
Copyright (c) 1996 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
new copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request Permissions from Publications
Dept, ACM Inc., Fax +1 (212) 869-0481, or <permissions@acm.org>.

FPGA ’96 -- ACM/SIGDA Fourth International Symposium on FPGAs

February 11-13, 1996, Monterey, CA

Entropy, Counting, and Programmable Interconnect

André DeHon
andre@mit.edu

MIT Artificial Intelligence Laboratory
NE43-791, 545 Technology Sq., Cambridge, MA 02139

Phone: (617) 253-5868 FAX: (617) 253-5060

Abstract

Conventional reconfigurable components have substantially more
interconnect configuration bits than they strictly need. Using count-
ing arguments we can establish loose bounds on the number of pro-
grammable bits actually required to describe an interconnect. We
apply these bounds in crude form to some existing devices, demon-
strating the large redundancy in their programmable bit streams. In
this process we review and demonstrate basic counting techniques
for identifying the information required to specify an interconnect.
We examine several common interconnect building blocks and look
at how efficiently they use the information present in their pro-
gramming bits. We also discuss the impact of this redundancy on
important device aspects such as area, routing, and reconfiguration
time.

1 Introduction

Despite the fact that programmable devices (e.g. FPGAs) are mar-
keted by the number of gates they provide, a device’s interconnect
characteristics are the most important factors determining the size
of the programmable device and its usability. When designing the
interconnect for a programmable device we must simultaneously
address several important, and often conflicting, requirements:

1. Provide adequate flexibility, allowing the realization of a suf-
ficiently large space of interesting interconnections

2. Efficiently specify interconnect behavior, minimizing the
space and time required to configure the interconnect

3. Balance device bisection bandwidth with available or allow-
able spatial constraints

4. Minimize interconnection delays

In this paper we focus on the size and redundancy of our pro-
grammable interconnect description (requirement number 2). In the

process of discussing interconnect descriptions, the paper broadly
addresses interconnect flexibility.

Fundamentally, interconnect description memory need not grow
as quickly as wire and switch requirements. This leaves us with
design points which are generally wire and switch limited. We may,
consequently, encode our interconnect description sparsely when
memory area is nearly free and wiring channels are determining die
size. Since interconnect memory grows slowly compared to switch
and wire requirements, interconnect memory need never dictate die
size for large, single-context, reconfigurable components.

As we begin to make heavy use of the reconfigurable aspects
of programmable devices, device reconfiguration time becomes an
important factor determining the performance provided by the part.
In these rapid reuse scenarios, interconnect encoding density can
play a significant role in determining device area and performance.

1. One technique for reducing the reconfiguration time is to
store multiple, on-chip contexts. Since designs tend to be
wire and switch limited, multiple on-chip contexts need not
substantially increase die area. Multi-context designs, how-
ever, generally merit more dense interconnect encodings than
single-context designs in order to minimize the impact which
configuration memory has on die size. For small numbers of
contexts, one is, in effect, sacrificing some encoding sparcity
for extra, on-chip contexts. For large numbers of contexts,
configuration memory, and hence encoding density, can dic-
tate device size.

2. Off-chip context reloads for single- or multi-context devices
are slow because a large amount of configuration data (typ-
ically, � 105 bits) must be transfered across a limited band-
width i/o path. Transferring sparsely encoded bitstreams
across this i/o bottleneck exacerbates already poor reload per-
formance dictated by i/o bandwidth limitations.

This paper starts out by identifying a simple metric for charac-
terizing interconnectivity – a count of the number of “useful” and
distinct interconnection patterns. While simple, this metric turns
out to be difficult to calculate in the general case. We can, nonethe-
less, analyze a number of common structures to obtain bounds on
the number of patterns provided by more complicated topologies.
From this analysis we observe that conventional, programmable
architectures have highly redundant programming bit streams. The
analysis helps us identify opportunities to save programmable mem-
ory area and lower reconfiguration time by reducing that bit stream
redundancy.

