
Compact, Multilayer Layout for Butterfly Fat-Tree

André DeHon
California Institute of Technology

Department of Computer Science, 256-80
Pasadena, CA 91125

andre@acm.org

ABSTRACT
Modern VLSI processing supports a two-dimensional surface for
active devices along with multiple stacked layers of interconnect.
With the advent of planarization, the number of layers can be large
(6 or 7 in modern designs) and more layers are feasible if the cost
is justified. Using a multilayer-wiring VLSI area model, we show
how a butterfly fat-tree (or fat-pyramid) withN processors can be
laid out inΘ(N) active device area usingΘ(log(N)) wiring layers.
This result may have practical value in laying out efficient, single-
chip multiprocessors and FPGAs. It may also provide a theoretical
basis for the rate of layer scaling empirically seen in VLSI designs.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Styles—VLSI; C.2.1
[Computer-Communication Networks]: Network Architecture
and Design—Network Topology; C.1.4 [Processor Architectures]:
Parallel Architectures

General Terms
VLSI Layout Theory, Fat-Tree, Fat-Pyramid, Scaling, Universal
Network, Multiprocessor, FPGA

1. INTRODUCTION
Traditional VLSI area models (e.g. [10]) assume two, or a small
fixed number of, wiring layers, which was very appropriate for
early VLSI process capabilities. With this model it was possible
to identify many interesting cases where wiring limitations deter-
mined the size required by chips. Modern VLSI processes, perhaps
in response to the empirical recognition of these wiring limitations,
now offer many layers of wiring. It is, consequently, interesting
to review VLSI wiring restrictions exploiting the new multilayer
wiring model.

This paper looks specifically at fat-tree style wiring. The fat-tree
was constructed specifically to be efficient for VLSI layouts, and
the canonical 2D fat-tree is an example of a structure whose area
is wiring limited. Further, the fat-tree can be used as a universal
interconnect or wiring substrate. We show that the wiring struc-

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted withou fee provided that
copies are not made or distributed for commercial advantage and
that copies bear this notice and the full citation on the front page.
To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SPAA 2000 Bar Harbor, Maine
Copyright ACM 2000 1-58113-185-2/00/07...$5.00

ture in the fat-tree is sufficiently regular to permit a layout inΘ(N)
area (the area dictated by the nodes and switches) usingO(log(N))
wiring layers. This should be compared to an area ofO(N log2(N))
using a conventional, 2D, bounded wiring layers, layout for a fat-
tree.

The paper starts with an abstract of modern, multilayer VLSI layout
(Section 2) and a review of the butterfly fat-tree and fat-pyramid
(Section 3). In Section 4, we demonstrate the major result that a
butterfly fat-tree can be placed and routed efficiently using multiple
wiring layers. In Section 5, we look at how this result may relate to
VLSI wiring growth. We identify a few, interesting, open questions
which this raises in Section 6.

2. MODERN, MULTILAYER VLSI LAYOUT
Contemporary VLSI processes easily offer 6 layers of metalization
for wiring. With the advent of Chemical Mechanical Planarization
(CMP) [9], it is feasible for process technology to continue stack-
ing additional metal layers as long as the cost of the extra mask
steps and processing are justified by the area benefits. This pro-
duces an interesting twist on the traditional VLSI models. With
current technology, active devices (transistors, gates, buffers) are
still largely limited to two-dimensional layout on the silicon sub-
strate. However, wire layers can feasibly be stacked on top of each
other creating a three-dimensional structure for interconnect and
wiring.

This gives us a model where:

1. Devices which actually compute upon, store, or switch data
must be laid out in two dimensions.

2. Wires which interconnect these devices have finite width and
spacing.

3. Wires on any two wiring layers can be interconnect with vias
and will take up finite space on all intervening layers.

If the active devices for some structure take up total areaA, then it
is interesting to ask if the active devices can be laid out compactly
to fit in O(A) two-dimensional surface area and be supported by
the multilayer wiring. Further, we should ask how many wiring
layers are required to support this compact active area layout.

