
FCCM ’94 --IEEE Workshop on FPGAs for Custom Computing Machines

April 10-13, Napa, CA

DPGA-Coupled Microprocessors:
Commodity ICs for the Early 21st Century

André DeHon
Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, MA, 02139

Abstract

During the past decade the microprocessor has become
a key commodity component for building all kinds of com-
putational systems. During this time frame large, reconfig-
urable logic arrays have exploited the same advances in IC
fabrication technology to emerge as viable system building
blocks. Looking at both the technology prospects and ap-
plication requirements, there is compelling evidence that
microprocessors with integrated reconfigurable logic ar-
rays will be a primary building block for future computing
systems. In this paper, we look at the role such components
can play in buildinghigh-performance and economical sys-
tems, as well as the ripe technological outlook. We note
how the tight integration of reconfigurable logic into the
processor can overcome some of the major limitations of
contemporary, attached reconfigurable compute engines.
We specifically consider the use of integrated Dynamically
Programmable Gate Array structures for the configurable
logic and examine the advantages rapid reconfiguration
provides in this application.

1 Introduction

Continuing advances in semiconductor processing have
allowed the integration of increasing functionality into
single-chip microprocessors. Today’s high-performance
microprocessors sport 2-3 million transistors and include
multiple functional units and large on-chip memories. Mi-
croprocessors built for low-cost and embedded systems
heavily integrate peripheral control to reduce the chip count
for complete systems.

As technology continues to advance, room remains to
enhance performance with additional,fixed functional units
and reduce costs by integrating more of the computing
system onto the microprocessor IC. Nonetheless, simply
adding fixed functional capacity will not produce the high-
est performance on the broadest class of applications nor
allow the construction of the broadest range of low-cost

systems. Much of the economy in the use and production
of microprocessors has come from their commoditization.
Integration of fixed functional capacity risks overspecial-
ization and reduced volume utilization per design invest-
ment.

For broader application, future microprocessors should
dedicate a portion of their silicon real-estate to reconfig-
urable logic. The reconfigurable logic can be specialized
in application-specific ways to provide application acceler-
ation and in system-specific ways to serve as support logic
implementing system-specific functions. A single recon-
figurable microprocessor design can serve as the principal
building block for a wide range of applications includ-
ing personal computers, embedded systems, application-
specific computers, and general- and special-purpose mul-
tiprocessors. The wide field of application for the re-
configurable microprocessor allow it to draw heavily on
economies of scale and volume production.

In this paper, we look at the technology push (Section 2)
and application pull (Section 3) which argue compellingly
for the tight integration of reconfigurable logic into com-
modity microprocessors. We review contemporary efforts
to accelerate application-specific computing tasks (Sec-
tion 4) to emphasize the range of application where recon-
figurable logic has already proven itself capable of acceler-
ation and to review the typical shortcomings of contempo-
rary systems. We review the Dynamically Programmable
Gate Array Architecture (DPGA) (Section 5) in the con-
text of microprocessor integrated reconfigurable logic and
show that the DPGA architecture overcomes some of the
limitations of contemporary reconfigurable logic systems.
With this background in place, we take a broader look at the
roles DPGA-coupled processors can play in future comput-
ing systems (Section 6). Finally, we look at the acceptance
path for this technology (Section 7), take a reprise look
at the costs and benefits relative to fixed functional units
(Section 8), and look at the challenges ahead (Section 9)
before concluding.



FCCM ’94 --IEEE Workshop on FPGAs for Custom Computing Machines

April 10-13, Napa, CA

2 Technology Trends

Semiconductor processing has continued to improve
steadily, allowing the fabrication of smaller and smaller
devices. This trend shows little signs of abating. Effective
device densities and IC capacity improve at an exponential
rate. We are all now quite familiar with the progress of
microprocessors where operational performance increases
by roughly 60% per year while the number of gates in-
creases by 25% per year. With 3 million gates available
for today’s modern microprocessors, we can expect to have
over 12 million gates available by the end of the century.

As gate densities have improved, more of the comput-
ing system has been integrated onto the microprocessor die
and larger processors have been implemented. What started
as minimal instruction stream control and a simple, 4-bit
ALU, has grown with the available area to include multiple,
64-bit functional units including hardwired floating-point
support. The basic microprocessor design has expanded to
include large, on-chip memories to prevent off-chip i/o la-
tency from significantly degrading performance. Today’s
high-performance microprocessors move towards higher
execution rates using aggressive pipelining and superscalar
execution utilizing multiple functional units. Caches in-
crease with instruction throughput in an attempt to prevent
off-chip i/o latency from limiting effective computational
throughput. Today’s cost-conscious microprocessors move
to integrate common system and peripheral functions onto
the IC die to reduce system cost and power consumption.