FPGA ’96 -- ACM/SIGDA Fourth International Symposium on FPGAs

February 11-13, 1996, Monterey, CA

Figure 1: DPGA LUT Input Connection

Figure 2: Crossbar Crosspoint with Memory

In the next section, we open with a motivational example to
illustrate the issue and analysis. In Section 3, we define the inter-
connection metric more precisely. In Section 4, we look at some
basic interconnection building blocks which can be easily analyzed
in isolation. Section 5 looks at some ideal or pedagogical network
structures by composing the primitives from Section 4. Section 6
touches briefly on the role of placement in interconnect flexibility.
Section 7 looks at conventional interconnect examples using the
results of Section 5 to estimate the amount of redundancy these
devices exhibit. We discuss the implications and impact of this
redundancy in more detail in Section 8 before concluding in Sec-
tion 9.

2 Motivational Example

Consider a case where we wish to drive any of n sources onto each
of m sinks. In our DPGA prototype [7], for example, we needed to
drive the 4 inputs to the 4-LUT from the 15 lines which physically
converged upon the LUT cell (m � 4, n � 15, See Figure 1). This
kind of structure is typical when connecting logic block inputs to a
routing channel.

We could provide full connectivity by building a full crossbar
between the n � 15 sources andm � 4 sinks. This requiresm�n,
60 in this case, crosspoints. If each crosspoint is built with its own
memory cell, as shown in Figure 2, this arrangement entails equally
many memory cells.

At this point it is worth noting that there are 260 � 1018 ways to
program 60 memory cells, but many of those connections are not
useful. In fact, of the n memory cells along each input wire, at
most one should enable its crosspoint at any point in time. Since
each output should be driven by one source, there are, in fact, only
nm , �15�4 � 50�625 in this case, combinations which may be
useful. We can, in fact, control the n �m crosspoints with only
dm log2�n�e memory cells, or 16 in this case. Here, each group of
dlog2�n�e bits serves to select which of the n inputs should drive
onto each of the m output lines (See Figure 3).

If, as is the case for the DPGA, the logic block is a k-input lookup
table, even this arrangement provides more routing flexibility than
is necessary. There is, for instance, no need for any of the k inputs

Figure 3: Encoded Crossbar Control

to be the same. Strictly speaking there are at most

�
n

m

�
(in this

example,

�
15
4

�
� 1365) distinct selections of the k �m inputs

from the n sources. This implies we could get away with as few as
11 (dlog2�1365�e) control bits if we included heavy decoding.

From this calculation we can also conclude that any combinations
provided beyond the 1365 distinct interconnect patterns entailed by
the 15 choose 4 combinations are redundant and offer us no addi-
tional functionality. This bound is often useful in understanding the
gross characteristics of an interconnect. All interconnects which
provide all these combinations are functionally equivalent. Above
this point we can compare the number of specification bits to the
number of requisite specification bits to understand the redundancy
in the encoding scheme. For interconnects providing less distinct
interconnect patterns, we can compare the number of achievable in-
terconnect patterns to the maximum number of distinct interconnect
patterns to get a scalar metric of the flexibility of the interconnect.

In practice, the DPGA prototype used 4, 8-input muxes. This
gave it only 32 crosspoints requiring 4�log2�8� � 12 bits to specify
the input. Due to the limited size input muxes, it only supported
1217 distinct input combinations. Our encoding is within one bit
of the theoretical minimum of 11 and routes 89% of the 1365
combinations identified above.

With respect to memory bits, we see that dense encoding of
the combinations yields a more significant reduction in requisite
memory cells than depopulating the crossbar in a memory-cell-per-
crosspoint scenario. In an unencoded case, 12 memory bits would
not even support a single connection from each of the 15 potential
inputs.

Of course, minimizing the number of memory bits does not,
necessarily,produce the smallest layout since dense encodings must
be decoded and routed. We will visit this issue in Section 8.

