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Abstract—Estimation and tracking of generally nonstationary
Markov processes is of paramount importance for applications
such as localization and navigation. In this context, ad hoc wireless
sensor networks (WSNs) offer decentralized Kalman filtering
(KF) based algorithms with documented merits over centralized
alternatives. Adhering to the limited power and bandwidth re-
sources WSNs must operate with, this paper introduces two novel
decentralized KF estimators based on quantized measurement
innovations. In the first quantization approach, the region of an
observation is partitioned into contiguous, nonoverlapping
intervals where each partition is binary encoded using a block
of bits. Analysis and Monte Carlo simulations reveal that
with minimal communication overhead, the mean-square error
(MSE) of a novel decentralized KF tracker based on 2-3 bits
comes stunningly close to that of the clairvoyant KF. In the second
quantization approach, if intersensor communications can afford

bits at time , then the th bit is iteratively formed using the
sign of the difference between the th observation and its estimate
based on past observations (up to time ) along with previous
bits (up to ) of the current observation. Analysis and simu-
lations show that KF-like tracking based on bits of iteratively
quantized innovations communicated among sensors exhibits
MSE performance identical to a KF based on analog-amplitude
observations applied to an observation model with noise variance
increased by a factor of .

Index Terms—Decentralized state estimation, Kalman filtering,
limited-rate communication, quantized observations, target
tracking, wireless sensor networks.

I. INTRODUCTION

C ONSIDER an ad-hoc wireless sensor network (WSN)
deployed to track a Markov stochastic process. Each

sensor node acquires observations which are noisy linear
transformations of a common state. The sensors then transmit
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observations to each other in order to form a state estimate. If
observations were available at a common location, minimum
mean-square error (MMSE) estimates could be obtained using a
Kalman filter (KF). However, since observations are distributed
in space and there is limited communication bandwidth, the ob-
servations have to be quantized before transmission. Thus, the
original estimation problem is transformed into decentralized
state estimation based on quantized observations. The problem
is further complicated by the harsh environment typical of
WSNs; see e.g., [3] and [4].

Quantizing observations to estimate a parameter of interest, is
not the same as quantizing a signal for later reconstruction [7].
Instead of a reconstruction algorithm, the objective is finding,
e.g., MMSE optimal, estimators using quantized observations
[19], [20]. Furthermore, optimal quantizers for reconstruction
are, generally, different from optimal quantizers for estimation.

State estimation using quantized observations is a nonlinear
estimation problem that can be solved using e.g., unscented
(U)KFs [11] or particle filters [5]. Surprisingly, for the case
where quantized observations are defined as the sign of the in-
novation (SoI) sequence, it is possible to derive a filter with
complexity and performance very close to the clairvoyant KF
based on the analog-amplitude observations [21]. Even though
promising, the approach of [21] is limited to a particular 1-bit
per observation quantizer.

This paper builds on and considerably broadens the scope of
[21] by addressing the middle ground between estimators based
on severely quantized (1-bit) data and those based on un-quan-
tized data. The end result is quantizer-estimator structures that
offer desirable trade-offs between bandwidth requirements (dic-
tating the number of quantization bits used for intersensor com-
munications) and overall tracking performance (assessed by the
mean-square state estimation error).

The rest of the paper is organized as follows. Problem state-
ment including the modeling assumptions are in Section II.
Section III presents a quantizer-estimator based on multi-level
batch quantization, whereas Section IV describes a second
quantizer-estimator that relies on iterative multi-bit quantiza-
tion. (For a high-level description of the batch and iterative
approaches, see also Fig. 1.) Performance analysis of the
iterative quantizer-estimator is also detailed in Section IV.
Simulations in Section V are used to corroborate the analytical
discourse and compare the two quantization approaches.

Notation: Vectors (resp. matrices) are denoted using lower
(upper) case bold face letters. The probability density function
(pdf) of conditioned on is represented by , where

denotes the random variable as well as the value it takes.
The Gaussian pdf with mean and covariance ma-
trix is represented as and

. The probability mass function for
a discrete random variable is denoted as . Estimators
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Fig. 1. (a) Batch quantization: bits are generated in a single step to
index each of the regions where an observation could lie. (b) Iterative
quantization: bits are generated in steps (iterations).

(or estimates) will be represented using a hat, e.g., ,
where discrete-time indexes should be read as

. Finally, will stand for transposi-
tion and (respectively ) for the Kronecker (Dirac) delta
function.

II. MODELS AND PROBLEM STATEMENT

Consider an ad hoc WSN whose sensor nodes
are deployed to estimate a multivariate discrete-time random
process . The state equation is given as

(1)

where denotes the state transition matrix and
the driving noise, assumed to be a zero-mean white

Gaussian process with covariance matrix
.

Each sensor records scalar observations adhering to a
linear measurement equation

(2)

where is the sensor index, denotes the re-
gression vector, and is a temporally and spatially
white zero-mean Gaussian noise process with covariance

. It is further assumed that
is independent of both and .

