
FCCM’96 -- IEEE Symposium on FPGAs for Custom Computing Machines

April 17-19, 1996, Napa, CA

MATRIX:
A Reconfigurable Computing Architecture with Configurable Instruction

Distribution and Deployable Resources

Ethan Mirsky André DeHon
eamirsky@ai.mit.edu andre@mit.edu

(617) 253-8597 (617) 253-5868
NE43-793 NE43-791

545 Technology Sq.
Cambridge, MA 02139
FAX: (617) 253-5060

Abstract

MATRIX is a novel, coarse-grain, reconfigurable com-
puting architecture which supports configurable instruction
distribution. Device resources are allocated to control-
ling and describing the computation on a per task basis.
Application-specific regularity allows us to compress the
resources allocated to instruction control and distribution,
in many situations yielding more resources for datapaths
and computations. The adaptability is made possible by
a multi-level configuration scheme, a unified configurable
network supporting both datapaths and instruction distri-
bution, and a coarse-grained building block which can
serve as an instruction store, a memory element, or a com-
putational element. In a 0.5� CMOS process, the 8-bit
functional unit at the heart of the MATRIX architecture has
a footprint of roughly 1.5mm�1.2mm, making single dies
with over a hundred function units practical today. At this
process point, 100MHz operation is easily achievable, al-
lowing MATRIX components to deliver on the order of 10
Gop/s (8-bit ops).

1 Introduction and Motivation

General-purpose computing architectures must address
two important questions:

1. How are general-purpose processing resources con-
trolled?

2. How much area is dedicated to holding the instructions
which control these resources?

There are many, different possible answers to these ques-
tions and the answers, in large part, distinguish the various
general-purpose architectures with which we are familiar
(e.g. word-wide uniprocessors, SIMD, MIMD, VLIW,
FPGA, reconfigurable ALUs). The answers also play a
large role in determining the efficiency with which the ar-
chitecture can handle various applications. We have de-
veloped a novel reconfigurable device architecture which
allows these questions to be answered by the application
rather than by the device architect.

Most of the area on a modern microprocessor goes into
storing data and instructions and into control circuitry. All
this area is dedicated to allowing computational tasks to
heavily reuse the small, active portion of the silicon, the
ALUs. Consequently, very little of the capacity inherent
in a processor gets applied to the problem — most of it
goes into supporting a large operational diversity. Further,
the rigid word-SIMD ALU instructions coupled with wide
processor words make processors relatively inefficient at
processing bit or byte-level data.

Conventional Field Programmable Gate Arrays (FP-
GAs) allow finer granularity control over operation and
dedicate minimal area to instruction distribution. Conse-
quently, they can deliver more computations per unit sili-
con than processors on a wide range of regular operations.
However, the lack of resources for instruction distribution
make them efficient only when the functional diversity is
low — i.e. when the same operation is required repeatedly
and that entire operation can be fit spatially onto the FPGA
or FPGAs in the system.

Dynamically Programmable Gate Arrays (DPGAs) [14]
[7] dedicate a modest amount of on-chip area to store ad-
ditional instructions allowing them to support higher oper-

FCCM’96 -- IEEE Symposium on FPGAs for Custom Computing Machines

April 17-19, 1996, Napa, CA

ation diversity than traditional FPGAs. The area necessary
to support this diversity must be dedicated at fabrication
time and consumes area whether or not the additional di-
versity is required. The amount of diversity supported –
i.e. the number of instructions – is also fixed at fabrica-
tion time. Further, when regular datapath operations are
required many instruction stores will be programmed with
the same data.

Rather than separate the resources for instruction stor-
age and distribution from the resources for data storage
and computation and dedicate silicon resources to them at
fabrication time, the MATRIX architecture unifies these re-
sources. Once unified, traditional instruction and control
resources are decomposed along with computing resources
and can be deployed in an application-specific manner.
Chip capacity can be deployed to support active compu-
tation or to control reuse of computational resources de-
pending on the needs of the application and the available
hardware resources.