Just during the past 6-8 years, we have seen reconfig-
urable logic emerge as a commodity technology compa-
rable to memories and microprocessors. Like memories,
reconfigurable logic arrays rapidly adapt to new technology
since the design consists of an array of simple structures.
Also like memory, the regularity allows designers to focus
their time on adapting the key logic structures to extract
highest performance from the available technology. Each
reconfigurable array can be designed and tested as a sin-
gle IC design yet gains volume from the myriad of diverse
applications to which the general-purpose array is applied.

Our growing microprocessors can continue their cur-
rent trends by including more memory, more FPUs, more
ALUs, and more system functionality, but it is not clear
this will be the most judicious use of the silicon real-estate
becoming available in the near future. Addition of fixed
functional units will not bring about broad-based acceler-
ation of applications in proportion to the area these fixed
units consume. For a given application, thefixed functional
units can be arranged to provide almost proportional im-
provements. However, each application class will require a
different selection and arrangement of units to achieve such
improvements. Any fixed collection of functional units,
control, and data paths will necessarily be suboptimal for

most applications.

Improvement in microprocessor performance and sys-
tem cost can be achieved through specialization and in-
tegration. However, such specialization must be balanced
against market size to maintain commodity economics. The
danger is that overspecialization will reduce the market base
and not allow the resulting microprocessors to benefit from
commoditization.

The incorporation of reconfigurable array logic into our
growing microprocessor provides an alternative growth
path which allows application specialization while benefit-
ing from the full effects of commoditization. Like modern
reconfigurable logic arrays, a single microprocessor design
can be employed in a wide variety of applications. Appli-
cation acceleration and system adaptation can be achieved
by specializing the reconfigurable logic in the target system
or application.

3 Application Outlook

Despite ubiquitous use, contemporary microprocessor
architectures are poorly matched to most of the applica-
tions they run. For almost any application, one can conjec-
ture additions or modifications to prevalent microprocessor
architectures which would significantly enhance the appli-
cation’s performance. However, the additions differ from
application to application, and there is insufficient com-
monality among applications to merit inclusion of such
additions in a microprocessor with a broad application
base. The performance advantage gained by employing
specialized coprocessors for high-performance graphics,
video processing, signal processing, and networking further
demonstrates the performance penalty which accompanies
using a general-purpose microprocessor over processors
specialized to handle more limited application domains.

Incorporating reconfigurable logic into the general-
purpose microprocessor, allows applications to specialize
the processing hardware to match the application require-
ments while allowing a single microprocessor design to
maintain its appeal across a broad range of application
bases. Special-purpose architectures have long been rec-
ognized as one path to higher performance, application-
specific computing systems. As we will review in the fol-
lowing section, recent research in the area of customizable
computing systems demonstrates that reconfigurable logic
can be effectively employed to accelerate many computa-
tional tasks. By including reconfigurable logic in the mi-
croprocessor, we combine the application-oriented benefits
of architecture specialization with the economic benefits of
commoditization.



FCCM ’94 --IEEE Workshop on FPGAs for Custom Computing Machines

April 10-13, Napa, CA

4 Contemporary Reconfigurable Computing

4.1 Reconfigurable Compute Engines

Several research groups have built reconfigurable com-
pute engines to extract high application performance at low
costs by specializing the computing engine to the compu-
tation task.

� Athanas and Silverman introduce the PRISM (Proces-
sor Reconfiguration through Instruction-Set Metamor-
phosis) architecture which couples a programmable
element with a microprocessor [21]. From each ap-
plication program, new processor “instructions” are
synthesized in the reconfigurable element which are
designed to accelerate the application. PRISM-I and
PRISM-II prototypes have been built which couple
common microprocessors with Xilinx FPGAs [23].

� Cuccaro and Reese at the Supercomputing Research
Center augmented a CM-2 with reconfigurable logic
units by using Xilinx FPGAs in place of the CM-
2 floating point processors [9]. The reconfigurable
logic can be configured to perform common opera-
tions which are ill-suited to the fine-grained SIMD
processing elements in the CM-2.

� The Supercomputing Research Center has built a
series of programmable systolic arrays known as
SPLASH [18] [7]. Each SPLASH array attaches to
a host workstations and is composed from a number
of Xilinx FPGAs in an array fashion along with sup-
port memory. SPLASH has seen heavy use in genome
sequence matching applications [16].

