
Appeared in Third Canadian Workshop of Field-Programmable Devices (FPD’95)

A First Generation DPGA Implementation

Edward Tau Derrick Chen Ian Eslick Jeremy Brown
{edtau,kuang,beethovn,jhbrown}@ai.mit.edu

André DeHon
andre@ai.mit.edu

MIT Artificial Intelligence Laboratory
NE43-791, 545 Technology Sq., Cambridge, MA 02139

Phone: (617) 253-5868 FAX: (617) 253-5060

Abstract
Dynamically Programmable Gate Arrays (DPGAs)
represent a hybrid architecture lying between tra-
ditional FPGAs and SIMD arrays. Notably, these
arrays can efficiently support computations where
the function of the array elements needs to vary
both among array elements during any single cy-
cle and within any single array element over time.
We describe our minimal, first generation DPGA.
This DPGA uses traditional 4-LUTs for the ba-
sic array element, but backs LUT and interconnect
programming cells with a 4-context memory im-
plemented using dynamic RAM. Additionally, this
DPGA supports non-intrusive background loads of
non-active contexts and automatic refresh for the
dynamic memory cells. We draw several lessons
from this design experience which may be relevant
to future DPGA and FPGA designs.

1 Introduction
Traditional Field-Programmable Gate Arrays (FP-
GAs) have a set of programmable elements which
can be configured to personalize the FPGA to im-
plement a user-defined function. Reprogrammable

1Acknowledgements: This research was supported by the
Advanced Research Projects Agency of the Department of De-
fense under Rome Labs contract number F30602-94-C-0252.

FPGAs implement these programmable elements
as memory cells, commonly static RAMs. These
cells are configured during a slow programming
phase which typically takes 10’s of milliseconds due
to limited bandwidth to off-chip memories [Xil93]
[Atm94]. Once configured, the array personality is
static until reloaded. Each array element, conse-
quently, performs the same function throughout the
epoch of operation for the device. Devices such as
the AT6000 from Atmel can support partial reloads
during operation, but the reload still takes a mil-
lisecond or more due to bandwidth limitations, and
cells cannot be used during the reload operation.

Dynamically Programmable Gate Arrays (DP-
GAs) [BDK93] [DeH94] differ from traditional FP-
GAs by providing on-chip memory for multiple ar-
ray personalities. The configuration memory re-
sources are replicated to contain several configura-
tions for the fixed computing and interconnect re-
sources. In effect, the DPGA contains an on-chip
cache of array configurations and exploits high, lo-
cal on-chip bandwidth to allow reconfiguration to
occur rapidly, on the order of nanoseconds instead
of milliseconds. Loading a new configuration from
off-chip is still limited by low off-chip bandwidth.
However, the multiple contexts on the DPGA allow
the array to operate on one context while other con-
texts are being reloaded.

In this paper, we describe our minimal DPGA



implementation. This design represents our first
generation effort and contains considerable room
for optimization. Nonetheless, the design demon-
strates the viability of DPGAs, underscores the
costs and benefits of DPGAs as compared to tradi-
tional FPGAs, and highlights many of the important
issues in the design of programmable arrays.

Our DPGA Features:
• 4 on-chip configuration contexts
• DRAM configuration cells
• non-intrusive background loading
• automatic refresh of dynamic memory elements
• wide bus architecture for high-speed context

loading
• two-level routing architecture

We begin by detailing our basic DPGA archi-
tecture in Section 2. Section 3 provides highlights
from our implementation including key details on
our prototype DPGA IC. Section 4 summarizes the
major lessons from this effort.

2 Architecture
Figure 1 depicts the basic architecture for this
DPGA. Each array element is a conventional 4-
input lookup table (4-LUT). Small collections of ar-
ray elements, in this case 4×4 arrays, are grouped
together into subarrays. These subarrays are then
tiled to compose the entire array. Crossbars be-
tween subarrays serve to route inter-subarray con-
nections. A single, 2-bit, global context identifier
is distributed throughout the array to select the con-
figuration for use. Additionally, programming lines
are distributed to read and write configuration mem-
ories.

DRAM Memory The basic memory primitive is
a 4×32 bit DRAM array which provides four con-
text configurations for both the LUT and intercon-
nection network (See Figure 2). The memory cell
is a standard three transistor DRAM cell. Notably,
the context memory cells are built entirely out of
N-well devices, allowing the memory array to be
packed densely, avoiding the large cost for N-well
to P-well separation. The active context data is read

onto a row of standard, complementary CMOS in-
verters which drive LUT programming and selec-
tion logic.

Array Element The array element is a 4-LUT
which includes an optional flip-flop on its output.
Each array element contains a context memory ar-
ray. For our prototype, this is the 4×32 bit mem-
ory described above. 16 bits provide the LUT pro-
gramming, 12 configure the four 8-input multiplex-
ors which select each input to the 4-LUT, and one
selects the optional flip-flop. The remaining three
memory bits are presently unused.