In this paper we introduce the MATRIX architecture.
The following section (Section 2) provides an overview
of the basic architecture. In Section 3, we show usage
examples to illustrate the architecture’s flexibility in adapt-
ing to varying application characteristics. Section 4 puts
MATRIX in context with some of its closest cousins. We
comment on MATRIX’s granularity in Section 5. In Sec-
tion 6, we highlight implementation characteristics from
our first prototype. Section 7 concludes by reviewing the
key aspects of the MATRIX architecture.

2 Architecture

MATRIX is composed of an array of identical, 8-bit
functional units overlayed with a configurable network.
Each functional unit contains a 256�8-bit memory, an 8-
bit ALU and multiply unit, and reduction control logic
including a 20�8 NOR plane. The network is hierarchical
supporting three levels of interconnect. Functional unit
port inputs and non-local network lines can be statically
configured or dynamically switched.

2.1 BFU

The Basic Functional Unit (BFU) is shown in Figure 1.
The BFU contains three major components:

� 256�8 memory – the memory can function either as
a single 256-byte memory or as a dual-ported, 128�8-
bit memory in register-file mode. In register-file mode

NeighborhoodNeighborhood

R

NOR Plane
(1/2 PLA)

Control Bit Control Byte

8

Floating Port I Floating Port II

BFU Output

1

9

Comp/Reduce I Comp/Reduce II

Comp/Reduce

R

Select 4

R

13 8 4 8 8

Figure 2: BFU Control Logic

the memory supports two reads and one write opera-
tion on each cycle.

� 8-bit ALU – the ALU supports the standard set of
arithmetic and logic functions including NAND, NOR,
XOR, shift, and add. With optional input inversion,
this extends to include OR, AND, XNOR, and subtract.
A configurable carry chain between adjacent ALUs
allow cascading of ALUs to perform wide-word op-
erations. The ALU also includes an 8�8 multiply-
add-add operation; the multiply operation takes two
operating cycles to complete producing the low 8 bits
of the product on the first cycle and the high 8 bits on
the second cycle.

� Control Logic – the control logic is composed of: (1)
a local pattern matcher for generating local control
from the ALU output (Figure 2 Left), (2) a reduction
network for generating local control (Figure 2 Mid-
dle), and (3) a 20-input, 8-output NOR block which
can serve as half of a PLA (Figure 2 Right).

MATRIX operation is pipelined at the BFU level with a
pipeline register at each BFU input port. A single pipeline
stage includes:

1. Memory read
2. ALU operation
3. memory write and local interconnect traversal – these

two operations proceed in parallel

The BFU can serve in any of several roles:

� I-store – Instruction memory for controlling ALU,
memory, or interconnect functions

� Data Memory – Read/Write memory for holding data
� RF+ALU slice – Byte slice of a register-file-ALU com-

bination

FCCM’96 -- IEEE Symposium on FPGAs for Custom Computing Machines

April 17-19, 1996, Napa, CA

ALU
Function

(Fa)

Memory
Function

(Fm)

Address/
Data A

Address/
Data B

BFU
Core

A B

Fa Fm
Out

Level−1 Network

Floating
Port 1 (FP1)

L3 Control
Lines

Incoming
Network Lines

(L1, L2, L3)

Incoming
Network Lines

(L1, L2, L3)

Switch 1 (N1)
Network Network

Switch 2 (N2)

Level 2, 3
Network Drivers

Network
Level−2, Level−3

Floating
Port 2 (FP2)

Level 1
Network Drivers

N
et

w
or

k
P

or
t

A N
etw

ork P
ort B

Control
Logic

Carry In Carry Out

A
L

U
 F

un
ct

io
n

P
or

t

Control
Logic

A_in B_in

C_in C_out
F_sel ALU

Out

Memory
Block

A_ADR B_ADR

A PORT B PORT

MODE

DATA

WE

M
em

ory F
unction P

ort

Level−1 Network

Figure 1: MATRIX BFU

� ALU function – Independent ALU function

The BFU’s versatility allows each unit to be deployed as
part of a computational datapath or as part of the memory
or control circuitry in a design.

