
Copyright (c) 1996 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
new copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request Permissions from Publications
Dept, ACM Inc., Fax +1 (212) 869-0481, or <permissions@acm.org>.

FPGA ’96 -- ACM/SIGDA Fourth International Symposium on FPGAs

February 11-13, 1996, Monterey, CA

DPGA Utilization and Application

André DeHon
andre@mit.edu

MIT Artificial Intelligence Laboratory
NE43-791, 545 Technology Sq., Cambridge, MA 02139

Phone: (617) 253-5868 FAX: (617) 253-5060

Abstract

Dynamically Programmable Gate Arrays (DPGAs) are pro-
grammable arrays which allow the strategic reuse of limited re-
sources. In so doing, DPGAs promise greater capacity, and in some
cases higher performance, than conventional programmable device
architectures where all array resources are dedicated to a single
function for an entire operational epoch. This paper examines sev-
eral usage patterns for DPGAs including temporal pipelining, utility
functions, multiple function accommodation, and state-dependent
logic. In the process, it offers insight into the application and
technology space where DPGA-style reuse techniques are most
beneficial.

1 Introduction

FPGA capacity is conventionally metered in terms of “gates” as-
signed to a problem. This notion of gate utilization is, however,
a purely spatial metric which ignores the temporal aspect of gate
usage. That is, it says nothing about how often each gate is actually
used. A gate may only perform useful work for a small fraction of
the time it is employed. Taking the temporal usage of a gate into
account, we recognize that each gate has a capacity defined by its
bandwidth. Exploiting this temporal aspectof capacity is necessary
to extract the most performance out of reconfigurable devices.

To first order, conventional FPGAs maximally exploit their po-
tential gate capacity only when fully pipelined to solve a single task
with data processing rates that occupy the entire array at its maxi-
mum clock frequency (e.g. Figure 1). As task requirements move
away from this extreme, gates are used at a fraction of their po-
tential capacity and FPGA utilization efficiency drops. Away from
this heavily pipelined extreme, multiple context devices, such as
DPGAs, provide higher efficiency by allowing limited interconnect
and logic element resources to be reused in time. These devices
allow the temporal component of device capacity to be deployed

to increase total device functionality rather than simply increasing
throughput for fixed functionality.

In this paper we examine several, stylized usage patterns for
DPGAs focusing on the resource reuse they enable. We start by
identifying capacity and utilization metrics for programmable de-
vices (Section 2). We examine a few characteristics of application
and technology trends (Section 3) to understand why resource reuse
is important. In Section 4 we briefly review DPGA characteristics
and look at the costs for supporting resource reuse. The heart of the
paper then focuses on four broad styles for resource reuse:
1 Multiple, Independent Functions (Section 5)
2 Utility Functions (Section 6)
3 Temporal Pipelining (Section 7)
4 Finite State Machines (Section 8)

Section 9 reviews the themes introduced and summarizes the do-
main of application where DPGAs are most efficient.

2 Capacity and Utilization

An FPGA is composed of a number of programmable gates inter-
connected by wires and programmable switches. Each gate, switch,
and wire has a limited bandwidth (fmax) — or time between uses
(tmin � 1

fmax
) necessary for correct operation. In a unit of time

T , we could, theoretically, get a maximum of

Fgate �

�
T

tmingate

�
�Ngate

gate evaluations. We can calculate Fwire and Fswitch in a similar
manner. Each gate, switch, and wire has an inherent propagation
latency (tpd) as well.

For simplicity, let us model an FPGA as having a single, mini-
mum reuse time, tmin cycle, which is the minimum reuse time for a
gate evaluation and local interconnect. We will assume tmin cycle

captures both the bandwidth and the propagation delay limitations.
The flip-flop toggle rate which was often quoted by vendors as
a measure of device performance [13], provides a rough approx-
imation of tmin cycle for commercial devices (i.e. tmin cycle �

1
FCLK

). Throughout, we assume tff setup� tclk�q �� tmin cycle

to allow simple time discretization and comparison.
The peak operational capacity of our FPGA is thus:

Cpeak �
Nresource

tmin cycle

�1�

FPGA ’96 -- ACM/SIGDA Fourth International Symposium on FPGAs

February 11-13, 1996, Monterey, CA

Figure 1: Full Pipelining to Achieve Peak FPGA Utilization

Nresource may be any of the potentially limited device resources
such as gates, wires, or switches. This peak capacity is achieved
when the FPGA is clocked at fmax �

1
tmin cycle

and every gate is
utilized. In our conventional model, that means every gate registers
its output, and there is at most one logic block between every pair
of flip flops (See Figure 1). This is true even when the register over-
head time is not small compared to tmin cycle, but the computation
latency may be increased notably in such a case.