This example underscores several issues which are worthwhile
to understand when designing programmable interconnect.

� Independently programming each crosspoint leads to highly
redundant interconnect programming, including a large space
of non-useful configuration specifications.

� The number of bits required to configure an interconnect can
be much lower than the number of pass gates or crosspoints
in the interconnect.

� The number of useful configurations provided by a piece of
interconnect cannot be determined by looking at the intercon-
nect in isolation. When we consider the context in which the
interconnect is used, many of its configuration may become
redundant.

FPGA ’96 -- ACM/SIGDA Fourth International Symposium on FPGAs

February 11-13, 1996, Monterey, CA

� Simple bounds on the theoretical encoding density and re-
quired flexibility are helpful in evaluating the gross merits of
various proposed interconnect solutions.

3 Interconnection Metric

The interconnection metric we are focusing on here is to count: the
number of unique and useful connection patternswhich the network
can realize.

Useful Connections With sparse encoding, many bit combina-
tions may be parasitic or non-useful. In the “bit-per-crosspoint”
example above, we saw that it was not useful to have more than one
crosspoint enabled along an output line. In these cases, a large por-
tion of the entire bit stream encoding space refers to interconnection
patterns which are at best nonsensical and may even be damaging
to the part.

Unique Connections An interconnection pattern which pro-
vides the same functionality as another specifiable pattern adds no
capability to the interconnect. That is, the flexibility which al-
lows both specifications provides no additional interconnect power.
In the example above, we saw that a full crossbar provided
�15�4 � 50�625 specifiable connections. However, with the con-
nections feeding into a 4-LUT, a pattern which bring inputs 15, 13,
10 and 7 into the LUT is no different from a pattern which brings
inputs 10, 15, 7 and 13 into the LUT. The full crossbar thus pro-
vides 50�625 � 1� 365 � 49� 260 redundant patterns which add no
functionality to the interconnect.

It is worthwhile to note that interconnect “flexibility” as used
here can be applied to any interconnection network or family of
graphs. As such it is very different from the interconnect flexibility
defined in [6] [3] which is used to describe the level of population
of switches in a particular interconnect family.

Interconnection Patterns It is important that we look at the
interconnection patterns as a whole to understand which patterns are
functionally identical. Again, looking at the k-LUT input selector
in isolation from the logic block, we can identify more distinct
patterns than we see when viewed in an ensemble.

It is also significant that the metric looks at the ensemble of
interconnections feasible rather than looking at the interconnect
flexibility afforded to a single input in isolation. Since resources
are typically shared, the focus on patterns accounts for the limited
availability of shared resources.

4 Basic Primitives

In this section we identify a few basic primitives used in building
interconnection networks. We count the number of interconnection
patterns they provide, as well as relating the abstract primitives to
their more physical implementations.

Muxes An n-input multiplexor (mux) can connect any of its
n inputs to its output. In isolation, the multiplexor realizes n

Figure 4: Multiplexor Symbol with Three Potential Imple-
mentations

Figure 5: 8� 8 Crossbar

distinct interconnect patterns, requiring dlog2�n�e bits to specify its
behavior.

Figure 4 shows a multiplexor and several possible implemen-
tations. Note that a series of tristate drivers attached to a single,
physical wire serves logically as a multiplexor and can be treated
as one for the purposes of analysis. This remains true whether the
tristate drivers have separate or central control. The series of tristate
drivers with distributed control has the additional ability to drive no
value onto the line, but this offers no additional logical functionality
since we can just as easily drive any value onto the output in such
a case. The tristate drivers could also have multiple values driven
simultaneously onto the output, but, unless this is used to perform
a logical function, the multiple drive cases are parasitic rather than
useful behavior.