2.2 Network

The MATRIX network is a hierarchical collection of
8-bit busses. The interconnect distribution resembles tra-
ditional FPGA interconnect. Unlike traditional FPGA in-
terconnect, MATRIX has the option to dynamically switch
network connections. The network includes:

1. Nearest Neighbor Connection (Figure 3 Left) – A
direct network connection is provided between the
BFUs within two manhattan grid squares. Results
transmitted over local interconnect are available for
consumption on the following clock cycle.

2. Length Four Bypass Connection (Figure 3 Right) –
Each BFU supports two connections into the level two
network. The level two network allows corner turns,
local fanout, medium distance interconnect, and some
data shifting and retiming. Travel on the level two
network may add as few as one pipeline delay stage
between producer and consumer for every three level
two switches included in the path. Each level two
switch may add a pipeline delay stage if necessary for
data retiming.

5

FPout

1

10

8 1

Level−1

Level−2

Level−3

Local Output 1x8

8x8

8x8

8
8

12x8

1x8

R

N
et

w
or

k
In

pu
ts

30
x8

Control Byte

Control Bit

Configuration
Word A

Configuration
Word B

Register on
A,B Ports Only

B
F

U
 (A

,B
)

N
etw

ork D
rivers (N

1,N
2)

Figure 4: BFU Port Architecture

3. Global Lines – Every row and column supports four
interconnect lines which span the entire row or col-
umn. Travel on a global line adds one pipeline stage
between producer and consumer.

2.3 Port Architecture

The MATRIX port configuration is one of the keys to the
architecture’s flexibility. Figure 4 shows the composition
of the BFU network and data ports. Each port can be
configured in one of three major modes:

FCCM’96 -- IEEE Symposium on FPGAs for Custom Computing Machines

April 17-19, 1996, Napa, CA

Nearest Neighbor Interconnect

Length Four Bypass Interconnect

Figure 3: MATRIX Network

1. Static Value Mode – The value stored in the port
configuration word is used as a static value driven into
the port. This is useful for driving constant data or
instructions into a BFU. BFUs configured simply as
I-Stores or memories will have their ALU function
port statically set to flow through. BFUs operating in
a systolic array might also have their ALU function
port set to the desired operation.

2. Static Source Mode – The value stored in the port
configuration word is used to statically select the net-
work bus providing data for the appropriate port. This
configuration is useful in wiring static control or dat-
apaths. Static port configuration is typical of FPGA
interconnect.

3. Dynamic Source Mode – The value stored in the port
configuration word is ignored. Instead the output of
the associated floating port (see Figure 1) controls the
input source on a cycle-by-cycle basis. This is useful
when datapath sources need to switch during normal
operation. For example, during a relaxation algorithm,
a BFU might need to alternately take input from each
of its neighbors.

The floating port and function ports are configured sim-
ilarly, but only support the static value and static source
modes.

3 Usage

For illustrative purposes, let us consider various con-
volution implementations on MATRIX. Our convolution
task is as follows: Given a set of k weights fw1, w2, � � �
wkg and a sequence of samples fx1, x2,� � �g, compute a
sequence of results fy1, y2,� � �g according to:

yi � w1 � xi �w2 � xi�1 � � � � � wk � xi�k�1 �1�

Systolic Figure 5 shows an eight-weight (k � 8) convo-
lution of 8-bit samples accumulating a 16-bit result value.
The top row simply carries sample values through the sys-
tolic pipeline. The middle row performs an 8�8 multiply
against the constants weights, w’s, producing a 16-bit re-
sult. The multiply operation is the rate limiter in this task
requiring two cycles to produce each 16-bit result. The
lower two rows accumulate yi results. In this case, all
datapaths (shown with arrows in the diagram) are wired
using static source mode (Figure 4). The constant weights
are configured as static value sources to the multiplier cells.
Add operations are configured for carry chaining to perform
the required 16-bit add operation. For a k-weight filter, this
arrangement requires 4k cells and produces one result ev-
ery 2 cycles, completing, on average, k2 8�8 multiplies and
k
2 16-bit adds per cycle.

In practice, we can:

1. Use the horizontal level-two bypass lines for pipelin-
ing the inputs, removing the need for the top row
of BFUs simply to carry sample values through the
pipeline.