When we run at a slower clock rate to handle deeper logic paths,
or the device goes unused for a period of time, we get less capacity
out of our FPGA. Running Nresources used at a clock rate tclk , we
utilize a capacity:

U �
Nresoures used

tclk
�2�

As tclk � tmin cycle and Nresources used � Nresource, the uti-
lization is below capacity. For example, if the path delay be-
tween registers is four gate-interconnect delays such that tclk �
4 � tmin cycle, even if all the device gates are in use, the gate
utilization, Ugate, is one-quarter the peak capacity Cgate peak .

3 Technology and Application Trends
Utilization of a resource is only important to the extent that one
is capacity limited in that resource. For example, if an FPGA
has a plethora of gates, but insufficient switching to use them, gate
utilization is irrelevant while switch utilization is paramount. When
one resource is limited, pacing the performance of the system, we
say this resources is the bottleneck. To improve performance we
deploy or redeploy our resources to utilize the bottleneck resource
most efficiently. In this section we look at the effects of bottlenecks
arising from application requirements and from technology-oriented
resource costs.

Bottlenecks andCapacity One reason we do not fully pipeline
every design and run it at the maximum clock frequency is that we
often do not need that much of every computation. While heavy
pipelining gets the throughput up for the pipelined design, it does
not give us any more functionality, which is often the limiter at the
application level.

Most designs are composed of several components, each per-
forming a task necessary to complete the entire application (See
Figure 2). The overall performance of the design is limited by the
processing throughput of the slowest device. If the performance of
the slowest device is fixed, there is no need for the other devices in
the system to process at substantially higher throughputs. In these
situations, reuse of the active silicon area on the non-bottleneck

Figure 2: Typical Multicomponent System

Figure 3: Multifunction Component in System

Figure 4: Function Distribution in System

components can improve performance (See Figure 4) or lower costs
(See Figure 3).

Many applications, such as input processing on sensor data, dis-
play processing, or video processing, have fixed requirements. In
these applications, processing faster than the sample or display rate
is not necessary or useful. Once we achieve the desired rate, the
rest of the “capacity” of the device is not required for the function.
With reuse of active silicon, the residual processing capacity can be
employed on other computations.

Technology and Bottleneck Resources Many bottlenecks
arise from implementation technology costs. Resources which are
relatively “expensive” in area, have inherently high latencies, or
have inherently low bandwidths tend to create bottlenecks in de-
signs. I/O and wiring resources often pose the biggest, technology-
dictated bandwidth limitations in reconfigurable systems.

Device I/O bandwidth often limits the rate at which data can
be delivered to a part. When data throughput is limited by I/O
bandwidth, we can reuse the internal resources to provide a larger,
effective, internal gate capacity. This reuse decrease the total num-
ber of devices required in the system. It may also help lower the
I/O bandwidth requirements by localizing larger sets of interacting
functions on each IC.

Internal routing resources tend to be one of the limiting factors
in FPGA designs. Even though it is not uncommon for 75-80%
of device area to go into interconnect, the amount of interconnect
is often insufficient to handle designs which push gate usage near
spatial capacity. This limitation is also technology based. Desirable
switch and wire resources grow close to O�N 2

gate� rather than
linearly in Ngate. To the extent we try to increase our spatial
FPGA gate capacity linearly with silicon area, this makes the routing
network the limiting resource. Reuse of network wires and switches
can be one of the biggest benefits arising from temporal reuse.