Supposing that and are available
from the physical model of the problem, the goal of the

WSN is for each sensor to form an estimate of to be used,
e.g., in a habitat monitoring [15], or as a first step in a distributed
control setup [10]. Estimating necessitates each sensor
to communicate to all other sensors . Com-
munication takes place over the shared wireless channel that we
assume can afford transmission of a single packet of bits per
time slot . This leads to a one-to-one correspondence between
time and sensor index and allows us to drop the sensor ar-
gument in (2).

Each sensor in the network does both data gathering (sensing)
and signal processing (estimation from broadcast data and local
observations). The collection of cooperating sensor nodes forms

an ad hoc network without a central fusion unit. Thus, signal
processing at each node based on data exchanged among sen-
sors as well as local observations constitutes the decentralized
filtering at hand.

The decision as to which sensor broadcasts at
time , and consequently which observation is
transmitted, depends on the underlying scheduling algorithm.
Time-division multiple-access is assumed and for simplicity
each sensor’s broadcast footprint reaches the entire collab-
orating set of sensors. More elaborate sensor scheduling
techniques—see e.g., [8], [18] and references therein—can be
considered but are beyond the scope of this paper.

A. MMSE Estimation With Quantized Observations

In order to effect digital intersensor communication in the
bandwidth-limited WSN, the observations are quan-
tized. With denoting a finite set of quantization messages1, we
investigate quantization rules of the form

(3)

Given current and past messages
, we are interested in devel-

oping estimates of the state . The error
covariance matrix (ECM) of the estimator is defined as

,
and the mean-square error (MSE) of is given by
the trace of the ECM, i.e., . As is well known,
see e.g., [17, Ch. 5], the desired MMSE estimator is given by
the conditional mean

(4)
To obtain a closed-form expression for , the posterior
distribution has to be known and the integral in
(4) needs to be computable. In principle, can be
obtained from the state-observation model in (1)–(2) using the
prediction-correction steps [P1]-[C1] outlined next.

[P1] Prediction step. With known, the
prior pdf, at time index follows from
the theorem of total probability

(5)
Note that conditioning on in

, renders conditioning
on redundant [cf. (1)]; consequently

. The pdf
can be used to predict the state

using past messages and the state
evolution model (1).

[C1] Correction step. When new observations become avail-
able, we write
using Bayes’ rule as

(6)
where the probability can be
obtained using the quantization rule in (3).

1These messages are represented by the set , where each
quantization message, i.e., binary codeword , can be represented by

bits.
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Likewise, depends on and
the prediction pdf ; in Sections III and
IV specific quantizer structures and resulting pdfs are
explored.

The Kalman filter (KF) is a recursive algorithm of the form
[P1]-[C1]. In our framework KF corresponds to the transmis-
sion of un-quantized messages , i.e., a clairvoyant
scenario without bandwidth constraints. In this case, the pdfs
in (5) and (6) are Gaussian and it suffices to propagate their
means and covariance matrices leading to the Kalman recur-
sions [P2]-[C2].

[P2] Prediction step. Consider the predicted esti-
mate and
let

denote the corresponding
ECM. Given the previous estimate
and its ECM , we have

(7)

(8)
[C2] KF correction step. Consider the predicted

data
and their innovation
. Then in (4) and its ECM

obey

(9)

(10)

Computations for the KF iterations in [P2]-[C2] are simpler than
for the general iteration [P1]-[C1] with quantized observations.
Indeed, while [P2]-[C2] requires a few algebraic operations per
time-step , [P1]-[C1] requires: i) numerical integration to ob-
tain the prediction pdf in (5); ii) numerical up-
date of the posterior pdf using Bayes’ rule in (6);
and iii) numerical integration to evaluate the expectation in (4)
and obtain .

This high computational cost is inherent to nonlinear models
thus motivating approximate filters e.g., the extended (E)KF, the
unscented (U)KF, and the particle filter (PF). (Nonlinearity in
this paper is due to quantization of the observations.) An alter-
native workaround is by Gaussian approximation of the prior
pdf , see e.g., [13]. This simplifies coping with
the potentially intractable pdf by tracking its
mean and covariance matrix which results in the following iter-
ation [P3]-[C3]:
[P3] Prediction step. Define the predicted estimate

and the corre-
sponding ECM

. Given the previous esti-
mate and its ECM ,
linearity of the expectation operator yields

(11)

(12)

[C3] Correction step. Adopt the approximation
.

As in [C1], write
and use Bayes’ rule to obtain

(13)

Numerator and denominator of the second
term in (13) can be found using the approx-
imate prior pdf

—see [21, Remark 3]
for justification of the Gaussian approximation. Estimator

is then obtained by evaluating the integral in
(4).

The computational cost incurred by [P3]-[C3] is between that of
[P1]-[C1] and [P2]-[C2]. To obtain using [P3]-[C3]
we do not need to evaluate the integral in (5) but we still need
to apply Bayes’ rule in (13) and evaluate the integral in (4). The
KF iteration [P2]-[C2] on the other hand, evaluates the exact
MMSE with small computational cost. For our purposes it rep-
resents a clairvoyant benchmark in terms of MSE performance
and computational cost.