Crossbars A crossbar has a set of n inputs and a set of m out-
puts and can connect any of the inputs to any of the outputs with
the restriction that only one input can be connected to each output
at any point in time. Logically, an n �m crossbar is equivalent
to m n-input multiplexors. The crossbar can realize nm distinct
interconnect patterns and requires dm log2�n�e bits to specify its
behavior. The crossbar represents the most general kind of inter-
connect and can often be used to calculate an upper bound on the
flexibility which could be offered by a piece of interconnect.

A small crossbars is shown in Figure 5. We have already seen
some potential implementations in Figures 2 and 3.

Subset Selection With subset selection, we select a group of m
outputs from n inputs. We saw this selection when routing the k
inputs to a k-LUT. This kind of selection is also typical when con-
centrating outputs from one region down to a limited size channel
connecting to another region of the component. As we saw in Sec-
tion 2, this function is not as trivially implemented as the crossbar,
but the function is frequently desired making this primitive highly

FPGA ’96 -- ACM/SIGDA Fourth International Symposium on FPGAs

February 11-13, 1996, Monterey, CA

useful for analysis. Subset selection entails

�
n

m

�
distinct inter-

connection patterns and requires

�
log2

�
n

m

��
bits to specify its

behavior.

Pass gates Individual pass gates are too primitive to generally
be useful from an analysis standpoint. Alone, each pass gate has 2
interconnection states which can be specified with one bit. From an
analysis standpoint it is generally more useful to group collections
of pass gates together into a larger structure. As noted above, when
the direction of signal flow is apparent, groups of pass gates used
to selectively drive onto a single line effectively form a logical
multiplexor.

5 Composition Examples

In this section we apply and compose the primitives of the previous
section to examine a few families of netlists and networks of general
interest.

Netlists of k-input logic blocks Let us consider the family
of netlists with n logic blocks where each logic block has at most
k inputs. Further, the netlist has i inputs and o outputs. To get
an upper bound, we assume all logic blocks may provide a dis-
tinct function. In general, each of the logic block inputs may want
any of the n logic block outputs or any of the i inputs. Each out-
put may come from any of the n logic block outputs. There are
�i�n�(n�k) possible interconnect patterns for the (n � k) logic block
inputs and no interconnection patterns for the outputs. All together,
there are no � �i�n�(n�k) interconnection patterns which the netlist
may exhibit. Without exploiting placement (See Section 6), if all
interconnects are given equally long descriptions, it will require at
least do log2�n�e � dn � k log2�i� n�e bits to describe each inter-
connection patterns.

Network for k-input logic blocks In a similar manner, we
can look at a device or interconnect and bound the number of
interconnection patterns it provides. Again, assuming we have n
logic blocks with k inputs each along with i inputs and o outputs, if
we do not allow inputs to be directly connected to outputs, we have
a total number of interconnection patterns of, at most:

Nno direct io patterns � n
o � �i � n�(n�k) �1�

If inputs can be directly connected to outputs, we have �i�n�o pos-
sible output patterns for a total number of interconnection patterns
bounded by:

Ndirect io patterns � �i� n�o � �i� n�(n�k)

� �i� n�(n�k�o) (2)

For many devices, each inter-chip i/o pin can serve as either an
output with enable or an input. We thus let o � 2i, assuming
we may have to route both the output and the enable for each
physical pin, and have a total of at most �i � n�(n�k�2i) inter-
connection patterns. The interconnect can thus be specified with
d�n � k � 2i� log2�i� n�e configuration bits.

Element Growth

Number of Logic Blocks n

Logic Block Area O�n�
Logic Block Configuration O�n�
Interconnect Configuration O�n log�n��
Crosspoints/switches O�n2�
Wire O�n2�

Table 1: Growth Rates for Key Elements of a Fully Flexible
Programmable Device

From this and the previous example, it is worth observing that
network configuration requirements are growing asO�n log�n��—
assuming k is fixed and i grows at most linearly in proportion to n.
We can compare this to the configuration requirements for the logic
which are growing as O�n�. We can also compare this with the
number of crosspoints or total length of interconnect wire which is
growing as O�n2� if we are going to provide the full interconnect
to support any of the possible n-node netlists.