FPGA ’96 -- ACM/SIGDA Fourth International Symposium on FPGAs

February 11-13, 1996, Monterey, CA

Figure 5: DPGA LUT and Interconnect Primitives

LatencyLimitedDesigns Some designsare limited by latency
not bandwidth. Here, high bandwidth may be completely irrelevant
or, at least, irrelevant when it is higher than the reciprocal of the
design latency. This is particularly true of applications which must
be serialized for correctness (e.g. atomic actions, database updates,
resource allocation/deallocation, adaptive feedbackcontrol) or have
cyclic dependencies (e.g. FSMs). By reusing gates and wires,
we can use device capacity to implement these latency limited
operations with less resources than would be required without reuse.

4 DPGA Characteristics
In multicontext FPGAs, we increase utilization, U , by allocating
space on chip to hold several configurations for each gate or switch.
Rather than having a single configuration memory, each Look Up
Table (LUT) or multiplexor, for instance, has a small local memory
(See Figure 5). A broadcast context identifier tells each primitive
which configuration to select at any given point in time.

By allocating additional memory to hold multiple configurations,
we are reducing the potential Cpeak for a fixed amount of silicon.
At the same time, we are facilitating reuse which can increase
utilization. Multiple contexts are beneficial to the extent that the
additional space for memory creates a net utilization increase.

Let us consider our array as composed of context memory oc-
cupying a fraction of the die Acmem and active area occupying
Aactive. For simplicity, we assume Acmem � Aactive � 1. We
can relate the multicontext peak to the single-context FPGA peak:

Cmcpeak � Cpeak �Aactive �3�

We can calculate multicontext gate utilization, for example:

Umcgate �
Ntotal gates evaluated

tclk
�

cX
i�0

�
Ngates evaluted�i�

tctxt clk

�

�4�
We can calculate an efficiency for the use of active multicontext
resources:

E �
Umc

Cmcpeak

�5�

Alternately, we can compare total silicon utilization efficiency to
the single context case:

Emc �
Umc

Cpeak

� E �Aactive �6�

Equation 6 computes the net utilization efficiency of the silicon.
This is the quantity we need to maximize to get the most capacity
out of our silicon resources.

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|
14

|
16

|
18

|
20

|
22

|
24

|

0.30

|

0.40

|

0.50

|

0.60

|

0.70

|

0.80

|

0.90

|

1.00

 Number of Contexts (C)

 A
ac

tiv
e

Figure 6: Active Area Percentage versus Number of Contexts
based on DPGA Prototype Areas

Breaking up the area by number of contexts, c:

Acmem � �c� 1��Amem �7�

In Equation 7, we use c � 1 instead of c since we assume base
silicon usage (Aactive) includes one configuration and any fixed
overhead associated with it. Amem is the incremental cost of one
context configuration’s worth of memory. To the extent the size of
the context configuration is linear in the size of the device, we can
approximate Amem as proportional to Aactive:

Amem � Cmem � Aactive �8�

This gives us:

Aactive� �c� 1��Cmem �Aactive � 1 �9�

Aactive �
1

1 � �c� 1�Cmem

�10�

Our first generation DPGA prototype [11] was implemented in a
3-layer metal, 1.0�m CMOS process. The prototype used 4-LUTs
for the basic logic blocks and supported 4 on-chip context memo-
ries. Each context fully specified both the interconnect and LUT
functions. Roughly 40% of the die area consumed on the prototype
went into memory. We estimate that half of that area is required
for the first context, while the remaining area is consumed by the
additional three contexts. For the prototype implementation, then,
Acmem � 20% and Aactive � 80%. Based on the relative sizes in
the prototypes and using the above relations, this givesCmem � 1

12 .
With these technology constants, Equation 10 becomes:

Aactive �
1

1 � �c� 1� 1
12

�
12

12 � �c� 1�
�

12
c� 11

�11�

Figure 6 plots the relationship shown in Equation 11.
Context switch overhead associated with reading new configu-

ration data can further decrease multicontext capacity by increas-
ing tmin ctx clk over tmin clk . Our experience suggests that un-
pipelined context changes yield a tmin ctx clk � 1�5tmin clk . This
effect can be minimized by pipelining the context read at the cost of
the additional area for a bank of context registers (loweringAactive).
We make the pedagogical assumption that tmin ctx clk � tmin clk

for this discourse.