� DEC Paris’s PAM (Programmable Active Memories)
is an array of Xilinx FPGAs attached to a host worksta-
tion [5]. The DEC team has demonstrated significant
performance improvements on many applications by
appropriate specialization of the PAM accelerator.

� Algotronix’s CH2x4 provides a 2�4 array of
CAL 1024 FPGAs along with memory in an ISA,
PC-compatible card form factor [2].

Numerous other reconfigurable computing engines have
been and continue to be built due to their favorable
cost/performance ratios.

4.2 Application Sampling

Reconfigurable computing engines such as these have
been effectively employed in a wide-rage of applications,
including:

1. Binary operations – Reconfigurable logic can per-
form binary operations very efficiently and with sub-
stantial parallelism. When applications require the
evaluation of large, regular binary operations, recon-
figurable compute engines can offer significant advan-
tage over the fixed logic available in typical proces-
sors. The PRISM research project demonstrates the
kinds of advantages provided by this class of special-
ization [22].

2. Arithmetic – When the arithmetic operations required
by a computation do not exactly match those provided
by the ALU/FPU in conventional microprocessors or
when the arithmetic operations admit to substantial
bit-level parallelism, there is ample room to specialize
reconfigurable logic to provide higher performance
[11] [20] [4] [9].

3. Encryption/Decryption/Compression – Encryp-
tion/decryption and compression applications require
application of simple sequences of arithmetic and
logic operations to large datasets. The operations re-
quired are often not native to typical microprocessors.
Specialized computing engines can provide the ap-
propriate operators and make use of the parallelism
and regularity in the application to extract high per-
formance [20] [4].

4. Sequence and string matching – By recognizing the
application’s natural structure and specializing a con-
figurable compute engine to take advantage of the
structure, researchers have managed to achieve very
high performance at modest costs [14] [12] [16].

5. Sorting – Sorting tasks exhibit natural, fine-grained
parallelism. By exploiting this parallelism, large sort-
ing tasks can be performed efficiently with sorting
networks built from configurable logic [17].

6. Physical system simulation – Simulating physical
phenomena often require repeated evaluation of state-
variables using very regular computations, often of
limited precision. Compute engines specialized to
evaluating particular systems of equations can achieve
significant advantage over general-purpose processors
[4].

7. Video and image processing – The fine-grained, bit-
level parallelism available in most image processing
applications make it highly amenable to acceleration
using fine-grained processing arrays (e.g. [4] [11]).

A common theme in these applications is that application-
specific specialization of a reconfigurable computing sys-
tem provides orders of magnitude higher performance than



FCCM ’94 --IEEE Workshop on FPGAs for Custom Computing Machines

April 10-13, Napa, CA

general-purpose microprocessors or workstations. The
costs of the reconfigurable logic are typically less than that
of the base processor/workstations being augmented. We
often see “supercomputer” level performance from systems
which cost orders of magnitude less to assemble. For sev-
eral applications, the specialized, reconfigurable compute
engine demonstrates the best performance reported on any
machine.

The applications reviewed here were reported on a
widely varying collection of reconfigurable architectures
of various sizes. We cannot, fairly, conclude that a single
reconfigurable architecture will necessarily exhibit directly
comparable performance gains. Nonetheless, the ensemble
demonstrates a clear potential for application acceleration
via specialized reconfigurable logic across a large range of
application.

4.3 Some Common Themes

One theme we see exploited in many of these applica-
tion is the advantage of exploiting bit-level parallel com-
putation. The reconfigurable array can manipulate a large
number of bits in parallel, whereas conventional processor
technology focusses on fixed, word-wide data manipulation
using word sizes of at most 64 bits in today’s microproces-
sors.

When ALUs are implemented in reconfigurable logic,
they can be specialized to perform exactly the function re-
quired by the application. This specialization allows the
use of more economical functional units both in terms of
area and operational speed. This economy can enable the
reconfigurable logic to support numerous functional units
simultaneously to extract high performance through paral-
lelism.

Another recurring theme is application-specific data
flow between functional elements. In a conventional pro-
cessor it is necessary to spend computational cycles moving
data around to match thefixed functional resources and data
paths provided. This weakness is often aggravated by lim-
ited data-transfer bandwidth within the processing system.
In a reconfigurable compute engine, it is possible to cus-
tomize the data paths between compute elements, as well as
the compute elements themselves, to match the application.
Rather than juggling intermediate results in and out of reg-
isters and memory, the compute engine can be customized
so data flows directly from producer to consumer. The spe-
cialized data movement is often localized between portions
of reconfigurable logic avoiding bandwidth bottlenecks on
shared data paths.