These general observations, summarized in Table 1, are worth-
while to remember. Asymptotically, they tell us wires and cross-
points will be the pacing items for offering flexibility in pro-
grammable devices. They also tell us to expect interconnect pro-
gramming to grow faster than logic cell programming. We can
describe any interconnect much more cheaply than we can spa-
tially route it, underscoring the need to reuse physical crosspoints
and wires in time as we build larger programmable devices and
systems.

Network of k-LUTs If a device’s network is built entirely out
of k-LUTs, we can get a slightly tighter bound on the number of
interconnection patterns provided. Again, our source of inputs is
then LUT outputs and the i inputs. Each LUT must choosek inputs

from �i� n� sources. Together, this makes for

�
i� n

k

�n

total

interconnection patterns. If we also assume o � 2i and outputs
can come directly from inputs, the total number of interconnection
patterns is at most:

Nlut interconnect patterns �

�
i� n

k

�n

(i� n)(2i) �3�

The difference between this case and the previous is that the net-

work, sans output connections, has at most

�
i� n

k

�n

patterns

rather than
�
�i� n�k

�n
. The ratio between these two expressions

is: �
BB� (i� n)k�

i� n

k

�
	
CCA

n

For large �n� i� and small k, �n� i��1 � �n� i��k � �n� i�.
This ratio is then roughly (k!)n. In terms of configuration bits, this
amounts to n log2�k!�— a small savings linear in n for fixed k. e.g.
for k � 4, one can save at most 4-5 network configuration bits per
LUT by exploiting the input pin equivalences. Referring back to

FPGA ’96 -- ACM/SIGDA Fourth International Symposium on FPGAs

February 11-13, 1996, Monterey, CA

Figure 6: Limited Interconnect Network of 4, 2-LUTs

Table 1, this tells us that exploiting LUT input equivalences saves
usO�n� configuration bits, but does not, fundamentally, change the
growth rate for interconnect configuration.

6 Placement Freedom

Once we identify a level of desired interconnect flexibility, it is not
necessaryfor the physical interconnection network to solely provide
that flexibility. In programmable devices, we also have freedom in
where we place functions and results within the interconnection
network. The net result of this freedom is that we can achieve
a given flexibility Npatterns with a network which provides fewer
thanNpatterns interconnection patterns. This also means we could,
in theory at least, use less than log2

�
Npatterns

�
bits to specify

the interconnect pattern when we observe that the placement of
functions and results relative to the network also gives us a degree
of specification freedom.

To make this concrete, let us consider a very simple intercon-
nection problem where we wish to interconnect 4 2-input LUTs

(n � 4, k � 2). We know there are

�
4
2

�4

� 1296 possible

interconnection networks for this small example.
First, we consider a limited interconnection network where we

arrange the four LUTs into a 2 � 2 array. Each LUT has one input
which may come from either LUT in the first column and a second
input which may come from either LUT in the second column
(See Figure 6). Each of the �2 � 4� � 8 inputs in this restricted
interconnect can come from one of two places, making for a total
interconnect flexibility of 28 � 256. It is also worthwhile to note
that all 256 interconnect combinations are distinct. If we had fixed
the placement of the 4 logic functions in the array, then we could
only realize these 256 interconnectpatterns. Allowing the functions
to be arranged within the array allows greater flexibility. We know
there are 4! � 24 ways to place 4 logic functions in the 2� 2 array.
Because of the high symmetry of the physical network, it turns out
that groups of 8 permutations are equivalent with respects to routing.
As a result there are 3 distinguishable placement classes. This could
provide us with at most 3 � 256 � 768 interconnection patterns
if all of the permuted interconnects were distinct. In practice, this
gives us 720 of the 1296 possible patterns.