In this paper, batch (Section III) and iterative (Section IV)
joint quantization-estimation approaches are pursued. In each
case our objectives are : i) to show that the approximate MMSE
estimation [P3]-[C3] can be further simplified yielding a filter
with comparable computational cost to the KF; and ii) to com-
pare the MSE of [P3]-[C3] using quantized observations, with
the MSE of the KF in [P2]-[C2]. We will further contend that
the MSE penalty associated with state estimates based on quan-
tized data is small even with coarse quantization down to a few
bits per observation.

III. KALMAN FILTERING WITH BATCH
QUANTIZED OBSERVATIONS

In this section, each observation is quantized by
partitioning the observation space into intervals

, where .
The quantizer is thus specified through the thresholds

, where , and
. Consider the estimate

, the corresponding innovation sequence
, and the quantization

rule
(14)

In order to compute [cf. (4)], the pdf
is needed. From (13), the distributions
and characterized in the following
equations, need to be known. Using the quantization rule in (14)
the events and
are equivalent and consequently

(15)
Given , the innovation

has con-
ditional pdf

, where
. Using this pdf we can rewrite (15) in terms of the

Gaussian tail function as
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(16)

Likewise, we can write
which is identical to (15)

except for the conditioning variables. Note that, unlike (15),
the conditional pdf is non-Gaussian.
It can though be approximated by using a Gaussian prior for

as follows.
If ,

then the prior pdf is also normal with
mean and variance

[cf. (2)]. Since the innovation
is defined as , we have

and we
can thus write

(17)
where are thresholds normalized by the
standard deviation of the observations.

Substituting (16) and (17) into (13) we obtain an ex-
pression for that can be used in (4) to obtain

. It is remarkable that with the Gaussian assumption
for , (4) can be found analytically as summa-
rized in the next proposition.

Proposition 1: Consider the state space model (1)–(2)
and quantized observations defined as in (14). Sup-
pose that the predicted estimate and corre-
sponding ECM are given. If the prediction pdf
is ,
the MMSE estimator in (4) can be obtained as
follows:
[C4] Batch Quantized (BQ) KF correction step. Define

and nor-
malized thresholds . Furthermore,
define in terms of the conditional mean and variance of
the innovation given the ratios

(18)

(19)

Then the resultant estimate and its ECM are given by

(20)

(21)
Proof: See Appendix A.

Proposition 1 suggests an algorithm for finding (approximate)
MMSE state estimates using quantized observations. The re-
sulting batch-quantized Kalman filter (BQKF) consists of re-
cursive application of the prediction step [P3] and the correction
step [C4] in a collaborating setting as follows. The active sensor
at time , i.e., the one scheduled to sense and broadcast a
quantized version , is assumed to broadcast within reach
of all collaborating sensors. Each sensor, as stated earlier, keeps
track of and and thus can run the pre-
dictor step [P3]. Upon receiving from the active sensor, all
sensors execute the update step [C4].

The BQKF retains a notable resemblance to the
clairvoyant KF [P2]-[C2] which is based on analog-am-
plitude observations. In order to highlight the sim-
ilarities and differences of the respective correction
steps [C2] and [C4], we define

, and . From
(20) and (21), it follows that

where is the BQKF counterpart of the innovation
in KF [cf. C2] and is obtained from (19) as

follows:

(22)

Remark 1: Comparison of the ECM corrections for the KF
in (10) with those for the BQKF in (21) reveal that they are
identical except for the factor in (21). The similarity is
quantified by defining the ECM reduction per correction step
[cf. (21)]

(23)
If we use instead of in the correction step, the ECM
reduction will be [cf. (10)]

(24)

Comparing (23) with (24) we see that
; i.e., the ECM reduction achieved by the

BQKF is times that of the clairvoyant KF. From (19),
for any possible selection of thresholds,

consistent with the fact that is a coarse representation of
.
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A. Quantizer Design for Batch Quantized KF

The ECM in (21), and consequently the variance
reduction in (23), depend on . We define the op-
timal quantizer as the one that maximizes the average variance
reduction, i.e.,

(25)

where denotes expectation with respect to
; and in establishing the second equality we

used the fact that given is conditionally
independent of [cf. (12)]. The last expectation in (25) can
be evaluated by substituting from (18) in (22) leading to

(26)
The optimal thresholds in (25) can be ob-

tained as the maximizers of as detailed next in
Proposition 2. An alternative approach to the optimal
quantization is obtained by using the definition (19),

.
Proposition 2 shows that the thresholds in (25)
define the optimal quantizer of the innovation
with an MSE distortion.

Proposition 2: Consider the problem of optimal quan-
tization of the innovation . If ,

the reconstructed innovation is
[cf. (18)].

We adopt an MSE distortion conditioned on and define
the optimal quantizer of as

(27)

The optimal thresholds in (25) and (27) are equal, i.e.,
.

Proof: Since from definition (19)

it follows that the thresholds that maximize can be ob-
tained from the thresholds that minimize the expectation of the
conditional variance, i.e.,

(28)
It remains only to show that the minimization in the second
expression of (28) is the conditional MSE of .
Writing the variance explicitly with , we
have

(29)

Given that
the conditional expectation of (29) is written as

(30)
Since for

, then
if ,

and zero otherwise. Thus, (30) can be written as

where the second equality comes from the definition of the dis-
tortion metric in (27). Since the optimization arguments in (25)
and (27) are equal the proof follows.