FCCM’96 -- IEEE Symposium on FPGAs for Custom Computing Machines

April 17-19, 1996, Napa, CA

Add

Pass

Add

Mult

Add

Pass

Add

Mult

Add

Pass

Add

Mult

Add

Pass

Add

Mult

Add

Pass

Add

Mult

Add

Pass

Add

Mult

Add

Pass

Add

Mult

Add

Pass

Add

Mult

x i

y i

(8 bit)

(16 bit)

Figure 5: Systolic Convolution Implementation

2. Use both the horizontal and vertical level-two by-
pass lines to retime the data flowing through the add
pipeline so that only a single BFU adder is needed per
filter tap stage.

3. Use three I-stores and a program counter (PC) to
control the operation of the multiply and add BFUs,
as well as the advance of samples along the sample
pipeline.

The k-weight filter can be implemented with only 2k � 4
cells in practice.

Microcoded Figure 6 shows a microcoded convolution
implementation. The k coefficient weights are stored in the
ALU register-file memory in registers 1 through k and the
last k samples are stored in a ring buffer constructed from
registers 65 through 64 � k. Six other memory location
(Rs, Rsp, Rw, Rwp, Rl, and Rh) are used to hold values
during the computation. The ALU’s A and B ports are
set to dynamic source mode. I-store memories are used to
drive the values controlling the source of the A and B input
(two Isrc memories), the values fed into the A and B inputs
(Ia,Ib), the memory function (Imf) and the ALU function
(Ialu). The PC is a BFU setup to increment its output value
or load an address from its associated memory.

The implementation requires 8 BFUs and produces a
new 16-bit result every 8k � 9 cycles. The result is output
over two cycles on the ALU’s output bus. The number
of weights supported is limited to k � 61 by the space in
the ALU’s memory. Longer convolutions (larger k) can
be supported by deploying additional memories to hold
sample and coefficient values.

Custom VLIW (Horizontal Microcode) Figure 7 shows
a VLIW-style implementation of the convolution operation

that includes application-specific dataflow. The sample
pointer (Xptr) and the coefficient pointer (Wptr) are each
given a BFU, and separate ALUs are used for the multiply
operation and the summing add operation. This configura-
tion allows the inner loop to consist of only two operations,
the two-cycle multiply in parallel with the low and high
byte additions. Pointer increments are also performed in
parallel. Most of the I-stores used in this design only con-
tain a couple of distinct instructions. With clever use of
the control PLA and configuration words, the number of
I-stores can be cut in half making this implementation no
more costly than the microcoded implementation.

As shown, the implementation requires 11 BFUs and
produces a new 16-bit result every 2k�1 cycles. As in the
microcoded example the result is output over two cycles on
the ALU output bus. The number of weights supported is
limited to k � 64 by the space in the ALU’s memory.

VLIW/MSIMD Figure 8 shows a Multiple-
SIMD/VLIW hybrid implementation based on the control
structure from the VLIW implementation. As shown in
the figure, six separate convolutions are performed simul-
taneously sharing the same VLIW control developed to
perform a single convolution, amortizing the cost of the
control overhead. To exploit shared control in this manner,
the sample data streams must receive data at the same rate
in lock step.

When sample rates differ, separate control may be re-
quired for each different rate. This amounts to replicating
the VLIW control section for each data stream. In the ex-
treme of one control unit per data stream, we would have a
VLIW/MIMD implementation. Between the two extremes,
we have VLIW/MSIMD hybrids with varying numbers of
control streams according to the application requirements.

