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Consensus in Ad Hoc WSNs With Noisy Links—
Part I: Distributed Estimation of Deterministic Signals
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Abstract—We deal with distributed estimation of deterministic
vector parameters using ad hoc wireless sensor networks (WSNs).
We cast the decentralized estimation problem as the solution of
multiple constrained convex optimization subproblems. Using
the method of multipliers in conjunction with a block coordinate
descent approach we demonstrate how the resultant algorithm
can be decomposed into a set of simpler tasks suitable for dis-
tributed implementation. Different from existing alternatives,
our approach does not require the centralized estimator to be
expressible in a separable closed form in terms of averages,
thus allowing for decentralized computation even of nonlinear
estimators, including maximum likelihood estimators (MLE) in
nonlinear and non-Gaussian data models. We prove that these
algorithms have guaranteed convergence to the desired estimator
when the sensor links are assumed ideal. Furthermore, our
decentralized algorithms exhibit resilience in the presence of
receiver and/or quantization noise. In particular, we introduce a
decentralized scheme for least-squares and best linear unbiased
estimation (BLUE) and establish its convergence in the presence
of communication noise. Our algorithms also exhibit potential
for higher convergence rate with respect to existing schemes.
Corroborating simulations demonstrate the merits of the novel
distributed estimation algorithms.

Index Terms—Distributed estimation, nonlinear optimization,
wireless sensor networks (WSNs).

I. INTRODUCTION

EVEN though the gamut of wireless sensor network
(WSN)-driven applications is yet to be fully delineated,

it is clear that the design of WSNs must be task-specific and ad-
hering to stringent power and bandwidth constraints. A recently
popular application of WSNs is decentralized estimation of
unknown deterministic signal vectors using discrete-time sam-
ples collected across sensors. Fusion center (FC) based WSNs
can perform decentralized estimation [17], but have limitations
arising due to: i) the high transmission power required at each
sensor to transmit its local information to the FC, that is propor-
tional to the covered geographic area; and ii) lack of robustness
in case of FC failures. These limitations are not encountered with
ad hoc WSNs whereby each sensor communicates only with its
neighbors, and the estimation task can be performed in a totally
distributed fashion. Decentralized estimation algorithms for ad
hoc WSNs i) guarantee that sensors obtain the desired estimates;
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ii) rely only on single-hop communications; and, iii) exhibit re-
silience in the presence of nonideal channel links among sensors.

Decentralized estimation using ad hoc WSNs is based on suc-
cessive refinements of local estimates maintained at individual
sensors. In a nutshell, each iteration of the algorithm comprises
a communication step where the sensors interchange informa-
tion with their neighbors, and an update step where each sensor
uses this information to refine its local estimate. In this context,
estimation of deterministic parameters in linear data models, via
decentralized computation of the BLUE or the sample average
estimator, was considered in [8], [18], [13], and [20] using the
notion of consensus averaging. The sample mean estimator was
formulated in [11] as an optimization problem, and was solved
in a distributed fashion using dual decomposition techniques;
see also [16] and [9] where consensus averaging was used for
estimation of time-varying signals. Decentralized estimation of
Gaussian random parameters was reported in [4] for stationary
environments, while the dynamic case was considered in [15].
Recently, decentralized estimation of random signals in arbi-
trary nonlinear and non-Gaussian setups was considered in [14],
while distributed estimation of stationary Markov random fields
was pursued in [5].

Consensus averaging schemes are challenged by the presence
of noise (nonideal sensor links), exhibiting a statistical behavior
similar to that of a random walk, and eventually diverging [19].
An alternative for deterministic decentralized estimation in
linear-Gaussian data models uses the notion of nonlinear mutu-
ally coupled oscillators [1], [10], whereby each sensor is viewed
as an oscillator which through mutual coupling with its neighbors
reaches the BLUE at its steady state. Interestingly, simulations in
[1] advocate that iterations in the method of coupled oscillators
exhibit noise robustness, but convergence has not been estab-
lished analytically. Both consensus averaging in [18] and [20],
as well as the coupled oscillators in [1], are somewhat limited in
scope, in the sense that they require the desired estimator to be
known in closed form as a properly defined function of averages.