We emphasize the subtle difference between the thresholds
in (25) and in (27). While the former

minimizes the MSE of the state estimates , the latter
minimizes the reconstruction error when estimating the innova-
tion by . Even though these two
criteria are different, the corresponding optimal thresholds co-
incide. Indeed, Proposition 2 asserts that the optimal strategy
for estimating is to quantize with min-
imum MSE distortion.

The optimization problem in (27) has a well known so-
lution given by the Lloyd-Max quantizer [14], [16]. Since

, the use
of normalized thresholds leads to quantiza-
tion of which corresponds to quantization
of zero-mean, unit variance Gaussian random variables. The
optimal normalized thresholds values for

, and , from [16], are given in Table I and the
corresponding obtained using (26) are summarized in
Table II. We can see that even quantizing to a single bit has

and quantizing to more than 4 bits, for
which , seems rather unjustified.

B. Binary Quantized Kalman Filter (1-QKF)

A particularly interesting case results when ,
which amounts to binary quantization. In this case, there
is a single threshold to be determined
(since and ), and we have

and . Upon defining
the

variables and take on simpler expressions
given by [cf. (18) and (19)]



3732 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 8, AUGUST 2008

TABLE I
QUANTIZATION THRESHOLDS FOR GAUSSIAN PDF,

TABLE II
VALUES FOR BATCH QUANTIZATION

where signifies the use of minus for and plus for
(and vice versa for ). Interestingly, the expected

performance factor simplifies to [cf. (26)]

(31)

Appendix C shows that maximizes in (31). With
, corroborating the result for in

Table II. For the optimally selected threshold it is
convenient to change the notation and define the message,
in (14), as the sign of the innovation

(32)

which is equivalent to if and
if . In this case, the correction

step [C4] takes on the rather simple form presented next.
[C5] 1-bit quantized KF (1-QKF) correction step. The state

estimate and ECM are given by

(33)

(34)

The iteration [P3]-[C5] is the Sign of Innovations KF (SoI-KF)
introduced in [21]. The simplicity of [C5] suggests an alterna-
tive approach for iterative multi-bit quantization which is pur-
sued in the next section.

IV. ITERATIVELY QUANTIZED KALMAN FILTER

In this section’s iteratively quantized Kalman filter (IQKF),
sensors rely on -bit binary messages

, with the th bit defined as the
sign of innovations [cf. (36)] conditioned on the previous
messages and previous bits

of the current ( th)
message. Specifically, let

(35)
stand for MMSE estimates of using past messages
and the first bits of the current message denoted as .
The th bit of the current message, , is obtained as

(36)

Our goal here is to derive an iterative algorithm to obtain esti-
mates

(37)

based on and . When using bits,
, we will refer to the resulting algorithm as m-IQKF.

At this point we should note that the 1-IQKF coincides with
the BQKF with quantization regions and optimally se-
lected threshold , as in Section III-B. Thus, when

the estimates in (37) can be obtained using the iteration
[P2]-[C5]. Since the definition of is a straightforward ex-
tension of the corresponding definition for the 1-QKF [cf. (36)
and (32)], one option for would be to set
equal to and then apply iterative cor-
rection steps of the form [C5]. However,

if as explained next. Using the
observations (2), the definitions of in (35) and

in (37), we obtain

(38)
The noise estimate is not neces-
sarily zero for ; see also (48). (The converse is true for the
1-IQKF where .) Therefore,
in order to obtain we need as
well as . In order to keep track of
the noise estimate and its covariance, we augment the state with
the noise as described in the next section.

A. State Augmentation

Through state augmentation the estimates
can be obtained so that the

predicted observation in (38) can be
evaluated even for (i.e., multi-bit quantization).
Specifically, appending observation noise to the
state vector we construct an augmented state vector

. Correspondingly, we define
augmented driving noise , state
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propagation matrix and observation

vector . The model in (1)-(2) can,
consequently, be rewritten with the following augmented state
and observation equations

(39)

(40)
where the new observation noise (by construc-
tion) and can be thought of as Gaussian noise with variance

. Note that the covariance matrix of the augmented
driving noise is a block-diagonal matrix
with and .

The augmented state formulation (39)–(40) increases the
dimension of the state vector but is otherwise equivalent to
(1)–(2). However, it has the appealing property that MMSE
estimates of the augmented state contain MMSE estimates
of the original state and the observation noise . In
particular, state-augmentation allows simple computation of

in (35) as detailed in the following lemma:
Lemma 1: Consider the augmented state MMSE esti-

mate and the

predicted augmented observation estimate
. The predicted observation MMSE

estimate in (35) can be obtained as

(41)
Proof: The observation in (2) and the augmented ob-

servation in (40) are the same by construction. That is,

(42)
where the first equality follows from (40), the second one from

, the third one from the definitions of and ,
and the last one from (2). Taking expectation with respect to

in the first, third and fifth terms of
the equality in (42) results in (41).

Based on Lemma 1 we can now use the augmented state es-
timates to find the observation estimates. Combining this with
the 1-QKF recursion [P3]-[C5], we obtain the MMSE estimates
in (37) using the algorithm detailed in the next proposition.