3. BUTTERFLY FAT-PYRAMID AND FAT-
TREE

The particular structure we are interested in here is Leiserson’s Fat-
Tree [7] and, by extension, Greenberg’s Fat-Pyramid [3]. Results
from Leiserson and Greenberg show that an N-node fat-tree (and
fat-pyramid) can be laid out inO(N log2(N)) area [4] using the

fold-and-squash technique of Leighton and Bhatt [1]. Figure 1
shows the Butterfly version of Leiserson’s Fat-Tree [5] (the fat-
pyramid is similar, adding a constant number of additional wires
between physical adjacent switch nodes at the same tree level) along
with its compact, fold-and-squash layout.

For this layout it is important to note that each 4-ary tree layer,
corresponding to multiplying the number of nodes in the tree by 4,
adds:

• a constant number of wire tracks (6 as shown) per “cubie”1

• a constant number of switches (1) tosomecubies

Hence we get the logarithmic growth in the side width of each cu-
bie due to wiring. Since wire width alone in the 2D VLSI model
dictates a side growth ofO(log2(N)), it does not (theoretically)
matter than some cubies have a switch count which is growing as
O(log(N)). The overall result is that the area of theN -node fat-
tree grows asO(N log2(N)).

Active Devices
It is, however, worthwhile to note that the number of active devices
in the butterfly fat-tree (and fat-pyramid) converges to a constant in-
dependent of the number of tree levels. It should be trivially clear
that the number of endpoints nodes isN . It is also true that the
number of switching nodes isΘ(N). For example, if we assume
a 4-ary tree with switches with 4 down links and 2 up links, as
shown, then the total number of switches is at mostN

2
. To see

this, note that each group of 4 leaf nodes needs one switch at the
lowest level (labeled 4 in Figure 1). At the next level, we need
half as many switches (every 4 switches on the lower level needs
2 switches at the next level). This relationship continues with each
succeeding level requiring half as many switches as the level be-
fore. Consequently, the number of switches needed per endpoint
can be calculated as a classical geometric series:

Nswitch =
N

4
+

1

2

(
N

4

)
+

1

4

(
N

4

)
+

1

8

(
N

4

)
+ · · · ≤ N

2
(1)

Since switches and endpoints make up the entire set of active de-
vices, this demonstrates the active device area for a butterfly fat-tree
is Θ(N).

4. LAYOUT
Having established that the active device requirement for a butterfly
fat-tree isΘ(N), the question remains as to whether or not the
device can be conveniently laid out in this area and the wiring can
all be performed in a reasonable number of wiring layers. We also
note from our observations in the previous section that the number
of wiring channels per cubie isO(log(N)). Since it is necessary
to build a cubie in spaceO(1) if we are to layout the entire tree in
active, two-dimensional areaO(N), then that sets a trivial lower
bound ofΩ(log(N)) on the number of wire layers required to wire
the fat-tree. In fact, it is possible to organize the fat-tree so that it
can be laid out inO(N) active area andO(log(N)) wiring layers.
Two show this is possible, we demonstrate two things:

1. The switches can be arranged to be placed into cubies so
there are at most a constant number (2) of switches in any
cubie.

1Cubies shown here contain 4 processing nodes, but are otherwise
similar to the cubies shown in [4].

2. When we account forboth the wiring per layer and the through
vias required between layers, we do not saturate any of the
wiring layers.

4.1 Switch Placement
Figure 2 shows the rearrangement of the basic fat-tree and its fold-
and-squash layout. The rearranged fat-tree is topologically equiv-
alent to the original fat-tree (Figure 1). However, when this re-
arrangement is folded up, at most 2 switches end up in the cubie
along with 4 processing nodes (Figure 8, provided at the end of the
paper, builds the tree one level higher to better show this effect).

In the original fat-tree arrangement, all the switches lie along the
same diagonal. In the new arrangement, the diagonals are comple-
mentary so that, when folded together, the next level diagonal is
always left open. Figure 3 shows the actual folding sequence to
display the basic invariant maintained by this arrangement. Each
final cubie will contain the 4 leaf processing element, the switch
associated with those four processing elements, and, at most, one
additional switch. For clarity, the processors and first switch (la-
beled 4) are not shown in Figure 3 once folding begins.

Notice, at each stage, that, after folding, the lower level(s) man-
ages to leaveboth main diagonals free. One main diagonal is then
consumed by the new switches added at the level onto which the
lower levels are being folded. This, in turn, leaves one diagonal
free in the folded box. As a consequence when this new level is
now folded with its peers to create the next tree level, it will also
create a structure with both main diagonals free so that the next
level of switches can be added and the folding can continue in this
mannerad infinitum.