5 Multiple Independent Functions
The easiest and most mundane way to increase the utilization on an
FPGA is to use the FPGA for multiple, independent functions. At

FPGA ’96 -- ACM/SIGDA Fourth International Symposium on FPGAs

February 11-13, 1996, Monterey, CA

a very coarse granularity, conventional FPGAs exploit this kind of
reuse. The essence of reconfigurable resources is that they do not
have to be dedicated to a single function throughout their lifetime.
Unfortunately, with multi-millisecond reconfiguration time scales,
this kind of reconfiguration is only useful in pushing up utilization
in the coarsest sense. Since conventional devices do not support
background configuration loads, the active device resources are idle
and unused during these long reconfiguration events.

With multiple, on-chip contexts, a device may be loaded with
several different functions, any of which is immediately accessible
with minimal overhead. A DPGA can thus act as a “multifunc-
tion peripheral,” performing distinct tasks without idling for long
reconfiguration intervals. In a system such as the one shown in
Figure 3, a single device may perform several tasks. When used as
a reconfigurable accelerator for a processor (e.g. [1] [3] [8]) or to
implement a dynamic processor (e.g. [12]), the DPGA can support
multiple loaded acceleration functions simultaneously.

Within a CAD application, such as espresso [9], one needs to
perform several distinct operations at different times, each of which
could be accelerated with reconfigurable logic. We could load
the DPGA with assist functions, such as an ASCII decoder (e.g.
[8]), bitvector manipulator, first one locator (e.g. [1]), or hamming
distance calculator (e.g. [1]). Since these tasks are needed at
distinct times, they can easily be stacked in separate contexts and
selected as needed. To the extent that function usage is interleaved,
the on-chip context configurations reduce the reload idle time which
would be required to share a conventional device among as diverse
a set of functions.

6 Utility Functions

Some classes of functionality are needed, occasionally but not con-
tinuously. In conventional systems, to get the functionality at all,
we have to dedicate wire or gate capacity to it, even though it may
be used very infrequently. A variety of data loading and unloading
tasks fit into this “infrequent use” category, including:
� Data offload – e.g. debugging snapshot, testing observability,

fault recovery snapshot, context data offload
� Data onload – e.g. configuration setting, value initialization,

debugging value injection, testing accessibility, fault recovery,
context data reload (after coarse-grain context switch)

� Operation idle/enable – e.g. conditional operation, exception
handling, stall

In a multicontext device, the resources to handle these infrequent
cases can be relegated to a separate context, or contexts, from the
“normal” case code. The wires and control required to shift in
(out) data and load it are allocated for use only when the respective
utility context is selected. The operative circuitry then, does not
contend with the utility circuitry for wiring channels or switches,
and the utility functions do not complicate the operative logic. In
this manner, the utility functions can exist without increasing critical
path delay during operation.

A relaxation algorithm might operate as follows:
1 Load in starting point and boundary conditions
2 Calculate relaxation updates
3 Check for convergence, return to 2 if not converged
4 Offload result

Figure 7: Canonical Video Coding Pipeline

Figure 8: Temporally Systolic Video Coding Pipeline

Each of these operations may be separate contexts. The relaxation
computation may even be spread over several contexts. This general
operation style, where inputs and outputs are distinct and infrequent
phases of operation, is common for many kinds of operations (e.g.
multi-round encryption, hashing, searching, and many optimization
problems).

7 Temporal Pipelining

In the introduction we noted that we can extract the highest capac-
ity from our FPGAs by fully pipelining every operation. When
we need the highest throughput for the task, but limited function-
ality, this technique works well. However, we noted in Section 3
that application and technology bottlenecks often limit the rate at
which we can provide new data for a design such that this maxi-
mum throughput is seldom necessary. Further, we noted that many
applications are limited in the amount of distinct functionality they
provide rather than the amount of throughput for a single function.
Temporal pipelining is a stylized way of organizing designs for
multi-context execution which uses available capacity to support a
larger range of functions rather than providing more throughput for
a single piece of functionality.