4.4 Limitations of Current Systems

Despite the high performance contemporary reconfig-
urable computing systems provide, they do exhibit a couple
of common limitations:

1. Low Bandwidth and High Latency Interface –
Since contemporary reconfigurable compute engines
are attached to host processors as peripherals, they
are generally attached to a peripheral bus with lim-
ited bandwidth and high latency to the processor. The
high overhead of communicating with the the attached
reconfigurable engine limits the kinds of acceleration
possible and prevents close cooperation between the
fixed and reconfigurable logic units. The low band-
width similarly makes communication expensive and
limits the throughput achievable with the reconfig-
urable compute engine.

2. High Reconfiguration Overhead – Since the recon-
figuration costs are high in almost all contemporary
reconfigurable logic technologies, the reconfiguration
time must be amortized over a large amount of pro-
cessing to justify reconfiguring the compute engine.
Often, this means that a single configuration must be
maintained throughout an application even when dif-
ferent portions of the application might be accelerated
with different kinds of specialized logic. This high-
reconfiguration costs also makes it impossible to em-
ploy contemporary reconfigurable compute engines
productively in multitasking or time-shared systems.

Tight integration of the reconfigurable logic into the base
microprocessor can significantly decrease communication
latency between the fixed functional units and the reconfig-
urable logic. Similarly, when the processor and reconfig-
urable logic share the same die, higher bandwidth is easily
available for high throughput processing employing recon-
figurable logic. By reducing the communication overhead
between the base microprocessor and the reconfigurable
logic, we can greatly increase the kinds of application-
specific specialization which provide significant accelera-
tion.

5 Dynamically Programmed Gate Arrays

The Dynamically Programmable Gate Array (DPGA)
architecture [6] is particularly well-suited for reconfig-
urable computing. Unlike normal Field-Programmable
Gate Arrays (FPGAs) where the function of each array
element is fixed between relatively slow reconfiguration
sequences, the DPGA array elements may switch rapidly
among several, pre-programmed configurations. This rapid



FCCM ’94 --IEEE Workshop on FPGAs for Custom Computing Machines

April 10-13, Napa, CA

Figure 1: Computational Unit for FPGA AE

reconfiguration allows DPGA array elements to be reused
in time without significant overhead. Applications can
preload multiple, specialized array personalities and switch
among configurations rapidly.

Like FPGAs, DPGAs are composed of a tesselation of
simple computational array elements. Each array element
can perform a simple logical function on several input bits
producing one or more output bits. Many modern FPGAs
are best modelled as programmable lookup tables. The
lookup table programming constitutes the configuration of
each array-element (See Figure 1). Between array elements
programmable interconnect allows the array elements to be
linked up as required by the application. The interconnect
in FPGAs is typically configured by programming pass
gates and multiplexors. Each DPGA array-element uses a
second lookup table to map a broadcast configurationselec-
tion into a local configuration (See Figure 2). The broad-
cast configuration behaves like the broadcast instruction in
a SIMD array, telling each array-element which function to
perform on the next clock cycle. Unlike a SIMD array, the
indirection through a pre-programmed, context lookup ta-
ble allows each DPGA array element to perform a different
function in response to the broadcast configuration iden-
tifier. In a similar manner, the configurable interconnect
in a DPGA array has a table of loaded configurations and
selects between configurations based on the current array
context identifier.

At the cost of somewhat larger array elements and inter-
connect, the DPGA serves as a multiple-context FPGA.
Within the space of preloaded contexts the DPGA can
switch personalities completely from one clock cycle to
the next. The DPGA configuration lookup table effectively
serves as a cache of array element configurations. By giv-
ing each array element a small configuration cache, we

Figure 2: DPGA Array Element

effectively get very high reconfiguration bandwidth by per-
forming lookups locally at all array elements in parallel.
By pipelining the context lookup, DPGA cells need run no
slower than comparable complexity FPGA or SIMD logic
units.

The multiple loaded context now allow us to utilize the
array elements more efficiently. In the most straightfor-
ward application, this rapid reconfiguration allows a single
DPGA array to be loaded simultaneously with multiple con-
figurations. The DPGA can switch between configurations
to accelerate different portions of an application. If the con-
figurable array is too small to hold an entire acceleration
logic block, the block can be partitioned across multiple
context and evaluated in stages. An application can also
make use of the DPGA’s capacity to perform computations
where the processing elements vary both spatial and tem-
porally. This allows computational functions to be placed
where intermediate data resides in the reconfigurable array,
taking further advantage of application-specific locality and
data flow.