4.2 Wires
The basic strategy for wiring is to give each tree layer its own
pair of wire layers—one for horizontal wiring and one for verti-
cal wiring. In all likelihood the constants will work out such that
more than one tree layer can share the same wiring layer, but for
the sake of clear exposition, we will use this generous assumption.
As shown, the wiring per tree layer is, at most, 6 wires wide,2 so
we immediately see we have a constant number of wires running
through each cubie side on each of the2 · log(N) wiring layers.

Now, we must also show that we can accommodate all of the through
vias in constant area. Since there are at most two switches per cu-
bie, there must be at most6 × 2 = 12 through interconnect vias
from the substrate to some routing layer in each cubie.3 We can
allocate a via track for each wire channel in each wiring layer in or-
der to make the connection down to the substrate. Further, the vias
in this channel will need to be spaced one wire channel apart to
avoid blocking the wires running the orthogonal direction (see Fig-
ure 4b). As shown in Figure 4a-b, each of the channels stacked on
top of each other on different routing layer can route out to the sin-
gle via channel and down to the substrate when it needs to connect
without creating interference with the other channels in its stack.
Note also that we assume the horizontal and vertical layers for a
given tree layer are adjacent so that via connections between them
can be made without disturbing wiring on any other wiring layers.
This composite construction shows that we can wire each cubie in

2Again, this could almost certainly be done with less wires per
channel, but that would only complicate the description.
3Actually, since 4 of those connections are to the endpoint nodes,
we only have 8 to worry about for the tree wiring layers.

0 1

2 3
4

0 1

2 3
4

0 1

2 3
4

0 1

2 3
4

5
5

0 1

2 3
4

0 1

2 3
4

0 1

2 3
4

0 1

2 3
4

5
5

0 1

2 3
4

0 1

2 3
4

0 1

2 3
4

0 1

2 3
4

5
5

0 1

2 3
4

0 1

2 3
4

0 1

2 3
4

0 1

2 3
4

5
5

6
6

6
6

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

5

5

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

5

5

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

5

5

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

5

5

6

6

6

6

Figure 1: Butterfly Fat-Tree and Compact Layout

0 1

2 3
4

0 1

2 3
4

0 1

2 3
4

0 1

2 3
4

5
5

0 1

2 3
4

0 1

2 3
4

0 1

2 3
4

0 1

2 3
4

5
5

0 1

2 3
4

0 1

2 3
4

0 1

2 3
4

0 1

2 3
4

5
5

0 1

2 3
4

0 1

2 3
4

0 1

2 3
4

0 1

2 3
4

5
5

6
6

6
6

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

5

5

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

5

5

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

5

5

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

5

5

6

6

6

6

Figure 2: Rearranged Butterfly Fat-Tree and Compact Layout

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

6

6

6

6

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

6

6

6

6

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

6

6

6

6

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

6

6

6

6

7

7

7

7

7

7

7

7

5

5 5

5

5

5 5

5

6

6

6

6

5

5 5

5

5

5 5

5

6

6

6

6

5

5 5

5

5

5 5

5

6

6

6

6

5

5 5

5

5

5 5

5

6

6

6

6

7

7

7

7

7

7

7

7

5

5 5

5

5

5 5

56

6

6

6 5

5 5

5

5

5 5

5

6

6

6

6

5

5 5

5

5

5 5

5

6

6

6

6

5

5 5

5

5

5 5

56

6

6

6

7

7

7

7

7

7

7

7

5

5 5

5

5

5 5

5

6

6

6

6

5

5 5

5

5

5 5

5

6

6

6

6

5

5 5

5

5

5 5

5

6

6

6

6

5

5 5

5

5

5 5

5

6

6

6

6

7

7

7

7

7

7

7

7

5

5 5

5

5

5 5

5

6

6

6

6

5

5 5

5

5

5 5

5

6

6

6

6

5

5 5

5

5

5 5

5

6

6

6

6

5

5 5

5

5

5 5

5

6

6

6

6

7

7

7

7

7

7

7

7

5

5 5

5

5

5 5

5

6

6

6

6

5

5 5

5

5

5 5

5

6

6

6

6

5

5 5

5

5

5 5

5

6

6

6

6

5

5 5

5

5

5 5

5

6

6

6

6

7

7

7

7

7

7

7

7

Figure 3: Fold Sequence for Rearranged Butterfly Fat-Tree

Single Wire Stack Cubie Wiring
Oblique View Top View Top View

(a) (b) (c)

Figure 4: Wiring Pattern

constant, two-dimensional surface area if givenO(log(N)) wire
layers.