7.1 Temporally Systolic Pipelines

Figure 7 shows a typical video coding pipeline (e.g. [7]). In
a conventional FPGA implementation, we would lay this pipeline
out spatially, streaming data through the pipeline. If we needed the
throughput capacity offered by the most heavily pipelined spatial
implementation, that would be the design of choice. However, if
we needed less throughput, the spatially pipelined version would
require the same space while underutilizing the silicon. In this
case, a DPGA implementation could stack the pipeline stages in
time. The DPGA can execute a number of cycles on one pipeline
function then switch to another context and execute a few cycles
on the next pipeline function (See Figure 8). In this manner, the
lower throughput requirement could be translated directly into lower
device requirements.

This is a general schema with broad application. The pipeline
design style is quite familiar and can be readily adapted for mul-
ticontext implementation. The amount of temporal pipelining can

FPGA ’96 -- ACM/SIGDA Fourth International Symposium on FPGAs

February 11-13, 1996, Monterey, CA

Dashed lines show one full levelization of this cir-
cuit. With a context switch at each dashed line, the
circuit can be evaluated on two physical gates.

Figure 9: Levelization Example

be varied as throughput requirements change or technology ad-
vances. As silicon feature sizes shrink, primitive device bandwidth
increases. Operations with fixed bandwidth requirements can in-
creasingly be compressed into more temporal and less spatial eval-
uation.

7.2 Levelized Logic

Levelized logic is a CAD technique for automatic temporal pipelin-
ing of existing circuit netlists. Bhat refers to this as temporal
partitioning in the context of the Dharma architecture [2]. The ba-
sic idea is to assign an evaluation context to each gate so the gate’s
predecessors are evaluated in a context prior to the gate’s context.
With latency constraints, we may further require that the levelized
network not take any more tmin clk steps than necessary. With a
full levelization scheme, the number of contexts used to evaluate a
netlist is equal to the critical path in the netlist.

Figure 9 shows a simple netlist with five logic elements. The
critical path (A�C�E) is three elements long. Spatially imple-
mented, this netlist evaluates a 5 gate function in 3 cycles using 5
physical gates. In three cycles, thesefive gates could have provided
5 � 3 � 15 gate evaluations, so we realize a gate usage efficiency,
Egate, of 5

15 � 0�33. The circuit can be fully levelized as shown in
Figure 9. The total gate evaluation capacity occupied is 2� 3 � 6
(Egate � 5

6 � 0�83). Alternately, the circuit can be levelized into
5 contexts, taking a delay of 5 � tmin cycle and a capacity of 5
(Egate �

5
5 � 1�0).

The preceding example illustrates the kind of options available
with levelization.
� Slack in the network allows us some freedom in the context

placement for components outside of the critical path. In gen-
eral, this slack should be used to equalize context size, mini-
mizing capacity usage.

� Up to a point, more contexts allow increased utilization.
� Achieving the highest utilization often requires increasing the

evaluation delay.
Table 1 summarizes full levelization results for several MCNC

benchmarks. sis [10] was used for technology independent opti-
mization. Chortle [5] was used to map the circuits to 4-LUTs.
For the purpose of comparison, circuits were mapped to minimize
delay since this generally gave the highest, single contextutilization
efficiency. No modifications to the mapping and netlist generation
were made for levelized computation. Gates were assigned to con-
texts using a list scheduling heuristic. Levelization results are not
optimal, but demonstrate the basic opportunity for increased uti-
lization efficiency offered by levelized logic evaluation.

Design Single Context Full Levelization
L Ng Cap Es Cap Emg

Emg

Es

5xp1 6 55 330 0.16 72 0.76 4.58
9sym 5 155 775 0.20 510 0.30 1.51

9symml 5 130 650 0.20 420 0.30 1.54
C499 7 406 2842 0.14 588 0.69 4.83
C880 9 289 2601 0.11 342 0.84 7.60
alu2 10 323 3230 0.10 480 0.67 6.72

apex6 5 454 2270 0.20 460 0.98 4.93
apex7 5 158 790 0.20 165 0.95 4.78

b9 3 55 165 0.33 57 0.96 2.89
clip 6 162 972 0.16 324 0.50 3.00

cordic 8 529 4232 0.12 888 0.59 4.76
count 4 128 512 0.25 164 0.78 3.12
des 8 2749 21992 0.12 3168 0.86 6.94
e64 4 385 1540 0.25 456 0.84 3.37

f51m 7 152 1064 0.14 252 0.60 4.22
misex1 3 24 72 0.33 27 0.88 2.66
misex2 4 58 232 0.25 60 0.96 3.86

rd73 5 157 785 0.20 295 0.53 2.66
rd84 5 381 1905 0.20 935 0.40 2.03
rot 8 398 3184 0.12 400 0.99 7.96

sao2 5 98 490 0.20 150 0.65 3.26
vg2 5 92 460 0.20 135 0.68 3.40
z4ml 4 13 52 0.25 16 0.81 3.25
Mean 0.19 0.71 4.08

