbar is selected

based on the routing context programming. Asshown, each array element sharesits crossbar input
with several network inputs.

Timestep Context

< << — i
22 — Interconnect Memory =
‘/ ‘l ‘I ‘/
.
_ U
xin0 ’d
.
. 1 T
Xin £| Crossbar
.
_ U
Xin2 — ’d
.
_ U | |
Xin3] 1 [X0ut0
P - xoutl

L xout2
*—l—.yxout?,

o
(Subarray shown is smaller than typically used in practice in order to
avoid unnecessarily complicating the diagram.)

pipeline >
registers
<
o
c
—+

N0/ < —1 I'I'I—I'I'I-

c1noA

TINOA <

Figure 12.6: TSFPGA Subarray Composition

241

From Crossbar Outputs

in0
inl
in2
in3

LUT Memory :

Timestep —*%

Input Register

Timestep
Memory

Timestep
Compare

Network Inputs

to Subarray LUT Mux
Crosshar —x Output Mux
Input Select
out

To Crossbar Input

Figure 12.7: TSFPGA Array Element Composition

The LUT input values are stored in time-switched input registers. The inputs to the array
element are run to all LUT input registers. When the current timestep matches the programmed
load time, the input register is enabled to load the value on the array-element input. When multiple
LUTsin an array element take the same signal as input, they may be loaded simultaneously.

Unlikethe DPGA architecturesdetailedin Chapters10and 11, theLUT multiplexor isreplicated
for each logical LUT. As we saw in Section 10.4.2, the LUT mux is only a tiny portion of the
areain an array. Replicating it along with context memory avoids the need for final LUT input
multiplexors which would otherwise be in the critical path. When considering both the additional
input multiplexors and the requirements for selecting among the LUT programming memory, the
benefit of resource sharing at this level have been minimal in most of the implementationswe have
examined.

242

Crossbar The primary switching element is the subarray crossbar. As shown in Figures 12.6
and 12.7, each crossbar input is selected from a collection of subarray network inputs and subarray
LUT outputs via by a pre-crossbhar multiplexor. Subarray inputs are registered prior to the pre-
crossbar multiplexor and outputs are registered immediately after the crossbar, either on the LUT
inputs or beforetraversing network wires. This pipelining makesthe LUT evaluationsand crossbar
traversal a single pipeline stage. Each registered, crossbar output is routed in several directionsto
provide connectionsto other subarrays or chip 1/0.

Inter-subarray wiretraversals areisolated into a separate pipeline stage between crossbars. As
we saw both in Section 7.1.3 and the DPGA prototype implementation (Section 10.4.2), wire and
switch traversals are responsible for most of the delay in programmable gate arrays. By pipelining
routes at the subarray level, we can achieve a smaller microcycletime and effectively extract higher
capacity from our interconnect.

Notice that the network in TSFPGA is folded such that the single subarray crossbar performs
all major switching roles:

1. output crossbar — routing data from LUT outputs to destinations or intermediate switching
crossbars

2. routing crossbar — routing data through the network between source and destination subarrays

3. input crosshar — receiving data from the network and routing it to the appropriate destination

LUT input
This sharing avoids dedicating specialized routing resources to any single function so that the
available resources can be deployed as needed by the task. Connections on TSFPGA are statically
routed in adistributed, multistage switching fashion.

Intra-Subarray Switching Communication within the subarray is simple and takes one clock
cycle per LUT evaluation and interconnect. Once a LUT has all of its inputs loaded, the LUT
output can be selected as an input to the crossbar, and the LUT’s consumers within the subarray
may be selected as crossbar outputs. At the end of the cycle, the LUT’s value is loaded into the
consumers' input registers, making the value available for use on the next cycle.

Inter-Subarray Switching Figure 12.8 shows the way a subarray may be connected to other
subarrays on a component. A number of subarray outputs are run to each subarray in the same
row and column. For large designs, hierarchical connections may be used to keep the bandwidth
between subarrays reasonable for while maintaining a limited crossbar size and allowing distant
connections. The hierarchical connections can givethelogical effect of athree or four dimensional
network.
Routing data within the same row or column involves:
1. Route LUT output through crossbar to the outputs headed for the destination subarray.
2. Traverse the wire between subarrays.
3. Select network input with source value as a crossbar source and route through the crossbar to
the destination LUT input.
When data needs to traverse both row and column:
1. Route LUT output to first dimension destination (row, column).
2. Traversefirst dimension interconnect.

243

Figure 12.8: Sample Inter-Subarray Network Connections

3. Switch output in second dimension (column, row).

4. Traverse second dimension interconnect.

5. Switchto LUT input and load.

Pipelining places each of these operationsin a different clock cycle. Long wire connections may
merit multiple clock cycles for wire traversal — this is likely to be true for long, hierarchical
connections. Short wires, particularly the nearest neighbor connections, may not always merit a
separate pipeline stage for wire traversal.

I/0 Connections 1/O connections are treated like hierarchical network lines and are routed into
and out of the subarraysin a similar manner. Each input has an associated subarray through which
it may enter the switched network. Similarly, each output is associated with the crossbar output
of some subarray. Device outputs are composed of time-switched input registers and load values
from the network at designated timesteps like LUT inputs. Alternately, an output may look like
inter-subarray pipeline register for routing in multichip systems.

Array Control Two “instruction” values are used to control the operation of each subarray on
aper clock cycle basis, timestep and routing context (shown in Figure 12.6). The routing context
serves as an instruction pointer into the subarray’s routing memory. It selects the configuration
of the crosshar and pre-crossbar multiplexors on each cycle. timestep denotes time events and

244

k Number of LUT inputs
P Maximum retiming depth
Ngo_pur LUTsin subarray
Ngqn Externa inputsto subarray
Ny, out External outputsto subarray
Nypar_in Subarray crossbar inputs
Nibar_our Subarray crossbar outputs
cr Number of routing contexts

Table 12.1: TSFPGA Subarray Parameters

indicates when values should be |oaded from shared lines.

Thesetwo valuesaredistinct in order to alow designswhich take moremicrocyclesto complete
than they actually require contexts. The evaluation of a function will take a certain number of
TSFPGA clock cycles. This time is dictated by the routed delay. For designs with large serial
paths, long critical paths, or poor locality of communications, the routed delay may be large without
consuming al the routing resources. For this reason, it is worthwhile to segregate the notion of
timestep from the notion of routing contexts. Each routing interconnect pattern, or context, may
be invoked multiple times at different timesteps during an evaluation. This allows us to have a
small number of routing contexts even when the design topology necessitates a large number of
timesteps.

Asatrivial example, consider the case of an unfolded subarray. With full subarray interconnect
there may be enough physical interconnect in asingle context to actually route the completedesign.
However, since the design has acritical path composed of multiple LUT delays, it will take multiple
microcycles to evaluate. In this case, it is hot necessary to allocate separate routing contexts for
each timestep aslong as we segregate these two specifications into separate entities.

12.4 Architecture Parameters

The subarray composition effectively determines the makeup of a TSFPGA component. Ta-
ble 12.1 summarizesthe base parameters characterizing a TSFPGA subarray implementation. From
these, we can calculate resource size and sharing:

Nso in + N
]Vp’l’e_xba'r_in — sa_in sa_LUT (121)
L¥zbar_an

Evsa_out + k - A/Vsa_LUT (12 2)

IVsha're_xba'r_out 7
¥ zbar _out

N - E\'sza/r_in ' lvxba'r_out *Nsa_in + lvsa_LUT 123
New/Lur = N + N (12.3)
sa LUT sa LUT

crossbar pre-crossbar mux

Assuming we need to route through one intermediate subarray, on average, the number of

245

routing contexts, ¢,., needed for full connectivity is:

¢ < pre_zbar _in * *Nshare_z’bar_out (124)

That is, we need one context to drive each crossbar source for each crossbar sink. When we have
the same number of contexts aswe have total network sharing, we can guarantee to route anything.
Relation 12.4 assumes that N, ;, and Ny, ..; are chosen reasonably large to support traffic to,
from, and through the array. If not, the sharing of inter-subarray network lines will dominate strict
crossbar sharing, and should be used instead.

In practice, we can generally get away with less contexts than implied by Relation 12.4 by
selectively routing outputs and inputs as needed. When LUT inputs sharing a crossbar output
also share input values or when the mapped design requires limited connectivity, less switching is
needed, and the routing tasks can be completed with fewer contexts. The freedom to specify which
output drives each crossbar input on a given cycle, as provided by the TSFPGA subarray, is not
strictly necessary. We could have arunning counter which enables each sourcein turn. However,
with a fixed counter it would always take Ny, r1q4-_in Cyclesto pull out any particular source,
despite the fact that only a few are typically needed at any time. The effect is particularly acute
when we think about levelized evaluation where we may be able to simultaneously route all the
LUTs whose results are currently ready and needed in a single cycle. For this reason, TSFPGA
provides independent control over the pre-crossbar input mux.

In total, the number of routing bits per LUT, then, is:

lo N. re_rbar _in) ° IVx ar_in lo le ar_an) * ij ar_ou
gz< p bar) bar _ + gZ(bar) b 14 (125)
Nso_ur

jV'route_bits/LUT =Cr- (

Additionally, each LUT hasits own programmable function and matching inputs:

Niitsyror = Niogicbits/LuT + Nir bits/LUT + Nyoute bits/LUT (12.6)
Niogic bitsjur = 2F (12.7)
Ny sitsyrur = k- [10g, (2)] (12.8)

246

125 TSFPGA Implementation Estimates

125.1 Area

The time-switched input register is the most novel building block in the TSFPGA design. A
prototype layout by Derrick Chen was:

Time-Switched Input register with comparators (i = 256) 32K \?
LUT multiplexor with SRAM function memory 32K \?
Complete base LUT (Apqse) 160K \2

Note that A,,. contains the LUT multiplexor, LUT function memory, al & = 4 input registers,
their associated comparators, and the comparator programming.
The amortized areaper LUT thenis:

Apur = Apase + Now/rut + Asw + Nroute bits/LUT * Amem _cell (12.9)

Using the Ny, 1o = Nsain = Nsa_our = 64 Subarray as a reference, a version with no
folding has, N,,yze bits/Lur = 35, Nyyrur = 640, making Aryr = 1800KA2, which is about
2-3x thesizeof typical 4-LUTs. But, aswe noted above, unfolded, we have 2-3x asmany switches
asaconventional FPGA implementation. Also, unfolded, the expensive, matching input register is
not needed.

If we fold the input and output each once, Ny per in = 64, Nipar 0wz = 160, the number
of switches dropsto N,/ .y = 162. With four routing contexts (¢, = 4), routing bits rise to
Nyoute bitsjur = 64. Thetotal areais Ay ~ 640K A2, which iscomparablein sizewith modern
FPGA implementations, while providing 2-3x the total connectivity.

FocusDesign Point For the sake of evaluation, we settled on asingle, highly folded, design point
for closeinspection. From our experience with the DPGA and other VL SI efforts, we choseto usea
16 x 16 crosshar asthe baseinterconnect (N zpar in = Nebar_our = 16), balancing the desireto keep
the crossbar compact and fast with the desire to perform as high radix switching as feasible. Per
LUT switches dropsto almost atrivial level, Ny, 7 = 6. With 64 routing contexts, switching
bits rises t0 N, ,yse pits/rvr = 112. Along with the 16 bits for LUT function programming,
and 32 bits for input match programming, this brings the total number of programming bits per
LUT up to 160, which is comparable to conventional FPGAS (See Table 7.2). The LUT areais
Arpr =~ 310K A2, or about half the size of aconventional FPGA 4-LUT.

At this size, each TSFPGA 4-LUT is effectively larger than the logical 4-LUT area in the
iDPGAs of the previous chapter. The added complexity and range (: = 256) of the time-switched
input registersislargely responsiblefor thegreater size. Thetime-switched input register features, in
turn, arewhat allow us map designswithout satisfying alarge number of simultaneously constraints.

125.2 Timing

Within the subarray, the critical path for the operating cycle of this design point contains:
1. clock to Q delay on the context address

247

2. Context memory read from 64-word deep memory
3. 8:1 pre-crossbar input mux
4. 16x 16 crossbar traversal

5. setup time for the crossbar output flip-flops
For higher performance, the context read could be placed in its own pipeline stage. As noted, wire

traversal already operate as a separate pipeline stage of its own. When wire delays begin to exceed
theintra-subarray cycle delay, we can add additional pipeliningtowiretraversal. From simulations,
it looksfeasibleto runwith a200 MHz microcycle. Thisisroughly twice the microcyclefrequency
for the DPGA design. The speedup here comes primarily from separating intra-subarray routing

and inter-subarray routing into separate pipeline stages.

248

12.6 TSFPGA Fast Circuit Mapping

Traditional logic and state-element netlists can be mapped to TSFPGA for levelized logic
evaluation similar to the DPGA mapping in the previous two chapters. Using this model, only the
final place-and-route operation must be specialized to handle TSFPGA's time-switched operation.
Of course, front-end netlist mapping which takes the TSFPGA architecture into account may be
ableto better exploit the architecture, producing higher performance designs.

t spr, our first-pass place-and-route tool for TSFPGA, performs placement by min-cut parti-
tioning and routing by a greedy, list-scheduling heuristic. Both techniques are employed for their
simplicity and mapping-time efficiency rather than their quality or optimality. The availability of
adequate switching resource, expandable by alocating more configuration contexts, allows us to
obtai n reasonabl e performance with these simple mapping heuristics. For the most part, the penalty
for poor quality placement and routing in TSFPGA is a slower design, not an unroutable design.

Timestepsand Contexts Itisagainworth noting that the number of timestepsand routing contexts
are dictated by different properties of the mapped network.

Thetopology of the circuit will determinethe critical path length, or the number of logical LUT
delays between the inputs and outputs of the circuit. Thiscritical path length is onelower bound on
the number of timesteps required to evaluate acircuit. However, once placed onto subarrays, there
is another, potentially longer, bound, the distance delay through the network. The distance delay
isthe length of the longest path through the circuit including the cycles required for inter-subarray
routing. If all the LUTs directly along every critical path can be mapped to a single subarray, it is
possible that the distance delay isequal to the critical path length. However, in general, the placed
critical path crossessubarraysresultingin alonger distance delay. The quality of the distance delay
is determined entirely during the placement phase.

The actual routed delay is generally larger than the distance delay because of contention. That
is, if the architecture does not provide enough physical resourcesto route al the connectionsin the
placed critical path simultaneously, or the if the greedy routing algorithms all ocates those resources
suboptimally, signals may take additional microcyclesto actually be routed.

Placement Partitioning is based on the Fiduccia-Mattheyses min-cut heuristic [FM82]. Netlists
are recursively partitioned along TSFPGA dimension boundaries. That is, for a simple, two-
dimensional network topology, as shown in Figure 12.8, the designisfirst partitioned for columns,
then columns are partitioned into subarrays. For larger networks, top-level row and column
partitioning would precede low-level row and column partitioning. The Fiduccia-Mattheyses
heuristic aims to minimize the size of the cut net, but does not, directly, minimize the effect of
cuts on circuit delay. As a consequence partitioning is useful in reducing the routing congestion
contribution to routed delay, but does not explicitly try to minimize the distance delay.

For the fastest mapping times, no sophisticated placement is done. Circuit netlists are packed
directly into subarrays as they are parsed from the netlists. Such oblivious placement may create
unnecessarily long paths by separating logically adjacent LUTs and may create unnecessary con-
gestion by not grouping tightly connected subgraphs. However, with enough routing contexts the
TSFPGA architecture allows us to succeed at routing with such poor placement.

249

Routing Routingisdirectedby thecircuit netlist topology using agreedy, list-scheduling heuristic.
At the start, aready list isinitialized with all inputs and flip-flop outputs. Routing proceeds by
picking the output in the ready list which isfarthest from the end set of primary outputs and flip-flop
inputs. Routing asignal implies reserving switch capacity in each context and timestep involved in
theroute. If aroute cannot be made starting at the current evaluation time, the starting timestep for
therouteisincremented and the route search isrepeated. Currently, only minimum distance routes
are considered. Assuming adequate context memory, every route will eventual succeed. Once a
route succeeds, any LUT outputs which are then ready for routing are added to the ready list. In
this manner, the routing algorithm works through the design netlist from inputs to outputs, placing
and routing each LUT asit is encountered.

Modulo Context Routing The total number of contextsis dictated by the amount of contention
for shared resources. Since some timesteps may route only a few connections, a routing context
may be used at multiple timesteps. In the simplest case, switches in arouting context not used
during one timestep may be all ocated and used during another. 1n more complicated cases, aswitch
allocated in one context can be reused with the same setting in another routing context. Thisis
particularly useful for the inter-subarray routing of patterns, but may be computationally difficult
to exploit.

Our experimental mapping software can share contexts among routing timesteps by modulo
context assignment. That is context » mod maz _ctz is used to route on timestep n. As we will
seein the next section, this generally allows us to reduce the number of required contexts. Further
context reduction is possible when we are willing to increase the number of timesteps required for
evaluation. More sophisticated sharing schemes arelikely to be capable of producing better results.

250

Netlist Size Target Array Quick Map Performance Map || Best

Design LUTs 10s | Tiles LUTs 10s || Time Delays Time Delays Map
(SA) (sec) LUT Dist Rte (sec) Dist Rte| Rte

5xpl 46 17| 2x1 128 32| 005 11 14 19 067 14 19 18
9sym 123 10| 2x1 128 32| 0.18 8 15 29 402 15 25 23
9symml 108 10| 2x1 128 32| 0.15 9 17 27 948 13 24 21
C499 8 73| 3x2 384 9| 015 11 22 34 306 23 33 25
C880 176 86| 3x2 384 96| 034 22 44 48 967 31 36 32
au2 169 16| 2x2 256 64| 028 20 43 45| 10.00 43 47 34
apex6 248 234 || 4x4 1024 256 069 10 27 37| 3406 19 23 23
apex7 77 86| 3x2 384 96| 0.16 8 19 24 315 16 19 19
b9 46 62| 2x2 256 64| 0.08 8 15 21 074 12 14 14
clip 121 14| 2x1 128 32| 019 10 23 29 508 18 26 23
cordic 367 25| 3x2 384 96| 098 14 47 60| 2659 40 43 39
count 46 51| 2x2 256 64| 010 17 26 27 122 24 25 21
des 1267 501 | 6x6 2304 576 | 630 14 51 66| 62640 37 43 35
e64 230 130 || 3x3 576 144 063 10 29 40| 1890 32 33 26
f51m 45 16| 2x1 128 32| 007 18 21 22 005 21 22 22
misex1 20 15| 1x1 64 16| 0.03 7 10 16 0.02 10 13 13
misex2 38 43| 2x2 256 64| 0.07 9 15 18 095 15 16 15
rd73 105 10| 2x1 128 32| 014 11 18 27 435 14 22 21
rdg4 150 12| 2x2 256 64| 024 10 30 35 488 26 30 24
rot 203 242 || 4x4 1024 256 || 076 17 44 45| 2114 28 31 31
san2 73 14| 2x1 128 32| 011 10 14 22 179 13 20 18
vg2 60 33| 2x2 256 64| 011 10 17 23 107 14 19 19
z4ml 8 11| 1x1 64 16| 0.03 8 11 12 002 11 12 12

Run times given are in seconds on a SparcStation 20 Model 71 (rated at 125 SPECint92).

Table 12.2: TSFPGA Mappings for MCNC Circuit Benchmarks

12.7 Circuit Mapping

In this section we show the results of mapping the same MCNC benchmark circuit suite used
for the DPGA in the previous two chapters to TSFPGA. These benchmarks are mapped viewing
TSFPGA simply as an FPGA with time-switched interconnect, ignoring the way one might tailor
tasksto take full advantage of the architecture.

Table 12.2 shows the results of mapping the benchmark circuits to TSFPGA. The same area
mapped circuits from si s and Chort | e used in Sections 10.5.3 and 11.4 were used for this
mapping. Each design was mapped to the smallest rectangular collection of subarray tiles which
supported both the design’s 1/0 and LUT requirements. Quick mapping does oblivious placement
while the performance mapping takestimeto do partitioning. Both the quick and performance map

251

Target Ratios || Quick Map || PerformanceMap || Best

Design || LUTs 10s | Delay Ratios Delay Ratios Route

% used Dist Route || Dist Route || Ratio
5xpl 036 053] 1.27 1.73 | 1.27 1.73 164
9sym 09 0311 188 3.62 || 1.88 3.12 2.88
9symml 084 0311 189 3.00 || 1.44 2.67 2.33
C499 022 0.76 || 2.00 3.09 || 2.09 3.00 2.27
C880 046 0.90 || 2.00 218 || 1.41 164 1.45
alu2 066 0.25] 215 225 || 215 2.35 1.70
apex6 024 091 270 3.70 || 1.90 2.30 2.30
apex7 020 0.90 || 2.38 3.00 || 2.00 2.38 2.38
b9 018 097 | 188 2.62 || 1.50 1.75 1.75
clip 095 044 230 2.90 || 1.80 2.60 2.30
cordic 09 0261 336 429 2.86 3.07 2.79
count 018 0.80 | 153 159 | 141 1.47 124
des 055 087364 471| 264 3.07 2.50
€64 040 0901290 4.00| 3.20 3.30 2.60
f51m 035 050 | 117 122 | 117 122 122
misex1 031 094 143 229 || 143 1.86 1.86
misex2 015 0.67 | 167 2.00 || 1.67 1.78 1.67
rd73 082 031} 164 245 || 1.27 2.00 191
rds4 059 0.19 | 3.00 3.50 || 2.60 3.00 2.40
rot 029 0.95 | 259 2.65 || 1.65 1.82 1.82
sa02 057 044 140 2.20 || 1.30 2.00 1.80
vg2 023 052 1.70 2.30 || 1.40 1.90 1.90
z4ml 012 0.69 | 1.38 150 | 1.38 1.50 1.50

\ Average \ 046 0.62 H 2.08 2.73 H 1.80 2.24 H 2.01 \

. Dist,Route} Del
AIIdeIayratlosare{ CUT Del}ay &y

Table 12.3: TSFPGA Mappings for MCNC Circuit Benchmarks (Rati0s)

use the same, greedy routing algorithm. As noted in Section 12.6, fairly simple placement and
routing techniquesare employed, so higher quality routing resultsarelikely with more sophisticated
algorithms. Quick mapping can route designsin the order of seconds, while performance mapping
runs in minutes. The experimental mapping software implementation has not been optimized for
performance, so the times shown here are, at best, aloose upper bound on the potential mapping
time. The “Best map” resultsin Table 12.2 summarize the best results seen over severa runs of the
“performance” map.

Table 12.3 shows usage and timeratios derived from Table 12.2. All of the mapped delay ratios
are normalized to the number of LUT delays in the critical path. We see that the quick mapped

252

Design Min Delay Min Contexts

delay | #ctx | Actx | A% || delay | #ctx | Actx | A%
5xpl 19 15 41021 28 12 71037
9sym 25 21 41 0.16 38 17 8| 0.32
9symml 24 20 4017 41 19 51021
C499 33 19 14 | 0.42 48 16 17 | 0.52
C880 36 29 71 0.19 54 19 17 | 0.47
au2 47 43 4| 0.09 107 28 19 | 0.40
apex6 23 19 4017 34 16 71 0.30
apex7 19 14 51 0.26 25 11 8| 042
b9 14 10 41 0.29 18 8 6| 043
clip 26 22 4 0.15 42 19 71027
cordic 43 39 4| 0.09 106 34 9021
count 25 21 41 0.16 31 14 11 | 0.44
des 43 39 4| 0.09 67 35 8| 0.19
€64 33 30 3| 0.09 58 28 510.15
f51m 22 18 40.18 40 13 9041
misex1 13 10 31023 16 8 51 0.38
misex2 16 12 41025 20 9 71044
rd73 22 17 51023 32 14 8| 0.36
rds4 30 26 4 0.13 52 25 51017
rot 31 27 4 0.13 48 21 10 | 0.32
sa02 20 16 410.20 33 15 51025
vg2 19 15 41021 29 14 51 0.26
z4ml 12 4 8| 0.67 16 3 91075

Table 12.4: Modulo Context Sharing for MCNC Benchmarks

delays are almost 3x the critical path LUT delay, while the performance mapped delays are closer
to 2x. Aswe noted in Section 12.5.2, the basic microcycle on TSFPGA is half that on the DPGA,
suggesting that the performance mapped designs achieve roughly the same average latency asfull,
levelized evaluation on the DPGA. We can see from the distance delay averages that placement
dictated delay isresponsiblefor alarger percentage of the difference between critical path delay and
routed delay. However, since the routed delay is larger than the distance delay, network resource
contention and suboptimal routing are partially responsiblefor the overall routed delay time.

Context Compression As noted in Section 12.6 we can use modulo context assignment to pack
designsinto fewer routing contexts at the cost of potentially increasing the delay. Table 12.4 shows
the number of contexts into which each of the designs in Table 12.2 can be packed both with
and without expanding their delay. Figure 12.9 shows how routed delay of several benchmarks
increases as the designs are packed into fewer routing contexts.

253

C499
au2

count
C880

=

=

Q
I

Time Steps
8 8
I

| | | |
10 20 30 40 50
Number of Contexts

Figure 12.9: Sample Delay Increases with Context Packing

254

12.8 Related Work

Dharma [BCK93] time-switched two monolithic crossbars. It made the same basic reduction
asthe DPGA —that is, rather than having to simultaneously route all connectionsin the task, one
only needed to route all connections on a single logical evaluation level. To make mapping fast,
Dharma used a single monolithic crossbar. For arrays of decent size, the full crossbar connecting
al LUTs at asingle level can still be prohibitively large. Further, Dharma had arigid assignment
of LUT evaluation and hence routing resourcesto levels. Aswe seein TSFPGA, it isnot always
worth dedicating al of one's routing resources, an entire routing context, to a single evaluation
timestep. Dharma deals with retiming using a separate flow-through crossbar. While the flow
through retiming buffers are cheaper than full LUTSs, they still consume active routing area which
is expensive. As noted in Chapter 11, it is more area efficient to perform retiming, or temporal
transport, in registers than to consume active interconnect.

VEGA [JL95], noted in Sections 10.2 and 11.5, uses a 1024 deep context memory, essentially
eliminating the spatial switching network, and uses a register file to retime intermediate data.
The VEGA architecture allows similar partitioning and greedy routing heuristics to be used for
mapping. However, the heavy multicontexting and trivial network in VEGA meansthat it achieves
its simplified mapping only at the cost of a 1024x reduction in active peak capacity and 100x
penalty in typical throughput and latency over traditional FPGA architectures.

PLASMA [ACC*96] was built for fast mapping of logic in reconfigurable computing tasks.
It uses a hierarchical series of heavily populated crossbars for routing on chip. The existence of
rich, hierarchical routing makes simple partitioning adequate to satisfy interconnect constraints.
The heavily populated crossbars make the routing task smple. The basic logic primitive in
PLASMA isthe PALE, which isroughly a 2-output 6-LUT. The PLASMA IC packs 256 PALEs
into 16.2mmx 16.2mm in a 0.8 CMOS process, or roughly 1.6GA%. This comes to 6.4M\?
per PALE. If we generously assume each PALE is equivalent to 8 4-LUTs, the area per 4-LUT
is 800K \2, which is commensurate with conventional FPGA implementations, or about 2-2.5x
the size for the TSFPGA design point described above. In practice, the TSFPGA LUT density
will be even greater since it is not always the case that 8 4-LUTs can be packed into each PALE.
PLASMA'ssizeisadirect result of thefact that it buildsall of itsrich interconnect asactive switches
and wires. Routingisnot pipelined on PLASMA, and critical paths often cross chip boundaries. As
aresult, typical PLASMA designs run with high latency and a moderately slow system clock rate
(1-2 MHz). This suggests a time-switched device with a smaller amount of physical interconnect,
such as TSFPGA, could provide the same level of mapping speed and mapped performance in
substantialy less area.

Virtual Wires [BTA93] employs time-multiplexing to extract higher capacity out of the 1/0
and inter-chip network connections only. Virtual Wires folds the FPGA and switching resources
together, using FPGAsfor inter-FPGA switching aswell aslogic. Since Virtual Wiresisprimarily a
technique used on top of conventional FPGAS, it does accel erate the task of routing each individual
FPGA or provide any greater use of on-chip active switching area.

Li and Cheng's Dynamic FPID [LC95] is a time-switched Field-Programmable Interconnect
Device (FPID) for use in partial-crossbar interconnection of FPGAs. Similarly, they increase
switching capacity, and hence routability and switch density, by dynamically switching a dedicated
FPID.

255

UCSB researchers [cLCWMS96] consider adding a second routing context to a conventional
FPGA routing architecture. Using a similar circuit benchmark suite, they find that the second
context reduces wire and switching requirements by 30%. Since they otherwise use a conventional
FPGA architecture, there is no reduction in mapping complexity for their architecture.

12.9 Conclusions

We have developed a new, programmable gate-array architecture model based around time-
switching a modest amount of physical interconnect. The model defines a family of arrays with
varying amounts of active interconnect. The key, enabling feature in TSFPGA is an input register
which performs a wide range of signal retiming, freeing the active interconnect from performing
data retiming or conveying data at rigidly defined times. Coupling the flexible retiming with
reusable interconnect, we remove most of the constraints which make the place and route task
difficult on conventional FPGA architectures. Consequently, even large designs can be mapped
onto a TSFPGA array in seconds. More sophisticated mapping can be used, at the cost of longer
mapping times, to achieve the lowest delay and best resource utilization. We demonstrated the
viability of thisfast mapping scheme by devel oping experimental mapping softwarefor one design
point and mapping traditional benchmark circuits onto these arrays. At the heavily time-switched
design point which we explored in detail, the basic LUT size is half that of a conventional FPGA
LUT while mapped design latency is comparableto the latency on fully levelized DPGASs.