FCCM’96 -- IEEE Symposium on FPGAs for Custom Computing Machines

April 17-19, 1996, Napa, CA

Label ALU Op PC
newsample Rxp� Rxp + 1 ; Match �k� 1� (6 bits) BNE xpcont1

� Rxp �� new xi (pipelined branch slot)
Rxp� 65

xpcont1 � Rxp �� new xi

Rs� � Rxp�
Rwp� 1
Rw �� Rwp �
Rs� Rs� Rw
Rw ��-continue
Rl � Rs; Match false BNE enterloop
Rh� Rw (pipelined branch slot)

innerloop Rs� Rs� Rw
Rw ��-continue
Rl � Rs + Rl
Rh� Rw +-continue Rh

enterloop Rxp� Rxp + 1 ; Match �k� 1� (6 bits) BNE xpcont2
Rs� � Rxp� (pipelined branch slot)
Rxp� 65
Rs� � Rxp�

xpcont2 Rwp� Rwp + 1 ; Match �k � 1� (6 bits) BNE innerloop

ALU

PC

bI

aluI

mfI

srcI

srcI

y i

x i
(8 bit)

(16 bits output
 over 2 cycles)

aI

Rw �� Rwp � (pipelined branch slot)
last read Rl ; Match false BNE newsample

read Rh (pipelined branch slot)

Figure 6: Microcoded Convolution Implementation

Xptr

wI

xI

srcI aluIPC

WptrX +

aluI Ia

y i

x i (8 bit)

(16 bits output
 over 2 cycles)

Label Xptr unit Wptr unit PC MPY unit +-unit
firstsample Xptr�64 Wptr�0

output Xptr output Wptr � Xptr �� new xi

nextsample Xptr++ MOD k j 64 Wptr++ � Xptr � �� Wptr �
output Xptr output Wptr �-continue Rlow� MPY-result
Xptr++ MOD k j 64 Wptr++ � Xptr � �� Wptr � Rhigh�MPY-result
output Xptr output Wptr �-continue Rlow� Rlow + MPY-result

innerloop Xptr++ MOD k j 64 Wptr++; Match k BNE innerloop � Xptr � �� Wptr � Rhigh� Rhigh + MPY-result
output Xptr output Wptr (pipelined branch slot) �-continue Rlow� Rlow + MPY-result

last output Xptr output Wptr � Xptr � �� Wptr � Rhigh� Rhigh + MPY-result

Xptr++ MOD k j 64 Wptr�0; Match false BNE nextsample �-continue Rlow � Rlow + MPY-result

output Xptr output Wptr (pipeline branch slot) � Xptr �� new xi Rhigh � Rhigh + MPY-result

Boxed values in last are the pair of yi output bytes at the end of each convolution.

Figure 7: Custom VLIW Convolution Implementation

FCCM’96 -- IEEE Symposium on FPGAs for Custom Computing Machines

April 17-19, 1996, Napa, CA

Xptr

wI

xI

srcI aluIPC

Wptr

aluI Ia

X

+

X X X X X

+++++

ix1

y1 i

ix2

y2 i y3 y4 iy6

x6 ix4 ix3 i

i i y5 i

x5 i

Figure 8: VLIW/MSIMD Convolution Implementation

Comments Of course, many variations on these themes
are possible. The power of the MATRIX architecture is its
ability to deploy resources for control based on application
regularity, throughput requirements, and space available.
In contrast, traditional microprocessors, VLIW, or SIMD
machines fix the assignment of control resources, memory,
and datapath flow at fabrication time, while traditional pro-
grammable logic does not support the high-speed reuse of
functional units to perform different functions.

4 Relation to Existing Computing Devices

Owing to the coarse-grain configurability, the most
closely related architectures are PADDI [4], PADDI-2 [15],
and PMEL’s vDSP [6]. PADDI has 16-bit functional units
with an 8-word deep instruction memory per processing
element. A chip-wide instruction pointer is broadcast on
a cycle-by-cycle basis giving PADDI a distinctly VLIW
control structure. From what little public information is
available, the vDSP appears to have a similar VLIW con-
trol structure with 4 contexts and 8-bit wide functional
units. PADDI-2 also supports 8 distinct instructions per
processing element but dispenses with the global instruc-
tion pointer, implementing a dataflow-MIMD control struc-
ture instead. While the MATRIX BFU is similar in func-
tional composition to these devices, MATRIX is unique
in control flexibility, allowing the control structure, be it
SIMD, VLIW, MIMD, systolic, or a hybrid structure, to be
customized on a per application basis.