Figure 7: Less Symmetric, Limited Interconnect Network of
4, 2-LUTs

Using an alternate interconnection scheme with less symmetry,
shown in Figure 7, we can get 6 distinguishable placement classes
and achieve 1104 of the 1296 possible patterns. The 1104 intercon-
nection patterns are, of course, over a factor of four more patterns
than the 8 bits of interconnect programming could specify, alone.

This example underscores the fact that placement in asymmetric
networks allows us to expand the number of realizable networks for
a given, limited, physical interconnect. Additionally, we see that
successfully routing networks in this scheme requires picking the
correct permutation for the network (placement) and then the correct
interconnection pattern (routing). Asymmetry in the network can
have the effect of both increasing the flexibility, by making more
interconnection patterns realizable, and of making the routing prob-
lem harder, by offering a larger space of distinct placement classes
to explore during routing. In general, the extent to which placement
can reduce the demand for interconnect resources, including wires,
switches, and configuration bits, remains an open issue.

7 Some Conventional Architectures

Table 2 summarizes the major characteristics for several contem-
porary programmable devices. Additionally, a pure 4-LUT design
is included for sake of comparison with the industrial offerings.
We can make a rough, back-of-the-envelope-style computation on
the bits required to configure the network by making the assump-
tion that the network does support all potential networks without
exploiting placement flexibility. That is, we assume that the basic
logic blocks are fully connected. Since the conventional offerings
are far from being fully interconnected, this gives us an upper bound
on the number of network configuration bits. Adapting Equation 2
and taking the base two logarithm to convert to bits, we get:

Nnet bits �

d(nblock ins � nblocks � nio ins � nio) (4)

� log2 (nblock outs � nblocks � nio outs � nio)e

We can also calculate the number of bits required to specify the
logic block functions in the obvious manner:

Nlogic bits � nblock logic bits � nblocks �5�

FPGA ’96 -- ACM/SIGDA Fourth International Symposium on FPGAs

February 11-13, 1996, Monterey, CA

Part nblocks nio Programming Bits Reference

Xilinx xc4013 578 CLBs 192 IOBs 240K [9]
Xilinx xc5210 324 CLBs 196 IOs 160K [10]
Altera EPF81188 1008 LEs 184 IOEs 192K [2] [1]
Pedagogical Reference 1024 4-LUTs 200 –

Family nblock ins nblock ous nio ins nio outs nblock logic bits

XC4K CLB 13 4 4 2 2 � 24 � 23 � 40
XC5K CLB 4 � 4 4 � 2 2 1 4 � 24 � 64
Altera 8K LE 4 1 1 1 24 � 16
Reference 4-LUT 4 1 2 1 24 � 16

Table 2: Parameters for a Sampling of Contemporary Programmable Devices

Part Nnet bits Nlogic bits Programming Bits Unaccounted Control Bits

Xilinx xc4013 92K 23K 240K non-logic CLB/IOB configuration, edge decoders
Xilinx xc5210 62K 20K 160K non-logic CLB/IOB configuration
Altera EPF81188 42K 16K 192K LAB control and Peripheral Bus
Pedagogical Reference 45K 16K – –

Table 3: Configuration Space versus Bit Stream Size

Table 3 summarizes the results of these basic calculations for the
identified components.

The comparison is necessarily crude since vendors do not provide
detailed information on their configuration streams. However, we
expect the unaccounted control bits in Table 3 to not be more than
10% of the total device programming bits. With this expectation,
we see that these devices exhibit a factor of two to three more
interconnect configuration bits than would be required to provide
full, placement-independent, logic block and i/o interconnect.

We can, of course, derive a tighter bound for the reference 4-LUT
design by adapting Equation 3:

Nnet bits ��
nblocks log2

�
nblocks � nio � nio outs

k

��

� dnio � nio ins log2 (nblocks � nio � nio outs)e

For the 1,024 4-LUT case identified above, Nnet bits � 40K ,
saving roughly 5 bits per LUT as suggested in Section 5. Eight of
the 13 inputs on the XC4K go into 4-LUTs and all 16 of the XC5K
inputs go into 4-LUTs. Consequently, all of these arrays require
comparably fewer network configuration bits. The 4 inputs on the
Altera 8K LE also go into a 4-LUT. Since one input may also be
used in a control capacity, the reduction is slightly lower for the
Altera 8K part.