12.10 Open Issues

At this point, we have left anumber of interesting issues associated with TSFPGA unanswered.

¢ Performance using traditional place and route strategies — The fast mapping which we used
above employs fast heuristics which are purposely limited to linear mapping complexity.
Traditional mapping software uses different techniques, such as simulated annealing, which
will consider simultaneous constraints to minimize resource usage and routed path length. It
will be worthwhile to understand how well tasks can be mapped to members of the TSFPGA
architecturewhen wearewillingto take thetimeto perform aquality mapping job. 1nnormal
usage, one might use the fast mapping during design development and debug, then use the
slower, higher quality mapping once a design becomes stable.

¢ Explore defined architectural space — We have focussed on a single point in the defined
architectural space. It will be worthwhile to map tasks across various architectural pointsto
determine the level of connectivity required to meet typical throughput and latency require-
ments, and to determine the most area efficient implementation points.

¢ Multichip extension — The specifics explored here focus on single-chip implementations, but
there is a natural extension to multiple chip systems. The dimensional routing organization
used on-chip should extend between chips when an array of TSFPGA components is em-
ployed. Partitioning, placement, and routing amongst components will be very similar to
partitioning, placement, and routing amongst the subarrays on asingle TSFPGA component.
The boundary i/o will provide amore severe bottleneck between subarrays on distinct chips,

256

requiring heavier time-multiplexing. Inter-TSFPGA routeswill require more pipeline stages
than inter-subarray routes.

257

13. MATRIX

Throughout this work, we have seen the central role which instructions play in general-purpose
computing architectures. In Section 8.6, we saw a large architectural space characterized by the
number of distinct control streams, datapath granularities, and instruction depth. In Chapters 4,
8, and 9, we reviewed this rich architectural space for general-purpose computing devices. We
saw that the choices made in these parameters are what distinguish conventional general-purpose
architectures, and we saw that it is these choicesthat define the circumstances under which agiven
general-purpose architecture is most efficient. In Section 9.5, we saw that even limiting ourselves
to datapath granularity and instruction depth, it is not possible to select a single pair of these
parameters which yielded a robust architecture — that is, there is no single selection point whose
arearequirement will be above abounded fraction of the optimal selection of these two parameters
for any task.

Every conventional general-purpose architecture reviewed in Chapter 4 and summarized in
Table 8.1 takes astand on instruction resources by selecting:

1. control stream to instruction ratio
2. local instruction depth
3. instruction to datapath element ratio

These selections are made and fixed at fabrication time and characterize the device for its entire
lifetime. Unfortunately, most real computations are neither purely regular nor irregular, and real
computations do not work on data elements of a single data size. Typical computing tasks spend
most of their timein avery small portion of the code. 1nthe kernel where most of the computational
time is spent, the same computation is heavily repeated making it very regular such that a shallow
instructionstoreisappropriate. Therest of the codeisused infrequently makingit irregular such that
it is suited to a deep instruction store. Further, in systems, a general -purpose computational device
is typically called upon to run many applications with differing requirements for datapath size,
regularity, and control streams. This broad range of application requirements makes it difficult, if
not impossible, to achieve robust and efficient performance across entire applications or application
sets by selecting asinglecomputational devicewhich hasarigidly selected instruction organization.

In this chapter, we introduce MATRI X, anovel, genera -purpose computing architecture which
does not take a pre-fabrication stand on the assignment of space, distribution, and control for
instructions. Rather, MATRIX allows the user or application to determine the actual organiza-
tion and deployment of resources as needed. Post-fabrication the user can allocate instruction
stores, instruction distribution, control elements, datapaths, data stores, dedicated and fixed data
interconnect, and the interaction between datastreams and instruction streams.

We introduce MATRIX and the concepts behind it. We ground the abstract concepts behind the
MATRIX architecture with:

258

a concrete microarchitecture

an illustrative application example
¢ model estimates and prototype implementation highlights
¢ architecture efficiencies for sample image processing tasks

MATRIX was developed jointly by Ethan Mirsky and André DeHon. André oversaw the architec-
ture and guided the architectural definition, while Ethan defined the detailed microarchitecture and
developedthe VLS| implementation. MATRIX wasfirst described publicly in[MD96] and portions
of this chapter are taken from that description. Ethan details the MATRIX microarchitecturein his
thesis[Mir96].

259

13.1 MATRIX Concepts

MATRIX is designed to maintain flexibility in instruction control. Primary instruction distri-
bution paths are not defined at fabrication time. Instruction memories are not dedicated to datapath
elements. Datapath widths are not fully predetermined. MATRIX neither binds control elements
to datapaths nor predetermines elements that can only serve as control elements.

To providethis level of flexibility, MATRIX is based on a uniform array of primitive e ements
and interconnect which can serveinstruction, control, and datafunctions. A singlenetwork isshared
by both instruction and data distribution. A single integrated memory and computing element can
serveas an instruction store, data store, datapath element, or control element. MATRIX’s primitive
resources are, therefore, deployable, in that the primitives may be deployed on a per-application
basis to serve the role of instruction distribution, instruction control, and datapath elements as
appropriate to the application. This allows tasks to have just as much regularity, dynamic control,
or dedicated datapaths as needed. Datapaths can be composed efficiently from primitives since
instructions are not prededicated to datapath elements, but rather delivered through the uniform
interconnection network.

The key to providing this flexibility is a multilevel configuration scheme which allows the
device to control the way it will deliver configuration information. To first order, MATRIX uses
atwo level configuration scheme. Traditional “instructions’ direct the behavior of datapath and
network elementson acycle-by-cyclebasis. Metaconfigur ation data configuresthe device behavior
at a more primitive level defining the architectural organization for a computation. Metaconfig-
uration data can be used to define the traditional architectural characteristics, such as instruction
distribution paths, control assignment, and datapath width. The metaconfiguration “wiresup” con-
figuration elementswhich do not change from cycle-to-cycleincluding “wiring” instruction sources
for elements whose configuration does change from cycle-to-cycle.

260

Level-2, Level-3
Network

Network
Switch 1 (N1)

Network
Switch 2 (N2)

Level 2,3
Network Drivers

L3 Control
Lines

Floating Floating Pad

Port 1 (FP1

Network Port A
g 1iod 3 JomBN

Incoming
Network Lines —

Incoming
— Network Lines

(L1,L2,L3) - (L1,L2,L3) = <]
Address/ Address/ S 2
A B foL,
Data A DataB s Q
BFU S
Core E’ §
ALU Memory T 3 B
Function —={ Fa Fm =— Function =} o =
1
(Fa) Out N (Fm) < 3

Cary In

Level-1 Network

~~
-
Level 1 T~<_
Network Drivers ~<

Level-1 Network

~
~
~
~
~
~
~
~
~~

~-
~
~
S

Figure 13.1: MATRIX BFU

13.2 MATRIX Architecture Overview

In this section we ground the more abstract concepts of the previous section with a concrete
MATRIX microarchitecture. This concrete microarchitecture will be the focus of the remainder of
the chapter. The concrete microarchitecture is based around an array of identical, 8-bit primitive
datapath elements overlayed with a configurable network. Each datapath element or functional
unit contains a 256 x 8-bit memory, an 8-bit ALU and multiply unit, and reduction control logic
including a 20x 8 NOR plane. The network is hierarchical, supporting three levels of interconnect.
Functional unit port inputs and non-local network lines can be statically configured or dynamically
switched.

13.21 BFU

The Basic Functional Unit (BFU) is shown in Figure 13.1. The BFU contains three major
components:

¢ 2568 memory —the memory can function either as a single 256-byte memory or asadual-
ported, 128 x 8-bit memory in register-file mode. In register-file mode the memory supports
two reads and one write operation on each cycle.

e 8-bit ALU —the ALU supports the standard set of arithmetic and logic functions including
NAND, NOR, XOR, shift, and add. With optional input inversion, this extends to include
OR, AND, XNOR, and subtract. A configurable carry chain between adjacent ALUs allows
cascading of ALUs to perform wide-word operations. The ALU also includes an 8x8
multiply-add-add operation; the multiply operation takes two operating cycles to deliver its

261

. Neighborhood
Neighborhood Comp/Reduce Floating Port | Floating Port 11

: i

~~

Select 4
1 13 8| 4, 8, 8
Comp/Reduce | | | Comp/Reducel | | NOR Plane
(/2PLA)
9 s
BFU Output Control Bit Control Byte

Figure 13.2: BFU Control Logic

results over the 8-bit BFU output, delivering the low 8 bits of the product on the first cycle
and the high 8 bits on the second cycle.

¢ Control Logic—the control logic iscomposed of: (1) alocal pattern matcher for generating
local control from the ALU output (Figure 13.2 Left), (2) areduction network for generating
local control (Figure 13.2 Middle), and (3) a 20-input, 8-output NOR block which can serve
ashalf of aPLA (Figure13.2 Right). Thelocal pattern matcher is used to reduce the datapath
value to a condition bit such as zero detect, positive or negative test, or carry detect. The
control bit produced by the reduction network is used to select among control contextswhich
wedescribed in Section 13.2.4. TheNOR plane allows usto perform programmable, bit-wise
logically functions. Thisisthe primary place where the datapath can be broken down to bits
or composed from bits. Since the NOR plane acts on the bit level, it can be used to permute
the bitsin a byte or perform extract or deposit operations between two bytes.

MATRIX operation is pipelined at the BFU level with a pipeline register at each BFU input
port. A single pipeline stage includes:
1. Memory read
2. ALU operation
3. Memory write and local interconnect traversal — these two operations proceed in parallel
The BFU can servein any of severa roles:
¢ |-store—Instruction memory for controlling ALU, memory, or interconnect functions
¢ Data memory — Read/Write memory for storage and retiming of data
¢ RF+ALU dlice—Bytedice of aregister-fileeALU combination
e ALU function —Independent ALU function
The BFU’s versatility allows each unit to be deployed as part of acomputational datapath or as part
of the memory or control circuitry in adesign.

262

Length Four Bypass Interconnect

Nearest Neighbor Interconnect

Figure 13.3: MATRIX Network

13.2.2 Network

The MATRIX network isahierarchical collection of 8-bit busses. Theinterconnect distribution
resemblestraditional FPGA interconnect. Unlike traditional FPGA interconnect, MATRIX hasthe
option to dynamically switch network connections. The network includes:

1. Nearest Neighbor Connection (Figure 13.3 Left) — A direct network connection is pro-
vided between the BFUs within two manhattan grid squares. Results transmitted over local
interconnect are available for consumption on the following clock cycle.

2. Length Four Bypass Connection (Figure 13.3 Right) — Each BFU supportstwo connections
into the level two network. The level two network allows corner turns, local fanout, medium
distance interconnect, and some data shifting and retiming. Travel on the level two network
may add as few as one pipeline delay stage between producer and consumer for every three
level two switches included in the path. Each level two switch may add a pipeline delay
stage if necessary for data retiming.

3. Global Lines — Every row and column supports four interconnect lines which span the
entire row or column. Travel on aglobal line adds one pipeline stage between producer and
consumer.

Notice that the same network resources deliver instructions, data, addresses, and control to the
BFU ports. All of the eight BFU input ports (Figure 13.1) are connected to this same network, and
all BFU outputs are routed through this network.

13.2.3 Port Architecture

263

Local Output —X&,2 =
"
g Level-1 282 5]
=) i
~ & Level-2 %L) gc
5® i
= 8x8 Register on ~Z
g Level-3 + A,B Ports Only 99
Control Byte % 5
2]
5 Z
L
z
)

%714
FPout

Control Bit

Configuration Configuration
Word A Word B

Figure 13.4: BFU Port Architecture

The MATRIX port configuration is one of the keys to the architecture’s flexibility. The input
ports are the primary source of MATRIX’s metaconfiguration. Figure 13.4 shows the composition
of the BFU network and data ports. Each port can be configured in one of three major modes:

1. Static Value M ode — The value stored in the port configuration word is used as a static value
driveninto the port. Thisisuseful for driving constant data or instructionsinto aBFU. BFUs
configured simply as |-Stores or memories will have their ALU function port statically set
to pass memory output data. BFUs operating in a systolic array might also have their ALU
function port set to the desired operation. For regular operations a BFU may be dedicated to
that function and, in so doing, requires no instruction memory be allocated for control.

2. Static Source Mode — The value stored in the port configuration word is used to statically
select the network bus providing data for the appropriate port. Thisconfiguration isuseful in
wiring static control or datapaths. Static port configuration istypical of FPGA interconnect.

3. Dynamic Source M ode—The value stored in the port configuration word isignored. Instead
the output of the associated floating port (see Figure 13.1) controls the input source on a
cycle-by-cycle basis. This is useful when datapath sources need to switch during normal
operation. For example, during arelaxation algorithm, a BFU might need to alternately take
input from each of its neighbors.

The floating port and function ports are configured similarly, but only support the static value and
static source modes.

13.2.4 Port Contexts

Matrix metaconfiguration information is also multicontext in two ways.

264

Control Asshown in Figure 13.4, each port actually has two configuration words selected by a
control bit. This control bit is generate by the NOR plane or reduction network (Comp/Reduce 1)
in the control portion of the BFU (Figure 13.2). This arrangement allows control data to locally
affect each BFU’s operation.

One common use of this control function isin a BFU which operates as the program counter.
A typical program counter holds its value (PC) on the BFU output. In normal operation, the BFU
simply incrementsits current value (PC=PC+1). When abranch test succeeds, the program counter
BFU loads its value from its own memory (PC=nen{ PC]) rather than incrementing. To arrange
this, control logic is set to route the “take branch” condition on the control bit. One control context
isused for the not taken branch case and simply configuresthe BFU to increment the PC. The other
control context isused for the taken branch condition and configuresthe BFU to use the current PC
as an addressinto memory for aread operation.

Since the control bit can come from the NOR plane, it can be slaved to any bit on any bus
distributed to the BFU. Thisalows a controller to use a BFU or collection of BFUs as two context
devices. A single datapath byte can control up to eight such BFUs independently if each BFU is
configured to select adistinct bit from the control byte.

Global Additionally, the entire metaconfiguration datais replicated multiple timesand controlled
by a single, array-wide context select similar to the DPGA (Chapter 10). In our current mi-
croarchitecture we have four global context, two of which are hardwired and two of which are
programmable. The hardwired contexts are intended for bootstrapping and device programming.
They configurethe entire device into aknown configuration of datapaths so that metaconfiguration,
configuration, and initial data can be loaded into the array. The two programmable contexts allow:

1. background loading of metaconfiguration data
2. assembly of new global context data without affecting the current, operating context

3. atomic swap between assembled configuration

The global contexts can also be used to provide DPGA -style multicontext swapping between
configurations. Coupling the two programmabl e contexts with the two control contexts, the entire
array can be treated as afour context device without dedicating BFU memory for context data.

13.25 Metaconfiguration Configuration

The metaconfiguration data for each BFU can be written by a BFU write operation. The
metaconfiguration data is in a different address space from the BFU local memory. Access to the
metaconfiguration data versus the norma BFU memory is controlled by the the instruction issued
to the BFU memory function port (Figure 13.1). This arrangement all ows the metaconfiguration to
beloaded in one of severa ways:

1. A hardwired context can maketheentire devicelook like amemory so that an external device
can perform memory-mapped writes to configure metaconfiguration and configuration data.

2. A hardwired context can setup the device to bootstrap load a configuration from a slave
memory.

265

3. A controller can be configured on the array which can write metaconfiguration to other BFUs.
There can be any number of controllers controlling any subsets of the array limited only by
raw resource availability. More controllers can increase reconfiguration bandwidth at the
expense of taking BFU resources away from datapath computations.

4. A BFU may write to its own metaconfiguration. This usually requires some assist from
other BFUs. However, with the control contexts, there are useful configurations where a
single BFU may reconfigure portions of itself. For example, a BFU in a systolic datapath
could be configured primarily to perform one, fixed ALU operation. When acontrol event is
signaled, its second control context could reload the ALU function port configuration from
its local memory. When it returns to datapath operation, the BFU now performs the new
operation. This basic reconfiguration scheme allows MATRI X to efficiently handle avariety
of quasistatic instruction streams.

Note that the existence of two programmable, global contexts is useful for providing atomic,
coordinated, array-wide context swaps. Intypical use, thearray would operate in one context while
writing new configuration data into an unused, programmable configuration context. Once that
context was fully programmed, the global context select would change effecting the array-wide
switch.

13.2.6 Time-Switching

MATRIX ports can also operate in atime-switched mode, inspired by the time-switched input
register (Section 12.1). In Chapter 12, we saw that the ability to latch and hold input values at
designated microcycles, along with switched interconnect, allowed us to minimize the constraints
required during design mapping and thereby perform physical mapping quickly. Each MATRIX
port has atime matching unit as does memory write back. When metaconfiguration setsaBFU into
time-switched mode, each input is loaded only on its programmed microcycle as with TSFPGA.
Thetimestep for MATRIX isbroadcast along adesignated global line. In time-switching mode, the
metaconfiguration dedicates these global lines and providesfor the proper distribution of atimestep
value. Typicaly, the remaining global lineswill be dynamically switched to provide the necessary
interconnect between BFUs. In situationswherelight multiplexingisall that isrequired, the control
contexts may provide sufficient switched routing. For more heavily shared switching resources,
global and bypass lines can be time-switched, with each getting its own BFU instruction store to
control its operation. Time-switched routing will, of course, slow down MATRIX operation. This
mode isintended primarily for fast, hands-off, automatic mapping during early development.

13.2.7 Resource Deployment Granularity

The primitives in the architecture do define a granularity at which resources must be deployed.
Datapaths and non-local control paths can only comein 8-bit multiples. Context memoriescomein
256 instruction deep chunks. Compute elements come as 8-bit ALUs with 128-word register files.

Due to the flexible instruction distribution introduced above and discussed further in Sec-
tion 13.4, MATRIX's granularity does not have the same kind of effects as conventional architec-
tures (Chapter 9). For task requirements below 8-bits, the datapath suffers similar to traditional

266

architectures. For task requirementsabove 8-bits, at most 7-bits of the datapath ever go wasted, and
MATRIX does not waste space on instruction stores holding redundant data as would conventional
8-bit architectures.

13.2.8 Additional Information
For additional detail on the MATRIX microarchitecture see [Mir96].

267

Xi——

(8 bit)

Pass —| Pass |—=| Pass — Pass |—| Pass [—{ Pass — Pass |—| Pass

<— Add [«— Add [&=— Add [«— Add [«— Add [«— Add [&— Add [«— Add

7 P N R IR R HER N !
(16 bit)

-<— Add [=— Add [«=— Add f«— Add [«=— Add [«— Add je—| Add [«— Add

Figure 13.5: Systolic Convolution Implementation

13.3 Usage Example: Finite-lmpulse Response Filter

In this section we present a range of implementation options for a single task, convolution,
in order to illustrate MATRIX usage and further ground the features of this architecture. The
convolution task is as follows: Given a set of £ weights {w1, w2, ... wy} and a sequence of
samples{z1, z2,. . . }, compute a sequence of results {y1, y2,. . . } according to:

Yi = w1 T+ w2 Tip1+ o+ WE - Tigpko1 (13.1)

Systolic Figure 13.5 shows an eight-weight (¢ = 8) convolution of 8-bit samples accumulating
a 16-bit result value. The top row ssimply carries sample values through the systolic pipeline. The
middle row performs an 8x 8 multiply against the constants weights, w’s, producing a 16-bit result.
The multiply operation is the rate limiter in this task requiring two cycles to produce each 16-bit
result. The lower two rows accumulate y; results. In this case, all datapaths (shown with arrowsin
the diagram) are wired using static source mode (Figure 13.4). The constant weightsare configured
as static value sourcesto the multiplier cells. Add operations are configured for carry chaining to
perform the required 16-bit add operation. For a k-weight filter, this arrangement requires 4% cells
and produces one result every 2 cycles, completing, on average, £ 8x8 multiplies and % 16-bit
adds per cycle.
In practice, we can:

1. Usethe horizontal level-two bypasslinesfor pipelining the inputs, removing the need for the
top row of BFUs simply to carry sample values through the pipeline.

2. Useboth the horizontal and vertical level-two bypasslinesto retime the data flowing through
the add pipeline so that only a single BFU adder is needed per filter tap stage.

3. Usethree I-stores and a program counter (PC) to control the operation of the multiply and
add BFUs, as well as the advance of samples along the sample pipeline.

The k-weight filter can be implemented with only 2k + 4 cellsin practice.

268

lsre PC a
1 1 1
1
Xj
| Al (8 bit)
> Vi
(16 bits output
| mf over 2 cycles)
L abel ALU Op PC
newsample Rxp — Rxp+1;Match (k + 1) (6 bits) BNE xpcontl
< RXp> < new z; (pipelined branch slot)
RXp — 65
xpcontl < RXp> — new z;
Rs — < Rxp >
RWp —1
Rw — < Rwp >
Rs — Rs x Rw
Rw «— x-continue
Rl — Rs; Match false BNE enterloop
Rh — Rw (pipelined branch dlot)

innerloop Rs — Rs x Rw
Rw «— x-continue
Rl — Rs+RI
Rh — Rw +-continue Rh
enterloop Rxp — Rxp+ 1; Match (k + 1) (6 bits) BNE xpcont2
Rs «— < Rxp > (pipelined branch slot)
RXp — 65
Rs — < Rxp >
Xpcont2 Rwp — Rwp + 1; Match (k 4+ 1) (6 bits) BNE innerloop

Rw «— < Rwp > (pipelined branch slot)
last read Rl ; Match false BNE newsample
read Rh (pipelined branch slot)

Figure 13.6: Microcoded Convolution Implementation

Microcoded Figure 13.6 shows a microcoded convolution implementation. The & coefficient
weights are stored in the AL U register-file memory in registers 1 through £ and the last £ samples
are stored in aring buffer constructed from registers 65 through 64 + k. Six other memory location
(Rs, Rsp, Rw, Rwp, RI, and Rh) are used to hold values during the computation. The ALU’s A and
B ports are set to dynamic source mode. |-store memories are used to drive the values controlling
the source of the A and B input (two I,,. memories), the valuesfed into the A and B inputs (/,,13),
the memory function (Z,,, s) and the ALU function (Z,;,). The PC isaBFU setup to increment its
output value or load an address from its associated memory as described in Section 13.2.4.

The implementation requires 8 BFUs and produces a new 16-bit result every 8% + 9 cycles.
The result is output over two cycles on the ALU’s output bus. The number of weights supported

269

PC Ialu Isrc Iw Ia Ialu
| X j (8bit)
| Xptr Yi .
X p I (16 bits output
over 2 cycles)
L abel Xptr unit Wptr unit PC MPY unit +-unit
firstsample Xptr—64 Wptr—0
output Xptr output Wptr < Xptr > — newz;
nextsample Xptr++MoD k | 64 Wptr++ < Xptr > x < Wptr >
output Xptr output Wptr X -continue Rlow — MPY-result
Xptr++MoD k | 64 Whtr++ < Xptr > x < Wptr > Rhigh— MPY-result
output Xptr output Wptr X -continue Rlow — Rlow + MPY-result
innerloop Xptr++MoD k | 64 Wptr++; Match & BNE innerloop < Xptr > x < Wptr > Rhigh— Rhigh + MPY-result
output Xptr output Wptr (pipelined branch slot) X -continue Rlow — Rlow + MPY-result
last output Xptr output Wptr < Xptr > x < Wptr > Rhigh— Rhigh + MPY-result
Xptr++MoD k | 64 Wptr—0; Match false BNE nextsample X -continue Rlow | — Rlow + MPY-result
output Xptr output Wptr (pipeline branch slot) < Xptr > «— new z; Rhigh [— Rhigh + MPY-result

Boxed valuesin last are the pair of y; output bytes at the end of each convolution.

Figure 13.7: Custom VLIW Convolution Implementation

is limited to £ < 61 by the space in the ALU’s memory. Longer convolutions (larger k) can be
supported by deploying additional memories to hold sample and coefficient values.

Custom VLIW (Horizontal Microcode) Figure13.7 showsaVLIW-styleimplementation of the
convolution operation that includes application-specific dataflow. The sample pointer (Xptr) and
the coefficient pointer (Wptr) are each given a BFU, and separate ALUs are used for the multiply
operation and the summing add operation. Thisconfiguration allowstheinner loop to consist of only
two operations, the two-cycle multiply in parallel with the low and high byte additions. Pointer
increments are also performed in parallel. Conventional digital signal processors are generaly
designed to handle this kind of filtering problem well, and, not coincidentally, the datapath used
here is quite similar to modern DSP architectures. Most of the I-stores used in this design only
contain a couple of distinct instructions. With clever use of the control PLA and configuration
words, the number of I-stores can be cut in half making this implementation no more costly than
the microcoded implementation.

As shown, theimplementation requires 11 BFUs and produces anew 16-bit result every 2k + 1
cycles. Asinthe microcoded example the result is output over two cycles on the ALU output bus.
The number of weights supported islimited to £ < 64 by the spacein the ALU’S memory.

VLIW/MSIMD Figure 13.8 showsaMultiple-SIMD/VLIW hybrid implementation based on the
control structurefromthe VLIW implementation. Asshowninthefigure, six separate convolutions
are performed simultaneously sharing the same VLIW control developed to perform a single
convolution, amortizing the cost of the control overhead. To exploit shared control in this manner,

270

I X » Xptr | _Wptr

Figure 13.8: VLIW/MSIMD Convolution Implementation

the sample data streams must receive data at the same rate in lock step.

When sampleratesdiffer, separate control may berequired for each different rate. Thisamounts
to replicating the VLIW control section for each data stream. In the extreme of one control unit
per data stream, we would have a VLIW/MIMD implementation. Between the two extremes, we
have VLIW/MSIMD hybrids with varying numbers of control streams according to the application
reguirements.

Comments Of course, many variations on these themes are possible. The power of the MATRIX
architectureisits ability to deploy resourcesfor control based on application regularity, throughput
requirements, and space available. In contrast, traditional microprocessors, VLIW, or SIMD
machines fix the assignment of control resources, memory, and datapath flow at fabrication time,
while traditional programmable logic does not support the high-speed reuse of functional unitsto
perform different functions.

271

13.4 Flexiblelnstruction Distribution

MATRIX supports flexbile alocation of instruction control resources as a consequence of the
BFU, network, and port architecture described in Section 13.2.

Instruction Depth We can directly select an instruction depth of 1 or n - 256. If the instruction
does not need to change, we can directly configureit via static value in the port metaconfiguration.
If the instruction changes between only two values, we can use the control context. In certain
situations, we can use the global contextsto support up to four contexts using the metaconfiguration
contexts. When instruction need to change among more than a few values, we can allocate a BFU
as an instruction store and use static source mode to configure said distribution. If more than 256
instructions are needed, we can use dynamic source mode to expand the selection to one of several
different memory sources, alowing alarge instruction space.

Note that conventiona FPGASs are characterized by an instruction depth of one, while an
instruction depth of 256-1024 istypical for conventional processor architectures.

Datapath Granularity We can control the datapath granularity to any multiple of 8-bits. The
network allows fanout at all three levels of the hierarchy. To build an 8n-bit wide datapath, we
need only configure the n BFUs used as datapath elementsto take their instructions from the same
instruction memories (See Figure 13.9). Notice that thisis not the same as having a conventional
microarchitecturewith w = 8, asintroduced in Chapters8 and 9. In aconventional case, each 8-hit
datapath element would have its own instruction memory, whereas, for MATRIX, we get to use a
single instruction memory for all » datapath elements (See Figure 13.10).

Noticeal so that the ability to assign instruction memoriesto composed datapathsisal so different
from the segmentabl e datapaths in modern multimedia processors (Section 4.7), multigauge SIMD
architectures (e.g. [Sny85] [BSVT95]), or the Kartashev dynamic architecture [KK79]. In these
architectures, all the bit processing elementsin a predefined datapath perform the same operation.
These generally exhibit SIMD instruction control for the datapath, but can be dynamically or
quasistatically reconfigured to treat the » bit datapath as &, %-bit words, for certain, restricted,
values of k. MATRIX does not have to perform the same ALU function across all datapath
segments like these architectures.

Instruction Streams The number of instruction streams on a MATRIX component is limited
only by the availability of resources. If the entire operation is efficiently handled by a systolic
architecture, no resources, BFUs or interconnect need be sacrificed to control. For highly regular
operations where SIMD control is effective, MATRIX need only dedicate a single set of BFUs
to broadcast the instructions to the rest of the array. As the application needs more, independent
instruction streams, more BFUs can be allocate to provide separate instruction streams. Like
MSIMD (e.g. [Bri90, Nut77]) or MIMD multigauge [Sny85] designs, the array can be broken into
units operating on different instructions. Synchronization between the separate functions can be
lock-step VLIW or completely orthogonal depending on the application. Unliketraditional MSIMD
or multigauge MIMD designs, the control processors and array processors are built out of the same

272

alu B IA

alu B

alu B PC NEET B

[.
ALUSE AL UmE AL Um ALY

Here we show 8-, 16-, 24-, and 32-hit datapaths built on top of MATRIX. Config-
urable instruction distribution allows multiple datapath BFUs to share a single set
of instruction stores.

ALUSE AL AL

Figure 13.9: Configurable Datapaths

building block resources and networking. Consequently, more array resources are available asless
control resources are used (See Figure 13.11).

Control Streams Similarly, MATRIX can handle any number of independent control streams.
Each can have their own program counter realizing aMIMD architecture, or they can al be slaved
to a single program counter realizing a VLIW architecture (See Figure 13.12). Between these
extremes, any number of instruction streams may be associated with each program counter in the
sameway that any number of datapath elements can be slaved to asingleinstruction stream. Again,
aswe noted for datapath granularity and instruction streams, control resources come from the same
pool of resources as datapath elements — as an application can be described with fewer control
streams, more BFUs are available to serve as datapath elements.