Here, we focus on decentralized estimation of deterministic
parameter vectors in general (possibly nonlinear and/or non-
Gaussian) data models. Both MLE and BLUE schemes are con-
sidered. Our novel approach formulates the desired estimator as
the solution of convex minimization subproblems that exhibit a
separable structure and are thus amenable to distributed imple-
mentation. Different from [1] and [20], our framework leads to
decentralized estimation algorithms even when the desired esti-
mator in not available in closed form, as is frequently the case
with MLE. We further prove that the resultant algorithms exhibit
noise robustness in all cases. Specifically for the BLUE, our con-
vergence analysis establishes that it has bounded steady-state
noise covariance matrix. Finally, our algorithms are more flex-
ible than those in [20] and [1] to tradeoff steady-state error for
faster convergence.

After stating the problem in Section II, we proceed to view
MLE as the optimal solution of a separable constrained convex
minimization problem in Section III. We utilize the alter-
nating-direction method of multipliers to find the MLE optimal

1053-587X/$25.00 © 2008 IEEE



SCHIZAS et al.: CONSENSUS IN AD HOC WSNS WITH NOISY LINKS 351

solution as the minimum of an appropriately defined augmented
Lagrangian function. To this end we decompose the Lagrangian
minimization into simple separable tasks (Section III-A). Con-
vergence of the local estimate, to the centralized MLE is readily
guaranteed for ideal channel links. In Sections III-C and III-D
we provide motivating MLE paradigms based on unquantized
or quantized observations [12]. In Section IV we consider dis-
tributed linear estimation using the BLUE which is appealing
when computational simplicity is at a premium. Through the
alternating direction multipliers method we develop a dis-
tributed (D)-BLUE algorithm, having similar features to the
decentralized MLE. Interestingly, in Section V after applying
appropriate linear transformations to D-BLUE we arrive at a
decentralized scheme that exhibits improved resilience in the
presence of noise (Section V-C). This algorithm has guaranteed
convergence to the BLUE for ideal channel links, while its
steady-state error covariance is bounded for noisy links. Simu-
lations in Section V-E demonstrate the merits of our algorithms
with respect to existing alternatives. We conclude the paper in
Section VI.

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider an ad hoc WSN with sensors. We allow
single-hop communications only, so that the th sensor com-
municates solely with nodes in its neighborhood .
Sensor links are assumed to be symmetric, and the WSN is
modelled as an undirected graph whose vertices are the sensors
and its edges represent the available communication links; see
Fig. 1 (left). The connectivity information is summarized in the
so called adjacency matrix for which if

, while if . Since if and only if
, the adjacency matrix is symmetric; i.e., (

stands for transposition).
The WSN is deployed to estimate a deterministic un-

known parameter vector based on distributed random obser-
vations . The observation is taken at the
th sensor and has probability density function (pdf) .

We further assume that observations are independent across sen-
sors. If is known, the maximum likelihood estimator
(MLE) is given by ( denotes natural logarithm)

(1)

Another estimation scenario arises when the observations ad-
here to a model for which but, different from
(1) only the covariance matrix

, and the matrices are known per sensor. This setup
arises frequently in, e.g., signal amplitude estimation, and in-
cludes as a special case the popular linear model

[7]. A pertinent approach in this scenario where the sensor
data pdf is unknown, is to form the BLUE which for zero-mean
uncorrelated sensor observations is [7]

(2)

Both (1) and (2) will be considered. In particular, we will
develop iterative algorithms based on communication with
one-hop neighbors that generate (local) time iterates so
that:

Fig. 1. (left) An ad hoc wireless sensor network. (right) Implementation of the
D-MLE.

(s1) If is known only at the th sensor, the local
iterates converge as to the global MLE, i.e.,

, with given by (1).
(s2) If and are known only at the th sensor and

the block matrix has full column
rank, then , with given by (2).