In practice, we would not want to run a pair of wires directly in
parallel for long runs due to potential coupling and hence crosstalk
effects. Using standard techniques for twisting wires among the
channels we can reduce the crosstalk coupling while maintaining
our asymptotic bounds. Strictly speaking, adding a shielding layers
between wiring runs would also provide such protection without
changing the asymptotic bounds, but that should not be necessary.

Together with earlier observations about switch placement, this demon-
strates our original claim that the entire butterfly fat-tree can be laid
out compactly inΘ(N) active area andΘ(log(N)) wiring layers.

5. VLSI IMPLICATIONS
The immediate implication of this result is that we can use the
butterfly fat-tree routing topology to compactly layout single-chip
multiprocessors and FPGAs (e.g.[11]). This says that, given enough
metal layers, we can layout anα = 1

2
bifurcating fat-tree [1],

which Leiserson identifies as area universal [8], in area linear in
the number of graph nodes. As noted above, this is better than the
O(N log2(N)) area required if we limit the number of metal layers
to a constant independent ofN .

Empirically, one can observe that the number of metal layershas
beensteadily increasing with the active device capacity of our chips.
Bohr observes that the number of metal layers has been increasing
at the rate of 0.75 layers per IC generation [2]. Each generation
represents a feature size reduction to 0.7× the previous generation.
Assuming die sizes stay roughly constant,4 this means each genera-
tion roughly doubles the area for active computing devices. Adding
a constant number of metal layers per capacity doubling repre-
sents a logarithmic growth, or the same asymptotic bound which
we demonstrated above for the fat-tree.

Two-dimensional VLSI layout theory would have predicated that,
if our circuits have interconnect as rich asp ≥ 0.5 (Rent’s Rule
[6]) or natural bifurcators withα ≥ 1

2
, then the number of active

4Die sizes are not entirely constant, but this is a reasonable approx-
imation for our purposes.

device we can usefully place on a VLSI component will scale sub-
linearly as devices are pushed out to accommodate the necessary
interconnect wiring. This result and Bohr’s suggest that processes
have evolved to avoid this effect by correspondingly adding metal
layers at a logarithmic rate to accommodate the richer interconnect
requirements of our designs. Our results demonstrate that wiring
layer growth is, in fact, sufficient to allow us to wire up universal
routing structures efficiently; that is, with the logarithmic growth in
wiring layers, we can place a number of active devices on the die
which is linear in the total component area.

6. OPEN QUESTIONS
Can we layout anα > 1

2
tree inO(N) area with any number of

wire layers? withO(N2p−1)? how? A more general butterfly fat-
tree can have a different growth rate in aggregate channel capacity
[8] than the area-universal one where the main channel doubles
when the subtree quadruples (matching he

√
A perimeter I/O to

area ratio of a two-dimensional layout). For any larger geometric
channel growth rate (less than a complete doubling at every stage –
i.e.α < 1), the number of switches in the butterfly fat-tree will still
be onlyO(N). So, the question here, is: is there a similarly clever
way to arrange the switches in this more general case? And, can
the wiring and through via connections also be arranged to work
out?

7. SUMMARY
We have noted that the assumption of a fixed number of wiring
layers independent of device capacity does not match technology
advances in modern VLSI. Using a multilayer model, we showed
that the fat-tree can be arranged and laid out inΘ(N) area using
Θ(log(N)) wiring layers. Finally, we noted that the growth rate
derived here matches empirical observation of the growth rate of
wiring layers in VLSI processes, suggesting that general designs
have encountered similar wire limitations, encouraging processes
to scale wire layers to meet wiring demands.

The primary contributions of this paper are:

• Show how to arrange the switches for folding so there is conve-
niently a constant number of switches along with each process-
ing node tile (cubie).