273

MATRIX Convetional Array

w=8

|
[
]] |
IA Ialu IB : :ab
| | AR
PC |
|
|
|
NuMsk | |5Ha bl [zlal®
| B | EEA [CA
|
|
|
Nl — | : :ab tab
IA alu B I*a ARE . B
|
_lal]b
il ALUS ALUSE ALU :ME
|
= |. 1! — | : —lalb] |=]2a]b
PC r A alu B I o A k3] A
| |
ALUSE ALUSE AL Uss Al : =4 Al] I S L
. . . | o A k3] A

While using an 8-bit primitive datapath element, the MATRIX microarchitecture
is very different from a conventiona architecture with w = 8. Conventional ar-
chitecturesrigidly bind instructions and control with datapaths, whereas MATRIX
deploystheresources separately. Consequently, MATRIX can share control and in-
struction memory across acomposed datapath, whereas conventional architectures
do not allow such sharing.

Figure 13.10: Datapath Composition: MATRIX versus Conventional w = 8 Architecture

274

ALU

I~ T T T T T N ——
PC [lalNaul] |B |B IB
[.
I I
ALUSE AL ymm A S ALY Loy Loy

PC NusT 5 In [|PC NEe
PC [Ia[aiu]] IB
[.

ALURRALUEALURALU

. :
| |
' |
| |
| |
' |
| |
| I I
ot EoE
| |
| |
| |
| |
| |
| |
|

Here we show one, two, three, and four instruction streams controlling a set of
16-bit datapaths. Given afixed array size, asthe number of independent instruction
streams decrease, more array resources can be dedicated to SIMD datapaths.

Figure 13.11: Configurable Instruction Streams
275

TOP —MIMD control with six, 16-bit data streams, each with indepdent control

Bottom —VLIW control with seven, 16-bit data streams directed by a single control unit

Figure 13.12: Configurable Control Streams

276

Main
Memory

Network
Switches
Network
Switches

Registers Registers

Configuration
Control Memory
Logic
Network Drivers
OR Plane

Technology 0.5¢ CMOS

BFU Size 1.5mm x 1.2mm
(1.8mm? ~ 29M)\?)

DataWidth ~ 8-hit

Memory 256x8

Cycle 10 ns (estimate)

Multiplier

Configuration
Memory

Figure 13.13: MATRIX BFU Composition

Unit Fraction
Main Memory 26%
ALU+multiplier 7%
Switches and Drivers 42%
Registersincluding time-switch 6%
Port Config 9%
Control (with config) 10%

Table 13.1: AreaBreakdown for Prototype MATRIX BFU Implementation

13.5 MATRIX Implementation

Figure 13.13 showsthe composition of the prototype BFU developed by Ethan Mirsky [Mir96],
along with its size and projected performance. Table 13.1 shows the area breakdown from the
prototype implementation. As described in Section 13.2, MATRIX operation is pipelined at the
BFU level allowing high speed implementation. With only asmall memory read, an ALU operation,
and local network distribution, the basic cycle rate can be quite small — at least comparable to
microprocessor clock rates. 100 MHz operation is the target for the prototype design. At 1.8mm?,
100 BFUs fit on a 17mmx14mm die. A 100 BFU MATRIX device operating at 100MHz has a

peak performance of 10'° 8-hit operations per cycle (10 Gop/s).

277

Unit Elements Element Size Total Size Fraction

Port Switching 30x8x8=1920 2.5K\? 4.8M\? 46%
Main Memory 256x 8=2048 1.2K)\? 2.5M\? 24%
Config. Memory 135x8=1080 1.2K\? 1.3M\2 12%
(NOR) 20x8
Control (match) +9x1
(control bit) +21x1=190 3K\2 0.6M)2 6%
ALU 8b 20K \? 0.2M)2 2%
MPY 8x8=64 7TK\2 0.5M \? 5%
Registers 8x8+16=80 4K \? 0.3M)2 3%
TS 9 16KA% 0.15M)\? 1%
Sum 10-11M)?

Table 13.2. MATRIX BFU Composition Estimate

MATRIX issufficiently different from conventional architecturesthat our model from Chapter 9
does not quite apply. We can account for the specific composition of our microarchitecture.
Table 13.2 summarizes the constituent elements of the MATRIX BFU aong with estimated areas.
The MATRIX size estimateisabout one-third the size of the prototypeimplementation, suggesting
there is considerable room for improvement relative to the prototype design. The prototype is
a first-generation, one student, university prototype of a novel architecture. As such, it is not
surprising that it is not the most compact design.

Nevertheless, both area views agree on rough area proportions. Switches and drivers occupy
roughly 45% of thearea. Themain BFU memory accountsfor 25% of BFU area. Metaconfiguration
makes up roughly 10% of the BFU. The ALU and multiplier composes only 7% of the area.

278

13.6 Building Block Efficiency

The MATRIX BFU serves several roles. It is interesting to consider its efficiency in each of
theseroles.

13.6.1 Memory

MATRIX packs 2048 RAM bits into 28.8M\? in the prototype or, perhaps, 10M)? in an
optimized design. If we only use the BFU for itsmemory array, each memory bit cell is effectively
14K \?, or 5K \?, respectively. Of course, the MATRIX memory only comesin 256x 8 blocks and
will, therefore, be less dense as smaller memories or memorieswhich are not even multiples of this
Size are needed.

VersusCustom Memory Since memory only accounts for 25% of the MATRIX array, MATRIX
memory is only one-fourth as dense as a custom memory of the same size.

Versus Gate Array Memory A RAM cell implemented in agate-array processis roughly 6K A2
(e.g. [Fos96]). This size comparable to the amortized bit area according to the model (5K A?) and
is half of the size of the amortized bit cell areain the current prototype (14K \?).

Versus Xilinx 4K Memory The Xilinx 4K series[Xi194b] can use each CLB as 32 bitsof RAM.
From Table4.13, we know aXilinx 4K CLB is1.25M A2, making each memory bit roughly 39K \?,
which is 3-7x larger than the amortized MATRIX RAM bit area.

13.6.2 Datapath Elements

Versus Hardwired ALU The ALU and multiplier make up only 7% of the BFU area. This
suggests a datapath of BFUs could be agood 10-20x |ess dense than afull custom implementation
of the same task.

Versus Systolic, Reconfigurable ALUs In systolic dataflow applications the ALU may be used
asafunctional unit without the memory. The 25% of the BFU areawhichisinthe memory sitsidle,
aswell asthe <%) - 45% = 6% for the extra function port. The control logic constitutes another
6-10% of the BFU area. Consequently, the MATRIX BFU isroughly 1.5x larger than we might
see in a pure mesh of reconfigurable ALUs, or perhaps in an architecture where the memory and
ALU were independent resources.

ALUBIt Ops InTable4.24, we have aready noted that the prototype MATRIX achieves28 ALU
Bit Ops/A2s which is roughly 3x the computational density of processors (See Table 4.2). At the
sametime thisis 4x lower than the peak computational density offered by single-context FPGAs
(See Table 4.13). If we can realize the compaction suggested by the model, MATRIX can achieve
80 ALU Bit Ops/\?s, bringing its peak density almost comparable to FPGAs.

279

Adder A cascaded 16-bit add can occur in one cycle on 2 MATRIX BFUs. Assuming the BFUs
are used only for the add, this consumes a capacity of 28.8MA2- 2. 10ns = 0.58\%s. An XC4005-5
performs a 16-bit add in 20.5ns on 9 CLBs, taking a capacity of 0.23)\%s, which is only 2x more
efficient than the MATRIX prototype.

Multiply In Chapter 5 we reviewed custom and programmable multiply implementations. Even
with the large prototype area, MATRIX achieved comparable multiply density to the best pro-
grammable devices (See Table 5.3). MATRIX is10-100x less computationally dense at multipli-
cation than full custom muiltiplies, which is consistent with the fact that multiplier occupies only
3% of the BFU area. At the same time the hardwired multiplier makes the MATRIX prototype
3-10x more computationally dense then FPGAs on multiply operations.

280

13.7 Image Processing Examples

To get a concrete view of MATRIX application performance, we will examine several image
processing primitives implemented in custom and semi-custom silicon and compare them to MA-
TRIX, FPGA, and microprocessor implementations of the same task. LSI’s real-time DSP chip set
[RueB9] is used to define the tasks and provide the custom implementations. Thereal-time chip set
includes:

1. Variable Shift Register (VSR)

2. Rank Value Filter (RVF)

3. Binary Filter and Template Matcher (BFIR)
4. Multibit FIR Filter (MFIR)

We use areaand timing from the prototype for the purposes of conservative MATRIX comparisons.

13.71 VSR

LSI’s variable shift register takes in byte wide data and delays it a specified number of clock
cycles. It provideseight, equidistant outputs. The maximum delay supported by the L SI component
is8- 512 = 4096 clock cycles. That is, given a sequence of inputs:

Lny Tntly T2y .-

On the cycle n when z,, arrives, the VSR outputs eight values:

yl, = T(-1(4118)
Y2, = T(n—2.(41+8)
Y8, = T(n—8(41+8)

Here!l isavaluebetween 0 and 126. LS| implementstheir VSR in 64mm? ina 1.5 CMOS process
(114M)?) using a semicustom standard cell methodology. The LS| VSR runs at a 26 MHz clock
rate (38.5ns clock).

A MATRIX implementation providing the full, worst-case functionality of the VSR requires
two BFUsto implement each 512 byte tap and two BFUsto implement a 9-bit modulo counter, for a
total of 18 BFUs (See Figure 13.14). The memory BFUs implement the shift register by alternately
reading and writing from their main memory. The control contexts are programmed to support the
two instructions, read and write. The counter counts on every cycle from zeroto 4 - (I + 2) — 1.
Thelow bit of the counter is selected as the control bit on the memories while the high 8 bits serve
as the memory address. The match unit on the counter is set to look for 4 - (I + 2) — 1. When
a match occurs, the counter executes a load zero control context instead of the normal increment
context. The 18 BFUs take 28.8M\? - 18 = 518.4M\2. Operating on the two clock macrocycle,
the MATRIX VSR can run at 50MHz (20ns macroclock).

281

Cnt | |Cnt
L 1 > yl
L
X — Mem H# Mem Hal Mem | Mem y2
L
Ll Mem H Mem Hal Mem | Mem y4
> Y5
L
Ll Mem H Mem Hal Mem | Mem y6
> Y/
L
Ll Mem H Mem Hal Mem | Mem —>y8

Figure 13.14: MATRIX Implemenation of Full 8-TAP, 4096 shift, VSR

innerloop addi ri1,#1,r1
ld BUFF[r1],r2
st QUTPUT, r2
I d I NPUT, r2
st BUFF[r1],r2
blt r1,r3,innerl oop
move r0,r1l
bne r0, r0,innerl oop

Figure 13.15: Processor Implementation of VSR

A typical processor implemenation of VSR (See Figure 13.15) takes 6 instructions per tap in a
tight loop. For the full 8 tap VSR, the processor implementation requires 48 instructions. MIPS-X
[HHC*87], one of the highest capacity processors we reviewed in Table 4.2, is 68M A%, With a
50ns clock cycle, the 48 instructions will dictate, at least, a 2400ns macroclock.

An FPGA implementation would be dominated by data memory. A pure 4-LUT design would
require up to 4096x8=32K cells. At 600K \?, alow-end estimate for 4-LUT size (See Table 7.1),
this is 19.7G)2. Exploiting the memory in an XC4000 part, we can pack 16x2 bits per CLB,
requiring 256x4=1K CLBs or 1.28G)?. The full shift register approach is trivial and should be
very fast, sowewill assume 100MHz operation. Exploiting the X C4000 memorieswill require both
aread and awrite operation as with MATRIX so we will assume it can achieve 50MHz operation.

282

\ Implementation H LS \ MATRIX \ MIPS-X \ 4-LUT \ XC4K \
Area 114M)? | 518MA? | 68MA? | 19.7G)\? | 1.28GA?
Cycle 38.5ns 20ns | 2400ns 10ns 20ns
Capacity 44)\%s | 10.4)%s| 163)\%s| 197)\%s| 25.6\%s
Ratio 1.0 24 37 45 59

Table 13.3: VSR Implementation Comparison

Table 13.3 compares the VSR implementations. The MATRIX implementation is 2.4x larger
than the semicustom LS| implementation, 2.5x smaller than the XC4000 implementation, and
16x smaller than the processor implementation. If the shift register requires less than 2048 delay
dots, MATRIX can implement each tap with a single BFU and use a single counter. This cuts
the implementation area and capacity in half, bringing it within 20% of the capacity of the LSI
implementation. Smaller shift registers with fewer taps will allow further reduction in BFUs for
the MATRIX implementation. Capacity requirements for the FPGA implementations similarly

reduce with total shift register length. The capacity required for the processor implementation will
decrease with the number of taps.

283

| Implementation || LSl [MATRIX | MIPSX |

Area 235M\? | 11117M)% | 68MA?
Cycle 37ns 20ns | 32450ns
Capacity 8.7\%s 222)\%s | 2221)\%s
Ratio 1.0 26 260

Table 13.4: RVF Implementation Comparison

13.7.2 RVF

LSI’s rank value filter selects the rth largest 12-bit value within a 64 sample window. That is,
on each cycle, the component takesin anew 12-bit sample, z;. It looks at the previous 64 values
(z;, i1, .- -, T;_63), and selects the rth largest, which it outputsas ;. If » = 1, it implementsa
maximum filter; if » = 64, it implements a minimum filter, and if » = 32, it implements a median
filter. The LSl implementation occupies 132mm? in a 1.5 CMOS process (235M \?) using an
array design methodology. The RVF runs at a 27 MHz clock rate (37ns clock).

The MATRIX implementation of RVF maintains a completely ordered list of the 64 window
values using asystolic priority queue scheme similar to [Lei 79]. The systolic priority queue allows
it to compute incremental updates to the list ordering rather than recal culating the entire ordering
on each cycle. To simulate the 64 tap window scheme, the systolic queue supports both an insert
and a delete operation. Each macrocycle requires two microcycles— one in which the old valueis
deleted and one in which the new value is inserted. A fixed delay register scheme likethe VSR is
used to retime the old value for deletion 64 macrocycles | ater.

Using this style, an n-tap, w-bit wide MATRIX RVF implementation requires 3n [§] + 2
BFUs, or 386 BFUs for the 64 tap, 12-bit case as implemented in the LS filter. Each tap requires
two active data swap registers (A and B) and a comparator, each of which needsto be as wide as
the sample data. Figure 13.16 shows the basic array structure for the 12-bit sample case where
two BFUs are required for each register and comparator. The additional two BFUs are used for
the retiming memory and its associated counter. Figure 13.17 shows details of the datapath for a
tap dlice and its adjacent elements. The A registers are used to propagate insert and delete values
while the B registers are used to hold sorted values. A values propagate away from the rth item
and B values propagate toward it. By inserting data at the rth value location, we obtain an update
latency of only one macrocycle or two primitive MATRIX cycles. The logic for a datapath slice
is described in Figure 13.17. Note that the logic and datapath shown are for atap position below
the rth position in the array. The logic and flow are reversed for tap positions above the array.
Figure 13.18 shows the control setup used to implement the datapath logic providing single cycle
throughput for each comparison and swap operation.

We use a similar insert and delete structure for the processor RVF implementation which is
shown in Figure 13.19. For any width less than the processor word size, the processor imple-
mentation requires 10n + 9 instructions in a tight loop. For the full 64 tap VSR, the processor
implementation requires 649 instructions. Again, using the MIPS-X processor this requires 68M \2
and 649 - 50ns = 32450ns.

284

—— 0 © @ —P
—— 0 © @ —P
[N N]

[N N
«— © 0 0 =
— © 0 0 =

Input __| -~ [Ith
New/Old —> || L » Value

— 0 0 0 =
— 0 0 0 =
[N
[N
> 0 0 0 —b
> 0 0 0 —b

Internal datapath connections omitted — See Figure 13.17.

Figure 13.16: MATRIX RVF Array

Table 13.4 compares the RVF implementations. The MATRIX implementation is 26x larger
than the custom implementation and 10x smaller than the processor implementation. If less taps
are required, both the matrix and the processor implementation decrease linearly in the number
of taps. For 8-bit or smaller sample values, the MATRIX implementation will halve its datapath
requirements. If one only wants to filter for the maximum or minimum value, a straightforward
shift and compare reduce scheme will only require 2nw BFUs and operate at 100MHz throughput.
For a maximum or minimum filter, the MATRIX implementation requires less capacity than the
LSl RVF for 8-bit filters with less than 16 taps or 12-hit filterswith less than 8 taps.

285

else

v
(old_sample)
if (A= B)
B~ Bprev
Apezt — MIN-VALUE
else B~ B
Anez’t — A
if (A> B)
B~ A
Aneact — B
else B~ B
Anewt — A

Figure 13.17: RVF Dataslice and Logic for Cells Below rth Postion

| Cmp | Control Bit | old hit
Control Bit Compare unit’s match output
B NOR computes | old A (Select B,,., Source) v old A (Select A Source)

Control Context O
Control Context 1

Statically Route B from B
NOR plane specification selects B input

Control Bit

NOR computes
Control Context 0
Control Context 1

Compare unit’s match output

old A (Select MIN-VALUE Source) v old A (Select B Source)
Statically Route A from A,,.,

NOR plane specification selects A input

Figure 13.18: Control for MATRIX RVF for Cells Below rth Postion

286

/I r3 —number of taps

/| r5—delay ring buffer head
/ 1 OLD —ring buffer head

/ | BUFF — sorted result

new

|d new, r4

mov r0,rl

Id OLD[r5],r6

st O.D[r5],r4

beq r5,r3,resetol dp
addi , r5,#1,r5

findl oop

ld BUFF[r1],r2
ble r2,r4,insert
addi , r1,#1,r1

blt r1,r3,find oop

i nsert

st BUFF[r2],r4
addi , r1,#1,r1

ld BUFF[r1],r4
blt rl1,r3,insert

findold

mov r3,rl
ld BUFF[r1],r4
addi , r1,#1,r1

r enovel oop

ld BUFF[r1],r2

st BUFF[r1],r4

beq r2,r6, done

mov r4,r2

addi , r1,#1,r1

blt r1,r3, renovel oop
b next

resetol dp

mov, r0, r5
b findl oop

Figure 13.19: Processor Implementation of RVF

287

shift shift shift shift

match match match match
cnt cnt cnt cnt

Figure 13.20: MATRIX BFIR Datapath

13.7.3 BFIR

LSI’s binary filter and template matcher performs binary template matching across a 1024 bit

template. That is:
1023

y(n) = E (¢; AND (v; XOR z(n — 7))) (13.2)
i=0
Here v is avector of 1024 bit match values and ¢ is a mask indicating which positions are “don’t
care’ values and should beignored. LS| implementstheir VSR in 88mm? in a 1.5 CMOS process
(156M \?) using a full custom design methodology. The LSI BFIR runs at a 27 MHz clock rate
(37ns clock).

The MATRIX implementation comes in three parts shown in Figure 13.20. A set of shift
registers provide the bit level samples. A set of BFUs use their memoriesto perform matching and
counting, starting with 8 bits of input and producing a4-bit sum of the number of matches. Finaly,
an adder tree reduces the partial sumsto asingleresult. To handle the 1024 tap problem, MATRIX
requires %‘ = 128 BFUsfor bitwise shifting and another 128 BFUs for matching. The sum tree
is 7 stages deep. Since the final two stages add 9- and 10-bit sums, they each require 2 BFUs per
addition, while each of the others requires a single BFU per sum, making for atotal of 130 BFUs
in the adder tree. Together, the MATRIX implementation requires 386 BFUs (11.1G)\?) and can
operate at the full 100MHz basic cycle rate.

The processor implementation shown in Figure 13.21 stores and masks data in 32-bit units to
exploit its datapath. It aso uses a programmed lookup table to count ones. The processor only
counts ones a byte at a time so that the count one’s lookup table can fit in a reasonably sized
data cache. The main loop takes 25 instructions per word. For a 1024 tap problem, this makes

(%‘) .25 = 32 .25 = 800 total instructions. The MIPS-X processor implementation then is
68M A2 and 800 - 50ns = 40000ns.

288

/[r14 —number of taps

/ 1 r15 — byte mask

/ | BUFF — stored input

/ | CARE — mask hits to check

| | MAX — valuesto check

/ | CNTONES — |ookup table to count onesin a byte

new nov rO0,rl
ld BUFF[r1],r2
addi, r0, TAPS, r 14
addi , r 0, #Oxff, r 15
addi , r0,r0,r6

top Id BUFF[r1],r3
sh r2,r3,r2,#1
ld MASK[r1],r4
xor r4,r2,r5
Id CARE[r1],r4
and r4,r5,r5
and r5,r15,r4
I d CNTONES[r4],r4
add r4,r6,r6
asr r5,r5, #8
and r5,r15,r4
I d CNTONES[r4],r4
add r4,r6,r6
asr r5,r5, #8
and r5,r15,r4
I d CNTONES[r4],r4
add r4,r6,r6
asr r5,r5, #8
and r5,r15,r4
I d CNTONES[r4],r4
add r4,r6,r6
st BUFF[r1],r2
move r3,r2
addi r1,#1,r1
ble r1,r14,top

Figure 13.21: Processor Implementation of BFIR

289

\ Implementation H LSl \ MATRIX \ MIPS-X \ XC4K \
Area 156M A% | 11.1G)\? | 68MA? | 2.32G)\?
Cycle 37ns 10ns | 40000ns 10ns
Capacity 5.8\%s 111\%s | 2720A\%s 23)\%s
Ratio 1.0 19 470 4.0

Table 13.5: BFIR Implementation Comparison

An FPGA BFIR could take asimilar form to the MATRIX implementation. 1024 LUTs would
compose the shift register. [%ﬂ - 2 = 684 4-LUTs compose the match and initial reduce. The
sum tree requires slightly over 1000 full adder bits — 1000 XC4K CLBs or 2000 4-LUTs. In
total, an XC4K implementation would require 1850+ CLBs, or 2.3GA2. Using the fast carry on
the XC4K, and pipelining the adder stages, the basic cycle could be as low as 10ns assuming an
optimal physical layout.

Table 13.5 compares the BFIR implementations. The MATRIX implementation is 19x larger
than the custom implementation, 4.8x larger than the Xilinx implementation, and 24x smaller
than the MIPS-X implementation. If the “care”’ region is sparse, the FPGA implementation can
easily take advantage of it, using less match and sum reduce units (e.g. [VSCZ96]). If the sparsity
isin 8-bit chunks, MATRIX can similar exploit the sparseness. The processor implementation
can exploit sparseness, as well, but requires even larger chunks for it to be beneficial. Resource
requirements for all the programmable implementations are proportional to the template size, so
their areas decrease with the number of binary taps.

290

Architecture ‘ Reference ‘ area and time F'It‘ir%s
16b DSP [WDW85] 100ns/TAP 0.65
[VMWVW 86] 125ns/TAP 0.090

[KNK*87] 50ns/TAP 0.057

[CBBF87] 60ns/TAP 0.082

[PML*89] 100ns/TAP 0.051

[SKYH92] 50ns/TAP 0.072

[USOt 93] 47nsTAP 0.041

32b RISC MSTEP | MIPS-X [HHC' 87] 10+ cycles/TAP 0.029
32b RISC/DSP [NHK95] 40ns'TAP 0.022
64b RISC Alpha[GBB*96] 2.3ns/TAP 0.064
(systolic) 3 BFUs, 20ng/TAP 0.56

MATRIX Section 13.3 (VLIW) | 12 BFUs, 20ns/TAP 0.14
(microcoded) 8 BFUs, 90ng/TAP 0.048

Full Custom LSl [RueB9] 45n5/64 TAPs 3.6

Table 13.6: FIR Survey — 8x8 multiply, 24-bit Accumulate

13.7.4 MFIR
The LSI multibit finite-impul se responsefilter is a 64-tap, 8-bit FIR filter:

63
y(n) = Zhi ~x(n —1)
1=0

The MFIR isimplementsin 225mm? in a 1.5 CMOS process (400M A?) using afull custom design
methodology. The LSI MFIR runs at a 22 MHz clock rate (45ns clock).

In Section 13.3, we have already seen several MATRIX FIR implementations. To handle the
same generality as the LSl MFIR, we need to handle a 24-bit accumulate instead of the 16-bit
accumulate used in the examples shown in Section 13.3. This adds one cycle per tap to the
microcoded implementation, one BFU to the VLIW implementation, and one BFU per tap to the
systolic implementation. Table 13.6 comparesthe LSl and MATRIX implementations along with
processor and DSP implementations. For the table, we use an application-specific metric and report
the area-time capacity required per TAP in each of the implementations.

The systolic MATRIX implementation is 6x larger than the full-custom LS| implementation,
20x smaller than the MIPS-X processor implementation, and 9x smaller than the Alpha imple-
mentation. Note also that the VLIW MATRIX implementation, which resembles modern DSP
architectures, is 2x smaller than modern DSPs. The systolic version is 8x smaller than the DSPs.
The capacity requirementsfor the processors, DSPs, and MATRIX will decrease with the number of
taps, whilethe LSl implementationisfixed. At 10 filter taps, the systolic MATRIX implementation
uses |ess capacity than the LS| MFIR.

291

Table 13.7 provides an expanded table for FIRs with 16-bit accumulates. Here, we see more
clearly that the systolic MATRIX implementation is on par with reconfigurable implementations
such as PADDI and FPGAs. The MATRIX VLIW is comparable to DSPs. The MATRIX mi-
crocoded yields performance comparable to microprocessor implementations. It is this versatility
to efficiently span such awide range of raw performance requirements which makes MATRIX an
interesting and powerful general-purpose architecture.

13.7.5 Image Processing Summary

Acrossthefour tasks, we seethat theMATRI X implementationisroughly an order of magnitude
larger than the custom implementation (6x,19x, 26, and 2.4x). Sinceit remainsgeneral-purpose,
MATRIX retains the ability to deploy resources to adapt to the problem size. For many instances
of problems the area-time penalty will be much less.

At the same time, we saw that MATRIX provided an order of magnitude smaller implementa
tionsthan conventional processors(16x,10x,24x,20x). Thevariation in the benefitsis somewhat
telling. The one task where MATRIX only had a 10x advantage is the one task which required
a 16-bit datapath, while al the others essentially used 8-bit datapaths. Combining that observa-
tions with our earlier observation that MATRIX has 3x the raw computational density of modern
processors, we can decompose MATRIX’s capacity advantage over processors as. roughly as:

¢ 3x raw computational capacity
e 4x versus 8-bit, 2x versus 16-bit — granularity (datapath deployability)
e 1.5-2x elimination of overhead operations

For the highest throughput implementations of these tasks, aggressive FPGA or DPGA im-
plementations may approach the MATRIX implementation. We saw cases where MATRIX was
2-10x smaller than optimistic FPGA implementations. We al so saw naturally bit-level taskswhere
MATRIX might be 4-5x worse than an FPGA implementation.

292

Filter TAPs

Architecture ‘ Reference area and time S
16b DSP [WDW85] 100ns/TAP 0.65
[VMWVW86] 125ns/TAP 0.090
[KNK*87] 50ns/TAP 0.057
[CBBF87] 60ns/TAP 0.082
[PML*89] 100ns/TAP 0.051
[SKYH92] 50ns/TAP 0.072
[USO*93] 47nsTAP 0.041
32b RISC MSTEP | MIPS-X [HHC'87] 10+ cycles/TAP 0.029
32b RISC/DSP [NHK95] 40ns/TAP 0.022
64b RISC Alpha[GBB*96] 2.3ngTAP 0.064
XC4K [GN94] 67 CLBs, 184ns/16-TAPs! 1.0
[CME93] 400 CLBs, 100ns/4-TAPs 0.080
PADDI2 [YRO5] 5 EXUs, 20ns/TAP 0.93
(systolic) 2 BFUs, 20ng/TAP 0.87
MATRIX Section 13.3 (VLIW) 11 BFUs, 20ns/'TAP 0.16
(microcoded) 8 BFUs, 80ng/TAP 0.054

Gate Array

fixed coefficient [YJY*90] 10ns/64 TAPs 21
Full Custom [RueB9] 45ns/64 TAPst 3.6
[CLRAS(Q] 25ns/4 TAPSS 0.68
[GNC*T90] 33ns/16 TAPs 35
[RK92] 50ns/10 TAPs 24
fixed coefficient [LS92] 6.7n5/43 TAPSS 57

Table 13.7: FIR Survey — 8x8 multiply, 16-bit Accumulate

T —symmetric filter only
I —24-bit accumulate
§ —16x 16 architecture

293

13.8 Summary

All conventional, general-purpose computing architectures set the resources for instruction
distribution and control and bind datapathsto instructions at fabrication time. This, in turn, defines
the efficiency of the architecture at handling tasks with a given wordsize, throughput, and control
structure. Large applications typically work with data items of multiple sizes and subtasks with
varying amounts of regularity. Application sets have an even wider range of computational task
characteristics. Consequently, no single, fixed, general-purpose architectural point can provide
robust performance across the wide range of application requirements.

To efficiently handle the wide range of application characteristics seen in general-purpose
computing, we developed MATRIX, a novel general-purpose architecture which uses multilevel
configuration and a single pool of network and datapath elements to defer until application run
time:

1. binding of primitive elements to roles such as data memories, instruction stores, datapath
elements, or control units

2. binding of datapaths to instructions

3. interconnection of primitive elements

Using metaconfiguration, MATRIX can deploy primitive resourcesand interconnect to variousroles

as best suits the application. In this manner, MATRIX can provide as much dynamic instruction

control, instruction sharing, static dataflow, or independent control flow as required by the task.

MATRIX’s post-fabrication configurability of instruction organization is unique, differentiating it

from all previous general-purpose computing architectures.