The decentralized algorithm developed under scenario (s1)
is attractive for ML estimation in nonlinear data models. The
linear estimator considered in (s2) is encountered in many cases
of practical interest. The BLUE is generally outperformed by
the MLE but its separate treatment is well motivated because it
incurs lower computational complexity and remains applicable
even for cases that MLE is not; e.g., when the data pdf is un-
known but and are known. Clearly, if
adheres to a linear model and is Gaussian
distributed , then and consequently (s1) coin-
cides with (s2).

Local iterates will turn out to exhibit resilience to com-
munication noise. To describe the noisy model, let

represent1 a vector transmitted from the th to the th
sensor at time slot . The corresponding vector
received by the th sensor is

(3)

where denotes zero-mean additive noise at sensor
. Vector is assumed uncorrelated across sensors and time

with covariance matrix . Communi-
cation noise in (3) is not necessarily Gaussian allowing us to
cover:

(n1) Analog communication in the presence of additive
Gaussian noise (AGN) in which case is normal.

(n2) Digital communication whereby each entry of
is quantized at the th sensor before transmission.
If an -bit quantizer is used with dynamic range

, then is uniformly distributed in the
interval , with covariance matrix

, where and denotes
the identity matrix.

Noise models (n1) and (n2) will be used in the simulations.
But the ensuing robustness claims do not depend on the noise
pdf. An algorithm for scenario (s1) with ideal communication
links will be developed in Section III; we will also argue
resilience of this algorithm to noisy communication channels
as in (n1)–(n2) in Section III-B Scenario (s2) is analyzed in
Section IV for noiseless links and in Section V-B for analog or
digital noisy links. Throughout, we further assume that:

1Throughout the paper, subscripts denote the sensor at which variables are
“controlled” (e.g., computed at and/or transmitted to neighbor sensors), while
superscripts specify the sensor to which the variable is communicated.
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(a1) the communication graph is connected; i.e., there exists
a path connecting any two sensors;

(a2) the pdfs are log-concave with respect to the
unknown parameter vector .

Similar to [8], [18], [20], and [1], network connectivity in
(a1) ensures utilization of all observation vectors by the decen-
tralized algorithms. The log-concavity in (a2) guarantees global
identifiability (uniqueness) of the centralized ML estimator and
is satisfied by a number of unimodal pdfs encountered in prac-
tice see, e.g., [12] and Section III-D. Note that unlike [11] there
is no need to assume strict concavity of each summand involving

; i.e., no local identifiability is required. We close this
section with a pertinent remark.

Remark 1: Different from, e.g., [3] and [12] that rely on a
fusion center, ad hoc WSN based estimators may consume less
power and are less prone to failures. Unlike existing approaches
based on ad hoc WSNs, e.g., [20], the formulation here accounts
for receiver and/or quantization noise effects.

III. DISTRIBUTED MLE
In this section we consider decentralized estimation of

in (s1), under (a1) and (a2). Our approach is to rewrite the esti-
mator in (1) as an equivalent optimization problem exhibiting
structure amenable to distributed implementation, which will
allow us to split the original problem into simpler subtasks that
can be executed in parallel while still guaranteeing convergence
to the global MLE.

Since summands in (1) are coupled through , it is not
straightforward to decompose the unconstrained optimization
problem in (1). This prompts us to define the auxiliary variable

to represent the local estimate of at sensor , and consider
the constrained optimization problem

(4)

where is a subset of “bridge” sensors maintaining
local vectors that are utilized to impose consensus among
local variables across all sensors. If, e.g., , then
(a1) and the constraint , , will render

. In such a case (1) and (4) are equivalent in the sense
that . In fact, a milder requirement on
is sufficient to ensure equivalence of (1) and (4), as described in
the following definition.

Definition 1: Set is a subset of bridge sensors if and only if
(a) there exists at least one so that ;

and
(b) If and are single-hop neighboring sensors, there must

exist a bridge sensor so that .
For the WSN in Fig. 1 (left) a possible selection of sensors

forming a bridge sensor subset , obeying (a) and (b), is repre-
sented by the black nodes. For future reference, the set of bridge
neighbors of the th sensor will be denoted as ,
and its cardinality by for .