Finally, DPGAs are naturally suited to conventional
multitasking or fine-grained multithreading (e.g. April
[1], *T [19]). In these applications, each thread or context
may require a different array personality. By partitioning
the DPGA contexts and assigning a different context, or
sets of contexts, to each thread or task, array reconfigu-
ration will not complicate sharing the processor between
tasks or threads.



FCCM ’94 --IEEE Workshop on FPGAs for Custom Computing Machines

April 10-13, Napa, CA

6 DPGA-Coupled Processor Applications

The DPGA-coupled processor can be efficiently and
economically employed as the key computational building
block in almost all kinds of computing systems. The com-
putational power and flexibility this component provides
will allow it to subsume the role of more traditional mi-
croprocessors as well as many processors which have been
specialized for application-specific domains. Following is
a sampling of DPGA-coupled microprocessor applications:

� General-Purpose Workstations and Personal Com-
puters – The DPGA logic can be employed for
application-specific acceleration. Each application
program can configure the reconfigurable array in the
manner most beneficial to the application. The op-
erating system and applications can also specialize
the DPGA logic to serve in coprocessing roles for
compute-intensive functions such as compression, en-
cryption, signal processing, or protocol processing.
For many of these compute-intensive tasks, high per-
formance is desirable in bursts, but not continually.
Configuring DPGA logic to perform these tasks as
needed is much more economical than employingded-
icated, application-specific coprocessors. The recon-
figurable logic can also be employed for minimally
intrusive profiling or statistics collection. Informa-
tion on the dynamics of program execution and re-
source utilization is becoming increasingly important
for high-quality program optimization.

� Special-Purpose Computing Machines – The at-
tached DPGA logic can be specialized to configure
the microprocessor to the special-purpose application.
The designer building the special purpose computer
provides added value by specializing both the config-
ured architecture and the application software. In this
scenario, the designer can use all the techniques de-
veloped to accelerate applications in general-purpose
computing setting. Further, knowing that his appli-
cation is dedicated to a particular application, he can
often realize greater specialization.

� Embedded Systems – For embedded systems, the
DPGA-coupled processor can provide intelligent, in-
tegrated control with no external components for in-
terfacing. Part of the reconfigurable logic can be em-
ployed as system-specific glue logic.

� Multiprocessor Systems – DPGA-coupled proces-
sors can be employed in a variety of ways to pro-
duce high-performance multiprocessors. Part of the
DPGA logic array could be used to build a tightly-
integrated network interface (e.g. [10] [19]) to adapt

the microprocessor for multiprocessing. Part of the
DPGA logic could be used to construct application-
specific synchronization primitives or communication
networks. Each node may employ the DPGA logic
for task acceleration in the same manner as single pro-
cessor special- and general-purpose computers. The
fine-grained, bit-level parallelism provided by the DP-
GAs can compliment the coarse-grained parallelism
which is easiest to extract from microprocessor-based
multiprocessors.

7 Acceptance Path

Integration can evolve smoothly from today’s research-
oriented, reconfigurable compute engines to commoditized,
DPGA-coupled microprocessors. Contemporary, reconfig-
urable compute engines (Section 4) are attached as pe-
ripherals to host workstations and personal computers and
serve as a first step in the direction of processor integrated,
reconfigurable logic. The next step will be to provide re-
configurable logic coprocessors which can be more tightly
integrated with thefixed-logic processor in general-purpose
computing systems. With minor design effort, the recon-
figurable logic can be integrated onto the same die as a
core processor. ASIC vendors (e.g. LSI Logic, VLSI
Technology Inc., Texas Instruments), which provide core-
processors and compiled memories could provide first-
generation, FPGA- or DPGA-coupled microprocessors in
the current or upcoming ASIC technologies with minor
up-front design overhead. Native integration of DPGA ar-
rays into microprocessor designs will require the processor
to be designed with the attached reconfigurable logic in
mind. This may entail additional processor instructions for
computational cooperation between the fixed and reconfig-
urable logic as well as some rethinkof which portionsof the
processor should be implemented as hardwired functional
resources.

