
1

MATRIX:
A Reconfigurable Computing Device with

Configurable Instruction Distribution
(Extended Abstract)

Ethan Mirsky Andre DeHon†

(eamirsky@ai.mit.edu) (andre@ai.mit.edu)

MIT AI Lab
545 Technology Square, Cambridge, MA 02139

†. Andre DeHon Soda Hall #1776
may now be contacted at: U.C. Berkeley

Berkeley, CA 94720-1776

The MATRIX chip represents a novel, reconfigurable
computing architecture which supports configurable
instruction distribution. Device resources are allocated
to controlling and describing the computation on a per-
task basis. Application-specific regularity and parallel-
ism allows us to compress the resources allocated to
instruction control and distribution, in many situations
yielding more resources for datapaths and computa-
tions. This flexibility is made possible by a multi-level
configuration scheme, a unified configurable network
supporting both datapath and instruction distribution,
and a coarse-grained building block which can serve as
an instruction store, a memory element, or a computa-
tional element.

MATRIX (Figures 1 and 2) is composed of an array of
36 identical basic functions units (BFUs) surrounded
by 12, 10-bit configurable I/O ports (8 bits of data, 2
bits of control). Each BFU (Figure 3) contains a 256x8-
bit memory, an 8-bit ALU and multiply unit, and
reduction control logic that allows data-dependent
decision-making. The BFU can be configured to oper-
ate as a memory for instruction or data storage, a datap-
ath compute unit, or an ALU-register file combination.
In addition, the BFU can be chained together to pro-
duce 16, 24, 32 or wider datapaths.

The input ports (see Figure 3) select network data val-
ues to feed and control the BFU. Note that the BFU
function control (e.g. ALU operation selection), mem-
ory addresses, and data input ports all take their inputs

from the same unified data network. This allows a data
byte on any network line to serve as instruction or data.

The configurable network overlaying the BFUs con-
sists of three mesh-like structures, resembling tradi-
tional FPGA interconnect: A local network, a length-4
bypass interconnect, and global lines spanning the col-
umns and rows. Unlike FPGA interconnect, however,
these connections are all 8 bits wide, and are dynami-
cally controllable - an application can alter its intercon-
nect on a cycle-by-cycle basis during run-time. The
network can thus be controlled by a long instruction
like a VLIW processor or statically configured like an
FPGA. All of the network lines support both instruc-
tion and data distribution allowing the interconnect
wires to be allocated as needed.

For example, Figure 4 shows three possible implemen-
tations of a convolution filter on the MATRIX chip. In
the first example, the BFUs are configured as a systolic
datapath with no dynamic control. This runs at the
highest possible throughput - 1 result every other clock
cycle (each multiply takes 2 cycles). However, it also
consumes most of the chip area in the process (4 BFUs
per TAP).

The second example shows some of the same BFUs
configured as a small microcoded engine, with an 8-bit
ALU/register file, program counter, and instruction
memories. This is a general microcoded execution
engine capable of executing any sequence of less than
256 microinstructions with full, cycle-by-cycle control

2

over the BFU’s resources. When performing the con-
volution filter, this engine requires 1/30 as much area
as the systolic implementation (it can run up to 60
TAPs), but it runs much slower - 1 result every 57
clock cycles. However, if that throughput is sufficient
for the application, this implementation frees up a great
deal of area that can be used for other operations.

The third example shows the same BFUs configured in
a VLIW-like structure. In this example, we’re exploit-
ing some of the parallelism inherent in the algorithm by
allocating separate units to perform the multiply, the
add, and the pointer manipulations. In this manner we
can trade off a small increase in area (3 additional
BFUs) for much higher throughput - 1 result every 13
cycles, running up to 64 TAPs.

Many other variations on these theme are possible. The
power of the MATRIX architecture is its ability to
deploy these resources based on application regularity,
throughput, and space available. In contrast, traditional
microprocessors, VLIW or SIMD machines fix the
assignment of control resources, memory, and datapath
flow at fabrication time, while traditional programma-
ble logic does not support the high-speed reuse of func-
tional units needed to perform irregular tasks.

The initial prototype, currently being fabricated on
Hewlett-Packard’s CMOS14TB process (0.6�m), is
expected to run at 50 MHz, providing 1.8 billion 8-bit
operations per second. Based on our experience with
MATRIX, we believe that the architecture can easily
scale to 100-200 MHz clock speeds and 10x10, or
larger, arrays.

Figure 1: MATRIX Chip Block Diagram

Basic Functional Unit
Array

I/O Port I/O PortI/O Port

I/O Port I/O PortI/O Port

I/O
 P

o
rt

I/O
 P

o
rt

I/O
 P

o
rt

I/O
 P

o
rt

I/O
 P

o
rt

I/O
 P

o
rt

Figure 2: MATRIX Chip Layout

3

Figure 3: MATRIX Basic Functional Unit (BFU)

Figure 4: MATRIX Application Examples (Convolution)

Pass

Mult

Add

Add

Pass

Mult

Add

Add

Pass

Mult

Add

Add

Pass

Mult

Add

Add

Pass

Mult

Add

Add

Pass

Mult

Add

Add

xi

yi

(8 bit)

(16 bit)

PC

ALU

Isrc

Ialu

Imf

Ia

Ib

Isrc

xi

yi

(8 bit)

(16 bits output
over 2 cycles)

yi
(16 bits output
over 2 cycles)

xi
(8 bit)

PC Ialu Isrc Iw Ia Ialu

Ia Xptr Mult Wptr Add

Systolic Implementation Microcoded Implementation

Custom VLIW (Horizontal Microcode) Implementation