In words, condition (a) in Definition 1 ensures that every node
has a bridge-sensor neighbor; while condition (b) ensures that
all the bridge variables can reach consensus (become
equal). Together, they provide a necessary and sufficient condi-
tion for the equivalence between (1) and (4) as asserted by the
following proposition.

Proposition 1: The optimal solutions of (1) and (4) coincide;
i.e.

(5)

if and only if is a subset of bridge sensors as in Definition 1.

Proof: See Appendix A.
Proposition 1 asserts that consensus can be achieved across

all sensors if and only if consensus is reached only among a
subset of them. As will become apparent in Section V-A, this
reduced-size subset lowers the communication cost. Further,
bridge sensors trade-off communication cost for robustness to
sensor failures; i.e., increasing the number of bridge sensors im-
proves robustness to sensor failures but also increases commu-
nication cost and vice versa. Interestingly, the problem in (4)
exhibits a distributable structure, as we show in Section IV.

A. The Alternating-Direction Method of Multipliers
Here we show how to solve (1) by combining the method

of multipliers with a block coordinate descent iteration [2, pp.
253-261]. This procedure will yield a distributed estimation al-
gorithm whereby local iterates converge to the MLE .

The method of multipliers exploits the decomposable struc-
ture of the augmented Lagrangian. Let denote the Lagrange
multiplier associated with the constraint . The mul-
tipliers are kept at the th sensor. The augmented
Lagrangian for (4) is given by

(6)

where , and . The
constants are penalty coefficients corresponding
to the constraints , . Recall that the th sensor
maintains the local estimate ; if this sensor also belongs to the
subset of bridge sensors, i.e., if , it also maintains the con-
sensus variable . Combining the method of multipliers with
a block coordinate descent iteration, we obtain the following
result.

Proposition 2: For a time index consider iterates ,
and defined by the recursions

(7)

(8)

(9)

for all sensors ; and let the initial values of the
Lagrange multipliers , the local estimates

and the consensus variables be arbi-
trary. Assuming ideal communication links and the validity
of (a1) and (a2), the iterates converge to the MLE as

; i.e.

(10)
We then say that as the WSN reaches consensus.
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Proof: See Appendix B.
The recursions in (7)–(9) constitute our distributed (D-)

MLE algorithm. All sensors keep track of the
local estimate along with the Lagrange multipliers

. The bridge sensors belonging to also update
the consensus enforcing variables . With reference to
Algorithm 1, during the th iteration, sensor receives the
consensus variables from all its neighboring bridge
sensors . Based on these consensus variables, it updates
the Lagrange multipliers using (7), which are
then used to compute via (8). After determining

, sensor transmits to each of its neighbors
the vector ; see also Fig. 1 (right). Each
sensor receives the vectors from all
its neighbors , and proceeds to compute using
(9). This completes the th iteration, after which all sensors in

transmit to all their neighbors , which can
then initialize the -st iteration.

Note that the minimization required in (8) is unconstrained,
and the corresponding cost function is strictly convex as per
(a2) and the strict convexity of the Euclidean norm. Thus, the
optimal solution of (8) is unique and can be obtained
by finding the (unique) root of the cost function’s gradient. Upon
defining

, this means that can be
found as the unique solution of

(11)

Equation (11) can be solved numerically at the th sensor using,
e.g., Newton’s method.

Remark 2: The decentralized algorithms constructed in [1],
[13], [18], [20] require knowing the desired estimator in closed
form expressed in terms of averages. The recursions (7)–(9) and
the resultant D-MLE in Algorithm 1 do not require a closed-
form expression for the desired estimator but only the mild log-
concavity assumption (a2). A general sum of strictly convex
(and thus locally identifiable) functions was formulated in [11]
and dual decomposition techniques were invoked to establish
convergence and resilience of distributed iterative estimation to
erasure links in the context of consensus averaging, i.e., for the
sample mean estimation. The differences between the present
formulation and [11] are: i) only global identifiability is required
here; ii) bridge sensors offer flexibility to trade-off communica-
tion cost for tolerance to sensor failures ([11] can be seen as a
special case where each sensor is a bridge sensor); and iii) since
the approach in [11] can be viewed as a consensus averaging
scheme with a proper weight matrix, it inherits its limitations
in convergence speed and sensitivity to additive noise; see also
discussion in Section V and Remark 4.