Table 1: Full Levelization for Benchmark Circuits

The following equations summarize the metrics used in Table 1:

Es �
1
L

(12)

Cap � Ng � Ltotal (13)

Emg �
Ng

L�Nmax level gates

(14)

For the purpose of pedagogical comparison, we normalize gate us-
age to the number of gates required, Ng in each implementation.
Referring back to Equations 1 and 2, single context efficiency is
Es � U

Cpeak
. With the normalization, the single context efficiency

is simply the reciprocal of the critical path delay, L (Equation 12).
Capacity, Cap, is the time-space capacity occupied by an imple-
mentation. Emg results from reducing Equation 5 normalized to
Nmax level gates, the number of gates required by the the largest
context in the multicontext implementation.

We saw in our simple example above that utilization efficiency
varies with the number of contexts actually used. Figure 10 plots
the gate efficiencies achieved for the DES benchmark for various
numbers of contexts. Recall from Section 4 and Figure 6 that
context memory takes area away from active silicon. Figure 10 also
combines gate efficiencies with Equation 11 according to Equation 6
to show the net silicon utilization efficiency for this design.

In this section we have focussed on cases where the entire circuit
design is temporally pipelined. There are, of course, hybrids which
involve some element of both spatial and temporal pipelining. Once
we have determined the level of spatial pipelining necessary to
provide the requisite throughput, we are free to temporally pipeline
logic evaluation within each spatial pipeline stage.

FPGA ’96 -- ACM/SIGDA Fourth International Symposium on FPGAs

February 11-13, 1996, Monterey, CA
� �

� �

� �

|
0

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|
9

|
10

|

0.00

|

0.10

|

0.20

|

0.30

|

0.40

|

0.50

|

0.60

|

0.70

|

0.80

|

0.90

|

1.00

 Number of Contexts (C)

 E
ff

ic
ie

nc
y

(E
)

 Emg

 Aactive

 Emcgate = Aactive x Emg

��

�

�
�

�

�
�

�
�

�
�

��

�
�

�
�

Figure 10: Overall Silicon Utilization for DES Benchmark

8 Finite State Machines

Since the next state calculation must complete and be fed back
to the input of the FSM before the next state behavior can begin,
there is no benefit to be gained from spatial pipelining within the
FSM logic. Temporal pipelining can be used to increase gate and
wire utilization. The middle section of Table 2 summarizes the full
levelization of several MCNC benchmark FSMs in the same style
as Table 1.

Finite state machines, however, happen to have additional struc-
ture over random logic which can be exploited. In particular, one
never needs the full FSM logic at any point in time. During any
cycle, the logic from only one state is active. In a traditional FPGA,
we have to implement all of this logic at once in order to get the
full FSM functionality. With multiple contexts, each context need
only contain a portion of the state graph. When the state transitions
to a state whose logic resides in another context, we can switch
contexts making a different portion of the FSM active. National
Semiconductor, for example, exploits this feature in their multicon-
text programmable logic array (PLA), MAPL [6].

In the most extreme case, each FSM state is assigned its own
context. The next state computation simply selects the appropriate
next context in which to operate. Table 2 shows the reduction
in logic depth and increase in utilization efficiency which results
from multiple context implementation. FSMs were mapped using
mustang [4]. Logic minimization and LUT mapping were done
with espresso, sis, and Chortle. All single context FSM
implementations use one-hot state encodings since those uniformly
offered the lowest latency and had the lowest capacity requirements.
The multicontext FSM implementations use dense encodings so the
state specification can directly serve as the context select. Delay
and capacity are dictated by the logic required for the largest and
slowest state. Comparing context per state partitioning in Table 2 to
full levelization, we see that this state partitioning achieves higher
efficiency gains and generally lower delays than levelization.