Proposition 3: Consider the augmented state space model
in (39) and (40). Define the augmented state estimates

and for

.
Define the corresponding ECMs as

and

. Construct the messages [cf. (36)] as

(43)

Furthermore, find the estimate from the fol-
lowing recursion:
[P4] Given the previous estimate and its ECM

, form

(44)

(45)

[C6] Assuming that

, the MMSE esti-

mate and
the corresponding ECM are obtained by
iterative application of

(46)

(47)

where we used the definitions
and .

For time index , (46) and (47) are repeated -times.
The MMSE estimate of given is

. The corresponding ECM is
.

Proof: See Appendix B.
The state estimates in (37) are the first

components of the augmented state estimate ,

i.e., and the noise esti-
mate is the th component

.
Corollary 1: For .

Proof: The th entry of in (46) is the
noise estimate . Thus, for

(48)

The last equality follows since
and .
The similarity of the m-IQKF in Proposition 3 with the clair-

voyant KF based on un-quantized observations (cf. [P2]-[C2])
is even more remarkable than the similarity between BQKF and
KF. As in the BQKF, the ECM updates in (47) are identical to
the ECM updates of the KF except for the scale factor ,
suggesting that the MSE penalty due to quantization is small.
The ECMs of the m-IQKF iterates are independent of the mes-
sage sequence , which is not the case for the BQKF. This
property shared by the KF strengthens the variance performance
claims of the m-IQKF. While the small variance penalty factors
summarized in Table II are valid on average for BQKF, the vari-
ance penalty factors of the m-IQKF hold true for all message se-
quences . The variance penalties associated with m-IQKF
are investigated in the following corollaries.

Corollary 2: Consider the m-IQKF algorithm in Proposi-
tion 3 and define the ECM reduction after iter-
ations as ,
where . With
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TABLE III
PER STEP FACTOR, , FOR ITERATIVE QUANTIZATION

, the error covariance reduction after iterations
is given as

(49)
Proof: We first write as a summation of differ-

ences between successive ECM matrices

(50)
where the last equality follows from (47). Next, we recursively
obtain the product by multiplying the
ECM in (47) by to obtain

(51)

(52)

where we cancelled out factors in
the numerator and denominator of the second term in (51). Re-
peating steps (51)–(52) for with de-
creasing index yields

Thus, substituting
into (50) yields

and upon invoking the geometric sum identity

(49) follows.
For the clairvoyant KF based on un-quantized observations

the ECM reduction is given by (24), and can be
seen to correspond to the reduction in (49) with

. Therefore, Corollary 2 asserts that the ECM reduction
achieved by quantizing to bits is times smaller than the

one achieved with analog-amplitude observations. Values of
are shown in Table III. With only 4 quantization bits, the

value of is just 2% less than the value for the clairvoyant
KF .

Using Corollary 2 we can relate the predicted MSE
and the corrected MSE

after using the bits of the th observation, . Corol-
lary 3 summarizes this result.

Corollary 3: The predicted and corrected ECMs of the
m-IQKF are related as

(53)

with and
.

Proof: Write
and use Corollary 2. Recall that by definition

and .
Equation (53) is instructive in terms of understanding the

MSE performance of m-IQKF. In particular, note that for
, (53) coincides with the correction ECM of the KF in (10).

Furthermore, as , we find , implying that for
infinite number of quantization bits we recover the clairvoyant
KF. This important consistency result is summarized in the fol-
lowing corollary.

Corollary 4: As the number of quantization bits ,
the correction step ECM at time of the m-IQKF converges to
the ECM of the clairvoyant KF provided that ,
i.e.,

(54)

Proof: As , we have

For [cf. (53)] and [cf.
(10)] become identical for , which results in
(54).

Corollary 4 establishes that m-IQKF asymptotically (in the
number of quantization bits) achieves the per correction step
MSE performance of the clairvoyant KF. As demonstrated by
simulations in Section V, even a small number of quantization
bits ( or ) renders the MSE performance of
m-IQKF indistinguishable from that of the clairvoyant KF.

We remark that Corollary 2 quantifies the per time-step ECM
reduction for the proposed filter. Because of error accumula-
tion however, noticeable differences could emerge between the
MSEs of the m-IQKF given by and that of the
clairvoyant KF, , as time progresses.

B. m-IQKF for Vector Observations

So far, a low-complexity scalar quantizer was employed
to digitize the scalar analog-valued observations at
each sensor. A more general case is when sensor observa-
tions are vector-valued, (for vector state

), for which an MSE optimal estimator-quan-
tizer would entail vector quantization of using an
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estimation-based distortion metric [7]. Optimal state estimation
based on vector quantized observations is left for future work.

In this section, an optimal bit allocation scheme for itera-
tive scalar quantization of components of is introduced
whose performance will be compared against the clairvoyant
Kalman filter based on un-quantized . The vector ob-
servation equation is given by
where , and

with .
If a noise whitening transformation of is per-
formed by setting resulting in

(55)
where the noise term is white.