• Show that the wiring can be arranged so as not to saturate inter-
vening layers with through via connections.
• Assemble these two results to demonstrate the aforementioned

claim for compact fat-tree layout.

8. ACKNOWLEDGMENTS
This research was part of the Berkeley Reconfigurable Architec-
tures Software and Systems effort supported by the Defense Ad-
vanced Research Projects Agence under contract number DABT63-
C-0048.

9. REFERENCES
[1] S. Bhatt and F. T. Leighton. A framework for solving vlsi

graph layout problems.Journal of Computer System
Sciences, 28:300–343, 1984.

[2] M. Bohr. Interconnect scaling – the real limiter to high
performance ulsi. InInternational Electron Devices Meeting
1995 Technical Digest, pages 241–244. Electron Devices
Society of IEEE, December 1995.

[3] R. Greenberg. The fat-pyramid and universal parallel
computation independent of wire delay.IEEE Transactions
on Computers, 43(12):1358–1365, December 1994.

[4] R. I. Greenberg and C. E. Leiserson. A compact layout for
the three-dimensional tree of meshes.Applied Math Letters,
1(2):171–176, 1988.

[5] R. I. Greenberg and C. E. Leiserson.Randomness in
Computation, volume 5 ofAdvanes in Computing Research,
chapter Randomized Routing on Fat-Trees. JAI Press, 1988.
Earlier version MIT/LCS/TM-307.

[6] B. S. Landman and R. L. Russo. On pin versus block
relationship for partitions of logic circuits.IEEE
Transactions on Computers, 20:1469–1479, 1971.

[7] C. E. Leiserson. Fat-trees: Universal networks for hardware
efficient supercomputing.IEEE Transactions on Computers,
C-34(10):892–901, Oct. 1985.

[8] C. E. Leiserson. Vlsi theory and parallel supercomputing.
MIT/LCS/TM 402, MIT, 545 Technology Sq., Cambridge,
MA 02139, May 1989. Also appears as an invited
presentation at the 1989 Caltech Decennial VLSI
Conference.

[9] W. T. Siegle. Interconnection technology for modern logic
devices; an exercise in system engineering to assure
manufacturability. InProceedings of the 1994 Materials
Research Society Symposium, volume 337, pages 3–11.
Material Research Society, 1994.

[10] C. Thompson. Area-time complexity for vlsi. InProceedings
of the Eleventh Annual ACM Symposium on Theory of
Computing, pages 81–88, May 1979.

[11] W. Tsu, K. Macy, A. Joshi, R. Huang, N. Walker, T. Tung,
O. Rowhani, V. George, J. Wawrzynek, and A. DeHon. Hsra:
High-speed, hierarchical synchronous reconfigurable array.
In Proceedings of the International Symposium on Field
Programmable Gate Arrays, pages 125–134, February 1999.

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

6

6

6

6

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

6

6

6

6

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

6

6

6

6

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

6

6

6

6

7

7

7

7

7

7

7

7

Figure 5: 256-node Butterfly Fat-Tree

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

5

5

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

5

5

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

5

5

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

5

5

6

6

6

6

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

5

5

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

5

5

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

5

5

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

5

5

6

6

6

6

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

5

5

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

5

5

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

5

5

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

5

5

6

6

6

6

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

5

5

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

5

5

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

5

5

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

5

5

6

6

6

6

7

7

7

7

7

7

7

7

Figure 6: Fold-and-Squash Layout for 256-node Butterfly Fat-Tree

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

6

6

6

6

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

6

6

6

6

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

6

6

6

6

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

0 1

2 3

4

5

5

6

6

6

6

7

7

7

7

7

7

7

7

Figure 7: 256-Node Rearranged Butterfly Fat-Tree

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

5

5

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

5

5

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

5

5

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

5

5

6

6

6

6

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

5

5

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

5

5

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

5

5

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

5

5

6

6

6

6

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

5

5

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

5

5

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

5

5

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

5

5

6

6

6

6

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

5

5

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

5

5

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

5

5

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

5

5

6

6

6

6

7

7

7

7

7

7

7

7

Figure 8: Fold-and-Squash Layout for 256-Node Rearranged Butterfly Fat-Tree