An ongoing prototyping effort shows promising results. While the VLS| implementation
has considerable room for improvement, the prototype has 3x the raw computational density of
conventional processorsand achieves 10x the yielded computational density on regular, byte-level
computing tasks. At the same time, the prototype holds its own on less regular tasks, achieving
performance comparableto conventional processors.

294

13.9 Areafor Improvement

The concrete microarchitecture presented here has been our initial vehicle for studying the
basic concepts behind MATRIX and providing a concrete grounding for them. In these respects
the concrete microarchitecture has been very successful. However, this microarchitecture failsto
achieve the full breadth of performance robustness promised by the MATRIX architectural style.

Figure 13.22 shows the efficiency of the MATRIX microarchitecture at handling tasks with
various instruction depths and datapaths widths. Shown alongside MATRIX is the efficiency for
aconventional architecture with fixed instruction distribution. These graphs are similar to the one
shown in Section 9.5. The efficiency is the ratio between the size of the implementation in the
target architecture versus the size of the conventional architecture with the instruction depth and
datapath width perfectly matched to the task. We assume here that MATRIX must deploy eight
BFU instruction stores per independent datapath for control. That is, we assume all eight MATRIX
ports must be fed with dynamic instructions.

It isnot surprising that MATRIX does not have the peak performance of the fixed architecture
at its optimal design point. However, the poor efficiency across such a broad range of space is
disappointing. We can identify several effects from the graph:

¢ The performancecliff between the path length of two and four arises since we can handle two
contexts with the control contexts, but four or more require that we deploy BFU instruction
stores. For datapaths of eight bitsor lessinwidth, we go from one BFU per datapath element
to nine as the task goes from two instructionsto four.

¢ At large path lengths (¢ > 256), and small datapaths, we asymptotically approach 25% effi-
ciency. We noted earlier (Section 9.2) that the instruction memory dominatestheinterconnect
and compute areain thisregion. We also noted that the MATRIX memory makes up 25% of
the BFU area (Section 13.13), so we are seeing the implementation efficiency being dictated
by the instruction memory efficiency.

¢ Unliketraditional architecturesMATRIX implementations continue to become more efficient
with larger task datapath width. As we saw in Section 13.4, MATRIX does not need to
deploy additional instruction memories to handle larger datapaths. As the datapath grows,
the instruction memory overhead is amortized over a greater number of elements, improving
the overall implementation efficiency.

Onething which may be unfair in the comparisonin Figure 13.22istheinterconnect Rent parameter,
p. The MATRIX microarchitecture under discussion has fully populated input switches. Also note
that this comparison is strictly based on varying instruction depth and datapath width and does
not account for variations in control requirements. The fixed architecture will suffer more than
MATRIX as the number of natural task control streams varies.

Also showninFigure 13.22isaMATRIX' architecturewhich lessensthe BFU overhead penalty
for caseswith apathlength between 2 and 256. MATRIX’ assumesthat it can use each BFU memory
as two 128x 8 instruction stores, bringing both memory read ports out to routed lines and alowing
path lengths less than ¢ = 256 to use only four BFUs per datapath. MATRIX’ aso assumes the
addition of two more control contexts.

These graphs suggest:

295

0.6 0.6
Efficiency Efficiency

Path Length Path Length

Design w

0.
Efficiency 6

64
Path Length

1024

TopLeft —k=2,n=2,p=0.70,w =8,¢=d =64 Ny =0, N, = 2048
Top Right — MATRIX model

Bottom —MATRIX’ —4 control contexts, use BFU |-store memory as2 x 128 x 8

Figure 13.22: Efficiency for MATRIX and Fixed 8-bit Architecture (p = 0.70)

296

¢ The microarchitecture may be too coarse-grained in its deployment of resources. Context
memory deployment suffers particularly from the large chunk size for memory deployment.

¢ Metaconfiguration and interconnect overheads are particularly large compared to the memory
Size.

297

Part V

Review and Extrapolation

298

14. Reconfigurable Processing Architecture Review

Special-PurposeComputing We build computing devicesto algorithmically transform raw input
data into results. Special-purpose computing devices are designed with one particular transforma:
tion embedded into their architecture and implementation. Each such device can solve only the
particular transformation problem, and that problemis set prior to device fabrication. Conventional
fabrication techniques require long turn-around (weeks to months) to produce devices, high up
front costs for setup, and large volume sales to amortize out fixed costs for design, tooling, and
equipment.

Many of the characteristicswhich comewith special -purpose computing devicesare undesirable
or untenable in numerous situations.

¢ Devicededicated to asingle function

— Device can be quickly oboslesced as functional requirements often change, transforma-
tions are tuned, algorithms advance, and missions and tasks evolve.

— When the function needed by a task is time or data dependent the specia-purpose
devices for functions which are not needed at some point in time sit idle and cannot be
used for any other function which may be required by the task.

— When lower throughput isrequired from the device than its native capability, the device
has spare capacity which cannot be put to productive use.

¢ High up front cost
¢ Long delay from concept to delivery

e Economical only in volume

General-PurposeComputing General-purposedevicesare our alternativeto thesefixed function
devices. Here, we build computing deviceswhich can be configured to solve avariety of computing
problems. Instead of building adevicewith exactly the computational units and hardwired datafl ow
necessary to solveasingle problem, webuild adevicewith aset of primitive computational el ements
interconnected via a flexible interconnect. Post-fabrication, we control the behavior of the device
with instructions, extrainputswhich tell the device what computationsto perform and how to route
data during the computation. Asaresult, we:

¢ Make a single device appealing for awide-range of tasks. While each, individual task may
lack the volume required for a dedicated device to be economical, the general applicabil-
ity across many tasks provides the volume necessary to make the general-purpose device
economical.

¢ Eliminate the fabrication delay necessary to put a new computational task into use.

299

¢ Eliminate the up front cost associated with producing custom hardware for a task.

¢ Make it possible to customize a single device to perform any of alarge number of different
computing task, allowing the device to adapt to changesin requirements, or shareits capacity
among a variety of computing tasks.

The RP-space defined here models a large domain of reconfigurable architectures within the
general-purpose architecture space.

Reconfigurable Computing Costs Reconfigurable devices gain their breadth of use at acost in
computational density. Reconfigurable devices must add:

1. Flexibleinterconnect or data flow
2. Instructionsto control compute units and data flow

Additionally, the computational units in these devices must be more general than in the special-
purpose devices where each compute unit may perform asingle, focussed computation.

Replacing fixed interconnect with flexible interconnect is the most costly single addition for
reconfigurable architectures. A decent amount of programmable interconnect may add two orders
of magnitude in size to the reconfigurable implementation compared to the fully specia-purpose
implementation of the same task.

Instructions In contrast, the area required to hold a single, device-wide configuration is, itself,
an order of magnitude smaller than the interconnect. That is, the areataken by a single instruction
isgenerally an order of magnitude smaller than the active interconnect which it controls. However,
if we allocate space to hold tens of instructions per active compute element, the total instruction
memory area can easily equal the active compute and interconnect area. By the time we add
hundreds of instructions, the instruction memory area can dominate even the flexible interconnect.
With this additional order of magnitude in overhead, such a reconfigurable device can easily be
three orders of magnitude larger per computational element than its specia -purpose counterpart.

Since instruction area can quickly come to dominate even the flexible interconnect, when
building reconfigurablecomputing architectureswe often|ook for structurein typical computational
problems which will allow us to reduce the instruction size. One common technique is to control
several pieces of interconnect and computational elements with a single instruction. That is, we
assemble wide datapaths which are controlled together. This reduces the size of the configuration
by reducing the number of instructions required to specify device behavior a any point in time.

Consequently, when we build a reconfigurable computing device, we must make decisions
abouit:

¢ How many primitive computational elements are directed by each instructions?
¢ How many instructions are controlled by each controller?
¢ How many instructions are stored on chip?

¢ How rapidly can the instructions change, chip-wide?

300

The answers to these questions place a particular reconfigurable device in the RP-space. The
answers to each of these questions also determines the size of the reconfigurable device and its
efficiency on various tasks.

If the task has data elements of width of wy,sx > wercn, the architecture provides finer
instruction control than necessary and pays an overhead for redundant instruction memory.

If thetask hasdataelementsof widthof w;, ;. < w.,., thearchitecturedoesnot alow control
over the compute element at the fine granularity of the task, and computational capacity in
the architecture goes to waste.

If the task needs to cycle through only a few different instructions, but the architecture
provides large instruction memories, the reconfigurable device is unnecessarily large for the
task, wasting area in unused memories.

If the task needs to cycle through a large number of different instructions at different times
but the architecture provides small instruction memories, the reconfigurable device will not
be able to store al the instructions logically associated with each computational element.
Extra computational elements will be required simply to hold al of the task’s instructions,
but these extra computational elementswill effectively sit idle during computation.

If the task requires more independent control of computing resources than provided by the
architecture, either resources will go unused since they cannot be controlled or memory
requirementswill increase greatly to compensate for the lack of control independence.

If the task requires less independent control than the architecture supplies, the additional
controllers and resources are redundant and add to device overhead.

If the task requires rapidly changing instructions, but the architecture does not meet the
required bandwidth, computational resources sit idle, paced by task description bandwidth
not the availability of computing resources.

If thetask can handle slowly changing instructions, but the architecture dedicates significant
areato providing highinstruction delivery bandwidth, much of the dedicated areais overhead
making the device larger than necessary for the task.

Interconnect In devices where the ratio between instructions and compute elements is low,
flexible interconnect will remain the dominant area feature in reconfigurable devices. Here, a
device must decide how richly to interconnect the compute elements. Rich interconnect makes
the routing area even greater, while inadeguate interconnect can make it impossible to make use
of the available computing elements. The choice in interconnect richness determines where the
architecture will be most efficient.

If the interconnect is richer than needed by the task, the device will be larger than necessary.

If the interconnect is not as rich as required by the task, the task must be laid out sparsely
on the architecture. Portions of the interconnect and compute resources are wasted as they
cannot be used.

301

In al computing devices there are two components associated with routing data between
producers and consumers:

1. Spatially routing intermediates from the compute element which produced them to those
which consume them

2. Retiming the intermediatesfor the time when the consumer is ready to use them

Particularly, in reconfigurable devices with expensive, flexible interconnect, memories can hold
values for retiming more cheaply than active interconnect.

Degrees of Generality and Reconfigurability There are, of course, degrees of “generaity”
between fully special-purpose devices and general -purpose devices. Some special-purpose devices
are given limited configurability to broaden there use — e.g. atypical UART can be configured to
handle different data sizes, data rates, and parities. Some devices are targeted at being “general”
within very specific domains. Digital signal processors are one of our most familiar examples of a
general-purpose, domain-optimized device. The domain may dictate the typical data element size
or desirable instruction depth. Further, the domain may allow a more structured programmable
interconnect to suffice. Nonetheless, to the extent that we have post-fabrication control over the
computations which a device performs, the device will have some form of instructions and will
generally have some level of flexible interconnect. With these features it exhibits reconfigurable
characteristics, and many of the the architectural characteristics, relations, and issues we have
identified in our, more ideal, RP-space.

FPGAs Conventional FPGAsfall at a moderately extreme point in our RP-space with single bit
wide datapaths and single instruction deep instruction memories. At this point, they are efficient
on the highest throughput, fine-grained computing tasks and their efficiency drops rapidly as the
task throughput requirements diminishes and the word size increases.

Beyond FPGAsin the Reconfigurable Computing Space Beyond FPGAsthereisarich recon-
figurable architecture space. Our DPGA represents one different point in this architectural space
(See Figure 14.1). The DPGA retains the bit-level granularity of FPGAS, but instead of holding a
singleinstruction per active array element, the DPGA stores several instructions per array element.
The memory necessary to hold each instruction, is small compared to the area comprising the array
element and interconnect which the instruction controls. Consequently, adding a small number
of on-chip instructions does not substantially increase die size or decrease computational density.
The addition does, however, substantially increase the device's ability to efficiently handle lower
throughput, more irregular computational tasks. At the same time, a large number of on-chip
instructionsis not as clearly beneficial. While the instructions are small, their sizeis not trivial —
supporting a large number of instructions per array element (e.g. tens to hundreds) would cause
a substantial increase in die area decreasing the device efficiency on regular tasks. Consequently,
we see that we can achieve a design point which is moderately robust across a wide range of
throughput variations by balancing the instruction memory areawith thefixed areafor interconnect
and computational units.

302

128
Design w 64
16
4
1.0%

ol | L
U

Efficiency
0.4
0.2
1

4
16

64
Path Length Path Length

256
1024 1024

FPGA DPGA
c=d=1 c=d=16
w=1Lk=4n=2p=05 Ny =0, N, =16384

Figure 14.1: FPGA and DPGA efficiency in RP-space

The importance of efficiently supporting retiming of intermediates was most clearly demon-
strated in the context of the DPGA design. Here, we saw that the benefits of deeper instruction
memories were substantially reduced if we forced retiming to occur on active interconnect. How-
ever, when we provided architectural registersso that retiming could take placein registers, DPGAS
were ableto realize typical computing tasks in one-third the arearequired by conventional FPGASs.

Whilewedid not detail theminthisthesis, multiple context componentswith moderate datapaths
also come down essentially in this reconfigurable architectural space. Pilkington’s VDSP [Cla95]
has an 8-bit datapath and space for four instruction per datapath element. UC Berkeley’s PADDI
[CR92] and PADDI-II [YR95] have a 16-bit datapath and eight instruction per datapath element.
All of these architectures were originally developed for signal processing applications and can
handle semi-regular tasks on small datapaths very efficiently. Here, too, the instructions are small
compared to the active datapath computing elements so including 4-8 instructions per datapath
substantialy increases device efficiency on irregular applications and robustness to throughput
variationswith minimal impact on die area.

Flexible Deployment of Instruction Resources While architectures such as these are often
superior to the conventional extremes of FPGAS, any architecture with a fixed datapath width,
on-chip instruction depth, and instruction distribution area will aways be less efficient than the
architecture whose datapath width, local instruction depth, and instruction distribution bandwidth
exactly matches the needs of a particular application. Unfortunately, since the space of allocations

303

is large and the requirements change from application to application, it will never make sense to
produce every such architecture and, even if we did, a single system would have to choose one of
them. Flexible, post fabrication, assembly of datapaths and assignment of routing channels and
memoriesto instruction distribution enables a single component to deploy its resources efficiently,
allowing the device to realize the architecture best suited for each application. Our MATRIX
design represents the first architecture to provide this kind of flexible instruction distribution and
deployableresources. Using an array of 8-bit ALU and register-file building blocksinterconnected
via a byte-wide network, our focus MATRIX design point has 3x the raw computational density
of processors and can yield 10x the computational density of conventional processors on high
throughput tasks.

304

15. Projections

In Parts Il and IV, and Chapter 14, we focussed on reconfigurable, general-purpose computing
devicesroughly characterized by RP-space. In that focussed domain, we were ableto look closely
at area costs, computational density, and efficiencies. General-purpose devices, more broadly,
also share many of the characteristics (e.g. instruction depth and width, interconnect richness,
data retiming) which we identified as key architectural parameters in RP-space and in the more
detailed architectural studies. In this chapter, we speculate more broadly on what the relationships
devel oped whilefocusing on reconfigurabl e devicesin RP-space might tell usabout general -purpose
architectures, in general. We emphasize that these extrapolations may overly trivialize important
architectural aspects which did not arise in RP-space, and we attempt to identify those aspects
during the discussion.

15.1 Roleof Memory in Computational Devices

In our computing architectures, we have seen memory show up in two roles:
1. instruction storage
2. dataretiming

Neither appears to be really fundamental for computing, but both are of pragmatic value as they
facilitate resource sharing and reuse which allows usto implement computing functionsin lessarea
when throughput requirements are limited. In special-purpose computing architectures we did not
need instructions. For ease of construction, we often use clocked registersto tolerate variabledelays
through primitive blocks, but otherwise memory for retiming arises primarily from serialization
and reuse of common resources.

15.1.1 Memory for Instructions
I nstruction memories reduce hardware requirementsin two ways by allowing:

1. afabricated resourcesto perform any of several functions

2. aresource to be shared among several different functions during a single computation
Select Function In our general-purpose devices, a single resource can perform any of a number
of different functions. This allows us not to have a single, dedicated piece of hardware for every
possible function ever desired. For an application or device requiring » primitive component
computations, this realizes an important compression from “all possible computing functions made

of n primitives’ to “all » primitive computing functions required by this application.” Here, each
primitive computing element needs a configuration memory to tell it what computation to perform

305

and where its inputs are produced among the computing elements. The per computing element
overhead we pay for thisreduction ishigh, mostly in terms of flexible interconnect, but this quickly
bal ances the exponential reduction realized by only having to implement the n functions required
by this task.

We can return to our pedagogical 4-LUTs to see this reduction more concretely. There are
0 ((2(24))n) different functions which can be implemented with », four-input gates. So, even
withthe 100x areaoverhead per gate required to support flexibleinterconnect, our programmable, n
4-LUT deviceissignificantly smaller than implementing all possible n input functionsfor anything
other than trivial values of n.

Shared Function Our general-purpose devices aso alow us to share each piece of hardware
among multiple functions within a single computing task. This aspect alows us to compress area
requirementsfurther from “all » primitive computing functions required by this application” to “all
m computing functions required at one point in time in order for this application to achieve the
requisite computational throughput.” Here, we take advantage of the fact that the configuration
memory to describe a computing function is smaller than the active arearequired to route itsinputs
and computetheresult. In the extreme, thisallows us to reduce the arearequired for acomputation
from the area required for » programmable compute primitives and their associated interconnect
to the area required to store the description of the computation and interconnect performed by n
programmable compute elements.

What we trade for this reduction is computational throughput. With only m active computing
functions, it requiresus, at least, . cyclesto perform the computation of the » primitive computing
functions in the original task. Sometimes, the original task already had a dependency structure
such that this reduction comes for free or at minor costs. Other times, we are trading increased
evaluation time for reduced implementation area. In the limit, where we have a single computing
element with instruction memory to hold » instructions, the task can take n cyclesto evaluate.

We often talk about virtualizing hardware resources. The virtualization really substitutesa less
expensiveresources (e.g. aninstruction in memory, statein memory, cheaper forms of memory) for
amoreexpensiveone (e.g. apieceof hardwareto actually performafunction, fast access memory).
Behind all of these virtualizations, we must ultimately have some form of physical memory to hold
the description of the virtualized resources and their state.

Notice that we can continue to push technology and structure in order to reduce this last limit,
but it cannot be avoided. We can apply aggressive memory technology, such as DRAM or flash
memory, to reducing storage cell size. We can store data on different media, such as magnetic disks
or tape. We can exploit structure in the task description to compress the number of bits required
down to the Kolmogorov complexity limit. In the limit, however, we ultimately require sufficient
area to store the description of the computing task and no further reduction is possible.

We noted in Section 4.4 that memory can be used as ageneral -purpose computing element. That
role of memory isaspecial case of role of memory asinstructions. The memory contents act as an
instruction which configuresthe memory array to provide the desired computational transformation
between the addressinputs and the data outputs. In Section 4.5, we saw that computational portion
of conventional FPGAS, the LUTS, were programmed in exactly this way.

306

15.1.2 Memory for Retiming of I ntermediate Data

Once we begin to reuse primitive compute functions for different roles at different times, we
introduce the need to assure that the right data arrives at the inputs of the function at the right time.
This need is particularly acute when we serialize execution and use a single primitive to perform
multiple different functions, but it also appears when we reuse a primitive to perform exactly the
same function on logically different data. Since programmable interconnect is expensive, we use
memories as an inexpensive way to provide the temporal retiming necessary for correct execution.

The use of memory for retiming is pragmatic. We could get away with little more than pipeline
registerson interconnect. However, it ischeaper to transport data forward in time through memory
than over interconnect. If we do not take advantage of this, much of the area savings potentially
associated with serializing execution and sharing primitive compute elements cannot be realized.

The requirements for data retiming depend on the interconnect structure of the problem, not
the number of compute elements in the task. The amount of retiming does depend on the amount
of serialization. With more parallelism, more data can be consumed as soon as it has been
spatialy routed avoiding the need for retiming. Aswe compress size requirements by converting
task compute primitives into instructions sharing a small number of physical compute elements,
we must ultimately have space to store all computation intermediates at the widest point in the
computation flow. That is, we ultimately need space for all the live intermediatesin a computation.
The number of such intermediates depends on the task and its mapping. The mapping should try to
minimize the number of such intermediates.

Note that all non-instruction uses of memory fall into this category.

¢ Register File — We have aready seen that register files perform the same functions as our
input retiming registers, transporting results in time from the point of production to the point
of consumption.

¢ Main memory, including data caches — All the data results stored in memories are being
transported between the point of production and consumption.

¢ Buffers an FIFOs— These are explicitly retiming the arrival of data to atime when aportion
of the system is ready to consume the data.

If we had not sequentialized execution and shared computational resources among multiple tasks,
we would not need these memories.

Even special-purpose devices often sequentialize their processing of data so that a few, fixed
compute elements can serve to process data with nominally different roles. The most common
example of thisisin audio, video, or image processing. Rather than dedicating a separate compu-
tational unit to each pixel in a frame, many pixels are processed on the same computational unit.
The pixel data stream is seriaized into and out of the special-purpose device. The pixelswithin the
frame often need to be retimed so that the right pixel values are presented to the compute elements
at theright time. For example, when pixelsarefed in by rows, it is often necessary to perform row-
wise retiming on data so that the compute element can cal culate column-wise interactions between
pixel elements. If all the data necessary for the computation were presented simultaneously and all
of the output was produced at once, this retiming would not be necessary. However, serialization
and reuseis often necessary to make the amount of hardware resources, including component input

307

and output bandwidth, tractable. The serialization allows usto share all of the hardware resources,
but requires that we provide unique storage space for intermediate data so that we perform the
correct computation on the shared resources.

15.1.3 Implications

There are two important ideas to take away from these observations on the role of memory:

1. Memoriesin computer architectures facilitate the sharing and reuse of expensive resources.
It is the pragmatic fact that the memory necessary to hold an intermediate or an instruction
issmaller in conventional technologies than the active computing and interconnect elements
which processthe dataaccording to theinstruction which makesit worthwhileto use memory
to reduce implementation area requirements.

2. Aswe go to heavier sharing, each doubling of our sharing factor does not result in a halving
of implementation area because we always |eave behind a memory residue composed of (1)
instructions and (2) intermediate data. In the limit, the size of our computing element for a
task is dictated by the areato hold the instructionsto describe the task and the intermediate,
live data which must be stored as the task compultes.

308

15.2 Reconfiguration: A Techniquefor the Computer Architect

Device architects are often faced with the dilemma of balancing semantic expressiveness with
instruction distribution bandwidth. In processors, only a few bits are alocated to instruction
specification limiting (1) the number of different computations which can be selected and (2) the
number of different sources which can be expressed. The latter manifestsitself as limited address
space and limited size register files, while the earlier is often taken for granted. Architects are
reluctant to increase instruction width because it entails added costsin (1) on- and off-chip storage
space for al instructions, (2) distribution bandwidth, and (3) power for instruction distribution.
However, limited semantic expressiveness can force the processor to issue a large number of
instructions to perform the desired computation, resulting in even great losses in time and power
efficiency.

Conventional processors generally support an ALU which performs basic operationson 2 or 3,
word-wide datainputs. Today we seetypical word sizesof 32 and 64 bits. Conventional processors
further limit their instruction size to the word size to limit instruction bandwidth requirements.
As a consequence of this limitation, it can often take alarge number of instructions to specify an
operation which isnot inherently difficult for the active silicon to perform.

To appreciate the magnitude of the semantic disparity here, we notice that there are:

A'Talu20ps = 2<w2(2w))

functions from two w-bit wide inputs to one w-bit wide output. If we limit the specification of
our function to w bits, we can only address 2% functions with this instruction. Thus, if al of the
Natu20ps Were equally likely, on average, it would take at least 2() cycles to compute a function.

In practice, a good fraction of the w bits are dedicated to operand selection, increasing the
severity of the instruction limitation. While all operations are not equaly likely, in practice, this
disparity demonstrates that conventional processor design makes an early binding, pre-fabrication
time, decision on the effective cost of basic operations. Many applications cannot use the active
silicon area on conventional processors efficiently since they cannot directly issue the instructions
native to the task.

Reconfigurationisatechniquewhich allowsustofind aresol ution to thisdilemma. Reconfigura-
tion allows us the semantic expressiveness of very large instructions without paying commensurate
bandwidth and deep storage costsfor these powerful instructions. What we give up in this solution
is the ability to change the entire instruction on every cycle. Rather, the rate of change of the full
instruction is determined by the instruction bandwidth we are willing to expend. The distinction
between instruction bandwidth which delivers all the semantic content on every cycle and instruc-
tion bandwidth that can be used to load a larger semantic instruction is an important one because
configured instruction bitswhich can be used for many operational cyclesdo not require additional
instruction bandwidth once loaded. Returning to our simple calculation above, it may take us 2(2%)
cyclesto load aspecificationfor aninstruction thefirst timeit isencountered. However, if thisvalue
is loaded into configuration memory, subsequent uses can operate using the loaded data, avoiding
thetimerequired to redundantly specify the operation. An architecture without configurationwould
require the 2(2) cycles each time the computation is required. Reconfiguration thus allows us to
compress instruction distribution requirements in cases where the instruction changes slowly or
infrequently.

309

Reconfiguration opens a middle ground, or an intermediate binding time, between ‘behavior
which is hardwired at fabrication time’ and ‘behavior which is specified on a cycle by cycle
basis.” This middle ground is useful to consider in the design of any kind of of computing device
not just conventional FPGAs. When designing a device with any general-purpose capabilities,
the architect’s decision can extend beyond what expressiveness to include or omit based solely
instruction size and bandwidth. Rather, the architect should consider the expressiveness which
may be required for efficient task implementations and the rates at which various parts of the task
description change. Characteristics of the task which change infrequently can be configured rather
than broadcast.

310

15.3 Projecting Gener al-Pur pose Computing onto RP-space

Our RP-space model articulated in Chapter 9 provided architecture implementation area esti-
mates based on afew major parameters. Instruction depth (¢), datawidth (w), interconnect richness
(p), and intermediate data retiming support (d) have been the focus of our discussion in Parts 111
and IV. More broadly, these parameters have rough analogs in all genera-purpose architectures.
Onecan, thus, generally project ageneral-purpose architectureinto a point in RP-space by identify-
ing these parameters and abstracting away architecture characteristics not covered in the RP-space
model.

15.3.1 General Hazards

The more general projection to RP-space may be hazardous asit ignores many detailed charac-
teristics of real architecturesin the broader general -purpose architecture space, such as:

¢ No special-purpose capacity — we explicitly assumed only general-purpose building blocks
for RP-space. Most nominally “general-purpose” architectures include blocks of special-
purpose logic. The special-purpose blocks do not provide general-purpose capacity, but
can provide high density to applications when the specialized structures match the task
requirements of the application. The multiply example reviewed in Chapter 5 is the most
common instance of a specia-purpose block added to general-purpose architectures.

¢ Homogeneous processing arrays — we explicitly assumed homogeneous arrays. Because of
the mixed processing requirements in most computing tasks, a hybrid array which mixes
processing blocks with different parameters may be quite interesting. Extending the model
to reasonably encompass mixed architecturesis an interesting direction for future work.

¢ No boundary effects —we assumed single chip implementations for all of our comparisons,
in effect, assuming that full task implementations for all aternatives fit onto a single die.
Since we arelooking at 10'sto 100's of GA? of silicon areain the near future, alarge class of
computing tasks or primary subtasks can be reasonably placed on a single die such that the
assumption seems reasonable. However, we also saw that inefficient design points can easily
be two orders of magnitude larger than efficient points. With this much area variation, it is
not really reasonable to assume that both implementations are single die implementations.
Thelarger implementation islikely to require amultiple-chip solution and will suffer further
degradation in latency and bandwidth due to chip crossings.

Another consequence of ignoring boundary effectsisthat the model trivializeslimited device
i/o effects between different components that might make up the core of a general-purpose
processing system. Notably, systems have traditionally placed bulk memory on different ICs
from the processing. As aresult, care must be taken to prevent the limited boundary i/o
between compute and memory devicesfrom being the performance limiting bottleneck. This
care often shows up as additional mechanism and memories on the processing chipsto make
most effective use of the limited interchip i/o bandwidth and high interchip i/o latency.

311

15.3.2 Processors, FPGAS, and RP-space

For years, microprocessors have been our canonical example of single-chip, general-purpose
computing devices. It istempting to try to understand the relation between processors, FPGAs, and
RP-space. In Part I, we took a broad, empirical look at these devices and made a few, high-level
observations on their relative efficiencies. In this section, we revisit this comparison projecting
both architectures into RP-space.

Conventional processors have:

1. moderately wide datapath which have been growing larger over time (e.g. 16, 32, 64 hits)

2. support for large on-chip instruction caches which have also been growing larger over time
and can now hold hundreds to thousands of instructions (contexts)

3. high bandwidth instruction distribution so that one or several instructions may be issued per
cycle at the cost of dedicating considerable die area for instruction distribution

4. asinglethread of computation control

As a consequence these devices are efficient on wide word data and irregular tasks — i.e., those
tasks which need to perform a large number of distinct operations on each datapath processing
element. On tasks with narrow data items, the active computing resources are underutilized,
wasting computing potential. Processors pay overhead for their deep instruction memories. On
very regular computational tasks, the on-chip space to hold a large sequence of instructions goes
largely unused. Processors exploit wide datapaths to reduce the cost per instruction, but even
so, with instruction stores typical supporting thousands of instructions, instruction and retiming
memories dominate, leaving their peak general-purpose computational density three orders of
magnitude lower than special-purpose devices and one order of magnitude below FPGAS.