8 Impact of Configuration Density
Area The total, on-chip configuration memory can be one of the
major contributors to chip area (e.g. [4]). As such, redundancy in
the configuration space may cost additional die area. The effect,
however, is technology and design point dependent. When the
design is active silicon area limited, the configuration size can play
a large factor in determining design size. However, when the design
is wire limited, the redundant configuration memory may be free or
negligible.

As we see in Table 1, we ultimately expect devices to be wire or
switch limited. In the wire limited case,we may have free area under
long routing channels for memory cells. In fact, dense encoding of
the configuration space has the negative effect that control signals
must be routed from the configurationmemory cells to the switching
points. The closer we try to squeeze the bit stream encoding to its
minimum, the less locality we have available between configuration
bits and controlled switches. In Figure 3, for instance, we had to run
additional control lines into the crossbar to control the crosspoints.
These control lines compete with network wiring, exacerbating the
routing problems on a wire dominated layout.

In a multiple context or switched interconnect case, the effects
of memory density are more pronounced. Limited wire resources
are reused in time, making more efficient use of the wires and
minimizing the effects of bisection wiring limitations. In these
cases the chip needs to hold many configurations worth of memory
simultaneously. If one is not careful about the density of the inter-
connect configuration encoding, the configuration memory stores
can dominate chip area.

In the aforementioned DPGA Prototype [7], for example, even
with four on-chip contexts, wiring and switching accounted for over
half of the die area. Network configuration memory made up about
one fourth of the area. A factor of 2-4 increase in the configuration
memory due to sparser encoding would have forced a substantial
(20-60%) increase in die area.

Performance In conventional, single context FPGAs, the con-
figuration inputs to switches are static during normal operation.
Any time associated with decoding switch control from memories
is not in the critical path and will not affect the timing on signalflow
through the interconnect. In the rapidly switched, multiple context
case, this is less true. Memory access and decoding time define the
overhead required to change between context configurations.

Reconfiguration Time The reconfiguration time of both
single- and multi-context reconfigurable devices is directly im-

FPGA ’96 -- ACM/SIGDA Fourth International Symposium on FPGAs

February 11-13, 1996, Monterey, CA

pacted by encoding density. As we have seen in Section 7, con-
temporary reconfigurable devices have very large configuration bit
streams. Due to physical i/o limitations, changing bit streams is
an expensive operation. In cases of heavy device reuse this reload
time can have a significant effect on system performance (e.g. [5]
[8]).

Of course, the real problem associated with reconfiguration time
is the i/o bandwidth limitation. It is certainly not necessary for
the bits stored in the configuration memories to be identical to the
off-chip interconnect specification or the specification transmitted
across the chip boundary. In wire limited cases, where local memory
cells are inexpensive or free and routing control signals are expen-
sive, the device could decompress the configuration specification
during configuration reload time.

For example, let us revisit the LUT interconnection example
from Section 2 in the wire limited case. Here, we suppose the
technology costs dictate that the memory-cell-per-crosspoint design
is more area efficient than the denser encoding schemes identified
that section. We could build a single copy of the decoder for the�

log2

�
15
4

��
� 11 bit encoding scheme. This single decoder

could then be used to decode each 11 bits of LUT input configuration
into the 60 bits required to program the input crossbar. As a result,
we reduce the LUT input portion of the bitstream by a factor of
60
11 � 5�4 over the unencoded case.

It is worthwhile to note at this point that the compression we
are discussing here is design independent. That is, the bounds on
configuration size we have derived throughout this paper are appli-
cable across all possible interconnection patterns which a network
may provide. It is also possible to exploit redundancy within the
design to further compress the configuration bit stream in a design
dependent manner.