Subarrays The subarray organizes the lowest
level of the interconnect hierarchy. Each array ele-
ment output is run vertically and horizontally across
the entire span of the subarray. Each array element
can, in turn, select as an input the output of any ar-
ray element in its subarray which shares the same
row or column. This topology allows a reasonably
high degree of local connectivity.

This leaf topology is limited to moderately
small subarrays since it ultimately does not scale.
The row and column widths remains fixed regard-
less of array size so the horizontal and vertical inter-
connect would eventually saturate the row and col-
umn channel capacity if the topology were scaled
up. Additionally, the the delay on the local intercon-
nect increases with each additional element in a row
or column. For small subarrays, there is adequate
channel capacity to route all outputs across a row
and column without increasing array element size,
so the topology is feasible and desirable. Further,
the additional delay for the few elements in the row
or column of a small subarray is moderately small
compared to the fixed delays in the array element
and routing network. In general, the subarray size
should be carefully chosen with these properties in
mind.

Local Interconnect In addition to the local out-
puts which run across each row and column, a num-
ber of non-local lines are also allocated to each row
and column. The non-local lines are driven by the



Figure 1: Architecture and Composition of DPGA

Figure 2: DRAM Memory Primitive



global interconnect. Each LUT can then pick inputs
from among the lines which cross its array element.
In the prototype, each row and column supports four
non-local lines. Each array element could thus pick
its inputs from eight global lines, six row and col-
umn neighbor outputs, and its own output. Each
input is configured with an 8:1 selector as noted
above.

Local Decode Row select lines for the context
memories are decoded and buffered locally from the
2-bit context identifier. A single decoder services
each row of array elements in a subarray. One de-
coder also services the crossbar memories for four
of the adjacent crossbars. In our prototype, this
placed five decoders in each subarray, each servic-
ing four array element or crossbar memory blocks
for a total of 128 memory columns. Each local de-
coder also contains circuitry to refresh the DRAM
memory on contexts which are not being actively
read or written.

Global Interconnect Between each subarray a
pair of crossbars route the subarray outputs from
one subarray into the non-local inputs of the adja-
cent subarray. Note that all array element outputs
are available on all four sides of the subarray. In our
prototype, this means that each crossbar is a 16×8
crossbar which routes 8 of the 16 outputs to the
neighboring subarray’s 8 inputs on that side. Each
16×8 crossbar is backed by a 4×32 DRAM array
to provide the 4 context configurations. Each cross-
bar output is configured by decoding 4 configuration
bits to select among the 16 crossbar input signals.

While the nearest neighbor interconnect is suffi-
cient for the 3×3 array in the prototype, a larger ar-
ray should include a richer interconnection scheme
among subarrays. At present, we anticipate that a
mesh with bypass structure with hierarchically dis-
tributed interconnect lines will be appropriate for
larger arrays.

Programming The programming port makes the
entire array look like one large, 32-bit wide, syn-
chronous memory. The programming interface was

Function Elements Percent
Logic Total 16

Memory array 10
Memory decode 3
Fixed Logic 3

Network Total 66
Memory array 15
Memory decode 5
Switching 19
Wiring 27

Blank 18
Total 100

Table 2: Array Core Area Breakdown by Pro-
grammable Function

designed to support high-bandwidth data transfer
from an attached processor and is suitable for ap-
plications where the array is integrated on the pro-
cessor die. Any non-active context may be written
during operation. Read back is provided in the pro-
totype primarily for verification.

3 Implementation
The DPGA prototype is targeted for a 1µ drawn
0.85µ effective CMOS process with 3 metal layers
and silicided polysilicon and diffusion. The basic
composition and area for the prototype is summa-
rized in Table 1. From Table 2, we see that 40%
of the area used on the chip goes into supporting
the programmable configuration memories. Table 2
also shows that 80% of the area used supports the
configurable network.

Layout Inefficiencies The prototype could be
packed more tightly since it has large blank areas
and large areas dedicated to wire routing. A more
careful co-design of the interconnect and subarray
resources would eliminate much or all of the un-
used space between functional elements. Most of
the dedicated wiring channels are associated with
the local interconnect within a subarray. With care-
ful planning, it should be possible to route all of



Unit Size Composition
Die 6.8mm×6.8mm Core with pads
Core 5.6mm×4.7mm All internal logic except pads
Array Core 5.25mm×4.4mm 3×3 subarrays including crossbars (no pads)
Subarray+crossbar tile 1460µ×1750µ Subarray + 4 adjacent 16×8 crossbars and memory
Crossbar 495µ×270µ Crossbar including memory
Subarray 1150µ×1400µ 4× 4 Array Elements + 4 Local Decodes
Local Decode 253µ×167µ
Array Element 275µ×240µ Includes local routing channels

Table 1: Basic Component Sizes for Prototype

Element # Size
DRAM Cell 4 7.6µ×19.2µ
Output Buffer 1 7.6µ×28.0µ
Pass Gates 1 7.6µ×26.4µ
Column 7.6µ×131.2µ

Table 3: DRAM Column Breakdown

these wires over the subarray cells in metal 2 and
3. As a result, a careful design might be 40-50%
smaller than our first generation prototype.