Algorithm 1: D-MLE

Initialize , and randomly.

for do

Bridge sensors : transmit to neighbors in

All : update using (7).

All : update using (8).

All : transmit to each

Bridge sensors : compute through (9).

end for

B. Communication Errors
When the communication links are corrupted by additive

noise as in (3), the neighboring variables used in (7)–(9) have to
be modified accordingly. The variable in (7) for instance
is local; but the term is received from the th bridge
neighbor and has to be replaced by [cf. (3)].
Altogether, (7)–(9) should be replaced by (12)–(14), shown at
the bottom of the next page. Since and in
(12)–(14) are obtained as the optimal solution of pertinent min-
imization problems [cf. Appendix B], the D-MLE algorithm
exhibits noise resilience. In the presence of noise (12)–(14) can
be thought of as comprising a stochastic gradient algorithm;
e.g., [2, Sec.7.8]. This suggests that noise causes to
fluctuate around the optimal solution with the magni-
tude of fluctuations being proportional to the noise variance.
However, is guaranteed to remain within a ball around

with high probability. This should be contrasted with [19]
which suffers from catastrophic noise propagation. Resilience
to noise in the communication links will become apparent in
Sections III-C and III-D where we apply the D-MLE algorithm
to interesting estimation setups.

C. Example 1—Linear Gaussian Model
Algorithm 1 is applicable to the linear Gaussian model where

is to be estimated from observations and
is AGN with covariance matrix . The pdf of is thus

(15)

The log-concavity assumption (a2) is satisfied by
since is
a quadratic form with positive semidefinite. In this case,
the minimization in (8) can be solved in closed-form:

(16)

The matrix inversion in (16) can be performed off-line at each
sensor since all quantities involved are known. This emphasizes
the simplicity of Algorithm 1 especially for linear models.

D. Example 2–Quantized Observations
An interesting twist on the previous example is when

due to limited sensing capabilities the sensors produce a
coarsely quantized version of [12], [17]. Specifically, con-
sider a -element convex tessellation of where the sets

are convex. Vector quantization of produces the
observation where denotes the indicator
function; i.e., vector has binary entries (1 if and only if

falls in the quantization region ). The probability mass
function of parameterized by the unknown vector is

(17)

with as in (15). The integral of the log-concave
over the convex set is also log-concave estab-

lishing that (a2) is valid in this case too [12]. The MLE can
be found by applying D-MLE to minimize in a distributed
fashion the cost in (1), where is substituted by
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, where is the
Kronecker delta. The resulting local minimization problem in
(8) takes the form

(18)

Unlike (16) the local estimates are not computable
in closed form.

For a WSN with sensors, we apply the D-MLE in
Algorithm 1 to the problem introduced in this section. Nodes in
the WSN are randomly placed in the unit square
with uniform distribution. Each sensor collects obser-
vations, while consists of parameters. The entries of

are random uniformly distributed over and vec-
tors are zero-mean AGN with . The
quantizer at the th sensor splits into regions de-
fined as

. The penalty
coefficients are set to . The performance metric
considered is the normalized error defined as

(19)

When the communication links are ideal, Fig. 2 (top)-(bottom)
depicts as , corroborating the result
in Proposition 2. We then add either reception or quantization
noise and average over 50 independent realizations of
the D-MLE. For analog communications in noise as in (n1), we
set for simplicity , and adjust the noise variance

so that and
. Interestingly, in the presence of reception noise the av-

erage exhibits an error floor for the D-MLE [see Fig. 2
(top)]. This indicates that errors do not explode as in the con-
sensus average approach [19], but instead converge to a bounded
value. Error floor is also observed in Fig. 2 (bottom) where the
sensors quantize their local estimates and/or consensus vari-
ables before digital transmission to the corresponding neigh-
bors. Fig. 2 (bottom) depicts the error curves for

quantization bits with .