If the matrix is tall (i.e., ), optimal dimension-
ality reduction can be performed in (55) using the QR-factor-
ization , where has
orthonormal columns and is upper triangular
[2, p. 682]. Projection of the -dimensional onto the -di-
mensional space spanned by the rows of is given by

(56)

where and
. Thus, using (56) we can

henceforth assume that is -dimensional with white noise,
i.e., after using the correspondences

, and .
Let bits be used for quantizing the entries of

. Clearly, there are possible bit allocation choices.
To reduce the complexity of a bit allocation scheme, the itera-
tive quantizer of (43), performing sequential binary quantiza-
tion, will be employed. Iterative scalar quantization and MMSE
estimation entails selecting the entries of to be quantized
and estimation by the m-IQKF algorithm of Proposition 3. The
resultant MMSE is given by the trace of the first entries of (47)
i.e., . Iterative bit allocation of the bits
leads to choices of scalars to quantize for each of the bits
leading to choices—significantly less than the exponential
number of searches needed for an optimal bit allocation.
Proposition 4 summarizes the th bit allocation for the m-IQKF
of [P4]-[C6].

Proposition 4: Consider vector observations
where . The cor-

responding augmented-state equivalent observations are
, where

, and . Let
denote the th row of . Given bits for iterative

quantization of the components of (i.e., ) for
the m-IQKF of [P4]-[C6] [cf. Section IV-A], the MMSE of
estimator of is achieved by allocating the th bit to the
component , where is given as

(57)
Proof: From (47), the estimator MSE reduction due to th

quantization bit is given as

(58)

Minimizing (58) over the choices of corre-
sponds to selecting scalar components to be quan-

tized as . The
sequence of minimizations for each bit is there-
fore obtained by (57).

C. Performance Analysis of the m-IQKF

We have quantified the per correction step ECM reduction
in the m-IQKF as a function of the number of bits

used for iteratively quantizing the scalar observations
in Section IV-A. We next compare the MSE performance of
m-IQKF with that of the clairvoyant KF, when both predic-
tion and correction steps are considered, by deriving the con-
tinuous-time Riccati equations for both filters.

Consider first the discrete-time algebraic Riccati equation
(ARE) for the m-IQKF [P4]-[C6]. Note that regardless of the
structure of , substituting for and

in (45) will result in

(59)

with
. Equation (59) shows that the predicted ECM for the

augmented-state has a block-diagonal structure.
To simplify notation let

, and substitute (53) in (45) to obtain
the m-IQKF ARE for the ECM of as

(60)

Substituting for and in (60),
and equating both sides of the upper block-diagonal sub-
matrices of the resulting expressions, yields the ARE for the
ECM of as

(61)

Interestingly, the resulting ARE for the ECM of the m-IQKF
estimate [cf. (61)], becomes identical to the ARE
of the clairvoyant KF ([17], Ch. 5.11), as .
The implication of these relations will become clear from the
continuous-time ARE for the m-IQKF given in Proposition 5,
where (1) and (2) are viewed as discrete-time equivalent of a
continuous-time state space model.

Proposition 5: The continuous-time ECM
for the m-IQKF of (44)–(47)

is the solution of the following differential (Riccati) equation:

(62)

Proof: The derivation steps from (61) to (62) are the same
as those followed for deriving the KF Riccati equation from the
corresponding ECMs [17, pp. 259], [21]. The only difference is
that the scale factor, , in front of the third term on the RHS
of (61) for the KF equals to 1.
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TABLE IV
NOISE VARIANCE PENALTY FOR ITERATIVE QUANTIZATION

Fig. 2. Batch versus iterative quantization: Comparison of empirical estimate
of the MSE, tr , for 2 quantization bits.

Fig. 3. Iterative quantized KF: MSE for iteratively quantized vector observa-
tions compared against the clairvoyant Kalman filter, with

, and .

When comparing (62) to the clairvoyant KF ARE [17, pp.
259]

(63)
where denotes the continuous-time ECM of KF, it is ev-
ident that the variance of the continuous-time observation noise
of the m-IQKF is amplified by compared to that of the
clairvoyant KF. This is the price paid for using quantized obser-
vations, , instead of the analog-amplitude ones, . Note
that . Table IV shows
the percentage observation noise variance increase versus the
number of quantization bits, . Surprisingly, even with only
4-bit quantization, the observation noise variance increase is
less than 2% of the analog-amplitude observations variance. In
the next section, simulations for the two quantizer-estimator ap-
proaches (batch and iterative) are provided in order to corrobo-
rate the analytical statements and validate model consistency.

V. SIMULATIONS

Target tracking in is simulated here with the
target position and velocity

forming a state vector
with state equation

Fig. 4. (a) Batch quantized KF, (b) Iteratively quantized KF: Empirical estimate
of the MSE, tr , found by averaging Monte Carlo runs for 1–3
quantization bits. Empirical MSE for clairvoyant KF is included for comparison.

(64)
where denotes sampling period. The model describes
a constant-velocity tracking set-up [1, pp. 82], where the accel-
eration term is captured by the noise term . Uniformly de-
ployed sensors take noisy Euclidean distance measurements of
the target. Sensor , located at position measures

(65)

Linearizing (65) about a generic state prediction in
similar fashion to the extended Kalman filter (E)KF, we obtain

(66)

where and is a function of
and ; The linearized observations (66) together

with (64) are amenable to the IQKF and BQKF algorithms of
Sections III and IV.