Memory Area From the start, we suspected that
memory density would be a large determinant of ar-
ray size. Table 2 demonstrates this to be true. In or-
der to reduce the size of the memory, we employed
a 3 transistor DRAM cell design. To keep the as-
pect ratio on the 4×32 memory small, we targeted
a very narrow DRAM column. Unfortunately, this
emphasis on aspect ratio did not allow us to realize
the most area efficient DRAM implementation (See
Table 3).

One key reason for targeting a low aspect ra-
tio was to balance the number of interconnect chan-
nels available in each array element row and col-
umn. However, with 8 interconnect signals cur-
rently crossing each side of the array element, we
are far from being limited by saturated interconnect
area. Instead, array element cell size is largely lim-
ited by memory area. Further, we route program-
ming lines vertically into each array element mem-
ory. This creates an asymmetric need for intercon-

nect channel capacity since the vertical dimension
needs to support 32 signals while the horizontal di-
mension need only support a dozen memory select
and control lines.

For future array elements we should optimize
memory cell area with less concern about aspect ra-
tio. In fact, the array element can easily be split in
half with 16 bits above the fixed logic in the array
element and 16 below. This rearrangement will also
allow us to distribute only 16 programming lines to
each array element if we load the top and bottom
16 bits separately. This revision does not sacrifice
total programming bandwidth if we load the top or
bottom half of a pair of adjacent array elements si-
multaneously.

Timing Table 4 summarizes the key timing esti-
mates for the DPGA prototype at the slow-speed
and nominal process points. As shown, context
switches can occur on a cycle by cycle basis and
contribute only a few nanoseconds to the opera-
tional cycle time. Equation 1 relates minimum
achievable cycle time to the number of LUT delays,
nl, and crossbar crossings, nx in the critical path of
a design.

tcycle = tmem + nl · tlut + nx · txbar (1)

These estimates suggest a heavily pipelined design
which placed only one level of lookup table logic
(nl = 1) and one crossbar traversal (nx = 1) in
each pipeline stage could achieve 60-100MHz oper-
ation allowing for a context switch on every cycle.



Delay
Path symbol slow-speed nominal

CLK→configuration memory stable tmem 4 ns 2.5 ns
CLK→XBAR out txbar1 8.5 ns 5 ns
XBAR in→XBAR out txbar 4.5 ns 2.5 ns
LUT in→LUT output (1 level) tlut 9 ns 3.5 ns
CLK→CLK (maximum, DRAM leakage) tclkmax 200 ns

Table 4: Estimated Timings

Our prototype, however, does not have a suitably
aggressive clocking, packaging, or i/o design to ac-
tually sustain such a high clock rate. DRAM refresh
requirements force a minimum operating frequency
of 5MHz.

4 Conclusions
We have presented the full design for a first-
generation DPGA prototype. The prototype demon-
strates that efficient, dynamically programmable
gate arrays can be implemented which support a sin-
gle cycle, array-wide context switch.

Multiple context programmable gate arrays
make the most sense when moderately small
amounts of additional memory area can increase the
amount of logic available for use. While the config-
urable memory is clearly a major element of pro-
grammable array size in our 4-context prototype,
the memory component does not dominate fixed
logic area. With the current memory cell design,
the tradeoff is worth considering, but not neces-
sarily compelling. If the basic memory cell were
much larger relative to the fixed logic, the memory
area would dominate and the multiple context sup-
port would make little sense. Consequently, SRAM-
based DPGAs may not be desirable in the architec-
ture described here.

If the basic memory cell were much smaller rel-
ative to the fixed logic, the logic area would domi-
nate making the cost of multiple contexts marginal
and making it sensible to include even more on-chip
contexts. DPGAs with a more aggressive dynamic
memory cell look appealing. Further, DPGAs based

on native DRAM cells or flash memories look very
attractive in this architecture.

References
[Atm94] Atmel Corporation, 2125 O’Nel Drive,

San Jose, CA 95131. Configurable Logic
Design and Application Book, 1994.

[BDK93] Michael Bolotski, André DeHon, and
Thomas F. Knight Jr. Unifying fpgas and
simd arrays. Transit Note 95, MIT Arti-
ficial Intelligence Laboratory, September
1993.

[DeH94] André DeHon. DPGA-Coupled Micro-
processors: Commodity ICs for the Early
21st Century. In Proceedings of the IEEE
Workshop on FPGAs for Custom Com-
puting Machines, April 1994.

[Xil93] Xilinx, Inc., 2100 Logic Drive, San Jose,
CA 95124. The Programmable Logic
Data Book, 1993.

Web links for this document: <http://www.seas.upenn.edu/˜andre/abstracts/dpga_proto_fpd95.html>