IV. DISTRIBUTED BLUE

In this section, we consider decentralized estimation of
in (s2), under (a1). As in Section III we write as the solu-
tion of a constrained convex minimization problem and utilize
the alternating direction method of multipliers to obtain a decen-
tralized algorithm with iterates converging to . This

Fig. 2. Normalized error versus for D-MLE in presence of
(top) reception noise with , 20 and , and (bottom) quantiza-
tion noise using , 10 and number of bits.

algorithm is subsequently used to derive a distributed linear es-
timator that is amenable to convergence analysis in the presence
of noise.

A. The D-BLUE Algorithm
For the linear Gaussian model, we have seen how to deduce

the D-BLUE from the D-MLE and proceed as in Section III;
however, we will find it useful for general data models [cf. (s2)]
to derive D-BLUE by viewing in (2) as the minimizer of a
different quadratic function detailed in the next lemma.

Lemma 1: The BLUE in (2) can be written as

(20)

Proof: See Appendix C.
Similar to (1), the minimization in (20) cannot be imple-

mented in a distributed fashion motivating the introduction of
local estimates and consensus enforcing variables to re-
formulate (20) as shown in the following lemma.

(12)

(13)

(14)
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Lemma 2: For a set of bridge sensors as in Definition 1,
the minimization in (20) is equivalent to

(21)

in the sense that .
The proof of Lemma 2 is similar to the proof of Proposition 1

and we omit it for brevity. As with D-MLE, the th sensor in (21)
maintains the local estimate with the th bridge sensor also
maintaining . The augmented Lagrangian can now be written
as

(22)

Proceeding as in Section III-A, we will minimize (22) using the
method of alternating direction multipliers [cf. Appendix B],
and derive the D-BLUE algorithm summarized next.

Proposition 3: For all , consider iterates ,
and defined by the recursions

(23)

(24)

(25)
with and

. Assuming ideal communication links
and the validity of (a1) and (a2), the iterates converge to
the BLUE as ; i.e.

(26)

for arbitrary initial values , and
.

Proof: Follows easily by mimicking the steps used in the
proof of Proposition 2.

Vector can be regarded as a regularized version of the
local BLUE. Indeed, the th sensor’s local BLUE is

, which except for the positive
definite in the definition of coincides with

. The regulariza-
tion term is needed because we require full column rank for
(to ensure global identifiability) but not for each individual .

Recursions (23)–(25) are used to implement D-BLUE as
summarized in Algorithm 2. Since each sensor
has available the vector along with the Lagrange
multipliers , and receives the consensus vari-
ables from all its bridge neighbors , it is able to
update through (23) and compute using
(24). Afterwards, sensor transmits to all its bridge-neighbors
the vectors with . To complete

the th iteration, every sensor receives the vectors
to form using (25).

Remark 3: Since matrix is time invariant, the th sensor
can perform the inversion off-line, e.g., during the WSN start-up
phase. The computational cost for computing thus
amounts to for the matrix-vector multiplication. To eval-
uate the communication cost of Algorithm 2 notice first that
during the th iteration every sensor sends to all
its bridge-neighbors the vectors
with , where denotes set subtraction of
from . The sensors belonging to the bridge-sensor set also
transmit their consensus variable to all their neighbors.
Note that for a sensor it holds that

; but for a sensor it holds that .
Thinking along these lines we deduce that each sensor has to
transmit scalars per iteration. Thus, the amount of infor-
mation each sensor has to communicate per iteration is ,
which is intuitively reasonable since each sensor wishes to form
the vector .

Algorithm 2: D-BLUE

Initialize randomly , and .

Compute the matrices .

for do

Bridge sensors : transmit to neighbors in ;

All : update using (23);

All : update using (24);

All : transmit to each ;

Bridge sensors : compute via (25).

end for

V. NOISE-ROBUST D-BLUE

It is worth stressing that the D-BLUE recursions in Propo-
sition 3 are linear in the problem variables. In fact, updating
these variables, e.g., , resembles that of a vector au-
toregressive (AR) process. This viewpoint will prove helpful to
analyze D-BLUE in the presence of noise and develop noise-re-
silient versions of it. To this end, we will find it useful to refor-
mulate the D-BLUE recursions in (23)–(25).