The capacity utilization and delay are often dictated by a few of
the more complex states. It is often possible to reduce the number
of contexts required without increasing the capacity required or in-
creasing the delay. Figure 11 shows the CSE benchmark partitioned
into various numbers of contexts. These partitions were obtained
by partitioning along mustang assigned state bits starting with a
four bit state encoding.

While demonstrated in the contexts of FSMs, the basic technique
used here is also fairly general. When we can predict which portions
of a netlist or circuit are needed at a given point in time, we can

generate a more specialized design which only includes the required
logic. The specialized design is often smaller and faster than the
fully general design. With a multicontext component, we can use
the contexts to hold many specialized variants of a design, selecting
them as needed.

9 Conclusions

Programmable device capacity has both a spatial and a temporal
aspect. Traditional FPGAs can only build up functionality in the
spatial dimension. These FPGAs can only exploit the temporal
aspect of capacity to deliver additional throughput for this spatially
realized functionality. As a result, with heavy pipelining, FPGAs
can provide very high throughput but only on a limited amount
of functionality. In practice, however, we seldom want or need
the fully pipelined throughput. Instead, we are often in need of
more resources or can benefit from reducing total device count by
consolidating more functionality onto fewer devices.

In contrast, DPGAs dedicate some on-chip area to hold multiple
configurations. This allows resources such as gates, switches, and
wires, to implement different functionality in time. Consequently,
DPGAs can exploit both the temporal and the spatial aspects of
capacity to provide increased functional capacity.

Fully exploiting the time-space capacity of these multicontext de-
vices introduces new tradeoffs and raises new challenges for design
and CAD. This paper reviewed several stylized models for exploit-
ing the time-space capacity of devices. Multifunction devices, seg-
regated utility functions, and temporally systolic pipelining are all
design styles where the designer can exploit the fact that the device
function can change in time. Levelized logic and FSM partitioning
are CAD techniques for automatically exploiting the time-varying
functionality of these devices. From the circuit benchmark suite,
we see that 3-4x utilization improvements are regularly achievable.
The FSM benchmarks show that even greater capacity improve-
ments are possible when design behavior is naturally time varying.
Techniques such as these make it moderately easy to exploit the
capacity improvements enabled by DPGAs.

Acknowledgments

This research is supported by the Advanced Research Projects
Agency of the Department of Defense under Rome Labs contract
number F30602-94-C-0252.

References

[1] Peter Athanas and Harvey F. Silverman. Processor Reconfig-
uration Through Instruction-Set Metamorphosis. IEEE Com-
puter, 26(3):11–18, March 1993.

[2] Narasimha B. Bhat. Novel Techniques for High Performance
Field Programmable Logic Devices. UCB/ERL M93/80, Uni-
versity of California, Berkeley, November 1993.

[3] André DeHon. DPGA-Coupled Microprocessors: Commod-
ity ICs for the Early 21st Century. In Proceedings of the IEEE
Workshopon FPGAs for CustomComputingMachines, 1994.

FPGA ’96 -- ACM/SIGDA Fourth International Symposium on FPGAs

February 11-13, 1996, Monterey, CA

Single Context Full Levelization Context per State

FSM States L Ng Cap Es Cap Emg
Emg

Es
L Ng Cap Emg

Capsingle
Capmc

bbara 10 3 40 120 0.33 45 0.88 2.66 1 6 6 1.00 20.00
bbsse 16 3 60 180 0.33 60 1.00 3.00 2 13 26 0.50 6.92

beecount 7 2 22 44 0.50 22 1.00 2.00 1 7 7 1.00 6.28
cse 16 4 97 388 0.25 104 0.93 3.73 2 15 30 0.50 12.93

dk14 7 3 67 201 0.33 84 0.79 2.39 1 8 8 1.00 25.12
dk16 27 3 83 249 0.33 87 0.95 2.86 1 8 8 1.00 31.12
dk512 15 2 20 40 0.50 20 1.00 2.00 1 7 7 1.00 5.71