WSN data corresponding to sensors are simulated.
All plots generated illustrate the evolution of the MSEs, ob-
tained from the trace of the respective ECMs, against the time
index . Figs. 4(a), 5(a), and (b) are for the batch quantized KF
whereas Figs. 4(b), 6(a), and (b) are for the iteratively quantized
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Fig. 5. (a) Batch quantized KF: Consistency test comparing empirical MSE (from Monte Carlo runs) and analytical MSE. (b) Batch quantized KF: Consistency
test using normalized estimation error squared (NEES) , compared with the 95% confidence region
using 2 quantization bits.

Fig. 6. (a) Iteratively quantized KF: Consistency test comparing empirical MSE (from Monte Carlo runs) and analytical MSE. (b) Iteratively quantized KF: Con-
sistency test using normalized estimation error squared (NEES) , compared with the 95% confidence
region using 2 quantization bits.

KF. The MSE for a linear state space model with vector mea-
surements based on the bit allocation of Section IV-B is shown
in Fig. 3 for 2-bits IQKF.

The simulation results of Fig. 4(a) depicts the BQKF MSE
given by . The simulations are performed for
1, 2, and 3 bits and the respective MSEs are compared with the
MSE of the clairvoyant KF. The plots demonstrate the MSE im-
provement offered by 2 quantization bits compared to the 1-bit
BQKF case. It is evident that quantization to more than 2 bits
offers little MSE improvement. Model consistency checks com-
paring the empirically obtained MSEs with analytical MSEs
are depicted in Fig. 5(a). Note that the analytical MSE is ob-
tained from the trace of the ECM

defined in Section III.
The empirical MSE is the sample estimator of
obtained as a sample average of the squared estimation errors.
The consistency check reveals that the empirical and analytical
MSEs are nearly identical.

Fig. 5(b) shows alternative model consistency tests
for the BQKF using the normalized estimation error
squared (NEES) tests of [1, Ch. 5.4]. NEES

is postulated to have a pdf with degrees of freedom (since
the -dimensional is assumed
zero-mean Gaussian with covariance if the es-
timator is consistent with the model). Under the hypothesis
that the estimator is consistent, realizations of the NEES
statistics each distributed with degrees of
freedom, lead to a distribution with degrees of freedom.
This is checked by running Monte Carlo simulations and com-
puting the sample average NEES
and then defining an acceptance (confidence) region (for the
consistent hypothesis). If , then the estimator
is consistent; lower and upper bounds and are obtained
from , where is the probability
of acceptance region. Using realizations, state space
of dimensions, and (i.e., 95% region), we
observed that about 72% of 200 time samples simulated are
within the 95% acceptance region.

In Fig. 4(b), the MSE of the IQKF is compared with the MSE
of the clairvoyant KF. Once again we observe a substantial MSE
reduction when going from 1 to 2 quantization bits and very
little performance gain for higher number of bits as was the case
for BQKF. With 2 quantization bits the MSE performance is vir-



3738 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 8, AUGUST 2008

tually coincident with that of the clairvoyant KF as was postu-
lated by the analytical values in Table III whereby %.

In Figs. 6(a) and (b), model consistency of the IQKF es-
timator is checked. The IQKF algorithm’s analytical MSE is
compared with the empirical MSE evaluated through Monte
Carlo runs depicted in Fig. 6(a). The analytical and the empir-
ical MSEs match well. The alternative NEES consistency test
for the iteratively quantized KF is presented in Fig. 6(b), where

time samples, and are used. About 80%
time samples lie inside the 95% acceptance region.

MSE comparison between 2-BQKF and 2-IQKF is depicted
in Fig. 2. The respective MSEs are very close. However,
the BQKF exhibits slightly smaller MSE which happens be-
cause the iterative approach uses the Gaussian approximation
on a number of times per
time-step (Proposition 3), whereas the batch approach invokes
this approximation only once per time-step (Proposition 1).
Fig. 3 demonstrates that the low complexity iterative scalar
quantization has potential for application in vector observation
cases as well.

VI. CONCLUDING REMARKS

Recursive state estimators based on quantized observations
were considered. Multi-bit quantization was done by either an
iterative binary quantizer or a single-shot batch quantization of
the measurement innovations to a block of bits. Motivated by the
need to find quantifiable trade-offs between estimation perfor-
mance and number of quantization bits for decentralized estima-
tion, it was shown that quantization using 2 to 3 bits improves
the performance of Kalman-like algorithms to virtually coin-
cide with the optimal state estimator (Kalman filter), with only
minimal increase in computation. Numerical simulations were
used to compare the filter true covariances with analytical ones,
to check model consistency issues, as well as for performance
comparison of the two quantization-estimation approaches. The
mean-square error performances for both batch and iteratively
quantized estimators were found to be close to the clairvoyant
KF for a tracking example involving a Gauss-Markov model.