A. Multiplier-Free D-BLUE

Here we eliminate the Lagrange multipliers and use spe-
cific initialization to rewrite the recursions (23)–(25) more com-
pactly as suggested in the following lemma.

Lemma 3: Initialize the recursions (23)–(25) specifi-

cally with , and

, where is the locally regularized BLUE
at the th sensor. The local iterates and the consensus
enforcing variables in Proposition 3 can then be rewritten
for as

(27)

(28)
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Proof: See Appendix D.
Lemma 3 shows that with carefully chosen initial condi-

tions, (23)–(25) reduce to the multiplier-free pair of equations
(27)–(28). Relative to (25), the consensus variable
in (28) is a weighted average of the neighborhood estimates

. Furthermore, the original observations em-
bedded in the local estimates appear in (27)–(28) only
through the initial conditions.

In the alternative formulation of D-BLUE obtained from
Lemma 3 the th iteration starts with all sensors
receiving the vectors from their bridge-neigh-
bors to update the local estimate using (27). Then,
the bridge-sensors receive from their neighbors the
vectors to update using (28), and
finally form that they disseminate for their
neighbors to start the -st iteration.

From Lemma 3 it can be seen that is a second-order
vector AR process with specific initial conditions. Careful ex-
amination of (27) and (28) reveals that each sensor, say the th,
updates its local estimate using information from
neighboring sensors within a radius of two hops. Indeed,

is updated using the consensus variables and
for , which are formed using the local estimates of all
sensors within the set . This set contains all the sen-
sors within a distance of either a single hop or two hops from
sensor .

Remark 4: The local updates of existing approaches in [1],
[8], [11], [13], [18], [20] either have a memory of a single time
step, or utilize updating information which is received only
from single-hop neighbors. D-BLUE on the other hand, has the
potential of achieving improved convergence rates because it
utilizes more information across time and across space. One
might expect that the price paid for improved convergence is
increased communication and/or computational cost; however,
this is not the case. Recall that decentralized computation of
BLUE in [20] for the special case of a linear-Gaussian model

requires two separate consensus averaging
algorithms to determine the matrix and
the vector , with computational complexity

. However, the communication cost per iteration in
D-BLUE is reduced from to . Indeed, [20] requires
communication of matrices, while sensors in D-BLUE
communicate vectors. Communication cost of is
also exhibited by the decentralized scheme in [1].

B. Differences-Based D-BLUE in the Presence of Noise

Building on (27) and (28) we will see in this section how
to derive a provably noise-resilient version of D-BLUE. Instru-
mental to this derivation will be the noisy counterpart of
in (27), that we denote by and is maintained as usual at the
th sensor. We will prove that successive differences of

converge to the BLUE; i.e., .
Intuitively, noise terms that propagate from to
cancel when considering the difference , thus
achieving the desired robustness to noise. This is akin to the
noise suppression effected also in the local updates of coupled
oscillators in [1], where a continuous-time differential (state)
equation is involved per sensor, and the information is encoded
in the derivative of the state. The desired discrete-time recursion
for and its relationship with (27) and (28) is introduced
in the following lemma.

Lemma 4: If and , the
second-order recursions

(29)

(30)

yield iterates and whose differences
and equal the

iterates and produced by (27) and (28), respectively.
Proof: See Appendix E.

Upon recalling from Proposition 3 and Lemma 3 that
, we obtain readily that

when
the communication links are ideal; i.e., successive differences
of the state in (29) converge to the BLUE.