Similarly, the “programming” necessary to efficiently
employ these machines can evolve towards native integra-
tion with conventional compiler technology. The earliest
reconfigurable compute engines were configured through
explicit, human-crafted gate-designs. Increasingly, the be-
havior for these reconfigurable computing engines is de-
scribed at a behavioral level in hardware description lan-
guages (e.g. VHDL, Verilog). In contemporary cases,
experts familiar with the reconfigurable architecture de-
velop the configurations for accelerating each application.
PRISM [21] and dbC [13] demonstrate that conventional
programming languages can be restricted or extended to
allow programmers more comfortable with programming
languages to express computations in a way which can
be readily compiled for implementation on reconfigurable



FCCM ’94 --IEEE Workshop on FPGAs for Custom Computing Machines

April 10-13, Napa, CA

logic. For the near future, experts and more sophisticated
users can write subroutines for the reconfigurable logic and
provide them as library routines. General programmers
can make use of the provided library routines for program
acceleration simply by accessing them like any other li-
brary routine from their high-level programming language.
If we make a large library of parameterizable, hardware
subroutines known to a profiling compiler, we can employ
the compiler to profile applications and select the hardware
configurations and library routines which best accelerate
each application. The compiler can treat the replacement
of sequences of instructions on the processor’s fixed logic
with known, hardware subroutines as a potential optimiza-
tion transform and evaluate the relative merits in a manner
similar to conventional compiler transforms. Eventually,
hardware synthesis technology and conventional compiler
technology will converge and the compiler will manage
both the reconfigurable and fixed resources on the micro-
processor.

8 Costs and Benefits of Reconfiguration

For fixed functionality,we will always be able to achieve
higher performance or produce smaller IC dies by “fixing”
the logic functionality rather than customizing a reconfig-
urable array. However, when we specialize a design for
fixed logic functionality, we limit the range of application.
The reduced market volume of the specialized die may off-
set any savings due to decreased die size. Further, for each
advance in processing technology, design and engineering
effort are required for the specialized design to track pro-
cessing technology. Just as it is often more prudent to ride
the commodity microprocessor technology wave and take
advantage of the regular advances in process technology, it
will often be more beneficial to stay with programmed, re-
configurable logic and track process technology by moving
to the newest DPGA-coupled microprocessors.

We may also see the emergence of hybrid solutions like
the Xilinx HardWire Gate Arrays [24]. In systems where
the configured logic is employed in a fixed manner, stable
designs can migrate from the reconfigurable microproces-
sor to a microprocessor with an equivalent gate array which
can be programmed at the mask level. This provides some
of the advantages of fixed, specialized logic by reducing
die size while retaining many commodity advantages. The
tooling cost is low since few masks are required to person-
alize the generic design. Further, the specialized logic can
follow the hard-wired array through processing advances.

When designing native microprocessors with integrated,
configurable logic, we have the opportunity to migrate func-
tionality which has traditionally been implemented as pro-
cessor fixed logic into reconfigurable logic. In particular,

we can consider moving some of the more complicated
control structures, especially those dealing with exception
handling, into reconfigurable logic. This migration can
provide considerable flexibility and a number of practical
advantages, including:

� Feature interaction, particularly with exception and
error conditions, have a history of being one of the
hardest parts of a processor design to get correct (e.g.
[8] [15]). Careful relocation of this interaction logic
into the reconfigurable logic allows later binding and
post-fabrication modification of interaction behavior.

� The fault, interrupt, and system call behavior of many,
modern microprocessors is often quite mismatched
with the needs of the operating system [3]. Migrating
some critical control over the management of fixed re-
sources in situation such as these into reconfigurable
logic will allow the operating-system designer the
freedom to specialize the control handling to better
match operating-system requirements.

9 Challenges

Designing efficient and widely applicable DPGA-
coupled microprocessors will provide several engineering
and architectural challenges. The space of design options
is large and a number of tradeoffs will be necessary to
extract a balanced design allowing efficient acceleration
and adaptation across a large range of applications. The
key tradeoffs which must be considered when designing a
DPGA-coupled microprocessor include:

� Processor�reconfigurable logic interfacing – The
interface between the fixed and reconfigurable logic
will be one of the most important aspects of the com-
posite architecture. The interface will determine the
kinds of functions to which the reconfigurable logic
can be efficiently employed. This interface will have
a critical effect on the communication overhead be-
tween fixed and reconfigurable logic.

� Grain-size – There is no consensus among the con-
temporary FPGA community as to the appropriate
grain-size for primitive reconfigurable elements. To a
large extent, optimal array-element grain size depends
on available silicon implementation technology and
reconfiguration implementation techniques. Grain-
size will remain an important parameter to re-evaluate
with advances in processing technology, array archi-
tecture, and array application.