Dharma [1], DPGA [14], and VEGA [9] demonstrate
various fixed design points with dedicated context memory
for reusing the computing and interconnect resources in
fine-grained programmable arrays. Dharma has a rigid de-
composition of resources into computational phases. The
DPGA provides a more flexible multicontext implementa-
tion with a small context memory (e.g. 4 in the prototype).
At the other end of the spectrum, VEGA has 2048 context
memory words. The differences in these devices exhibit
the tension associated with making a pre-fabrication par-
titioning and assignment of resources between instruction
memory, data memory, and active computing resources.
While necessarily granular in nature, MATRIX allows the
resource assignment to be made on a per application basis.

The proposed DP-FPGA [5] controls multiple FPGA
LUTs or interconnect primitives with a single instruction.
However, the assignment of instructions to functional units,
and hence the widthof the datapath of identically controlled
elements is fixed at fabrication time. MATRIX allows a
single control memory to control multiple functional units
simultaneously in a configurable-SIMD fashion. This pro-
vides a form of instruction memory compression not pos-
sible when instruction and compute resources have fixed
pairings.

As seen in Section 3, MATRIX can be configured to
operate in VLIW, SIMD, and MSIMD fashion. Unlike tra-
ditional devices, the arrangement of units, dataflow, and
control can be customized to the application. In the SIMD
cases, MATRIX allows the construction of the master con-
trol and reduction networks out of the same pool of re-
sources as array logic, avoiding the need for fixed control
logic on each chip or an off-chip array controller. Like
MSIMD (e.g. [3, 11]) or MIMD multigauge [13] designs,
the array can be broken into units operating on different in-
structions. Synchronization between the separate functions
can be lock-step VLIW, like the convolution example, or
completely orthogonal depending on the application. Un-
like traditional MSIMD or multigauge designs, the control
processors and array processors are built out of the same
building block resources and networking. Consequently,
more array resources are available as less control resources
are used.

To handle mixed granularity data efficiently, a number
of architectures have been proposed or built which have
segmentable datapaths (e.g. [13] [2]). These generally
exhibit SIMD instruction control for the datapath, but can
be reconfigured to treat the n bit datapath as k, n

k
-bit words,

for certain, restricted, values of k. Modern multimedia
processors (e.g. [12] [8]) allow the datapath to be treated as
a collection of 8, 16, 32, or 64 bit words. MATRIX handles
mixed or varying granularities by composing BFUs and

FCCM’96 -- IEEE Symposium on FPGAs for Custom Computing Machines

April 17-19, 1996, Napa, CA

deploying instruction control. Since the datapath size and
assignment of control resources is not fixed for a MATRIX
component, MATRIX has greater flexibility to match the
datapath composition and granularity to the needs of the
application.

The LIFE [10] VLIW architecture was designed to al-
low easy synthesis of function-specific micro-programmed
architectures. The number and type of the functional units
can be varied prior to fabrication. The control structure and
resources in the architecture remain fixed. MATRIX allows
the function-specific composition of micro-programmed
functional units, but does not fix control or resource al-
location prior to fabrication time.

Reviewing the microcoded example in Section 3, we
can see both how microprocessors manage to achieve more
functional diversity than FPGAs and how FPGAs and
other reconfigurable architectures can achieve higher per-
formance than processors on highly repetitive computing
tasks with limited functional diversity. In order to sup-
port heavy reuse of a functional unit, a considerable frac-
tion of the resources must go into controlling the functions
and datapaths including the memory to hold programs and
data, as we see in the microcoded example. This is one
of the primary reasons that the performance provided by
microprocessors is small compared to their reconfigurable
counterparts — most of the device capacity in micropro-
cessors is dedicated to memory and control not to active
computation required by the task. Furthermore, in cases
such as this one, most of the cycles on the active resources
are dedicated to control and bookkeeping.

Table 1 presents an instruction stream taxonomy for
multiple data computing devices. Owing to their fixed
instruction control structure, all traditional computing de-
vices can be categorized in this taxonomy. MATRIX is
unique in that its multi-level configuration allows it, post
fabrication, to implement any of these structures and many
hybrids. Independent of an application configuration, MA-
TRIX defies strict classification based on the number of
instructions and threads of control.