ex1 20 4 151 604 0.25 164 0.92 3.68 2 26 52 1.00 11.61
ex6 8 3 62 186 0.33 69 0.89 2.69 1 11 11 1.00 16.90
mc 4 2 14 28 0.50 14 1.00 2.00 1 7 7 1.00 4.00

planet 48 4 172 688 0.25 172 1.00 4.00 1 25 25 1.00 27.52
pma 24 4 139 556 0.25 160 0.86 3.47 2 15 30 0.50 18.53
s1 20 4 195 780 0.25 228 0.85 3.42 3 31 93 0.33 8.38

s1488 48 4 183 732 0.25 184 0.99 3.97 2 27 54 0.50 13.55
s208 18 3 40 120 0.33 42 0.95 2.85 1 7 7 1.00 17.14
s386 13 4 54 216 0.25 56 0.96 3.85 2 12 24 0.50 9.00
s510 47 3 83 249 0.33 84 0.98 2.96 1 13 13 1.00 19.15
sand 32 4 224 896 0.25 260 0.86 3.44 4 38 152 0.25 5.89
styr 30 5 285 1425 0.20 335 0.85 4.25 2 24 48 0.50 29.68
tbk 32 5 510 2550 0.20 1065 0.47 2.39 4 46 184 0.25 13.85

Mean 3.08 15.16

Table 2: Full Levelization and State per Context FSM Partitioning

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|
14

|
16

|
0

|
2

|

4

|

6

|

8

|

10

|

12

 Number of Contexts (C) C
ap

si
ng

le
/C

ap
m

ul
ti

�

�

�

�
�� |

0
|
2

|
4

|
6

|
8

|
10

|
12

|
14

|
16

|

1

|

2

|

3

|

4

|

5

 Number of Contexts (C)

 L
og

ic
 L

ev
el

s
(L

)

��

�

���

Figure 11: Capacity and Delay versus Number of Contexts for CSE Benchmark

[4] Srinivas Devadas, Hi-Keung Ma, , A.R. Newton, and Alberto
Sangiovanni-Vincentelli. MUSTANG: State Assignment of
Finite State Machines Targeting Multilevel Logic Implemen-
tations. IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, 7(12):1290–1300, December
1988.

[5] Robert Francis. TechnologyMapping for Lookup-TableBased
Field-Programmable Gate Arrays. PhD thesis, University of
Toronto, 1992.

[6] David Hawley. Advanced PLD Architectures. In Will Moore
and Wayne Luk, editors, FPGAs, pages 11–23. Abingdon
EE&CS Books, 15 Harcourt Way, Abingdon, OX14 1NV,
UK, 1991.

[7] Chris Jones, John Oswald, Brian Schoner, and John Vil-
lasenor. Issues in Wireless Video Coding using Run-time-
reconfigurable FPGAs. In Proceedings of the IEEE Workshop
on FPGAs for Custom Computing Machines, April 1995.

[8] Rahul Razdan. PRISC: Programmable Reduced Instruction
Set Computers. PhD thesis, Harvard Univeristy, May 1994.

[9] R. Rudell and A. Sangiovanni-Vincentelli. Multiple-Valued
Minimization for PLA Optimization. IEEE Transactions on
Computer-AidedDesignof IntegratedCircuits, 6(5):727–751,
September 1987.

[10] Ellen M. Sentovich, Kanwar Jit Singh, Luciano Lavagno,Cho
Moon, Rajeev Murgai, Alexander Saldanha, Hamid Savoj,
Paul R. Stephan,Robert K. Brayton, and Alberto Sangiovanni-
Vincentelli. SIS: A System for Sequential Circuit Synthesis.
UCB/ERL M92/41, University of California, Berkeley, May
1992.

[11] Edward Tau, Ian Eslick, Derrick Chen, Jeremy Brown, and
André DeHon. A First Generation DPGA Implementation.
In Proceedings of the Third Canadian Workshop on Field-
ProgrammableDevices, pages 138–143, May 1995.

[12] Michael J. Wirthlin and Brad L. Hutchings. A Dynamic In-
struction Set Computer. In Proceedingsof the IEEEWorkshop
on FPGAs for Custom Computing Machines, April 1995.

[13] Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124. The
Programmable Logic Data Book, 1989, 1994.