Looking at modern scalar, superscalar, and VLIW, processors, then, we might abstract amodern
processor as:. k = 2, w = 64, ¢ = 1024. Processors use ALU hit-glicesin lieu of lookup tables.
Each ALU bit-dice takes in two data inputs and a carry bit. As such, they provide less than a
full 2- or 3-LUT’s capacity per ALU bit, in general, but can provide an add, subtract, or compare
operation per bit which would requireapair of 3-LUTs. Processors also include:

e special-purpose capacity (e.g. multipliers, floating-point units)
¢ complicated flow control (e.g. branch prediction, bypassing)

¢ memory controllers to deal with boundary bottlenecks between compute and bulk memory
components (e.g. cache-controllers, TLBS)

Theseitemstend to makethe area of aprocessor larger than that predicted by themodel in Chapter 9.
Aswe have seen in Table 4.1 and Section 4.1, when performing traditional ALU ops, processors
generally providelessbit operations per ALU bit than asmall LUT. These effectswill tend to make
the RP-space projection of the processor optimistic in terms of area; that is, the real processor will
be larger and provide less computational capacity per unit area. On the other hand, the specialized
capacity in processors alow them to handle fixed and floating point arithmetic operations more
efficiently than would be predicted by the RP-space projection.
We have already seen that conventional FPGAs have:

312

128
Design w 64
16
4
1.0%

ol | L
U

Efficiency

0.6
Efficiency
0.4
0.2
1

4
16

64
Path Length

FPGA RP-space mapped Processor
k=4 c=d=1Lw=1 k=2c¢=d=1024,w = 64

n=2p=05 Ny =0, N, =16384

Figure 15.1: Comparing efficiency of FPGA and Processor idealizationsin RP-space

¢ narrow datapath (e.g. amost always one bit)

¢ on-chip spacefor only oneinstruction per compute element —i.e. the singleinstructionwhich
tells the FPGA array cell what function to perform and how to route its inputs and outputs

¢ minimal dieareadedicated to instruction distribution such that it takes hundreds of thousands
of compute cycles to change the active set of array instructions

As a consequence these devices are efficient on bit-level data and regular tasks — i.e., those tasks
which need to repeatedly perform the same collection of operations on data from cycle to cycle.
On tasks with large data elements, these fine-grain devices pay excessive areafor interconnect and
instruction storage versus a coarser-grain device. On very irregular computational tasks, active
computing elements are underutilized — either the array holds all subcomputations required by a
task, but only a small subset of the array elements are used at any point in time, or the array holds
only the subcomputation needed at each point in time, but must sit idle for long periods of time
between computational subtasks while the next subtask’s array instructions are being reloaded.
The peak computational density for FPGAsis two orders of magnitude lower than specia -purpose
devices because they pay overhead primarily for the flexible interconnect.

Figure 15.1 shows graphically this idealized comparison projected into RP-space in the style
used in Section 9.5. Asnoted before, the FPGA isless than 1% efficient at the cross point of wide
task data words and long path lengths. Similarly, the modeled processor is less than 1% efficient

313

processing single bit dataitems at a path length of one. Certainly, if the processor needsto perform
bit operations that do not match its specia -purpose support, the inefficiency will be at least this
large—and may be greater due to the effects noted above which makethe real processor larger than
the model.

15.3.3 General-Purpose Computing Space

We have already noted that RP-space is large such that we can see two or more orders of
magnitudein efficiency losswhen the application requirementsare mismatched with thearchitecture
structure for fixed instruction architectures. Our comparison in the previous sections underscores
that the general-purpose architectural spaceiseven larger making it paramount that one understand
therealm of efficiency for each “ general-purpose” computing device when selecting adevicefor an
application. They underscore the room for intermediate architectures such as the DPGA, PADDI,
or VDSP to cover parts of the space which are not covered well by either conventional extremes
of processor or FPGAs. They also underscorethe desirability of architectureslike MATRIX which
allow some run-time reall ocation of resources to provide more robust yielded performance across
the computational space.

Hybrid Since many tasks have a mix of irregular and regular computing components and a mix
of native data sizes, a hybrid architecture which tightly couples arrays of mixed datapath sizes and
instruction depths a ong with flexible control may be able to provided the most robust performance
acrossthe entire application. While this thesis focussed on characterizing the implications of each
pure architectural point, it should be clear from the development here how a hybrid architecture
might be better suited to the mix of datasizes and regularities seen in rea applications. In the
simplest case, such an architecture might couple an FPGA or DPGA array into a conventional
processor, alocating the regular, fine-grained tasks to the array, and the irregular, coarse-grained
tasks to the conventional processor. Such coupled architectures are now being studied by several
groups (e.g. [DeH94] [Raz94] [WC96]).

314

154 Trendsand Implicationsfor Conventional Architectures

In summary, we see that conventional, general -purpose device architectures, both microproces-
sorsand FPGASs, livefar apart in arich architectural space. Asfeature sizesshrink and the available
computing die real-estate grows, microprocessors have traditionally gone to wider datapaths and
deeper instruction and data caches, while FPGAs have maintained single-bit granularity and asin-
gleinstruction per array element. This trend has widened the space between the two architectural
extremes, and accentuated therealm whereeach is efficient. A moreeffective use of thesilicon area
now becoming available for the construction of general-purpose computing componentsmay liein
the space between these extremes. In this space, we see the emergence of intermediate architec-
tures, architectureswith flexibleresource all ocation, and architectures which mix componentsfrom
multiple pointsin the space. Both processorsand FPGA s stand to learn from each other’s strengths.
In processor design, we will learn that not all instructions need to change on every cycle, alowing
us to increase the computational work done per cycle without correspondingly increasing on-chip
instruction memory areaor instruction distribution bandwidth. 1n reconfigurable device design, we
will learn that a single instruction per datapath islimiting and that afew additional instructions are
inexpensive, alowing the devicesto cope with awider range of computational tasks efficiently.

15.4.1 Microprocessors

Over the past two decade, microprocessors have steadily increased their word size and their
cache size. While these trends allow larger tasks to fit in on-chip caches and allow processors
to handle larger word operations in a single cycle, the trends also make processors less and less
efficient in their use of die area. While some large word operations are required, a larger and
larger fraction of the operations executed by modern processors use only a small portion of the
wide datapath. The computationally critical portions of programs occupy only small portions of
the instruction and data cache.

We can continue to improve aggregate processor performance by using more silicon in this
manner, but the performance per unit area will steadily decrease. To the extent that silicon area
is inexpensive, task recompilation is hard or unacceptable, and various forms of parallelism are
difficult to achieve, the current trends have their value.

However, to the extent we wish to engineer better silicon system which do more with less
resources, these trends are now yielding diminishing returns. We can manage more programmable
compute elements than a single, central word-wide, ALU on modern IC dies. Reconfiguration
allows us to do this without paying a prohibitive costs for increased instruction distribution as we
go to more, independently controlled computing units.

15.4.2 Multiprocessors

The conventional view of multiprocessing is that we replicate the entire microprocessor and
place these replicas on the same board or die. At best, this allows aggregate performance to
improve with additional areadedicated to additional processors. However, it entails alarge amount
of unnecessary cost, replicating entire processors when many portions of the processor may not
need to be replicated. Further, coupling between processorsis poor, at best, entailing 10'sto 100’s

315

of cycles of latency to move data from one processing element to another and significant overhead
to coordinate the activities of multiple processing units.

Most of the task which have generaly been “good” multiprocessor applications are very
regular computing tasks for which configured, systolic dataflow can provide more area efficient
implementations. For the sake of intuition, consider an image processing task where we need to
perform 100 operations on each pixel. We can divide this task among » conventional processors,
where each processor must have memory to hold the 100 operations and must pay overhead cycles
for communication, as necessary, among the n processors. Alternately, wecan configureahardware
pipeline to process the data. If we alocate 100 compute elements, each compute element in the
configured pipeline needsto only executeitsone operation. Direct connections between computing
elements transport data avoiding additional overhead cycles. To get the same throughput asthe 100
element systolic design, the multiprocessor implementation would need, at least, 100 processors.
In terms of instruction memory alone, the multiprocessor implementation requires memory areato
hold 9900 more instructions than the systolic implementation, making it significantly larger just to
support the same throughpui.

The traditional strength of microprocessors has been their ability to pack large computations
into small area by reusing central computing resources. This tight packing of functionality comes
at the cost of adecrease in computational density aswe saw in Chapter 4 and Section 15.3.2. When
we are willing to pay area to increase throughput, the traditional microprocessor architecture is
not efficient since it brings with it the baggage of a large investment in instruction distribution,
instruction memory, and control which are unnecessary for highly regular tasks. Further, the
i/o structure of conventional processors is designed around heavy sequentialization, creating an
interconnect bottleneck which makes high throughput usage impractical.

316

16. Review of Major Concepts

After reading thisthesis, you should appreciate the following major concepts:

¢ Our reconfigurable computing space, RP-space, is largely characterized by architectural
choicessurrounding the storage, distribution, binding, and control of instructions. [Chapters8
and 9]

¢ These choices about instruction resources, in turn, are largely responsible for defining the
circumstances under which a given architecture within the RP-spaceis most efficient. [Chap-
ter 9]

¢ Using amultilevel configuration scheme, the deployment of chip resources, including those
for instructions, can be deferred until run-time. Consequently, resourceallocation, instruction
distribution, and control can betailored to the needs of the application, making such a device
efficient over abroader range of application characteristicsthan architectureswhose resources
are bound at fabrication time. [Chapter 13]

¢ There are three primary consumers of area on reconfigurable components: (1) instructions,
(2) interconnect, and (3) intermediate data.

— Task descriptions (instructions) are small compared to their physical realizations.
[Chapter 7, Chapter 9, and Section 10.4]

— Nonetheless, instruction storage space is not trivial. A large number of instructions
(typically 10-100) often take up as much space as the active interconnect and computa-
tional elements required to actually perform the instruction. [Chapter 7, Chapter 9, and
Section 10.4]

— We can compressthe areafor an implementation by increasing the instruction to active

area ratio, but the benefits diminish past the point where the total area for stored
instruction and data equal the active areaon which they are evaluated. [Chapter 9]

— The “optimal” amount of each of these resources arise from different sources. [Sec-
tion 10.1]
* Instructions and intermediates are dictated by the computational task to be per-
formed.

* Activeinterconnect and, to alesser extent active computeresources, are dictated by
the ratio between desired computational throughput and primitive computational
speed.

e Interconnect is the dominant feature determining device area in conventional FPGAS. [Sec-
tions 7.1, 7.6, and 7.7]

317

¢ Interconnect requirement growth is superlinear in array size. Consequently, either inter-
connect area will continue to grow relative to non-interconnect area, or gate utilization will
decrease as array sizes grow. [Sections 7.6 and 7.7]

¢ Sincethe non-interconnect areaistrivial compared to network areafor conventional FPGAS,
optimizing for gate utilization is often short sighted and can result in unnecessarily large
implementations. [Section 7.7]

¢ There are two interconnect functions typically required to realize a computation — spatial
transport and temporal transport. To use silicon area most efficiently, these should be
separated and handled via different mechanisms. [Chapter 11, especially Section 11.1]

— Data values can be transported forward in time through registers or memories. While
this ties up register area for the period of transport, it is much cheaper than tying up
critical active, routing resources which occupy much more area.

— Activeinterconnect can easily bethe dominant areafeature on ageneral-purposedevice.
It is used most efficiently when its resources are pipelined and reused at their capacity
level —i.e. wiresand switches should not sit idle holding avalue onceit has propagated
past them. Rather, they should be redeployed to route new data once they have
performed their spatial transport task.

¢ Memory playstwo fundamental rolesin reconfigurable computing architectures: (1) storage
for instructions, (2) retiming of intermediate data. Both roles arisefrom the sharing of expen-
sive, active hardware resources among multiple logical functions. [Identified in Chapters 9
through 11 and summarized in Section 15.1]

¢ Since interconnect is the major consumer of space on FPGAS, conventional architectures
limit the interconnect by depopul ating i nterconnect switches as much as possible. [Chapter 7
especially Sections 7.4 and 7.5]

¢ Physical place and route on devices with limited interconnect is computationally difficult
because it is necessary to simultaneous satisfy alarge number of constraintsin order to find
avalid mapping of the design netlist onto the physical network. [Chapter 12]

¢ We can aleviate the place and route problem in several different ways, each with different
costs:

— Provide rich interconnect (e.g. HP PLASMA). Easier mapping comes at the cost of
greater cell areaand lower computational density. [Section 12.8]

— Provide rich, time-switched interconnect (e.g. UCB DHARMA). Rigid evaluation
levelsand lack of retiming can make this an expensive solution, as well, especially for
larger arrays. [Section 12.8]

— Provide rich retiming and time-switching (e.g. TSFPGA). Cell area can actually be
lower than conventional FPGAS, but is higher than in DPGASs. This scheme sacrifices
the high, peak computational throughput of traditional FPGAs. [Chapter 12]

318

— Eliminate interconnect (e.g. University of Toronto VEGA). This approach saves some
additional area over DPGAS, but at the cost of significantly lower computational
throughput and density than all other options. [Section 12.8]

Our focus and demonstration of these characteristics has been within the limited realm of RP-
space. Nonetheless, most of the features which characterize RP-space show up more generally in
general-purpose computational devices. Consequently, many of the characteristics identified here
may have broader application to the extent they are not dominated by effects abstracted away in
the RP-space model.

319

Terminology

7 Sseetau.
A seelambda.

active computing resources The portions of a general-purpose architecture which actually com-
pute results or transport data— e.g. ALUSs, switches, wires. The term is typically used to
distinguish such resourcesfrom overhead resources used to store descriptions or intermediate
data.

activeinterconnect Switches and wires which actually produce a physical connection between
a source and a destination. The term is used to distinguish resources used to actually
perform switching from descriptions of switching operationsor storagefor intermediate data.
Chapter 7 is primarily focussed on active interconnect, while Chapters 11 and 12 introduce
forms of switched interconnect where the distinction becomes quite important.

bit processing element A generic term for the primitive computational unit which produces one
bit of result. Conventionally, each FPGA LUT isabit processing element, asis each bit-slice
inan SIMD ALU datapath. See Chapter 8.

context A generic term used to refer to a slice of instructions and intermediate data used by a
general-purpose device on asingle cycle. See configuration context and data context.

control stream An independent thread of execution. When the computation varies with time and
data, the control stream determines which sets of instructions are executed on a give cycle.
A computational device may support a single control stream (e.g. processors, SIMD, pure
VLIW) or multiple control streams (e.g. MSIMD, MIMD). See Section 8.5.

configurable computing Computing by configuring interconnect between programmablefunction
units to wire up computations spatially. See Sections 1.3 and 2.3.

configur able computing architectures Architectureswherethereisonly oneor afew instructions
loaded per active computing element and there is limited bandwidth to reload an entire
configuration context. These architectures are used for configurable computing where the
computation istypically arranged via spatial interconnect of computing elements as opposed
to programmabl e computing architectures which realize computation by rapid temporal reuse
of afew, central active computing resources. See Section 2.3.

320

computational density Seefunctional density.

computational throughput Computations performed per unit time. i.e. Operations completed
per unit time.

configuration context The collection of bits which describe the behavior of a general-purpose
machine on one operation cycle. Equivalently, the collection of all instructions required to
specify the behavior of a general-purpose device at one point in time. See Section 2.3.

data context The data used by a general-purpose device on one cycle of execution.

distancedelay The critical path delay through a placed circuit taking into account the distance
between logically adjacent functional units. See Section 12.6.

datapath granularity Datapath width. The number of bit processing elements or interconnect
switches controlled in SIMD fashion by a single instruction. See Section 8.3.1.

deployableresources Resources whose role can be determined at run-time. eg. A memory
which can be used as an instruction store or as a data store; Interconnect which can be used
to distribute instructions or to deliver data between functional units. Distinguished from
resources which are dedicated to a single function at fabrication time. See Section 13.1.

dynamic Marked by a continuous usually productive activity or change. In this context usually
used to distinguish quantities, particularly, instructions, which change on a cycle-by-cycle
basis. Contrast with static and quasistatic. See Section 10.3.4.

dynamic instruction distribution Instruction distribution allowing instructions to change on a
cycle-by-cycle basis. See Section 10.3.4.

DPGA Dynamically Programmable Gate Array — Fine-grained programmable array where each
processing element has a small, local configuration memory allowing processing elementsto
change instructions, array-wide, on a cycle-by-cycle basis. See Chapters 10 and 11.

FPGA Field Programmable Gate Array — A collection of configurable processing units embedded
in a configurable interconnection network. See Sections 2.4 and 4.5.

functional density Computations performed per unit space-time. Usually measured in Ops/\2s.
See Section 2.6.1.

functional diversity The number of different functions which are resident and rapidly accessible
from a unit of computational area. The density of instructions stored on a general-purpose
computing device. See Section 2.6.2.

general-pur pose computing Computing using devices which can be configured to solve any
number of computing tasks. See Section 2.1.

iDPGA Dynamically Programmable Gate Array with input retiming registers—A DPGA including
input retiming registers. See Chapter 11.

321

input depth Thetemporal range of input retiming registersin theiDPGA or similar architectures.
See Chapter 11.

input folding A stylefor reducing the amount of active switching interconnect by sharing crossbar
inputs among multiple sources. See Section 12.2.

instruction Theset of bitswhich describethe behavior of one computational unit and itsassociated
interconnect. See Section 2.2.2.

instruction context See configuration context.
instruction density See functional diversity.

instruction depth Number of instructions per compute element stored local to the compute ele-
ment.

irregular computing task Task which require a large sequence of different computations and
where operations are heavily data-dependent. See Section 2.5.

Kolmogorov complexity Of all programswhich can be used to calculate a particular set of values,
the length of the smallest such one. Ultimately, thisis the least number of bitsinto which a
pieceof datacanbedescribed. Kolmogorov complexity is, primarily, aconceptual description
of the lower bound asthereis no agorthimic way to find such the bound. See any information
theory text such as[CT91].

lambda (\) —half the minimum feature size in asilicon process. Lambdais used to normalize out
the effects of different process sizes when comparing implementations. Area normalized to
A2 unitsis roughly comparable between processes which differ primarily in feature size. See
Section 2.6.1.

low instruction entropy Computing tasks which require a limited set of operations with very
regular flow, admitting to heavy compression of instruction distribution requirements. See
Section 8.3.

lookup table A small, typically programmable, memory where the address bits act as inputs and
data read out serves as an output. An n-input, m-output lookup table can implement any,
deterministic mapping between n input bits and m output bits. We frequently refer to a
k-input, 1-output lookup table asa k-LUT. See Section 2.4.

LUT Look Up Table —see lookup table.

MATRIX Multiple ALU architecture with Reconfigurable Interconnect — A flexible general-
purpose computing architecturewhich defersbinding of instructionsand instruction resources
until use. Instruction storage and distribution resources are unified with datapath compute,
memory, and interconnect resources, allowing the basic instruction architecture to be defined
at run-time. See Chapter 13.

322

metaconfiguration A higher and more primitivelevel of configurationthan traditional instructions
which defines the sources and distribution paths for dynamic control including instructions.
See multi-level configuration. See Section 13.1 and 10.8.2.

microcycle One primitive machine cycle on architectureswhich evaluatelogical tasks over several
smaller clock cycles. See Section 10.5.1. Microcycle evaluation is a common theme in
Chapters 10 through 13.

multicontext Having more than one configuration for the entire general-purpose device. Usualy
used torefer to devicesor architectureswhich hold multiple such configurationson chip. Also
used to describe eval uation schemes which compute aresult using more than one device-wide
configuration. See Chapter 10.

multi-level configuration Hierarchical configurationwherehigher levelsof configuration describe
the architecture, behavior, and distribution used by lower levers of configuration. See
metaconfiguration. See Section 13.1.

output folding A stylefor reducing theamount of active switching interconnect by sharing crossbar
outputs among multiple sinks. See Section 12.2.

partial reconfiguration The ability for individual or small numbers of processing unitsto change
instructions without requiring an entire reload of al instructions across a general-purpose
computing device. See Sections 8.3.3 and 10.3.4.

guasistatic Changing, but on an time scale much slower than standard operation. Anintermediate
point of activity between dynamic and static.

quasistaticinstruction distribution Instructions which change during an application, but do so
slowly compared to the rate of execution. A quasistatic instruction might be in effect for
hundreds of cycles before changing. See Section 10.3.4.

Rent’s Rule Anempirical relationship between the number of i/0’sin and out of acluster of logic
and the number of logical elementsinsidethelogic (V;, = CN? ,..). See Section 7.6.

gates

regular computing task Taskswhich needto repeatedly perform the same collection of operations
to alarge amount of datawith little data-dependent flow control. See Section 2.5.

retiming Changing thetimeat which particular eventsoccur. Inthiswork, used largely to describe
thetransportation of signalsforwardin timebetween the pointintimewhen they are generated
to the point in time when they are consumed. See Section 10.1. Retiming is a major theme
in Chapters 10 through 12.

robust architectural points Design points where we can bound the inefficiency to some constant
percentage when the task has different characteristics from the architecture. See Chapter 9
starting in Section 9.3.

RP-space A high-level abstraction of the reconfigurable computing design space parameterized by
key instruction and interconnect features. See Chapter 9.

323

run-time reconfiguration The ability to change device configuration during acomputational task.

segmentable datapath A SIMD controlled »-bit datapath which can be dynamically or quasi stat-
ically reconfigured to treat the datapath as £, %-bit words, for certain, restricted, values of k.
See Section 13.4.

subarray An organizationa unit in array architectures composed of multiple processing elements
but not the entire device. In the DPGA and TSFPGA, the subarray defines the extent of
local interconnect and the set of processing elements which share common resources such as
decoders and instruction distribution. See Section 10.4.1.

gpatial transport Movement of intermediate data in space from the point of production to the
point of consumption. See Section 11.1.

static Showing little change; characterized by a lack of movement, animation or progression. In
this context used primarily to distinguish values and instructions which do not change during
an operational epic. Contrast with static and quasistatic. See Section 10.3.4.

staticinstruction distribution Instruction distribution where instructions are set at the beginning
of acomputational task and do not changed during execution. See Section 10.3.4.

programmable computing architectures General-purpose computing architectures which heav-
ily and rapidly reuse a single or small number of active computing resources for many
different functions (e.g. conventional microprocessors). See Section 2.3.

tau (7) The delay parameter for a process. One 7 is the delay required for one inverter to drive a
single, equally large inverter.

temporal pipelining Reusing general-purpose resourcesin time to evaluate different components
of asingle logical task. Like spatial pipelining, the result is produced after traversing a
number of pipelining stages. Unlike spatial pipelining, the same physical resources are used
to evaluate each stage of the pipeline. Temporal pipelining reduces spatial requirements,
whereas spatial pipelining increases throughput. See Sections 10.1 and 10.5.1.

temporal transport Movement of intermediate data in time from the microcycle on which the
value is produced to the one whereit is consumed. See Section 11.1.

timestep A particular microcycle in the evaluation of acomputing task. See Section 12.1.

time-switched input register An input register supporting data retiming on architectures which
time-switch their interconnect. Theinput register |loads the value from its associated network
output only when the current timestep matches a programmed value. See Section 12.1.

TSFPGA Time-Switched Field Programmable Gate Array — Fine-grained programmable array
where the physical interconnect is shared and switched in time. See Chapter 12.

yielded computational density The effective computational density which an application or task
extracts from a computational device. Mismatches in datapath granularity, interconnect

324

richness, or control may cause a device to provide computational capacity below its peak.
See Section 2.6.1 and examples given in Chapter 4.

325

Bibliography

[ABI+95]

[ACC*96]

[ADD90]

[AFM+89]

[AKY*96]

[ALO4]

[Alg90]

[Alt94]

[Alt95]

[Alt96]

K. Asanovic, J. Beck, B. Irissou, D. Kingsbury, N. Morgan, and J. Wawrzynek.
The TO Vector Microprocessor. In Hot Chips VIl Proceedings, August 1995.

Rick Amerson, Richard Carter, W. Bruce Culbertson, Phil Kuekes, and Greg Snider.
Plasma: An FPGA for Million Gate Systems. In Proceedings of the Inter national
Symposium on Field Programmable Gate Arrays, pages 10-16, February 1996.

Creigton Asato, Christoph Ditzen, and Suresh Dholakia. A Data-Path Multiplier
with Automatic Insertion of Pipeline Stages. |EEE Journal of Solid-Sate Circuits,
25(2):383-387, August 1990.

Kazutami Arimoto, Kazuyasu Fujishima, Yoshio Matsuda, Masaki Tsukude,
Tukasa Oishi, Wataru Wakamiya, Shin-Ichi Satoh, Michihiro Yamada, and Takao
Nakano. A 60-ns3.3-V-Only 16-Mbit DRAM with a Multipurpose Register. IEEE
Journal of Solid-Sate Circuits, 24(5):1176-1183, October 1989.

Yoshiharu Aimoto, Tohru Kimura, Yoshikazu Yabe, Hideki Heiuchi, Youetsu
Nakazawa, Masato M otomura, TakuyaKoga, Yoshihiro Fujita, Masayuki Hamada,
Takaho Tanigawa, Hajime Nobusawa, and Kuniaki Koyama. A 7.68GIPS3.84GB/s
1W Pardlel Image-Processing RAM Integrating a 16Mb DRAM and 128 Pro-
cessors. In 1996 IEEE International Solid-State Circuits Conference, Digst of
Technical Papers, pages 372—373. |EEE, February 1996.

AdityaA. Agarwal and David Lewis. Routing Architecturesfor Hierarchical Field
Programmable Gate Arrays. In Proceedings 1994 | EEE International Conference
on Computer Design, pages 475-478. |EEE, October 1994.

Algotronix Ltd., Edinburgh, UK. The Configurable Logic Data Book, 1990.

Altera Corporation, 2610 Orchard Parkway, San Jose, CA 95134-2020. FLEX
8000 Handbook, May 1994.

AlteraCorporation, 2610 Orchard Parkway, San Jose, CA 95134-2020. Data Book,
March 1995.

Altera Corporation, 2610 Orchard Parkway, San Jose, CA 95134-2020. Digital
Sgnal Processing in FLEX Devices, January 1996.

326

[ANAB+92]

[ANH*88]

[AOT+94]

[AS93]

[ASO*90]

[Atmo4]

[ATTO4]

[ATTOS5]

[AWG94]

[BAB*95]

Fuad Abu-Nofal, Rick Avra, Kanti Bhabuthmal, Rob Bhamidipaty, Greg Blanck,
Andy Charnas, Peter DelVecchio, Joe Grass, Jodl Grinberg, Norm Hayes, George
Haber, Jim Hunt, Govind Kizhepat, Adam Maamy, Al Marston, Kaushal Mehta,
Sunil Nanda, Hoa Van Nguyen, Rajiv Patel, Andy Ray, Jim Reaves, Alan Rogers,
Stefan Rusu, Tom Shay, Irwan Sidharta, Terry Tham, Peter Tong, Richard Trauben,
Anthony Wong, David Yee, Naeem Maan, Don Steiss, and Lynn Youngs. A
Three-Million-Transistor Microprocessor. 1n 1992 |EEE International Solid-State
Circuits Conference, Digest of Technical Papers, pages 108-109. |EEE, February
1992.

Masakazu Aoki, Yoshinobu Nakagome, Masashi Horiguchi, Hitoshi Tanaka,
Shin'ichi Ikenaga, Jun Etoh, Yoshifumi Kawamoto, Shin'ichiro Kimura, Eiji
Takeda, Hideo Sunami, and Kiyoo Itoh. A 60-ns 16-Mbit CMOS DRAM with a
Transposed Data-Line Structure. |EEE Journal of Solid-State Circuits, 23(5):1113—
1119, October 1988.

Mikio Asakura, Tsukasa Ooishi, MAsaki Tsukude, Shigeki Tomishima, Takahisa
Eimori, Hideto Hidaka, Yoshikazu Ohno, Kazutani Arimoto, Kazuyasu Fujishima,
Tadashi Nishimura, and Tsutomu Yoshihara. An Experimental 256-Mb DRAM
with Boosted Sense-Ground Scheme. |EEE Journal of Solid-Sate Circuits,
29(11):1303-1308, November 1994.

Peter Athanas and Harvey F. Silverman. Processor Reconfiguration Through
Instruction-Set Metamorphosis. IEEE Computer, 26(3):11-18, March 1993.

Shingo Aizaki, Toshiyuki Shimizu, Masayoshi Ohkawa, Kazuhiko Abe, Akane
Aizaki, Manabu Ando, Osamu Kudoh, and Isao Sasaki. A 15-ns 4-Mb CMOS
SRAM. |EEE Journal of Solid-State Circuits, 25(5):1063-1067, October 1990.

Atmel Corporation, 2125 O’ Nel Drive, San Jose, CA 95131. Configurable Logic
Design and Application Book, 1994.

ATT Microelectronics, 555 Union Boulevard, Room 21Q-133BA, Allentown, PA
18103. Immplementing and Optimizing Multipliers in ORCA FPGAs, November
1994.

ATT Microelectronics, 555 Union Boulevard, Room 21Q-133BA, Allentown, PA
18103. AT& T Field-Programmable Gate Arrays Data Book, April 1995.

Lalit Agarwal, Mike Wazlowski, and Sumit Ghosh. An Asynchronous Approach
to Efficient Execution of Programs on Adaptive Architectures Utilizing FPGAS.
In Duncan Buell and Ken Pocek, editors, Proceedings of the IEEE Workshop
on FPGAs for Custom Computing Machines, pages 101-1100, Los Alamitos,
California, April 1994. |EEE Computer Society, |EEE Computer Society Press.