Future directions include studying decentralized estimation
based on quantized vector observations, and incorporation
of particle filters for the correction step in order to avoid the
Gaussian approximation of the prior pdf. Robustness issues
of the algorithms to noisy intersensor channels is also worth
pursuing.2

APPENDIX A
PROOF OF PROPOSITION 1: DERIVATION OF BQKF

The proof will rely on a result known as iterated conditional
expectation [6, pp. 37] which asserts that: Given random vari-
ables , where and are Borel fields
and a function defined on , it holds that

(67)
where denotes a random variable in and is its realization.
The proof of (67) is given by

2The views and conclusions contained in this document are those of the au-
thors and should not be interpreted as representing the official policies, either
expressed or implied, of the Army Research Laboratory or the U.S. Govern-
ment.

(68)

(69)

where in (68) and (69) we have used the conditional pdfs

Subsequent derivations will use substitutions
; and .

To derive in (20) for
where (i.e., ), let

which, from (67), leads to

(70)
We will first evaluate the inner expectation in (70) for which
the pdf is needed. If

, where
and

with
and ,

then , where
. Since

, the joint conditional pdf of
is Gaussian, i.e.,

(71)

and thus the inner expectation becomes

(72)
where

(73)

since it is the conditional mean of jointly Gaussian random vari-
ables [cf. (71)] (similar to the KF in a Gauss-Markov model [12,
pp. 472]). The outer expectation in (70) follows from (72) as

(74)
The pdf

is obtained from Bayes’ theorem as

(75)

and thus the expectation in the second term of (74) becomes

(76)
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Since , and
, (76) becomes

(77)

where and the last equality follows from
the definition of in (18). Substituting (77) in (74),
from (73) and , we
obtain [cf. (20)]

(78)

We next derive (21) using
. It should be

noted that given , as in most nonlinear filtering,
see e.g., [9], the conditional ECM defined above is dif-
ferent from the unconditional ECM

. In con-
trast, for the Gauss-Markov model in the clairvoyant KF
[P2]-[C2] the ECM is independent of , i.e.,

. Derivation of uses
again the iterated conditional expectation in (67). We first write

using (72) and (74) as follows:

(79)

With in
(67), the ECM can be written as

(80)

Considering first the inner expectation, we obtain upon sub-
stituting from (79)

(81)

This expression follows since both and
are deterministic func-

tions of the variables and

. Since
, we observe that the

first term of (81) is the covariance of ,
which from in (71) is given by

(82)

Next, we pursue the outer expectation in (80) using (82) to
obtain

(83)
The conditional variance term in (83) can be expressed using
the pdf in (75) as

(84)
Using integration by parts, the numerator of the first term of

(84) is

where . The second term of (84) is the
square of (77), i.e., . Since

, it follows that
(84) becomes

(85)

where the last equality follows from the definition of in
(19). Substituting from (82) and the variance in
(85) into (83), we obtain

(86)

Expanding based on (73) we have
which when substituted into (86),

simplifies to

(87)

which is the ECM in (21).
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APPENDIX B
PROOF OF PROPOSITION 3: DERIVATION OF IQKF

We first prove the predictor step [P4] of (44) and (45) using
the state equation (39). Taking expectation with respect to

, we obtain (44) as

where since are quantized versions of
, it follows that

; and also [cf. Proposition 3],
and .

To find an expression for
we use

from (39). We thus
obtain (45) as

where , since is
uncorrelated with and .

We next derive the corrector step [C6] based on the approach
used for deriving the corrector step of the more general batch
quantized KF in Appendix A. The proof details the th iter-
ative step in (46)–(47) using

and the binary
quantizer in (43). The quantization intervals are defined as

where
, and , similar to the quantizer of BQKF

detailed in Section III.
Let

, where
is defined in (40). Since and conditioned on

are Gaussian and independent, by using
, we have

(88)

From (88), it is clear that if for ,
then [cf. (46)] and [cf.
(47)] are the conditional mean and conditional covariance of

and can be found using
the iterated conditional means in the same way as for the BQKF
in Appendix A. In fact, for (binary quantizer) with

, and , we
have and .

Equation (78) then simplifies to

where [cf. (18)] equals if
. This is the estimator in (46), since the noise

variance in the augmented state formulation detailed
in Section IV-A.

Likewise for the ECM —see (87) and its
derivation—we can use this binary quantizer (in place of the batch
quantizer in Appendix A) and the resulting to show
that [cf. (19)] which leads to the conditional ECM

as given in (47).

APPENDIX C
PROOF THAT MINIMIZES IN (31)

Upon defining in (31) and
, it follows readily that

(89)

Note that is symmetric about , i.e., . To
show that minimizes and consequently
maximizes , we will prove that is convex and sym-
metric. To this end, we use the following lemma:

Lemma 2: If a function is convex and symmetric about
, then is a minimum of .

Proof: Letting be convex and symmetric, we have
that ,
and . Also, by symmetry of , we have

. Setting , and , we
obtain .

We next prove that is convex. From [22, pp. 85,
88], and

from which

Since , we have , hence
is convex w.r.t. for . From

[2, pp. 79], integration (or sum) of convex functions preserves
convexity. Thus, is convex and symmetric, and by Lemma
2, minimizes . From (89), maximizes

in (31).
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