5 Granularity

The 8-bit granularity used in MATRIX is a convenient
size for use in datapaths, memory addressing, and control.
Using the configurable instruction distribution, wide-word
operations can be cascaded with reasonable efficiency. The
overhead for configuring and controlling datapaths is sig-
nificantly reduced compared to a bit-level network config-
uration. Owing to the 8-bit granularity, MATRIX will not

Control Threads (PCs)
Instructions

Architecture/Examples

n/a Hardwired Functional Unit Group
0 (e.g. ECC/EDC unit, FP MPY,

hardware systolic)
n FPGA, Programmable Systolic Array

1 1 SIMD
n VLIW, PADDI, DPGA

n n MIMD (traditional), PADDI-2

Table 1: Taxonomy for Fixed Instruction Distribution Ar-
chitectures

Configuration
Memory

M
ul

tip
lie

r

Control
Logic

A
LURegisters Registers

 Main
Memory

Configuration
Memory

Network Drivers

OR Plane

N
et

w
o

rk
S

w
it

ch
es

N
et

w
o

rk

S
w

it
ch

es

Technology 0.5� CMOS
BFU Size 1.5mm � 1.2mm

(1.8mm2 � 29M�2)
Data Width 8-bit
Memory 256�8
Cycle 10 ns (estimate)

Figure 9: MATRIX BFU Composition

completely subsume bit-granularity reconfigurable devices
for irregular, fine-grained operations.

6 Implementation

Figure 9 shows the composition of a BFU along with its
size and performance. As described in Section 2, the BFU
is pipelined at the BFU level allowing high speed imple-
mentation. The 10 ns cycle estimate is for the university
prototype. With only a small memory read, an ALU oper-
ation, and local network distribution, the basic cycle rate

FCCM’96 -- IEEE Symposium on FPGAs for Custom Computing Machines

April 17-19, 1996, Napa, CA

can be quite small – at least comparable to microprocessor
clock rates. The area breakdown is roughly: 50% network,
30% memory, 12% control, and 8% ALU including the
multiplier. At 1.8mm2, 100 BFUs fit on a 17mm�14mm
die. A 100 BFU MATRIX device operating at 100MHz
has a peak performance of 1010 8-bit operations per cycle
(10 Gop/s).

7 Conclusions

Traditional computing devices are configured for an ap-
plication by their instruction stream. However, the compo-
sition of their instruction stream and the resources it occu-
pies cannot be tailored to the application. With a multi-level
configuration scheme, MATRIX allows the application to
control the division of resources between computation and
control. In the process, MATRIX allows the application to
determine the specifics of the instruction stream. Conse-
quently, MATRIX to provide:

� Parallel, Configurable Dataflow – Datapaths can be
wired up in an application-specific manner avoiding
serialization of data transfer through memory or global
busses. Results can often be delivered directly to their
consumers avoiding intermediate operations to route
data.

� As much Dynamic Control as Needed – Values, oper-
ations, and switches which need to change on a cycle-
by-cycle basis may be controlled by deploying memory
or functional blocks for their control. Values and enti-
ties which do not need to change during a computation
require the deployment of no additional resources for
their control.

� As much Regularity as Exploitable– A single instruc-
tion may control as many or as few distinct functional
units as the task merits.

� Deployable Resources – Each BFU can serve as data
memory, datapath ALU, control logic, or instruction
memory. This allows each application to allocate avail-
able resources according to its characteristics. Regular
operations may dedicate most BFUs to datapath logic,
while irregular and spatially limited applications may
dedicate most BFUs to control.

� Instruction Stream Compression – Application-
specific tailoring of datapaths and instruction distribu-
tion exploits application structure to reduce the size of
the delivered instructionstream. Most notably, when an
operation does not change from cycle-to-cycle it does
not require broadcast, and when the same operation oc-
curs at multiple computational sites, only a single copy
need be broadcast.

The result is a general-purpose, reconfigurable computing
architecture which robustlyyields high-performance across
a wide range of computational tasks.