� Area and pin allocation – Microprocessor designers
must partition available silicon real-estate among on-



FCCM ’94 --IEEE Workshop on FPGAs for Custom Computing Machines

April 10-13, Napa, CA

chip memories (e.g. caches), fixed-functional units
(e.g. ALUs, FPUs), fixed control, and reconfigurable
logic. In addition to any dedicated, microprocessor
bus-interface pins, some pins should be dedicated to
the reconfigurable logic for use in system-specific in-
terfacing, reconfigurable array expansion, and special-
ized control and communications.

� Multitasking and state interaction – The reconfig-
urable array introduces a large amount of state associ-
ated with each computation in progress. Both the array
configuration and the intermediate data values within
the array are necessary to describe the computation at
any point in time. In general-purpose computing sys-
tems which must share computational resources (e.g.
time-shared or multitasking workstations, personal-
computers, or multiprocessors), it is generally neces-
sary to snapshot and restore computational state so that
tasks can be interleaved in time on the same computa-
tional hardware. As noted in Section 4.4, the overhead
necessary to reconfigure contemporary reconfigurable
engines is quite large making such time-sharing im-
practical.

The DPGA architecture can mitigate this drawback by
providing on-chip, context caches for array configura-
tions and memory for computed intermediate values.
However, the number of on-chip contexts each DPGA
instance provides is fixed. Sharing reconfigurable re-
sources among a larger number of users or tasks will
require provisions for offloading and restoring compu-
tations. To further mitigate the expense of unloading
and reloading a context, reconfigurable-array savvy
compilers can explicitly identify points in the compu-
tation where the state inside the reconfigurable array is
minimal. By specializing context loading and unload-
ing code to store and retrieve only the necessary state
and reconfiguration, the compiler can produce lower
overhead code for context swapping.

10 Conclusion

Microprocessors with tightly-integrated, rapidly recon-
figurable logic promise to be a prime commodity building
block for computing systems during the early part of the
next century. We have seen that we can achieve high ap-
plication performance by specializing the computational
resources to the application. A microprocessor with inte-
grated reconfigurable logic allows us to take advantage of
application-specific specialization for extracting high per-
formance while maintaining broad-based, high-volume ap-
peal to reap the benefits commoditization. Tightly cou-
pled DPGA processing arrays overcome the primary limi-

tations of contemporary reconfigurable compute engines by
significantly reducing the overheads associated with both
processor�array communications and array reconfigura-
tion.

Acknowledgements

This work was supported in part under ARPA contracts
N00014-91-J-1698 and DABT63-92-C-0039. Thomas
Knight, Jr., Michael Bolotski, and Ian Eslick provided valu-
able input to the development and presentation of these
ideas.

References

[1] Anant Agarwal, Beng-Hong Lim, David Kranz, and
John Kubiatowicz. APRIL: A Processor Architec-
ture for Multiprocessing. In Proceedings of the 17th
International Symposium on Computer Architecture,
pages 104–114. IEEE, May 1990.

[2] Algotronix Ltd., Edinburgh, UK. The Configurable
Logic Data Book, 1990.

[3] Thomas Anderson, Henry Levy, Brian Bershad, and
Edward Lazowska. The Interaction of Architectures
and Operating System Design. In Fourth Interna-
tional Conference on Architectural Support for Pro-
gramming Languages, pages 108–120. ACM, April
1991.

[4] P. Bertin, D. Roncin, and J. Vuillemin. Programmable
Active Memories: A Performance Assessment. Prl
report, DEC Paris Reserch Laboratory, 85, Av. Victor
Hugo, 92563 Rueil-Malmaison Cedex, France, June
1992.

[5] Patrice Bertin, Didier Roncin, and Jean Vuillemin.
Introduction toProgrammable Active Memories. PRL
Report 3, DEC Paris Reserch Laboratory, 85, Av.
Victor Hugo, 92563 Rueil-Malmaison Cedex, France,
June 1989.

[6] Michael Bolotski, André DeHon, and Thomas F.
Knight Jr. Unifying FPGAs and SIMD Arrays. Tran-
sit Note 95, MIT Artificial Intelligence Laboratory,
September 1993.

[7] D. A. Buell. A Splash 2 Tutorial. Technical Report
SRC-TR-92-087, Supercomputing Research Center,
Bowie, Maryland, December 1992.

[8] Robert P. Colwell. Latent Design Faults in the Devel-
opment of Multiflow’s TRACE/200. In Proceedings



FCCM ’94 --IEEE Workshop on FPGAs for Custom Computing Machines

April 10-13, Napa, CA

of The Twenty-Second International Symposium on
Fault Tolerant Computing Systems, pages 468–474.
IEEE Computer Society, July 1992.