William Bowhill, Randy Allmon, Shane Bell, Elizabeth Cooper, Dale Donchin,
John Edmondson, Timothy Fischer, Paul Gronowski, Anil Jain, Patricia Kroe-
sen, Bruce Loughlin, Ronald Preston, Paul Rubinfeld, Michael Smith, Stephen

327

[BBB+95]

[BCE+94]

[BCH*84]

[BCK93]

[BDK94]

[BDN84]

[BFRV92]

[Bhao3]

[BLMRS3]

[BMNW87]

Thierauf, and Gilbert Wolrich. A 300MHz 64b Quad-Issue CMOS RISC Micro-
processor. In 1995 |EEE International Solid-Sate Circuits Conference, Digest of
Technical Papers, pages 182-183. |EEE, February 1995.

David Bearden, Roger Bailey, Brad Beavers, Carlos Gutierrez, Chin-Cheng Kau,
Kurt Lewchuk, Paul Rossback, and Mike Tabom. A 133MHz 64b Four-1ssue
CMOS Microprocessor. In 1995 |EEE International Solid-State Circuits Confer-
ence, Digest of Technical Papers, pages 174-175. |EEE, February 1995.

Jeremy Brown, Derrick Chen, lan Edlick, Edward Tau, and André DeHon. A 1u
CMOS Dynamically Programmable Gate Array. Transit Note 112, MIT Artificial
Intelligence Laboratory, November 1994. AnonymousFTPtransit.ai . mt.
edu: transit-notes/tnll2. ps. Z

Erich K. Baier, Rainer Clemen, Werner Haug, Walter Fischer, Rolf Mueller,
Wolf Dieter Loehlein, and Horst Barsuhn. A Fast 256K DRAM Designed for
aWide Range of Applications. |EEE Journal of Solid-Sate Circuits, 19(5), Octo-
ber 1984.

NarasimhaB. Bhat, Kamal Chaudhary, and Ernest S. Kuh. Performance-Oriented
Fully Routable Dynamic Architecture for a Field Programmable Logic Device.
UCB/ERL M93/42, University of California, Berkeley, June 1993.

Michael Bolotski, André DeHon, and Thomas F. Knight, Jr. Unifying FPGAs and
SIMD Arrays. In FPGA Workshop, 1994. proceedings not available outside of the
workshop; paper available as Transit Note #95 Anonymous FTPt ransi t. ai .
mt.edu: transit-notes/tn95. ps. Z. AnonymousFTPtransit. ai.
m t . edu: paper s/ dpga- f pga94. ps. Z.

John J. Barnes, Armando L. DeJesus, and David Novosel. Circuit Techniques
for a25ns 16K x 1 SRAM Using Address-Transition Detection. |EEE Journal of
Solid-Sate Circuits, 19(4):455-460, August 1984.

Stephen D. Brown, Robert J. Francis, Jonathan Rose, and Zvonko G. Vranesic.
Field-Programmable Gate Arrays. Kluwer Academic Publishers, 101 Philip Drive,
Assinippi Park, Norwell, Massachusetts, 02061 USA, 1992.

NarasimhaB. Bhat. Novel Techniquesfor High Performance Field Programmable
Logic Devices. UCB/ERL M93/80, University of California, Berkeley, November
1993.

Ted Burggraff, Al Love, Richard Mam, and Ann Rudy. Thel|BM Los GatosLogic
Simulation Machine Hardware. In Proceedings of the International Conference on
Computer Design, pages 584-587, October 1983.

Gerald Boudun, Pierre Mollier, Jean Nuez, and Franck Wallart. A 30ns-32b Pro-
grammable Arithmetic Operator. In 1987 |EEE International Solid-Sate Circuits
Conference, Digst of Technical Papers, pages 54-55. |EEE, February 1987.

328

[Bri90]

[Bro92]

[BRVSY)]

[BRV92]

[BSV+95]

[BTA93]

[CBBFS87]

[CC86]

[CCSta1]

[CD96]

[CDd*95]

Timothy Bridges. The GPA Machine: A Generaly Partitionable MSIMD Archi-
tecture. In Proceedings of the Third Symposium on The Frontiers for Massively
Parallel Computations, pages 196—202. | EEE, 1990.

Stephen Brown. Routing Algorithms and Architectures for Field-Programamble
Gate Arrays. PhD thesis, University of Toronto, January 1992.

Patrice Bertin, Didier Roncin, and Jean Vuillemin. Introduction to Programmable
Active Memories. PRL Report 3, DEC Paris Research Laboratory, 85, Av. Victor
Hugo, 92563 Rueil-Mamaison Cedex, France, June 1989.

Patrice Bertin, Didier Roncin, and Jean Vuillemin. Programmable Active Memo-
ries: A Performance Assessment. Prl report, DEC Paris Reserch Laboratory, 85,
Av. Victor Hugo, 92563 Rueil-Mamaison Cedex, France, June 1992.

Michael Bolotski, Thomas Simon, Carlin Vieri, Rajeevan Amirthargjah, and
Thomas F. Knight Jr. Abacus. A 1024 Processor 8ns SIMD Array. In Ad-
vanced Research in VLS 1995, 1995. Anonymous FTPftp. ai . mt. edu:
pub/ user s/ msha/ arvl si 95. ps. gz.

Jonathan Babb, Russell Tessier, and Anant Agarwal. Virtual Wires: Overcoming
Pin Limitations in FPGA-based Logic Emulators. In Duncan A. Buell and Ken-
neth L. Pocek, editors, Proceedings of the |EEE Workshop on FPGAs for Custom
Computing Machines, pages 142—151, LosAlamitos, California, April 1993. IEEE
Computer Society, |IEEE Computer Society Press.

Craig Caren, Bruce Benjamin, James Boddie, and Michael Fuccio. A 60ns CMOS
DSP with On-Chip Instruction Cache. In 1987 IEEE International Solid-State
Circuits Conference, Digst of Technical Papers, pages 156-157. |EEE, February
1987.

Remi Cissou and Remy Chapelle. A High-Speed 640kbit CMOS RAM. |EEE
Journal of Solid-Sate Circuits, 21(3):390-396, June 1986.

Terry Chappell, Barbara Chappell, Stanley Schuster, James Allan, Stephen Klep-
ner, Rgjiv Joshi, and Robert Franch. A 2-ns Cycle, 3.8ns Access 512-kb CMOS
ECL SRAM with a Fully Pipelined Architecture. IEEE Journal of Solid-State
Circuits, 26(11):1577 ff., November 1991.

Derrick Chen and André DeHon. TSFPGA: A Fine-Grain Reconfigurable Archi-
tecture with Time-Switched Interconnect. Transit Note 134, MIT Artificia Intel-
ligence Laboratory, January 1996. Anonymous FTPtransit.ai.nmt. edu:
transit-notes/tnl34. ps. Z

A.Charmas, A. Dald, P. deDood, P. Ferolito, B. Frederick, O. Geva, D. Greenhill,
H. Hingarh, J. Kaku, L. Kohn, L. Lev, M. Levitt, R. Melanson, S. Mitra, R. Sundar,
M. Tamjidi, P Wang, D. Wendell, R. Yu, and G. Zyner. A 64b Microprocessor with

329

[CDF+86]

[CDF+95]

[CDH*88]

[CH84]

[Cha93]

[Cho89]

[CKC*89]

[Clags]

[cLCWM S96]

[CLRA90]

Multimedia Support. In 1995 |EEE International Solid-State Circuits Conference,
Digest of Technical Papers, pages 178-179. |EEE, February 1995.

William S. Carter, Khue Duong, Ross H. Freeman, Hung-Cheng Hsieh, Jason Y.
Ja, John E. Mahoney, Luan T. Ngo, and Shelly L. Sze. A User Programmable
ReconfigurableLogic Array. In|EEE 1986 CustomIntegrated Circuits Conference,
pages 233-235. |EEE, May 1986.

Jonathan Change, Anand Dharmargj, Michael Filardo, Astushi ke, Bala Joshi,
Takeshi Kitahara, Anand Krishnamoorthy, Simon Li, Sanjay Mansingh, Osamu
Moriyama, Arvind Narayan, Kesirgju Rao, Murugappan Ramaswami, Farnad Saj-
jadian, Mike Simone, Gene Shen, Ravi Swami, John Szeto, Viji Thirumalaiswamy,
Shalesh Thusoo, and DeFrost Tovey. SPARC64+: Hal's Second Generation 64-
bit SPARC Processor. In Proceedings of Hot Chips VII, page 3.2, August 1995.
http://ww. hal . com docs/ PS/ spar c64_pl us. ps.

Sow Chu, Jan Dikken, Cornelis Hartgring, Frans List, John Raemaekers, Simon
Bell, Brendan Walsh, and Roelof Salters. A 25-ns Low-Power Full-CMOS 1-
Mbit (128K x8) SRAM. IEEE Journal of Solid-Sate Circuits, 23(5):1078-1084,
October 1988.

Larry F. Childsand Ryan T. Hirose. An 18 ns4K x4 CMOS SRAM. |IEEE Journal
of Solid-State Circuits, 19(5):545-551, October 1984.

Kenneth David Chapman. Fast Integer Multipliers fit in FPGAs. EDN,
39(10):80, May 12 1993. AnonymousFTPwww. ednmag. com EDN di _si g/
Dl 1223Z. ZI P.

Paul Chow, editor. The MIPS-X RISC Microprocessor. Kluwer Academic Pub-
lishers, 1989.

Dagje Chin, Changhyun Kim, Yunho Choi, Dong-Sun Min, Hong Sun Hwang,
Hoon Choi, Sooin Cho, Tae Young Chung, Chan J. Park, Yunseung Shin, Kwang-
pyuk Suh, and Yong Park. An Experimental 16-Mbit DRAM with Reduced Peak-
Current Noise. |EEE Journal of Solid-State Circuits, 24(5):1191-1198, October
1989.

Peter Clarke. Pilkington Preps ReconfigurableVideo DSP. Electronic Engineering
Times, page 16, August 7 1995. Online briefing ht t p: / / www. prrel . com
dsp. htm .

Chih chang Lin, Douglas Chang, Yu-Liang Wu, and Malgorzata M arek-Sadowska.
Time-Multiplexed Routing Resources for FPGA Design. In Proceedings of the
Custom Integrated Circuits Conference, May 1996.

Mike Cai, Daniel Luthi, Peter Ruetz, and Peng Ang. A 40 MHz Programmable and
Reconfigurable Filter Processor. In Proceedings of the 1990 Custom Integrated
Circuits Conference, pages 13.2.1-13.2.4. IEEE, May 1990.

330

[CME93]

[CROZ]

[CSA+O1]

[CTO1]

[CTK*89]

[D+92]

[DeH94]

[Dens2]

[DMNSV8g]

[Don74]

[Don79]

[Dur94]

Chi-Jui Chou, Satish Mohanakrishnan, and Joseph B. Evans. FPGA Implemen-
tation of Digital Filters. In International Conference on Sgnal Processing Ap-
plications and Technology, 1993. Anonymous FTPft p. ti sl. ukans. edu:
pub/ proj ects/ DSP/ FPGA/ Digital _Fil ters. ps.

Dev C. Chen and Jan M. Rabaey. A Reconfigurable Multiprocessor 1C for Rapid
Prototyping of Algorithmic-Specific High-Speed DSP Data Paths. |EEE Journal
of Solid-State Circuits, 27(12):1895-1904, December 1992.

Paul Chow, Soon Ong Seo, Dennis Au, Terrence Choy, Bahram Fallah, David
Lewis, Cherry Li, and Jonathan Rose. A 1.2um CMOS FPGA using Cascaded
Logic Blocks and Segmented Routing. In Will Moore and Wayne Luk, editors,
FPGAs, pages 91-102. Abingdon EE& CS Books, 15 Harcourt Way, Abingdon,
OX14 1NV, UK, 1991.

Thomas Cover and Joy Thomas. Elements of Information Theory. John Wiley and
Sons, Inc., New York, 1991.

Shizuo Chou, Tsuneo Takano, Akio Kita, Fumio Ichikawa, and Masaru Uesugi. A
60-ns 16-Mbit DRAM with aMinimized Sensing Delay Caused by Bit-Line Stray
Capacitance. |EEE Journal of Solid-Sate Circuits, 24(5):1176-1183, October
1989.

William J. Daly et al. The Message-Driven Processor: A Multicomputer Process-
ing Node with Efficient Mechanisms. |EEE Micro, pages 23-39, April 1992.

André DeHon. DPGA-Coupled Microprocessors. Commodity ICs for the Early
21st Century. In Proceedings of the IEEE Workshop on FPGAs for Custom
Computing Machines, April 1994. Anonymous FTPtransit.ai.mt. edu:
paper s/ dpga- proc-fccnb4. ps. Z

Monty Denneau. The Yorktown Simulation Engine. In 19th Design Automation
Conference, pages 55-59. |EEE, 1982.

Srinivas Devadas, Hi-Keung Ma, A.R. Newton, and Alberto Sangiovanni-
Vincentelli. MUSTANG: State Assignment of Finite State Machines Targeting
Multilevel Logic Implementations. |EEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, 7(12):1290-1300, December 1988.

Wilm E. Donath. Equivalence of Memory to “Random Logic”. 1BM Journal of
Research and Development, 18(5):401-407, September 1974.

Wilm E. Donath. Placement and Average Interconnection Lengths of Computer
Logic. |EEE Transactions on Circuits and Systms, 26(4):272-277, April 1979.

Serge Durand. FPGA DL X processor. August 22, 1994 posting to conp. ar ch.
f pga. Author may be reached a dur and@ sl sun4. epfl . ch, December
1994.

331

[DWA+92]

[EGOS5]

[EH94]

[Eps95]

[FA93]

[FHRO4]

[FHT+92]

[FKM83]

[FKS91]

[Flye6]

[Fly72]

Daniel Dobberpuhl, Richard Witek, Randy Allmon, Robert Anglin, Sharon Brit-
ton, LindaChao, Robert Conrad, Daniel Dever, Bruce Gieseke, Gregory Hoeppner,
John Kowaleski, Kathryn Kuchler, Maureen Ladd, Michael Leary, Liam Madden,
Edward McLellan, Derrick Meyer, James Montanaro, Donald Priore, Vidya Ra-
jagopalan, Sridhar Samudrala, and Sribalan Santhanam. A 200MHz 64b Dual-
Issue CMOS Microprocessor. In 1992 |EEE International Solid-State Circuits
Conference, Digest of Technical Papers, pages 106-107. |EEE, February 1992.

Andrew Essen and Stephen Goldstein. Performance Evaluation of the Superscalar
Speculative Execution HaL SPARC64 Processor. In Proceedings of Hot Chips
VI, page 3.1, August 1995. htt p: // ww hal . coni docs/ PS/ spar c64_
perf. ps.

James G. Eldredge and Brad L. Hutchings. Density Enhancement of a Neural
Network Using FPGAs and Run-Time Reconfiguration. In Duncan A. Buell and
Kenneth L. Pocek, editors, Proceedings of the IEEE Workshop on FPGAs for
Custom Computing Machines, pages 180-188, Los Alamitos, California, April
1994. |EEE Computer Society, |EEE Computer Society Press.

Dave Epstein. Chromatic Raises the Multimedia Bar. Microprocessor Report,
9(14):23ff., October 231995. ht t p: / / www. chi panal yst. coni report/
report9_14/page23. htm .

Jahil Fadavi-Ardekani. M x N Booth Encoded Multiplier Generator Using Opti-
mized Wallace Trees. |EEE Transactions on Very Large Scale Integration (VLS)
Systems, 1(2):120-125, June 1993.

Allan Fisher, Peter Highnam, and Todd Rockoff. A Four-Processor Building Block
for SIMD Processor Arrays. |EEE Journal of Solid-State Circuits, 25(2):369-375,
April 1994.

Hiroshige Fujii, Chikahiro Hori, Tomoji Takada, Naoyuki Hatanaka, Tatsuhiko
Demura, and Goichi Ootomo. A Floating-Point Cell Library and a 100-MFLOPS
Image Signal Processor. |EEE Journal of Solid-State Circuits, 27(7):1080-1088,
July 1992.

Allan L. Fisher, H. T. Kung, and Louis M. Monier. Architecture of the PSC: A
Programmable Systolic Chip. In Proceedings of the 10th Annual International
Symposium on Computer Architecture, pages 48-53, June 1983.

Richard Forsyth, Bob Krysiak, and Roger Shepherd. T9000 — Superscalar Trans-
puter. In Proceedings of Hot Chips 111, pages 8.15-8.25, August 1991.

Michael J. Flynn. Very High Speed Computing Systems. Proceedings of the | EEE,
54:1901-1909, 1966.

Michael J. Flynn. Some Computer Organizations and Their Effectiveness. IEEE
Transactions on Computers, C-21(9):948-960, September 1972.

332

[FM82]

[FOS*89]

[Fos96]

[FOW+86]

[FPH*90]

[Frao2]

[Fred4]

[FRV+86]

[FSO* 86]

[Gam81]

[GBB*96]

C. M. Fiduccia and R. M. Mattheyses. A Linear Time Heuristic for Improving
Network Partitions. In Proceedings of the 19th Design Automation Conference,
pages 175-181, 1982.

Syuso Fujii, Masaki Ogihara, Mitsuru Shimizu, Munehiro Yoshida, Kenji Numata,
Takahiko Hara, Shigeyoshi Watanabe, Shizuo Sawada, Tomohisa Mizuno, Jun-
pei Kumagai, Susumu Yoshikawa, Seiji Kaki, Yoshikazu Saito, Hideaki Aochi,
Takeshi Hamamoto, and Koichi Toita. A 45-ns 16-Mbit DRAM with Triple-well
Structure. 1EEE Journal of Solid-State Circuits, 24(5):1170-1175, October 1989.

Richard Foss. Implementing Application Specific Memory. In 1996 |EEE Inter-
national Solid-State Circuits Conference, pages 260-261. | EEE, February 1996.

Tohru Furuyama, Takashi Ohshawa, Yohji Watanabe, Hidemi Ishiuchi, Toshiharu
Watanabe, Takeshi Tanaka, Kenji Natori, and Osamu Ozawa. An Experimental 4-
Mbit CMOS DRAM. |EEE Journal of Solid-Sate Circuits, 21(5):605 ff., October
1986.

Stephen Flannagan, Perry Pelley, Norman Herr, Bruce Engles, Taisheng Feng,
Scott Nogle, John Eagan, Robert Dunnigan, Lawrence Day, and Roger Kung. 8-
ns CMOS 64K x4 and 256K x1 SRAM’s. |EEE Journal of Solid-Sate Circuits,
25(5):1049-1054, October 1990.

Robert Francis. Technology Mapping for Lookup-Table Based Field-
Programmable Gate Arrays. PhD thesis, University of Toronto, 1992.

Philip Freidin. R16: A 20MHz 16-bit RISC Processor in a XC4005. Informal pre-
sentation at FCCM’ 94 and conp. ar ch. f pga posting. Author may be reached
afliptron@etcom com April 1994.

Stephen Flannagan, Paul Reed, Peter Voss, Scott Nogle, Lawrence Day, David
Sheng, John Barnes, and Roger Kung. Two 13-ns 64K CMOS SRAM’s with Very
Low Active Power and Improved Asynchronous Circuit Techniques. |EEE Journal
of Solid-State Circuits, 21(5):692—703, October 1986.

Syuso Fujii, Shozo Saito, Yoshio Okada, Masayuki Sato, Shizuo Sawada, Satoshi
Shinozaki, Kenji Natori, and Osamu Ozawa. A 50-pA Standby 1M x 1/256K x 4
CMOS DRAM with High-Speed Sense Amplifier. 1EEE Journal of Solid-State
Circuits, 21(5):643-647, October 1986.

Abbas El Gamal. Two-Dimensional Stochastic Model for Interconnections in
Master Slice Integrated Circuits. |EEE Transactions on Circuits and Systems,
28(2):127-138, February 1981.

Paul Gronowski, Peter Bannon, Michael Bertone, Randel Blake-Campos, Gre-
gory Bouchard, William Bowhill, David Carlson, Ruben Castelino, Dale Donchin,
Richard Fromm, Mary Gowan, Anil Jain, Bruce Loughlin, Shekhar Mehta, Jeanne

333

[GGA+85]

[GHH*96]

[GHK+91]

[GHS*87]

[GK89]

[GMO3]

[GN94]

[GNABY3]

[GNCt90]

[GOI95]

Meyer, Robert Mueller, Andy Olesin, Tung Pham, Ronald Preston, and Paul
Robinfeld. A 433MHz 64b Quad-1ssue RISC Microprocessor. In 1996 |EEE
International Solid-State Circuits Conference, Digest of Technical Papers, pages
222-223. |EEE, February 1996.

Abbas El Gamal, David Gluss, Peng-Huat Ang, Jonathan Greene, and Justin
Reyneri. A CMOS 32b Wallace Tree Multiplier-Accumulator. In 1985 IEEE
International Solid-State Circuits Conference, Digst of Technical Papers, pages
194-195. |EEE, February 1985.

Henry Green, Scott Harper, Rhett Hudson, Wencheng Li, Daniel Lough, Qiang
Lu, Shah Musa, Brenda O’ Connor, Kevin Paar, and Peter Athanas. The Hokie
Instant RISC Microprocessor. WWW ht t p: / / ww. ee. vt . edu/ cour ses/
ee6504_at hanas/ rapi d. ht m , 1996.

Maya Gokhale, William Holmes, Andrew Kopser, Sara Lucas, Ronald Minnich,
Douglas Sweely, and Daniel Lopresti. Building and Using aHighly Programmable
Logic Array. |EEE Computer, 24(1):81-89, January 1991.

Will Gubbels, Cornelis Hartgring, Roel of Salters, Jos Lammerts, Michael Tooher,
Patrick Hens, Joseph Bastiaens, Jan Dijk, and Marc Sprokel. A 40-ns/100-pF L ow-
Power Full-CMOS 256K (32K x8) SRAM. |EEE Journal of Solid-Sate Circuits,
22(5):741 ff., October 1987.

John Gray and Tom Kean. Configurable Hardware: A New Paradigm for Com-
putation. In Charles Seitz, editor, Advanced Research in VLS proceedings of teh
Decennial Caltech Conference on VLS, pages 279-295, March 1989.

Maya Gokhale and Ron Minnich. FPGA Computing in a Data Parallel C. In
Duncan A. Buell and Kenneth L. Pocek, editors, Proceedings of the |EEE Work-
shop on FPGAs for Custom Computing Machines, pages 94-101, Los Alamitos,
California, April 1993. |IEEE Computer Society, |EEE Computer Society Press.

Greg Godlin and Bruce Newgard. 16-TAP, 8-Bit FIR Filter Applications Guide.
Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124, November 1994. htt p:
/[www. xi |'inx.com appnotes/fir_filt. pdf.

Jeffrey Gray, Andrew Naylor, Arthur Abnous, and Nader Bagherzadeh. VIPER: A
VLIW Integer Microprocessor. |EEE Journal of Solid-State Circuits, 28(12):1377—
1382, December 1993.

Carla Golla, Fulvio Nava, Franco Cavallotti, Alessandro Cremonesi, and Giulio
Casagrande. 30-M Samples/s Programmable Filter Processor. |EEE Journal of
Solid-Sate Circuits, 25(6):1502—1509, December 1990.

Eric Gayles, Robert Owens, and Mary Jane Irwin. The MGAP-2: A Micro-
Grained Massively Parallel Array Processor. In Eith Annual 1EEE International
AS C Conference and Exhibit, pages 333-337, April 1995.

334

[GOK+92]

[Gol87]

[Grag4]

[Grage]

[Gro87]

[GSNSO2]

[HAH+92]

[Has87]

[Haw91]

[HBDY4]

[HDJ*88]

[HFML85]

Hiroyuki Goto, Hiroaki Ohkubo, Kenji Kondou, Masayoshi Ohkawa, Hitoshi
Mitani, Shinichi Horiba, Masakazu Soeda, Fumihiko Hayashi, Yutaro Hachiya,
Toshiyuki Shimizu, Manabu Ando, and Zensuke Matsuda. A 3.3-V 12-ns 16-Mb
SRAM. IEEE Journal of Solid-State Circuits, 27(11):1490-1496, November 1992.

Alex Goldberger. A High Performance, Easy to Program DSP for General Purpose
Applications. In Mini/Micro Northeast Conference Record, pages 27/3 1-10, April
1987.

Jan Gray. homebuilt processors using FPGASs (long). December 11, 1994 posting
toconp. ar ch. f pga. Author may bereached atj sgr ay @ x. net com com
December 1994.

Jan Gray. j32 FPGA Processor. Personal communications j sgray @ X.
net com com February 1996.

Robert Grondalski. A VLSI Chip Set for Massively Parallel Architecture. In IEEE
International Solid-State Circuits Conference, pages 198-199, 1987.

Gensuke Goto, Tomio Sato, Masao Nakgjima, and Takao Sukemura. A 54x54-
b Regularly Structured Tree Multiplier. 1EEE Journal of Solid-Sate Circuits,
27(9):1229-1236, July 1992.

Hideto Hidaka, Kazutami Arimoto, Kazutoshi Hirayama, Masanori Hayashikoshi,
Mikio Asakura, Masaki Tsukude, Tsukasa Qishi, Shinji Kawai, Katsuhiro
Suma, Yasuhiro Konishi, Koji Tanaka, Wataru Wakamiya, Yoshikazu Ohno, and
Kazuyasu Fujishima. A 34-ns 16-Mb DRAM with Controllable Voltage Down-
Converter. |EEE Journal of Solid-State Circuits, 27(7):1020 ff., July 1992.

Chuck Hastings. When is a Memory Not a Memory. In Proceedings of the
Electro/87 Mini/Micro Northeast, pages 1132, 4/5/1-18, 1987.

David Hawley. Advanced PLD Architectures. In Will Moore and Wayne L uk, edi-
tors, FPGAs, pages 11-23. Abingdon EE& CSBooks, 15 Harcourt Way, Abingdon,
OX14 1INV, UK, 1991.

Raobert Heaton, Donald Blevins, and Edward Davis. A Bit-Serial VLS| Array Pro-
cessing Chipfor ImageProcesing. |EEE Journal of Solid-State Circuits, 25(2):364—
368, April 1994.

Hung-Cheng Hsieh, Khue Duong, Jason Y. Ja, Roy Kanazawa, Luan T. Ngo,
Liane G. Tinkey, Ross H. Freeman, and William S. Carter. A 9000-Gate User-
Programmable Gate Array. In IEEE 1988 Custom Integrated Circuits Conference,
pages 15.3.1-7. IEEE, May 1988.

Dennis A. Henlin, Michael T. Fertsch, Moshe Mazin, and Edard T. Lewis. A
16x 16 Bit Pipelined Multiplier Macrocell. |1EEE Journal of Solid-Sate Circuits,
20(2):542-547, April 1985.

335

[HHC*87]

[HKKM96]

[HKM+90]

[HOW+86]

[HP9O]

[HS84]

[HTO5]

[1D95]

[1IF+95]

[IKM+94]

Mark Horowitz, John Hennessy, Paul Chow, Glenn Gulak, John Acken, Anant
Agarwal, Chorng-Yeung Chu, Scott McFarling, Steven Przybylski, Steven
Richardson, Arturo Salz, Richard Simoni, Don Stark, Peter Steenkiste, Steven
Tjiang, and Malcom Wing. A 32b Microprocessor with On-Chip 2K byte Instruc-
tion Cache. 1n 1987 | EEE International Solid-Sate Circuits Conference, Digest of
Technical Papers, pages 30-31. |IEEE, February 1987.

Makoto Hanawa, Kenji Kaneko, Tatsuya Kawashimo, and Hiroshi Maruyama. A
4.3 ns 0.3um CMOS 54 x 54 Multiplier Using Precharged Pass-Transistor Logic.
In 1996 |EEE International Solid-State Circuits Conference, Digst of Technical
Papers, pages 364—365. |EEE, February 1996.

Toshihiko Hirose, Hirotada Kuriyama, Shuji Murakami, Kojiro Yuzuriha, Takao
Mukai, Kazuhito Tsutsumi, Yasumasa, Nishimura, Yoshio Kohno, and Kenji
Anami. A 20-ns 4-Mb CMOS SRAM with Hierarchical Word Decoding Ar-
chitecture. |[EEE Journal of Solid-State Circuits, 25(5):1068—-1074, October 1990.

Fumio Horiguchi, Mitsugi Ogura, Shigeyoshi Watanabe, Koji Sakui, Naokazu
Miyawaki, Yasuo Itoh, Kei Kurosawa, Fujio Masuoka, and Hisakazu lizuka. A
High-Performance 1-Mbit Dynamic RAM with a Folded Capacitor Cell. IEEE
Journal of Solid-Sate Circuits, 21(6):1076-1082, December 1986.

John Hennessey and David Patterson. Computer Architecture a Quantitative Ap-
proach. Morgan Kaufmann Publishers, Inc., 1990.

Kye S. Hedlund and Lawrence Snyder. Systolic Architectures — A Wafer Scale
Approach. In Proceedings of the IEEE International Conference on Computer
Design: VLS in Computers, pages 604—610. | EEE, | EEE Computer Society Press,
October 1984.

Hannes Hassler and Naofumi Takagi. Function Evaluation by Table Look-up and
Addition. In Proceedings of the 12th Symposium on Computer Arithmetic, pages
10-16, July 1995.

Tsuyoshi Isshiki and Wayne Wei-Ming Dai. High-Level Bit-Serial Datapath Syn-
thesisfor Multi-FPGA Systems. In Proceedings of the ACM/S GDA International
Symposiumon Field-Programmable Gate Arrays, pages167-173. ACM, February
1995.

Hiroyuki Igura, Masanori |zumikawa, Koichiro Furuta, Tohru Mogami, Tadahiko
Horiuchi, and Masakazu Yamashina. 100MHz, 0.55mm?, 2mW, 16-b Stacked-
CMOS Multiplier-Accumulator. In Proceedings of the IEEE 1995 Custom Inte-
grated Circuits Conference, pages 597-600. |EEE, May 1995.