Acknowledgments:

This research is supported by the Advanced Research
Projects Agency of the Department of Defense under Rome
Labs contract number F30602-94-C-0252.

References

[1] Narasimha B. Bhat, Kamal Chaudhary, and Ernest S.
Kuh. Performance-Oriented Fully Routable Dynamic
Architecture for a Field Programmable Logic Device.
UCB/ERL M93/42, University of California, Berke-
ley, June 1993.

[2] Michael Bolotski, Thomas Simon, Carlin Vieri, Ra-
jeevan Amirtharajah, and Thomas F. Knight Jr. Aba-
cus: A 1024 Processor 8ns SIMD Array. In Advanced
Research in VLSI 1995, 1995.

[3] Timothy Bridges. The GPA Machine: A Generally
Partitionable MSIMD Architecture. In Proceedings of
the Third Symposium on The Frontiers for Massively
Parallel Computations, pages 196–202. IEEE, 1990.

[4] Dev C. Chen and Jan M. Rabaey. A Reconfig-
urable Multiprocessor IC for Rapid Prototyping of
Algorithmic-Specific High-Speed DSP Data Paths.
IEEE Journal of Solid-State Circuits, 27(12):1895–
1904, December 1992.

[5] Don Cherepacha and David Lewis. A Datap-
ath Oriented Architecture for FPGAs. In Sec-
ond International ACM/SIGDA Workshop on Field-
Programmable Gate Arrays. ACM, February 1994.
proceedings not available outside of the workshop,
contact author lewis@eecg.toronto.edu.

[6] Peter Clarke. Pilkington Preps Reconfigurable Video
DSP. Electronic Engineering Times, page 16, Au-
gust 7 1995. Online briefing http://www.pmel.
com/dsp.html.

[7] André DeHon. DPGA Utilization and Appli-
cation. In Proceedings of the 1996 Interna-
tional Symposium on Field Programmable Gate
Arrays. ACM/SIGDA, February 1996. Extended
version available as Transit Note #129, available

FCCM’96 -- IEEE Symposium on FPGAs for Custom Computing Machines

April 17-19, 1996, Napa, CA

via anonymous FTP transit.ai.mit.edu:
transit-notes/tn129.ps.Z.

[8] Dave Epstein. Chromatic Raises the Multimedia
Bar. Microprocessor Report, 9(14):23 ff., October
23 1995.

[9] David Jones and David Lewis. A Time-Multiplexed
FPGA Architecture for Logic Emulation. In Proceed-
ings of the IEEE 1995 Custom Integrated Circuits
Conference, pages 495–498. IEEE, May 1995.

[10] Junien Labrousse and Gerrit A. Slavenburg.
CREATE-LIFE: A Modular Design Approach for
High Performance ASIC’s. In Compcon ’90: Thirty-
fifth IEEE Computer Society International Confer-
ence, Digest of Papers, pages 427–433. IEEE, Febru-
ary 1990.

[11] Gary J. Nutt. Microprocessor Implementation of a
Parallel Processor. In Proceedings of the Fourth An-
nual InternationalSymposium on Computer Architec-
ture, pages 147–152. ACM, 1977.

[12] Michael Slater. MicroUnity Lifts Veil on MediaPro-
cessor. Microprocessor Report, 9(14):11 ff., October
23 1995.

[13] Lawrence Snyder. An Inquiry into the Benefits of
Multigauge Parallel Computation. In Proceedings of
the 1985 International Conference on Parallel Pro-
cessing, pages 488–492. IEEE, August 1985.

[14] Edward Tau, Ian Eslick, Derrick Chen, Jeremy
Brown, and André DeHon. A First Generation
DPGA Implementation. In Proceedings of the Third
Canadian Workshop on Field-Programmable De-
vices, pages 138–143, May 1995.

[15] Alfred K. Yeung and Jan M. Rabaey. A 2.4 GOPS
Data-Drivern Reconfigurable Multiprocessor IC for
DSP. In Proceedings of the 1995 IEEE Interna-
tional Solid-State Circuits Conference, pages 108–
109. IEEE, February 1995.