[9] Steven A. Cuccaro and Craig F. Reese. The CM-
2X: A Hybrid CM-2/Xilinx Prototype. In Duncan A.
Buell and Kenneth L. Pocek, editors, Proceedings of
the IEEE Workshop on FPGAs for Custom Computing
Machines, pages 121–130, Los Alamitos, California,
April 1993. IEEE Computer Society, IEEE Computer
Society Press.

[10] William J. Dally et al. The Message-Driven Proces-
sor: A Multicomputer Processing Node with Efficient
Mechanisms. IEEE Micro, pages 23–39, April 1992.

[11] Frederick Furtek. Arithmetic Benchmarks for the
CLi6000. In Duncan A. Buell and Kenneth L. Pocek,
editors, Proceedings of the IEEE Workshop on FP-
GAs for Custom Computing Machines, Los Alami-
tos, California, April 1993. IEEE Computer So-
ciety, IEEE Computer Society Press. Paper does
not appear in printed proceedings; contact author
fred@clogic.com.

[12] Maya Gokhale, William Holmes, Andrew Kopser,
Sara Lucas, Ronald Minnich, Douglas Sweely, and
Daniel Lopresti. Building and Using a Highly Pro-
grammable Logic Array. IEEE Computer, 24(1):81–
89, January 1991.

[13] Maya Gokhale and Ron Minnich. FPGA Comput-
ing in a Data Parallel C. In Duncan A. Buell and
Kenneth L. Pocek, editors, Proceedings of the IEEE
Workshop on FPGAs for Custom Computing Ma-
chines, pages 94–101, Los Alamitos, California, April
1993. IEEE Computer Society, IEEE Computer Soci-
ety Press.

[14] Dzung T. Hoang. Searching Genetic Databases on
Splash 2. In Duncan A. Buell and Kenneth L. Pocek,
editors, Proceedings of the IEEE Workshop on FPGAs
for Custom Computing Machines, pages 185–191,
Los Alamitos, California, April 1993. IEEE Com-
puter Society, IEEE Computer Society Press.

[15] Intel Corporation. A90960CA16,S V594 A-4 Stepping,
Errors and Exceptions, rev. 2 edition, April 1990.

[16] Daniel Lopresti. Rapid Implementation of a Genetic
Sequence Comparator Using Field-Programmable
Logic Arrays. In Carlo H. Séquin, editor, Advanced
Research in VLSI, pages 138–152, Cambridge, MA,
April 1991. MIT Press.

[17] Wayne Luk, Vincent Lok, and Ian Page. Hardware
Acceleration of Divide-and-Conquer Paradigms: a
Case Study. In Duncan A. Buell and Kenneth L.
Pocek, editors, Proceedings of the IEEE Workshop on
FPGAs for Custom Computing Machines, pages 192–
1201, Los Alamitos, California, April 1993. IEEE
Computer Society, IEEE Computer Society Press.

[18] et. al. M. Gokhale. SPLASH: A Reconfigurable Lin-
ear Logic Array. In Proceedings of the International
Conference on Parallel Processing, pages 526–532,
August 1990.

[19] Rishiyur S. Nikhil, Gregory M. Papadopoulous, and
Arvind. *T: A Multithreaded Massively Parallel Ar-
chitecture. In Proceedings of the 19th International
Symposium on Computer Architecture. ACM, May
1992.

[20] M. Shand and J. Vuillemin. Fast Implementations
of RSA Cryptography. In Earl Swartzlander Jr.,
Mary Jane Irwin, and Graham Julien, editors, Pro-
ceedings of the 11th Symposium on Computer Arith-
metic, pages 252–259, Los Alamitos, California, June
1993. IEEE Computer Society, IEEE Computer Soci-
ety Press.

[21] Harvey F. Silverman. Processor Reconfiguration
Through Instruction-Set Metamorphosis. IEEE Com-
puter, 26(3):11–18, March 1993.

[22] M. Wazlowski, L. Agarwal, T. Lee, A. Smith, E. Lam,
P. Athanas, H. SIlverman, and S. Ghosh. PRISM-II
Compiler and Architecture. In Duncan A. Buell and
Kenneth L. Pocek, editors, Proceedings of the IEEE
Workshop on FPGAs for Custom Computing Ma-
chines, pages 9–16, Los Alamitos, California, April
1993. IEEE Computer Society, IEEE Computer Soci-
ety Press.

[23] Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124.
The Programmable Gate Array Databook, 1989.

[24] Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124.
Product Description and Selection Guide, April 1993.