Koichiro Ishibashi, Kunihiro Komiyaji, Sadayuki Morita, Toshiro Aoto, Shuji
Ikeda, Kyoichiro Asayama, Atsuyosi Koike, Toshiaki Yamanaka, Naotaka
Hashimoto, Haruhito lida, Fumio Kojima, Koichi Motohashi, and Katsuro Sasaki.

336

[IYK*88]

[JF72]

[JL95]

[JOSV95]

[KAI+86]

[KCE*85]

[KDK+90]

[KDK+92]

[KDS*96]

A 12.5-ns16-Mb CMOS SRAM with Commaon-Centroid-Geometry-L ayout Sense
Amplifiers. IEEE Journal of Solid-State Circuits, 29(4):411 ff., April 1994.

Michihiro Inoue, Toshio Yamada, Hisakazu Kotani, Hiroyuki Yamauchi, Atsushi
Fujiwara, Junko Matsushima, Hironori Akamatsu, Masanori Fukumoto, Masa-
fumi Kubota, Ichiro Nakao, Nobuo Aoi, Genshu Fuse, Shin-Ichi Ogawa, Shinji
Odanaka, Atsushi Ueno, and Hiroshi Yamamoto. A 16-Mbit DRAM with aRelaxed
Sense-Amplifier-Pitch Open-Bit Line Architecture. IEEE Journal of Solid-State
Circuits, 23(5):1104-1112, October 1988.

J. Robert Jump and Dennis R. Fritsche. Microprogrammed Arrays. |EEE Trans-
actions on Computers, 21(9):974-984, September 1972.

David Jones and David Lewis. A Time-Multiplexed FPGA Architecture for Logic
Emulation. In Proceedings of the IEEE 1995 Custom Integrated Circuits Confer-
ence, pages 495-498. |EEE, May 1995.

Chris Jones, John Oswald, Brian Schoner, and John Villasenor. Issuesin Wireless
Video Coding using Run-time-reconfigurable FPGAs. In Peter Athanas and Ken
Pocek, editors, Proceedings of the IEEE Workshop on FPGAs for Custom Com-
puting Machines, Los Alamitos, California, April 1995. IEEE Computer Society,
|EEE Computer Society Press.

Yoshifumi Kobayashi, Kazutami Arimoto, Yuto lkeda, Masahiro Hatanaka,
Koichiro Mashiko, Michihiro Yamad, and Takao Nakano. A High-Speed 64K x4
CMOS CRAM Using On-Chip Self-Timing Techniques. IEEE Journal of Solid-
Sate Circuits, 21(5):655-661, October 1986.

Howard L. Kaltzer, Pierre D. Coppens, Wayne F. Ellis, John A. Fifield, Daryl J.
Kokoszka, Terry L. Leasure, Christopher P. Miller, Quan Nguyen, Ronald E.
Papritz, Charles S. Patton, J. Michael Poplawski, Jr., Steven W. Tomashot, and
Willem B. Van Der Hoeven. An Experimental 80-ns 1-Mbit DRAM with Fast
Page Operation. |EEE Journal of Solid-State Circuits, 20(5), October 1985.

Yasuhiro Konishi, Katsumi Dosaka, Takahiro Komatsu, Yoshinori Inoue, Masaki
Kumanoya, Youichi Tobita, Hideki Genjyo, Masao Nagatomo, and Tsutomu Yoshi-
hara. A 38-ns4-Mb DRAM with A Battery-Backup (BBU) Mode. |EEE Journal
of Solid-State Circuits, 25(5):1112-1117, October 1990.

Toshiaki Kirihata, Sang Dhong, Koji Kitamura, Toshio Sunaga, Yasunao
Katayama, Roy Scheuerlein, Akashi Satoh, Yoshinori Sakaue, Kentaroh Tobi-
matsu, Koji Hosokawa, Takaki Saitoh, Takefumi Yoshikawa, Hideki Hashimoto,
and MichiyaKazusawa. A 14-ns4-Mb DRAM with 300-mW Active Power. IEEE
Journal of Solid-State Circuits, 27(9):1222 ff., September 1992.

Shinichi Kozu, Masayuki Daito, Yukinori Sugiyama, Hiroaki Suzuki, Hiroshi
Morita, Masahiro Nomura, Kouhei Nadehara, Souichiro Ishibuchi, Masako

337

[Kea89]

[KEK+85]

[KFM+85]

[KFO84]

[KHANW94]

[KHK*93]

[KHN+96]

[KIK*86]

Tokuda, Yoshihisa Inoue, Takashi Nakayama, Hisao Harigai, and Yoichi Yano.
A 100MHz, 0.4W Processor with 200MHz Multiply-Adder, using Pulse-Register
Technique. In 1996 |EEE International Solid-State Circuits Conference, Digest of
Technical Papers, pages 140-141. |EEE, February 1996.

Tom Kean. ConfigurableLogic: A Dynamically Programmable Cellular Architec-
ture and its VLS Implementation. PhD thesis, University of Edinburgh, January
1989.

Yasuo Kobayashi, Hirotsugo Eguchi, Osamu Kudoh, Toshio Hara, Hideyuki Ooka,
I sa0 Sasaki, Manabu Andoh, and Masato Tameda. A 10-pW Standby Power 256K
CMOS SRAM. |EEE Journal of Solid-State Circuits, 20(5):935-940, October
1985.

Masaki Kumanoya, Kazuyasu Fujishima, Hideshi Miyatake, Yasumasa,
Nishimura, Kazunori Saito, Takayuki, Matsukawa, Tsutomu Yoshihara, and Takao
Nakano. A Reliable 1-Mbit DRAM with Multi-Bit-Test Mode. 1EEE Journal of
Solid-Sate Circuits, 20(5), October 1985.

Raobert A. Kertis, Kerlly J. Fitzpatrick, and Kul B. Ohri. A 60 ns 256K x 1 Bit
DRAM Using L D3 Technology and Double-Level Metal Interconnection. |EEE
Journal of Solid-Sate Circuits, 19(5):585-590, October 1984.

Alan Y. Kwentus, Hing-Tsun Hung, and Jr. Alan N. Wilson. An Architecture for
High-Performance/Small-Area Multipliers for Use in Digital Filtering Applica-
tions. IEEE Journal of Solid-State Circuits, 29(2):117-121, February 1994.

GoroKitsukawa, Masashi Horiguchi, Yoshiki Kawajiri, Takayuki Kawahara, Take-
sada Akiba, Yasushi Kawase, Toshikazu Tachibana, Takeshi Sakai, Masakazu
Aoki, Syoji Shukuri, Kazuhiko Sagara, Ryo Nagai, Yuzuru Ohji, Norio Hasegawa,
Natsuki Yokoyama, Teruaki Kisu, Hisaomi Yamashita, Tokuo Kure, and Takashi
Nishida. 256-MbDRAM Circuit Technologiesfor File Applications. |EEE Journal
of Solid-Sate Circuits, 28(11):1105-1112, November 1993.

Masuyoshi Kurokawa, Akihiko Hashiguchi, Ken'ichiro Nakamura, Hiroshi Okuda,
Koji Aoyama, Takao Yamazaki, Mitsuharu Ohki, Mitsuo Soneda, Katsunori
Seno, Ichiro Kumata, Masatoshi Aikawa, Hirokazu Hanaki, and Seiichiro Iwase.
5.4GOPS Linear Array Architecture DPS for Video-Format Conversion. In 1996
IEEE International Solid-State Circuits Conference, Digst of Technical Papers,
pages 254-255. |EEE, February 1996.

Shinpei Kayano, Katsuki Ichinose, Yoshio Kohno, Hirofumi Shinchara, Kenji
Anami, Shuji Murakami, Tomohisa Wada, Yuji Kawai, and Yoichi Akasaka
25-ns 256K x 1/64K x4 CMOS SRAM'’s. |EEE Journal of Solid-Sate Circuits,
21(5):686-691, October 1986.

338

[KK79]

[KKHY88]

[KNK+87]

[Knu71]

[Knu81]

[KOT+96]

[KSB+90]

[KSE*87]

[KSY+84]

[KTO3]

[KTO*87]

Steven |. Kartashev and SvetlanaP. Kartashev. A multicomputer Systemswith Dy-
namic Architecture. |EEE Transactions on Computers, 28(10):704—720, October
1979.

Shoji Kawahito, Michitaka Kameyama, Tatsuo Higuchi, and Haruyaso Yamada. A
32 x 32-bit Multiplier Using Multiple-Valued MOS Current-Mode Circuits. IEEE
Journal of Solid-State Circuits, 23(1):124-132, February 1988.

Kenji Kaneko, TetsuyaNakagawa, Atsushi Kiuchi, Yoshimune Hagiwara, Hirotada
Ueda, and Hitoshi Matsushima. A 50ns DSPwith Parallel Processing Architecture.
In 1987 |IEEE International Solid-State Circuits Conference, Digst of Technical
Papers, pages 158-159. |EEE, February 1987.

Donal E. Knuth. Empirical Study of FORTRAN Programs. Software Practice and
Experience, 1(1):105-133, 1971.

Donal E. Knuth. The Art of Computer Programming, volume 2. Addison Wesley,
Reading, Massachusetts, 2nd edition, 1981.

Hideyuki Kabuo, Minoru Okamoto, Isao Tanaka, Hiroyuki Yasoshima, Shinichi
Marui, Masayuki Yamasaki, Toshio Sugimura, Katsuhiko Ueda, Toshihiro
Ishikawa, Hidetoshi Suzuki, and Ryuichi Asahi. An 80-MOPS-Peak High-Speed
Low-Power Consumption 16-b Digital Signal Processor. |EEE Journal of Solid-
Sate Circuits, 31(4):494-503, April 1996.

Howard Kalter, Charles Stapper, John Barth, Jr., John DiLorenzo, Charles Drake,
John Fifield, Gordon Kelly, Jr., Soctt Lewis, Willem Van Der Hoeven, and James
Yankosky. A 50-ns 16-Mb DRAM with a 10-ns Data Rate and On-Chip ECC.
|EEE Journal of Solid-State Circuits, 25(5):1118 ff., October 1990.

Katsutaka Kimura, Katsuhiro Shimohigashi, Jun Etoh, Masamichi Ishihara,
Kazuyuki Miyazawa, Shinji Shimizu, Yoshio Sakai, and Kunihiro Yagi. A 65-
ns4-Mbit CMOS DRAM with a Twisted Driveline Sense Amplifier. IEEE Journal
of Solid-State Circuits, 22(5):651-656, October 1987.

Hiroshi Kawamoto, Takashi Shinoda, Yasunori Yamaguchi, Shinji Shimizu, Kanji
Ohishi, Nobuyoshi Tnimura, and Tokumasa Yasui. A 288K CMOS Psedostatic
RAM. |EEE Journal of Solid-State Circuits, 19(5):619-623, October 1984.

Won Kim and Russ Tuck. MasPar MP-2 PE Chip: A Totaly Cool Hot Chip.
In Proceedings of Hot Chips V, MasPar Computer Corporation, 749 North Mary
Avenue, Sunnyvale, CA 94086, August 1993.

Takaaki Komatsu, Hitoshi Taniguchi, Nobumichi Okazaki, Toshiyuki Nishihara,
Shigeki Kayama, Naoya Hoshi, Jun-lchi Aoyama, and Takashi Shimada. A 35-ns
128K x8 CMOS SRAM. |EEE Journal of Solid-Sate Circuits, 22(5):721-726,
October 1987.

339

[Kun82]

[KWA+88]

[LBK*89]

[LC95]

[LCwH*88]

[LE94]

[LE9S6]

[Lei79]

[Lev77]

[LGC84]

[LGS87]

H. T. Kung. Why Systolic Architectures? |EEE Computer, 15(1):37-46, January
1982.

Yoshio Kohno, Tomohisa Wada, Kenji Anami, Yuji Kawai, Kojiro Yuzuriha,
Takayuki Matsukawa, and Shimpei Kayano. A 14-ns 1-Mbit CMOS SRAM with
VariableBit Organization. | EEE Journal of Solid-Sate Circuits, 23(5):1060-1066,
October 1988.

Nicky Lu, Gary Bronner, Koji Kitamur, Roy Scheuerlein, Walter Henkels, Sang
Dhong, Yasunao Katayama, Toshiaki Kirihata, Hideto Niijima, Robert Franch,
We Hwang, Motoo Nishiwaki, Frank Pesavento, T. V. Rajeevakumar, Yoshinori
Sakaue, Yasusuke Suzuki, Yasunori Iguchi, and Eiji Yano. A 22-ns1-Mbit CMOS
High-Speed DRAM with Address Multiplexing. IEEE Journal of Solid-Sate
Circuits, 24(5):1198 ff., October 1989.

Jianmin Li and Chung-Kuan Cheng. Routability Improvement Using Dynamic
Interconnect Architecture. In Peter Athanas and Ken Pocek, editors, Proceedings
of the IEEE Workshop on FPGAs for Custom Computing Machines, pages 61-67,
Los Alamitos, California, April 1995. IEEE Computer Society, IEEE Computer
Society Press.

Nicky Lu, Hu Chao, wei Hwang, Walter Henkels, T. V. Rgeevakumar, Hus-
sein Hanafi, Lewis Terman, and Robert Franch. A 20-ns 128-kbitx4 High-
Speed DRAM with 330-Mbit/s Data Rate. |EEE Journal of Solid-State Circuits,
23(5):1140 ff., October 1988.

Marianne E. Louie and Milos D. Ercegovac. A Variable Precision Multiplier for
Field Programmable Gate Arrays. In Second International ACM/SI GDA Wor kshop
on Field-Programmable Gate Arrays. ACM, February 1994. proceedings not
available outside of the workshop.

Per Larsson-Edefors. A 965-Mb/s 1.0-um Standard CMOS Twin-Pipe Se-
rial/Parallel Multiplier. 1EEE Journal of Solid-Sate Circuits, 31(2):230-239,
February 1996.

Charles Leiserson. Systolic Priority Queues. CMU-CS-TR 115, Carnegie-Mellon
University, Pittsbugh, Pennsylvania 15213, April 1979.

Lance Leventhal. Cut Your Processor’s Computation Time. Electronic Design,
25(17):82-88, August 16 1977.

Claude P. Lerouge, Pierre Girard, and Jo&l S. Colardelle. A Fast 16 Bit Parallel
Multiplier. IEEE Journal of Solid-Sate Circuits, 19(3):338-342, June 1984.

Josephy Y. Lee, Hugh L. Garvin, and Charles W. Slayman. A High-Speed High-
Density Silicon 8x 8-bit Parallel Multiplier. IEEE Journal of Solid-Sate Circuits,
22(1):35-40, February 1987.

340

[LLNK96]

[LR71]

[LRSS84]

[LS90]

[LS92]

[LS93]

[Mal94]

[MD96]

[Min67]

[Min71]

[Mir96]

[MKM+84]

Jon Lotz, Gregg Lesartre, Samuel Naffziger, and Don Kipp. A Quad-Issue Out-
of-Order RISC CPU. In 1996 | EEE International Solid-Sate Circuits Conference,
Digest of Technical Papers, pages 210-211. |EEE, February 1996.

B. S. Landman and R. L. Russo. On Pin Versus Block Relationship for Partitions
of Logic Circuits. IEEE Transactions on Computers, 20:1469-1479, 1971.

Chris Lutz, Steve Rabin, Chuck Seitz, and Don Speck. Design of the MOSAIC
Element. In Paul Penfield, Jr., editor, Proceedings, Conference on Advanced
Research in VLS, pages 1-10, Cambdrige, MA, January 1984.

Junien Labrousse and Gerrit Slavenburg. A 50MHz Microprocessor with a Very
Long Instruction Word Architecture. 1n 1990 | EEE International Solid-State Cir-
cuits Conference, Digest of Technical Papers, pages 44-45. |EEE, February 1990.

Joe Laskowski and Henry Samueli. A 150-MHz 43-Tap Half-Band FIR Digital
Filter in 1.2-um CMOS Generated by Silicon Compiler. In Proceedings of the
IEEE 1992 Custom Integrated Circuits Conference, pages 11.4.1-11.4.4. IEEE,
May 1992.

Fang Lu and Henry Samueli. A 200-MHz CMOS Pipelined Multiplier-
Accumulator Using a Quasi-Domino Dynamic Full-Adder Cell Design. |EEE
Journal of Solid-State Circuits, 28(2):123-132, February 1993.

Lisa Maliniak. Hardware Emulation Draws Speed From Innovative 3D Parallel
Processing Based on Custom ICs. Electronic Design, pages 38-41, May 30 1994.

Ethan Mirsky and André DeHon. MATRIX: A Reconfigurable Computing Ar-
chitecture with Configurable Instruction Distribution and Deployable Resources.
In Proceedings of the IEEE Workshop on FPGAs for Custom Computing Ma-
chines, April 1996. Anonymous FTP transit.ai.mt. edu: papers/
mat ri x-fccn®6. ps. Z

Raobert C. Minnick. A Survey of Microcellular Research. Journal of the ACM,
14(2):203-241, April 1967.

Raobert Minnick. A Programmable Cellular Array. In Fifth Annual |EEE Interna-
tional Computer Society Conference: Hardware Software Firmware Trade-Offs,
pages 25-26. |EEE, September 1971.

Ethan Mirsky. Course-Grain Reconfigurable Computer. Master’s thesis, Mas-
sachusetts Institute of Technology, 545 Technology Sg., Cambridge, MA
02139, June 1996. Anonymous FTP transit.ai.mt. edu: papers/
eam r sky-mat ri x- meng. ps. Z

Koichiro Mashiko, Toshifumi Kobayashi, Hiroshi Miyamoto, Kazutami Arimoto,
Yoshikazu Morooka, Masahiro Hatanaka, Michihiro Yamada, and Takao Nakano.
A 70 ns 256K DRAM with Bit-Line Shield. |EEE Journal of Solid-Sate Circuits,
19(5), October 1984.

341

[MKSt84]

[MKS+92]

[MMK+89]

[MMM+91]

[MMN+90]

[MMS*84]

[MNA*+87]

[MNH*+91]

[MNS+96]

Amr Mohsen, Roger |. Kung, Carl J. Simonsen, Joseph Schutz, Paul D. Madland,
Esmatz Z. Hamdy, and Mark T. Bohr. The Design and Performance of CMOS
256K Bit DRAM Devices. |EEE Journal of Solid-Sate Circuits, 19(5):610-620,
October 1984.

Masato Matsumiya, Shoichiro Kawashima, Makoto Sakata, Masahiko Ookura,
Toru Miyabo, Toru Koga, Kazuo Itabashi, Kazuhiro Mizutani, Hiroshi Shimada,
and Noriyuki Suzuki. A 3.3-V 12-ns 16-Mb SRAM. |EEE Journal of Solid-State
Circuits, 27(11):1497-1503, November 1992.

FumioMiyaji, Yasushi Matsuyama, Yoshikazu Kanaishi, Katsunori Senoh, Takashi
Emori, and Yoshiaki Hagiwara. A 25-ns4-Mbit CMOS SRAM with Dynamic Bit-
Line Loads. |EEE Journal of Solid-Sate Circuits, 24(5):1213-1218, October
1989.

Shigeru Mori, Hiroshi Miyamoto, Yoshikazu Morooka, Shigeru Kikuda, Makoto
Suwa, MitsuyaKinoshita, Atsushi Hachisuka, Hideaki Arima, Michihiro Yamada,
Tsutomu Yoshihara, and Shimpei Kayano. A 45-ns 64-Mb DRAM with a Merged
Match-Line Test Architecture. |EEE Journal of Solid-Sate Circuits, 26(11):1486—
1492, November 1991.

Jiro Miyake, Toshinori Maeda, Yoshito Nishimichi, Joji Katsura, Takashi
Taniguchi, Seiji Yamaguchi, Hisakazu Edamatsu, Shigeru Watari, Yoshiyuki Tak-
agi, Kazuhiko Tsuji, Shigeo Kuninobu, Steve Cox, Douglas Duschatko, and Dou-
glasMacGregor. A 40 MIPS (Peak) 64-bit Microprocessor with One-Clock Physi-
cal CacheLoad/Store. In 1990 | EEE I nternational Solid-Sate Circuits Conference,
Digest of Technical Papers, pages 42—43. |EEE, February 1990.

Osamu Minato, Toshiaki Masuhara, Toshio Sasaki, Keizo Matsumoto, Yoshio
Sakai, Tetsuya, and Hayashida. A 20 ns 64K CMOS Static RAM. |EEE Journal
of Solid-State Circuits, 19(6), October 1984.

Koichiro Mashiko, Masao Nagatomo, Kazutami Arimoto, Yoshio Matsuda, Kiy-
ohiro Furutani, Takayuki Matsukawa, Michihiro Yamada, Tsutomu Yoshihara, and
Takao Nakano. A 4-Mbit DRAM with Folded-Bit-Line Adaptive Sidewall-1sol ated
Capacitor (FASIC) Cell. IEEE Journal of Solid-Sate Circuits, 22(5):643-650, Oc-
tober 1987.

Junji Mori, Masato Nagamatsu, Masashi Hirano, Shigeru Tanaka, Makoto Noda,
Yoshiaki Yoyoshima, Kazuhiro Hashimoto, Hiroyuki Hayashida, and Kenji
Maeguchi. A 10-ns54x 54-b Parallel Structured Full Array Multiplier with 0.5zm
CMOS Technology. |EEE Journal of Solid-State Circuits, 26(4):600-606, April
1991.

Hiroshi Makino, Yasunobu Nakase, Hiroaki Suzuki, Hiroyuki Morinaka, Hiro-
fumi Shinohara, and Koichiro Mashiko. An 8.8-ns 54x54-Bit Multiplier with

342

[MOT+87]

[MSM+84]

[MWA +96]

[MYM+87]

[MY O+ 96]

[NHK95]

[Nic90]

[NNO*91]

[NSLKESS]

High Speed Redundant Binary Architecture. |EEE Journal of Solid-Sate Circuits,
31(6):773-783, June 1996.

Masataka Matsui, Takayuki Ohtani, Jun-lchi Tsujimoto, Hiroshi Iwai, Azuma
Suzuki, Katsuhiko Sato, Mitsuo Isobe, Kazuhiko Hashimoto, Mitsuchika Saitoh,
Hideki Shibata, Hisayo Sasaki, Tadashi Matsuno, Jun-lchi Matsunaga, and Tetsuya
lizuka. A 25-ns1-Mbit CMOS SRAM with Loading-FreeBit Lines. |EEE Journal
of Solid-State Circuits, 22(5): 733740, October 1987.

Jun-Ichi Miyamoto, Shinji Saito, Hiroshi Momose, Hideki Shibata, Koichi Kan-
zaki, and Tetsuya lizuka. A High-Speed 64K CMOS RAM with Bipolar Sense
Amplifiers. IEEE Journal of Solid-State Circuits, 19(5):557-564, October 1984.

JamesMontanaro, Richard Witek, KrishnaAnne, Andrew Black, Elizabeth Cooper,
Dan Dobberpuhl, Paul Donahure, Jim Eno, Alejandro Farell, Gregory Hoeppner,
David Kruckemyer, Thomas Lee, Peter Lin, Liam Madden, Daniel Murray, Mark
Pearce, Sribalan Santhanam, Kathryn Snyder, Ray Stephany, and Stephen Thierauf.
A 160MHz 32b 0.5W CMOS RISC Microprocessor. 1n 1996 |EEE International
Solid-Sate Circuits Conference, Digest of Technical Papers, pages210-211. |EEE,
February 1996.

Hiroshi Miyamoto, Tadato Yamagata, Shigeru Mori, Toshifumi Kobayashi, Shin-
Ichi Satoh, and Michihiro Yamada. A Fast 256K x4 CMOS DRAM with Dis
tributed Sense and Unique Restore Circuit. |[EEE Journal of Solid-Sate Circuits,
22(5):861-867, October 1987.

Hiroaki Murakami, Naoka Yano, Yukio Ootaguro, Yukio Sugeno, Maki Ueno,
Yukinori Muroya, and Tsuneo Aramaki. A Multiplier-Accumulator Macro for
a 45 MIPS Embedded RISC Processor. |EEE Journal of Solid-Sate Circuits,
31(7):1067-1071, July 1996.

Kouhei Nadehara, Miwako Hayashida, and Ichiro Kuroda. A Low-Power, 32-bit
RISC Processor with Sgnal Processing Capability and its Multiply-Adder, volume
VIl of VLS Sgnal Processing, pages 51-60. |EEE, 1995.

John Nickolls. The Design of the MasPar MP-1: A Cost Effective Massively
Parallel Computer. In Compcon Spring 90, pages 25-28. |EEE, 1990.

Takeshi Nagai, Kenji Numata, Masaki Ogihara, Mitsuru Shimizu, Kimimasa
Imai, Takahiko Hara, Munehiro Yoshida, Yoshikazu Saito, Yoshiaki Asao, Shizuo
Sawada, and Syuso Fujii. A 17-ns 4-Mb DRAM. |EEE Journal of Solid-State
Circuits, 26(11):1538 ff., November 1991.

Tobias G. Noll, Doris Schmitt-Landsiedel, Heinrich Klar, and Gerhard Enders. A
Pipelined 300-MHz Multiplier. IEEE Journal of Solid-State Circuits, 21(3):411—
416, June 1986.

343

[NSSt 86]

[NTT+91]

[Nut77]

[OFW+87]

[OHK+90]

[OKH+84]

[ONN+88]

[OSSt95]

[OTW+91]

[Ple9O]

Kazutaka Nogami, Takayasu Sakurai, Kazuhiro Sawada, Tetsunori Wada, Kat-
suhiko Sato, Mitsuo I sobe, Masakazu Kakumu, Shigeru Morita, Shunji Yokogawa,
Masaaki Kinugawa, Tetsuya Asami, Kazuhiko Hashimoto, Jun-Ichi Matsunaga,
Hiroshi Nozawa, and Tetsuyalizuka. 1-Mbit Virtually Static RAM. 1EEE Journal
of Solid-State Circuits, 21(5):662—668, October 1986.

Yoshinobu Nakagome, Hitoshi Tanaka, Kan Takeuchi, Eiji Kume, Yasushi Watan-
abe, Toru Kaga, Yoshifumi Kawamoto, Fumio Murai, Ryuichi lzawa, Digh
Hisamoto, Teruaki Kisu, Takashi Nishida, Eiji Takeda, and Kiyoo Itoh. An Exper-
imental 1.5-V 64-Mb DRAM. |EEE Journal of Solid-State Circuits, 26(4):465 ff.,
April 1991.

Gary J. Nutt. Microprocessor Implementation of a Parallel Processor. 1n Proceed-
ings of the Fourth Annual International Symposium on Computer Architecture,
pages 147-152. ACM, 1977.

Takashi Ohsawa, Tohru Furuyama, Yohji Watanabe, Hiroto Tanaka, Natsuki
Kushiyama, Kenji Tsuchida, Yohsei Nagahama, Satoshi Yamano, Takeshi Tanaka,
Satoshi Shinozaki, and Kenji Natori. A 60-ns4-Mbit CMOS DRAM with Built-1n
Self-Test Function. |EEE Journal of Solid-Sate Circuits, 22(5):663-668, October
1987.

Takayuki Ootani, Shigeyuki Hayakawa, M asakazu Kakumu, Akira Aono, M asaaki
Kinugawa, Hideki Takeuchi, Kazuhiro Noguchi, Tomoaki Yabe, Katsuhiko Sato,
Kenji Maeguchi, and Kiyofumi Ochii. A 4-Mb CMOS SRAM withaPMOS Thin-
Film-Transistor Load Cell. |EEE Journal of Solid-Sate Circuits, 25(5):1082—-1091,
October 1990.

Nobumichi Okazaki, Takaaki Komatsu, Naoya Hoshi, Kunihiko Tsuboi, and
Takashi Shimada. A 16 ns 2K x8 Full CMOS SRAM. |EEE Journal of Solid-
Sate Circuits, 19(5):552-556, October 1984.

Hiroaki Okuyama, Takeshi Nakano, Shuichi Nishida, Etsuro Aono, Hisahiro Satoh,
and Shigeru Arita. A 7.5-ns 32K x8 CMOS SRAM. |EEE Journal of Solid-State
Circuits, 23(5):1054-1059, October 1988.

Norio Ohkubo, Makoto Suzuki, Toshinobu Shinbo, Toshiaki Yamanaka, Akihiro
Shimizu, Katsuro Sasaki, and Yoshinobu Nakagome. a 4.4 ns CMOS 54x54-b
Multiplier Using Pass-Transistor Multiplexer. IEEE Journal of Solid-State Circuits,
30(3):251-257, February 1995.

Yukihito Oowaki, Kenji Tsuchida, Yohji Watanabe, Daisaburo Takashima,
Masako Ohita, Hiroaki Nakano, Shigeyoshi Watanabe, Akihiro Nitayama, Fu-
mio Horiguchi, Kazunori Ohuchi, and Fujio Masuoka. A 33-ns 64-Mb DRAM.
|EEE Journal of Solid-State Circuits, 26(11):1498-1505, November 1991.

Plessey Semiconductors, Cheney Manor, Sindown, Wiltshire SN2 2QW, UK.
ERA60100 Datasheet — Electrically Reconfigurable Array, May 1990.

344

[PML+89]

[QC8g]

[Ram93]

[Raz94]

[RBO1]

[RDB*94]

[RFLCO0]

[RK92]

[RPJ*84]

[RSO2]

A. Picco, J. C. Michadlina, B. Laurier, D. Fuin, P Menut, and JL. Laborie. The
ST18940/41: An Advanced Single-chip Digital Signal Processors. In Proceedings
of the 1989 |EEE International Symposium on Circuits and Systems, pages 1559—
1562. |IEEE, May 1989.

Le Quach and Richard Chueh. CMOS Gate Array Implementation of SPARC. In
Digest of Papers COMPCON' 88, pages 14-17. IEEE, Februrary 1988.

Rambus Inc. Architectura Overview. Produce Literature, 1993. Rambus Inc.,
2465 L atham Steet, Mountain View, CA 94040.