Safety One effect of dense encoding is to eliminate parasitic
configurations. As noted, configuration specifications which allow
multiple drivers sharing a common line to be enabled simultane-
ously are general parasitic. It is, in fact, possible to destroy many
conventional devices by uploading parasitic configurations.

9 Conclusions

Sparse interconnect configuration encodings can result in bloated
bit stream configurations. Asymptotic growth rates suggest that
dense encodings grow more slowly than desired interconnect re-
quirements, placing designs in a wire and switch limited domain.
Consequently, some encoding density may be judiciously sacrificed
at the on-chip storage level to decrease control interconnect in pro-
grammable devices. Multiple-context components, on the other
hand, have a greater demand for on-chip storage and merit denser
encoding in order to make effective use of silicon area.

Sparsely encoded bit streams have their largest impact on con-
figuration load time. As device size increases and the reconfig-
urable aspects of programmable devices are heavily exploited, the
i/o bandwidth limited reconfiguration time becomes a significant
performance factor. Dense configuration encoding can be exploited
to minimize the external storage space required for configurations
and the transmission time required to communicate configurations.

At a broader level, we have focussed on interconnect flexibility
to establish gross bounds on the information required to configure
a device. We demonstrated simple building blocks and metrics for
gauging the flexibility of an interconnect and apprising the level
of redundancy in a particular interconnect description. These tools
can be useful for first order analysis of programmable interconnect
designs.

Acknowledgments
This research is supported by the Advanced Research Projects
Agency of the Department of Defense under Rome Labs contract
number F30602-94-C-0252.

References
[1] Altera Corporation, 2610 Orchard Parkway, San Jose, CA

95134-2020. FLEX 8000 Handbook, May 1994.

[2] Altera Corporation, 2610 Orchard Parkway, San Jose, CA
95134-2020. Data Book, March 1995.

[3] Stephen D. Brown, Robert J. Francis, Jonathan Rose, and
Zvonko G. Vranesic. Field-Programmable Gate Arrays.
Kluwer Academic Publishers, 101 Philip Drive, Assinippi
Park, Norwell, Massachusetts, 02061 USA, 1992.

[4] Richard Guo, Hung Nguyen, Adi Srinivasan, Quaid Nasir,
Hong Cai, Steve Law, and Amar Mohsen. A Novel Re-
programmable Interconnect Architecture with Decoded RAM
Storage. In Proceedings of the IEEE 1994 Custom Integrated
Circuits Conference, pages 193–196. IEEE, May 1994.

[5] Chris Jones, John Oswald, Brian Schoner, and John Vil-
lasenor. Issues in Wireless Video Coding using Run-time-
reconfigurable FPGAs. In Peter Athanas and Ken Pocek, edi-
tors,Proceedings of the IEEEWorkshop on FPGAs forCustom
Computing Machines, Los Alamitos, California, April 1995.
IEEE Computer Society, IEEE Computer Society Press.

[6] Jonathan Rose and Stephen Brown.Flexibility of Interconnec-
tion Structures for Field-Programmable Gate Arrays. IEEE
Journal of Solid-State Circuits, 26(3):277–282, March 1991.

[7] Edward Tau, Ian Eslick, Derrick Chen, Jeremy Brown, and
André DeHon. A First Generation DPGA Implementation.
In Proceedings of the Third Canadian Workshop on Field-
ProgrammableDevices, pages 138–143, May 1995.

[8] Michael J. Wirthlin and Brad L. Hutchings. A Dynamic In-
struction Set Computer. In Peter Athanas and Ken Pocek, edi-
tors,Proceedings of the IEEEWorkshop on FPGAs forCustom
Computing Machines, Los Alamitos, California, April 1995.
IEEE Computer Society, IEEE Computer Society Press.

[9] Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124. The
Programmable Logic Data Book, 1994.

[10] Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124. XC5200
Logic Cell array Family Technical Data, preliminary (v1.0)
edition, April 1995.