Rahul Razdan. PRISC: Programmable Reduced Instruction Set Computers. PhD
thesis, Harvard Univeristy, May 1994. AnonymousFTPf t p. eecs. har var d.
edu: users/sm th/theses/razdan-thesis.tar. gz.

Jonathan Rose and Stephen Brown. Flexibility of Interconnection Structures
for Field-Programmable Gate Arrays. |EEE Journal of Solid-State Circuits,
26(3):277-282, March 1991.

Ehsan Rashid, Eric Delano, Michael Buckley, Jason Zheng, Francis Schumacher,
Gordon Kurpanek, John Shelton, Tom Alexander, Nazeem Noordeen, Mark Lud-
wig, Alisa Scherer, Chaim Amir, Dan Cheung, Prasad Sabada, Ram Rajamani,
Nick Fiduccia, Bill Ches, Kamyar Eshghi, Fred Eatock, Denny Renfrow, John
Keller, Paul llgenfrizt, Ilan Krashinsky, Darryl Weatherspoon, Shrikant Ranade,
Dave Goldberg, and William Byrg. A CMOS RISC CPU with On-Chip Parallel
Cache. In 1994 |EEE International Solid-State Circuits Conference, Digest of
Technical Papers, pages 210-211. |EEE, February 1994.

Jonathan Rose, Robert Francis, David Lewis, and Paul Chow. Architecture of
Field-Programmable Gate Arrays: The Effect of Logic Block Functionality on
Area Efficiency. |EEE Journal of Solid-State Circuits, 25(5):1217-1225, October
1990.

Dirk Reuver and Heinrich Klar. A Configurable Convolution Chip with Pro-
grammable Coefficients. IEEE Journal of Solid-State Circuits, 27(7):1121-1123,
July 1992.

Christopher Rowen, Steven Przbylski, Norman Jouppi, Thomas Gross, John Shott,
and John Hennessey. A Pipelined 32b NMOS Microprocessor. In 1984 |IEEE
International Solid-State Circuits Conference, Digest of Technical Papers, pages
180-181. |IEEE, February 1984.

PoornachandraB. Rao and Alexander Skavantzos. New Multiplier Designs Based
on Squared Law Algorithms and Table Look-ups. In Conference Record of the
Twenty-Sxth Asilomar Conference on Sgnals, Systems and Computers (volume
2), pages 686690, October 1992.

345

[RSO4]

[RSV87]

[Ruesg]

[SAQQ]

[SAI+85]

[Sch71]

[Sch78]

[SCLB84]

[Sei92]

[Se094]

[SFO+ 85]

[SGS*85]

Rahul Razdan and Michagl D. Smith. A High-Performance Microarchitecture
with Hardware-Programmable Functional Units. In Proceedings of the 27th An-
nual International Symposium on Microarchitecture, pages 172—-180. |EEE Com-
puter Society, November 1994. Anonymous FTPft p. eecs. har vard. edu:
users/smth/ papers/ mcro94. ps. gz.

R. Rudell and A. Sangiovanni-Vincentelli. Multiple-Valued Minimization for
PLA Optimization. |EEE Transactions on Computer-Aided Design of Integrated
Circuits, 6(5):727—-751, September 1987.

Peter Ruetz. The Architectures and Design of a20-MHz Real-Time DSP Chip Set.
|EEE Journal of Solid-Sate Circuits, 24(2):338-348, April 1989.

Chip Sterns and Peng Ang. Yet Another Multiplier Architecture. In Proceedings
of the IEEE 1990 Custom Integrated Circuits Conference, pages 24.6.1-4. |EEE,
May 1990.

Hirofumi Shinohara, Kenji Anami, Katsuki Ichinose, Tomohisa Wada, Yoshio
Kohno, Yuji Kawai, Yoichi Akasaka, and Shinpei Kayano. A 45-ns 256K CMOS
StaticRAM with Tri-Level Word Line. IEEE Journal of Solid-Sate Circuits, 20(5),
October 1985.

Mario R. Schaffner. A System with Programmable Hardware. In Fifth Annual
|EEE International Computer Society Conference: Hardware Software Firmware
Trade-Offs, pages 17-18. |EEE, September 1971.

Mario R. Schaffner. Processing by Data and Program Blocks. |EEE Transactions
on Computers, 27(11):1015-1028, November 1978.

Stanley E. Schuster, Barbara Chappell, Victor Di Lonardo, and Peter E. Britton. A
20 ns 64K (4K x16) NMOS RAM. IEEE Journal of Solid-Sate Circuits, 19(5),
October 1984.

Charles L. Seitz. Mosaic C: An Experimental Fine-Grain Multicomputer. In
A. Bensoussan and J.-P. Verjus, editors, Future Tendencies in Computer Science,
Control and Applied Mathematics: Internantional Conference on the Occasion of
the 25th Anniversary of INRIA, pages 69-85. Sprinter-Verlag, December 1992.

Soon Ong Seo. A High Speed Field-Programmable Gate Array Using Pro-
grammable Minitiles. Master’s thesis, University of Toronto, Ontario, Canada,
1994.

Shozo Saito, Syuso Fujii, Yoshio Okada, Shizuo Sawada, Satoshi Shinozaki, Kenji
Natori, and Osamo Ozawa. A 1-Mbit CMOS DRAM with Fast Page Mode and
Static Column Mode. 1EEE Journal of Solid-Sate Circuits, 20(5), October 1985.

Lal C. Sood, James S. Golab, John Salter, John E. Leiss, and John J. Barnes. A
Fast 8K x8 CMOS SRAM With Internal Power Down Design Techniques. IEEE
Journal of Solid-Sate Circuits, 20(5):941-950, October 1985.

346

[SH89]

[SHU*88]

[SISt90]

[SIU+92]

[SIY+89]

[SJ8g]

[SKI+88]

[SKK+91]

[SKPS84]

[SKS+93]

Mark R. Santoro and Mark A. Horowitz. SPIM: A Pipelined 64 x 64-bit Iterative
Multiplier. IEEE Journal of Solid-State Circuits, 24(2):487—493, April 1989.

Katsuro Sasaki, Shoji Hanamura, Kiyotsugo Ueda, Takao Oono, Osamu Mi-
nato, Yoshio Sakai, Satoshi Meguro, Masayoshi Tsunematsu, Toshiaki Masuhara,
Masaaki Kubotera, and Hiroshi Toyoshima. A 15-ns 1-Mbit CMOS SRAM. |EEE
Journal of Solid-Sate Circuits, 23(5):1067-1073, October 1988.

Katsuro Sasaki, Koichiro Ishibashi, Katsuhiro Shimohigashi, Toshiaki Yamanaka,
Nobuyuki Moriwaki, Shigeru Honjo, Shuji Ikeda, Atsuyoshi Koike, Satoshi Me-
guro, and Osamu Minato. A 23-ns 4-Mb CMOS SRAM with 0.2-uA Standby
Current. |EEE Journal of Solid-State Circuits, 25(5):1075-1081, October 1990.

Katsuro Sasaki, Koichiro Ishibashi, Kiyotsugo Ueda, Kunihiro Komiyaji, Toshiaki
Yamanaka, Naotaka Hashimoto, Hiroshi Toyoshima, Fumio Kojima, and Akihiro
Shimizu. A 7-ns 140-mW 1-Mb CMOS SRAM with Current Sense Amplifier.
|EEE Journal of Solid-State Circuits, 27(11):1511-1518, November 1992.

Katsuro Sasaki, Koichiro Ishibashi, Toshiaki Yamanaka, Naotaka Hashimoto,
Takashi Nishida, Katsuhiro Shimohigashi, Shoji Hanamura, and Shigeru Honjo.
A 9-ns 1-Mbit CMOS SRAM. |EEE Journal of Solid-State Circuits, 24(5):1219—
1225, October 1989.

Naresh R. Shanbhag and Pushkal Jungja. Parallel Implementation of a4x4 Mul-
tiplier Using Modified Booth’'s Algorithm. IEEE Journal of Solid-State Circuits,
23(4):1010-1013, August 1988.

Hiroshi Shimada, Shoichiro Kawashima, Hideo Itoh, Noriyuki Suzuki, and Takashi
Yabu. A 45-ns 1-Mbit CMOS SRAM. |EEE Journal of Solid-Sate Circuits,
23(1):53-58, February 1988.

Katsuyuki Sato, Kanehide Kenmizaki, Shoji Kubono, Toshio Mochizuki,
Hidetomo Aoyagi, Michitaro Kanamitsu, Soichi Kunito, Hiroyuki Uchida, Yoshi-
hiko Yasu, Atsushi Ogishima, Sho Sano, and Hiroshi Kawamoto. A 4-Mb Pseudo
SRAM Operating at 2.6+1V with 3-uA Data Retention Current. |EEE Journal of
Solid-Sate Circuits, 26(11):1556-1561, November 1991.

Raobert Sherburne, Jr., Manolis Katevenis, David Patterson, and Carlo Sequin. A
32b NMOS Microprocessor with aLarge Register File. In 1984 | EEE International
Solid-Sate Circuits Conference, Digest of Technical Papers, pages 168-169. | EEE,
February 1984.

Katsunori Seno, Kurt Knorpp, Lee-Lean Shu, Naoki Teshima, Hiroki Kihara, Hi-
roshi Sato, Fumio Miyaji, Minoru Takeda, Masayoshi Sasaki, Yoichi Tomo, Patrick
Chuang, and Kazuyoshi Kobayashi. A 9-ns 16-Mb CMOS SRAM with Offset-
Compenstated Current Sense Amplifier. 1EEE Journal of Solid-Sate Circuits,
28(11):1119-1124, November 1993.

347

[SKYH92]

[Slag5]

[SLM+89]

[SM1+84]

[SMK+94]

[SNT+84]

[Sny85]

[SPA+05]

[SSL+92]

M. Shiraishi, M. Koizumi, A. Yamaguchi, and H. Hoike. User Programmable
16Bit 50ns DSP. In Proceedings of the IEEE 1992 Custom Integrated Circuits
Conference, pages 6.4.1-6.4.4. IEEE, May 1992.

Michael Slater. MicroUnity LiftsVeil on MediaProcessor. Microprocessor Report,
9(14):11ff., October 231995. ht t p: / / www. chi panal yst. coni report/
report9_14/pagell. htm .

Ramautar Sharma, Alexander D. Lopez, John A. Michejda, Steven J. Hillenius,
John M. Andrews, and Arnold J. Studwell. A 6.75-ns 16x 16-bit Multiplier in
Single-Level-Metal CMOS Technology. |EEE Journal of Solid-Sate Circuits,
24(4):922-927, August 1989.

Takayasu Sakurai, Junichi Matsunaga, Mitsuo Isobe, Takayuki Ohtani, Kazuhiro
Sawada, Akira Aono, Hiroshi Nozawa, Tetsuya Il1zuka, and Susumu Kohyama. A
Low Power 46 ns 256 kbit CMOS Static RAM with Dynamic Double Word Line.
|EEE Journal of Solid-State Circuits, 19(5):578-584, October 1984.

Toshio Sunaga, Hisatada Miyatake, Koji Kitamura, Keishi Kasuya, Takaki Saitoh,
Masahiro Tanaka, Norio Tanigaki, Yohtaro Mori, and Noritoshi Yamasaki. DRAM
Macros for ASIC Chips. |EEE Journal of Solid-Sate Circuits, 30(9):1006-1014,
September 1994.

Shun’ishi Suzuki, Masumi Nakao, Toshio Takeshima, Masaaki Yoshida, Masanori
Kikuchi, Kunio Nakamura, Takeshi Mizukami, and Masayuki Yanagisawa. A
128K x 8 Bit Dynamic RAM. |EEE Journal of Solid-Sate Circuits, 19(5):624—
626, October 1984.

Lawrence Snyder. An Inquiry into the Benefits of Multigauge Parallel Computa-
tion. In Proceedings of the 1985 I nter national Conference on Parallel Processing,
pages 488-492. |EEE, August 1985.

Gene Shen, Niteen Patkar, Hisashige Ando, David Chang, Charles Chen, Chien
Chen, Frank Chen, Per Forssell, John Gmuender, Takeshi Kitahara, Hungwen Li,
David Lyon, Robert Montoye, Leon Peng, Sunil Savkar, Jonathan Sherred, Mike
Simone, Ravi Swami, DeFroset Tovey, and Ted Williams. A 64b 4-1ssue Out-of-
Order Execution RISC Processor. In 1995 |EEE International Solid-Sate Circuits
Conference, Digest of Technical Papers, pages 170-171. |IEEE, February 1995.

Ellen M. Sentovich, Kanwar Jit Singh, Luciano Lavagno, Cho Moon, Rajeev Mur-
gai, Alexander Saldanha, Hamid Savoj, Paul R. Stephan, Robert K. Brayton, and
Alberto Sangiovanni-Vincentelli. SIS: A System for Sequential Circuit Synthesis.
UCB/ERL M92/41, University of California, Berkeley, Department of Electrical
Engineering and Computer Science, University of California, Berkeley, CA 94720,
May 1992.

348

[SSN+92]

[STN*93]

[STT+88]

[SUT+93]

[SV93]

[SYN+94]

[TEC*95]

[TFT+85]

[TJI85]

Akinori Sekiyama, Teruo Seki, Shinji Nagai, Akihiro lwase, Noriyuki Suzuki, and
Masato Hayasaka. A 1-V Operating 256-kb Full-CMOS SRAM. |EEE Journal of
Solid-Sate Circuits, 27(5):776—782, May 1992.

Tadahiko Sugibayashi, Toshio Takeshima, |sao Naritake, Tatsuya Matano, Hiroshi
Takada, Yoshiharu Aimoto, Koichiro Furuta, Mamoru Fujita, Takanori Saeki,
Hiroshi Sugawara, Tatsunori Murotani, Naoki Kasai, Kentaro Shibahara, Ken
Nakajima, Hiromitsu Hada, Takehiko Hamada, Naoaki Aizaki, Takemitsu Kunio,
Eiichiro Kakehashi, Katsuhiro Masumori, and Takaho Tanigawa. A 30-ns 256-Mb
DRAM withaMultidivided Array Structure. IEEE Journal of Solid-Sate Circuits,
28(11):1092—-1098, November 1993.

Hiroshi Shimada, Yoshinao Tange, Kazuo Tanimoto, Michio Shiraishi, Noriyuki
Suzuki, and Toshio Nomura. An 18-ns 1-Mbit CMOS SRAM. |EEE Journal of
Solid-Sate Circuits, 23(5):1073-1077, October 1988.

Katsuro Sasaki, Kiyotsugu Ueda, Koichi Takasugi, Hiroshi Toyoshima, Koichiro
Ishibashi, Toshiaki Yamanaka, Naotaka Hashimoto, and Nagatoshi Ohki. A 16-
Mb CMOS SRAM with a 2.3um? Single-Bit-Line Memory Cell. |EEE Journal of
Solid-Sate Circuits, 28(11):1125-1130, November 1993.

Dinesh Somasekhar and V. Visvanathan. A 230-MHz Half-Bit Level Pipelinined
Multiplier Using True Single-Phase Clocking. |EEE Transactions on \Very Large
Scale Integration (VLS) Systems, 1(4):415-422, December 1993.

Kazumasa Suzuki, Masakazu Yamashina, Takashi Nakayama, Masanori |zu-
mikawa, Masahiro Nomura, Hiroyuki Igura, Hideki Heiuchi, Junichi Goto, Toshi-
aki Inoue, Youichi Koseki, Hitoshi Abiko, Kazuhiro Okabe, Atsuki Ono, Youichi
Yano, and Hachiro Yamada. A 500MHz 32b 0.4um CMOS RISC Processor LS.
In 1994 |EEE International Solid-Sate Circuits Conference, Digest of Technical
Papers, pages 214-215. |EEE, February 1994.

Edward Tau, lan Edlick, Derrick Chen, Jeremy Brown, and André DeHon. A First
Generation DPGA Implementation. In Proceedings of the Third Canadian Work-
shop on Field-Programmable Devices, pages 138-143, May 1995. Anonymous
FTPtransit.ai.mt.edu: papers/dpga- proto-fpd95. ps. Z.

Yoshihisa Takayama, Shigeru Fujii, Tomoaki Tanabe, Kazuyuki Kawauchi, and
Toshihiko Yoshida. A 1ns 20K CMOS Gate Array Series with Configurable 15ns
12K Memory. In 1985 |EEE Inter national Solid-Sate Circuits Conference, Digest
of Technical Papers, pages 196-197. |EEE, February 1985.

Ronald T. Taylor and Mark G. Johnson. A 1-Mbit CMOS Dynamic RAM with a
Divided Bitline Matrix Architecture. |IEEE Journal of Solid-Sate Circuits, 20(5),
October 1985.

349

[TLB*90]

[TNH+96]

[TNK+94]

[TTK+90]

[TTS*86]

[TTT+94]

[TTU+91]

[UKY84]

Darius Tansalvala, Joel Lamb, Michael Buckley, Bruce Long, Sean Chapin,
Jonathan Lotz, Eric Delano, Richard Luebs, Keith Erskine, Scott McMullen,
Mark Forsyth, Robert Novak, Tony Gaddis, Doug Quarnstrom, Craig Gleason,
Ehsan Rashid, Daniel Halperin, Leon Sigal, Harlan Hill, Craig Simpson, David
Hollenbeck, John Spencer, Robert Horning, Hoang Tran, Thomas Hotchkiss, Dun-
can Weir, Donald Kipp, John Wheeler, Patrick Knebel, Jeffery Yetter, and Charles
Kohlhardt. A 15MIPS32b Microprocessor. In 1990 | EEE I nter national Solid-State
Circuits Conference, Digest of Technical Papers, pages 52-53. |EEE, February
1990.

Toshinari Takayanagi, Kazutaka Nogami, Fumitoshi Hatori, Naoyuki Hatanaka,
Makoto Takahashi, Makoto Ichida, Shinji Kitabayashi, Tatsuya Higashi, Mike
Klein, John Thomson, Roger Carpenter, Ravi Donthi, Denny Renfrow, Jason
Zheng, Liane Tinkey, Brandi Maness, Jim Battle, Steve Purcell, and Takayasu
Sakurai. 350MHz Time-Multiplexed 8-port SRAM and Word-Size Variable Mul-
tiplier for Multimedia DSP. In 1996 | EEE International Solid-State Circuits Con-
ference, Digst of Technical Papers, pages 150-151. |IEEE, February 1996.

Yasuhiro Takai, Mamoru Nagase, Mamoru Kitamura, Yasuji Koshikawa, Naoyuki
Yoshida, Yasuaki K obayashi, Takashi Obara, Yukio Fukuzo, and Hiroshi Watanabe.
250 Mbytes/s Synchronous DRAM Using a 3-Stage-Pipelined Architecture. IEEE
Journal of Solid-State Circuits, 29(4):426-431, April 1994.

Toshio Takeshima, Masahide Takada, Hiroki Koike, Hiroshi Watanabe, Shigeru
Koshimaru, Kenjiro Mitake, Wataru Kikuchi, Takaho Tanigawa, Tatsunori
Murotani, Kenji Noda, Kazuhiro Tasaka, Koji Yamanaka, and Kuniaki Koyama. A
55-ns 16-Mb DRAM with Built-in Self-Test Function Using Microprogram ROM.
|EEE Journal of Solid-Sate Circuits, 25(4):903-910, August 1990.

Masahide Takada, Toshio Takeshima, Mitsuru Sakamoto, Toshiyuki Shimizu,
Hitoshi Abiko, Takuya Katoh, Masanori Kikuchi, Sakari Takahashi, Yoshinori
Sato, and Yasukazu Inoue. A 4-Mbit DRAM with Half-Internal-Voltage Bit-Line
Precharge. |EEE Journal of Solid-State Circuits, 21(5), October 1986.

Satoru Tanoi, Yasuhiro Tanaka, Tetsuy Tanabe, Akio Kita, Toshio Inada, Ryqji
Hamazaki, Yoshio Ohtsuki, and Masaru Uesugi. A 32-Bank 256-Mb DRAM
with Cache and TAG. |EEE Journal of Solid-State Circuits, 29(11):1330-1336,
November 1994.

Masao Taguchi, Hiroyoshi Tomita, Toshiya Uchida, Yasuhiro Ohnishi, Kimiaki
Sato, Taiji Ema, Masaaki Higashitani, and Takashi Yabu. A 40-ns 64-Mb DRAM
with 64-b Pardlel Data Bus Architecture. |EEE Journal of Solid-Sate Circuits,
26(11):1493-1497, November 1991.

Masaru Uya, Katsuyuki Kaneko, and Juro Yasui. A CMOS Floating Point Multi-
plier. IEEE Journal of Solid-State Circuits, 19(5):697-702, October 1984.

350

[USO*93]

[VBBO3]

[Vil82]

[VMWVW86]

[VN66]

[VPP*+89]

[VSCZ96]

[WBEK+88]

[WBS*87]

[WC96]

Katsuhiko Ueda, Toshio Sugimura, Minoru Okamoto, Shinichi Marui, Toshihiro
Ishikawa, and Mikio Sakakihara. A 16b L ow-Power-Consumption Digital Signal
Processor. In 1993 IEEE International Solid-State Circuits Conference, Digst of
Technical Papers, pages 28-29. |EEE, February 1993.

Joseph Varghese, Michael Butts, and Jon Batcheller. An Efficient Logic Emulation
System. |EEE Transactions on Very Large Scale Integration (VL) Syatems,
1(2):171-174, June 1993.

W. Vilkelis. Lead Reduction Among Combinational Logic Circuits. 1BM Journal
of Research and Development, 26(3):342—-348, May 1982.

Jef van Meerbergen, Frank Welten, Frans van Wijk, Jan Stoter, Jos Huisken,
Antoine Delaruelle, and Karel Van Eerdewijk. An 8 MIPS CMOS Digital Signal
Processor. 1n 1985 IEEE International Solid-State Circuits Conference, Digst of
Technical Papers, pages 84-85. |EEE, February 1986.

John von Neumann. Theory of Self-Reproducing Automata. University of 1llinois
Press, 1966. Compiled by Arthur W. Burks.

Peter Voss, Leo Pfennings, Cathal Phelan, Cormac O’ Connell, Thomas Davies,
Hans Ontrop, Simon Bell, and Roelof Salters. A 14-ns 256K x1 CMOS SRAM
with Multiple Test Modes. IEEE Journal of Solid-State Circuits, 24(4):874-881,
August 1989.

John Villasenor, Brian Schoner, Kang-Ngee Chia, and Charles Zapata. Config-
urable Computer Solutions for Automatic Target Recognition. In Proceedings
of the IEEE Workshop on FPGAs for Custom Computing Machines. |EEE, April
1996.

Todd Williams, Kenneth Beilstein, Badih El-Kareh, Roy Flaker, Gregory Graven-
ites, Robert Lipa, Hsing-San Lee, Joseph Madlack, John Pessetto, William F.
Pokorny, Michael Roberge, and Harold Zeller. An Experimental 1-Mbit CMOS
SRAM with ConfigurableOrganization and Operation. | EEE Journal of Solid-State
Circuits, 23(5):1085 ff., October 1988.

Karl Wang, Mark Bader, Vince Soorholtz, Richard Mauntel, Horacio Mendez,
Peter Voss, and Roger Kung. A 21-ns 32K x8 CMOS Static RAM with a Selec-
tively Pumped p-Well Array. |EEE Journal of Solid-Sate Circuits, 22(5):704—712,
October 1987.

Ralph D. Wittig and Paul Chow. OneChip: An FPGA Processor With Recon-
figurable Logic. In Proceedings of the IEEE Workshop on FPGAs for Custom
Computing Machines, Los Alamitos, California, April 1996. IEEE Computer So-
ciety, IEEE Computer Society Press. htt p://ww eecg. t or ont o. edu/
“"wittig/thesis.description.htm .

351

[WDW-+85]

[WHO5]

[WHG94]

[WHS*87]

[WOI+89]

[Xil89]

[Xil91]

[Xi1944]

[Xi194b]

[Xi196]

[YFJ*87]

Frank Welten, Antoine Delaruelle, Frans Van Wyk, Jef Van Meerbergen, Josef
Schmid, Klaus Rinner, Karel Van Eedewijk, and Jan Wittek. A 2-um CMOS
10-MHz Microprogrammable Signal Processing Core with an On-Chip Multiport
Memory Bank. IEEE Journal of Solid-Sate Circuits, 20(3):754—760, June 1985.

Michael J. Wirthlin and Brad L. Hutchings. A Dynamic Instruction Set Computer.
In Peter Athanas and Ken Pocek, editors, Proceedings of the IEEE Workshop on
FPGAs for Custom Computing Machines, Los Alamitos, California, April 1995.
|EEE Computer Society, |IEEE Computer Society Press.

Michael J. Wirthlin, Brad L. Hutchings, and Kent L. Gilson. The Nano Processor:
a Low Resource Reconfigurable Processor. In Duncan A. Buell and Kenneth L.
Pocek, editors, Proceedings of the | EEE Workshop on FPGAsfor Custom Comput-
ing Machines, pages 23-30, Los Alamitos, California, April 1994. |EEE Computer
Society, |IEEE Computer Society Press.

Tomohisa Wada, Toshihiko Hirose, Hirofumi Shinohara, Yuji Kawai, Kgjiro
Yuzuriha, Yoshio Kohno, and Shimpei Kayano. A 34-ns 1-Mbit CMOS SRAM
Using Triple Polysilicon. 1EEE Journal of Solid-Sate Circuits, 22(5):727-732,
October 1987.

Shigeyoshi Watanabe, Yukihito Oowaki, Yasuo Itoh, Koji Sakui, Kenji Numata,
Tsuneaki Fuse, Takayuki Kobayashi, Kenji Tsuchida, Masahiko Chiba, Takahiko
Hara, Masako Ohta, Fumio Horiguchi, Katsuhiko Hieda, Akihiro Nitayama,
Takeshi Hamamoto, Kazunori Ohuchi, and Fujio Masuoka. An Experimental
16-Mbit CMOS DRAM Chip with a 100-MHz Serial READ/WRITE Mode. |EEE
Journal of Solid-Sate Circuits, 24(3):763—770, June 1989.

Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124. The Programmable Gate
Array Databook, 1989.

Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124. XC5200 FPGA Preliminary
Prodcut Specification, version 4.0 edition, June 1991. ht t p: / / www Xi | i nx.
com partinfo/ 5200. pdf .

Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124. The Programmable Logic
Data Book, 1989, 1994,

Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124. The Programmable Logic
Data Book, 1994,

Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124. XC6200 FPGA Advanced
Product Specification, version 1.0 edition, June 1996. ht t p: / / www Xi | i nx.
com partinfo/ 6200. pdf .

Jeff Yetter, Mark Forsyth, William Jaffe, Darius Tanksalvala, and John Wheeler.
A 15 MIPS 32b Microprocessor. In 1987 |EEE International Solid-Sate Circuits
Conference, Digest of Technical Papers, pages 26-27. |EEE, February 1987.

352

[YJY+90]

[YKF94]

[YKK+84]

[YKMI8S]

[YNH+91]

[YR95]

[YTN+85]

[YYN+90]

Toshiaki Yoshino, Rajeev Jain, Paul Yang, Harvey Davis, Wanda Gass, and Ashwin
Shah. A 100-MHz 64-Tap FIR Digital Filter in 0.8um BiCMOS Gate Array. IEEE
Journal of Solid-Sate Circuits, 25(6):1494-1501, December 1990.

Nobuyuki Yamashita, Tohru Kimura, Yoshihiro Fujita, Yoshiharu Aimoto, Takashi
Manabe, Shin’ichiro Okazaki, Kazuyuki Nakamura, and Masakazu Yamashina. A
3.84 GIPsIntegrated Memory Array Processor with 64 Processing Elementsand a
2-Mb SRAM. |EEE Journal of Solid-State Circuits, 29(11):1336—1343, November
1994,

Takashi Yamanaka, Shigeru Koshimaru, Osamu Kudoh, Yakashi Ozawa,
Nobuyuoka, Hiroshiito, Hidehiro Asai, Nobuyuki Harashima, and Shinichi
Kikuchi. A 25 ns64K Static RAM. |EEE Journal of Solid-State Circuits, 19(5),
October 1984.

Toshio Yamada, Hisakazu Kotani, Junko Matsushima, and Michihiro Inoue. A
4-Mbit DRAM with 16-bit Concurrent ECC. | EEE Journal of Solid-Sate Circuits,
23(1), February 1988.

Toshio Yamada, Yoshiro Nakata, Junko Hasegawa, Noriaki Amano, Akinori
Shibayama, Masaru Sasago, Naoto Matsuo, Toshiki Yabu, Susumu Matsumoto,
Shozo Okada, and Michihiro Inoue. A 64-Mb DRAM with Meshed Power Line.
|EEE Journal of Solid-State Circuits, 26(11):1506-1510, November 1991.

Alfred K. Yeung and Jan M. Rabaegy. A 2.4 GOPS Data-Drivern Reconfigurable
Multiprocessor IC for DSP. In Proceedings of the 1995 |EEE International Solid-
Sate Circuits Conference, pages 108-109. | EEE, February 1995.

Sho Yamamoto, Nobuyoshi Tanimura, Kouichi Nagasawa, Satoshi Meguro, Toku-
masa Yasui, Osamu Minato, and Toshiaki Masuhara. A 256K CMOS SRAM with
Variable Impedance Data-Line Loads. |EEE Journal of Solid-Sate Circuits, 20(5),
October 1985.

Kazuo Yano, Toshiaki Yamanaka, Takashi Nishida, Masayoshi Saito, Katsuhiro
Shimohigashi, and Akihiro Shimizo. A 3.8-ns CMOS 16x16-b Multiplier Us-
ing Complementary Pass-Transistor Logic. |EEE Journal of Solid-Sate Circuits,
25(2):388-395, August 1990.

353