Recursions (29) and (30) are similar in form to (27)
and (28), and can be implemented in a decentralized
fashion as described in Section V-A. Furthermore, upon
defining the quantities and

, we can rewrite (29) and
(30) as

(31)

(32)

Beyond ideal links, (31) and (32) will enable robustness in the
presence of reception or quantization noise. In the noisy case,
distributed implementation of (31) and (32) involves two steps:
(i) all sensors receive the vectors from

to form a (noisy) iterate ; and (ii) bridge sensors
receive the vector from to form
the (noisy) iterate . Explicitly written, (31) and (32)
in noise are replaced by

(33)

(34)

Notice that if the th sensor is a bridge sensor, it contains a
noise-free version of ; that is why we excluded from the
second sum in (33). Similarly, the th bridge sensor has a noise-
less version of and for this reason we excluded from
the second sum in (34). Recursions (33) and (34) constitute our
robust (R) D-BLUE which we tabulate as Algorithm 3. From
(33) and (34) it can be seen that by having the th sensor trans-
mitting and the th sensor , instead of transmitting

and individually as (29) and (30) would suggest,
the noise present in the updating process is reduced. In what
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follows we quantify this noise resilience based on the global re-
cursion formed by concatenating (33) for .

To this end, let us define the matrices
and

, with , denoting
the th column of the adjacency matrix , and

(35)

where denotes Kronecker product. Substituting (34)
into (33), and concatenating from (33) in

we obtain (see Appendix F)

(36)

where , and the noise vectors

and have
entries

(37)

In the convergence analysis of the ensuing section we will need
the second-order statistics of and . For this reason,
we derive in the following lemma their covariance matrices
and .

Lemma 5: The noise covariance matrices
and are

(38)

(39)

where
(i) the matrix is formed by submatrices

given by (40) at the bottom of the page.
(ii) the matrix is a block diagonal matrix with di-

agonal blocks for .
Proof: Follows easily from the definitions in (37).

C. Convergence Analysis
The goal of this section is to study the mean and covariance

matrix of the difference in order to es-
tablish convergence of to as and bound

the covariance matrix . To this end, let us ex-
press as a function of the initial conditions ,

, and the noise. This is possible by recursive ap-
plication of (36) which yields (Appendix G) (41) at the bottom
of the page where the matrix consists of the

submatrices , ,
and . Since the noise is zero-mean,

we have [cf. (41)]

(42)

The covariance matrix during iteration can be easily ob-
tained in terms of as [cf. (41)]

(43)

where and . Furthermore,
let denote the th largest eigenvalue of and
the corresponding right and left eigenvectors respectively, for

if and

if and

(40)

(41)



358 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 1, JANUARY 2008

. Define also .
Taking limits in (42) and (43) we can characterize the asymp-
totic behavior of the RD-BLUE algorithm as follows.

Algorithm 3: RD-BLUE

Initialize randomly .

for do

Bridge sensors : receive from neighbors and
form using (34);

All : receive from to compute
through (33);

All : Obtain local estimate ; and
transmit to each ;

end for

Proposition 4: The RD-BLUE iterations (33) and (34) reach
consensus in the mean sense i.e.

(44)

while the covariance matrix in (43) converges to

(45)

Furthermore, the entries of are bounded.
Proof: See Appendix H.

Proposition 4 establishes convergence of RD-BLUE in the
mean. It also shows that even though noise causes the local es-
timates to fluctuate around the BLUE, their variance remains
bounded as .

Remark 5: Iterates in the consensus average approach of [19]
obey a first-order vector AR process. In order to effect con-
sensus, the largest eigenvalue of the transition matrix defining
this AR recursion has to be 1. This entails, alas, an unstable AR
process and leads to catastrophic noise propagation. For the cou-
pled oscillators in [1], the consensus is achieved in the derivative
of a continuous-time state. Noise resilience is thus expected, and
indeed observed in simulations, but not formally established. As
per Proposition 4, RD-BLUE is proved to achieve consensus in
the mean with local iterates having bounded noise covariance
asymptotically quantified by (45).

D. Convergence of CO-BLUE and Comparison

Here we prove the noise resilience of the discretized version
of the coupled oscillators (CO) based BLUE in [1]. Upon dis-
cretizing the differential equation in [1] we find that the th
sensor receives from all its neighbors the noisy vector

, and forms as

(46)

where ,

, and is a weight asso-
ciated with the communication link between sensors and

so that if then . Unlike , note that
does not incorporate a regularization term. Furthermore,

CO-BLUE does not use bridge sensors, which explains the
usage of and (instead of and ). The noise vector

has zero mean and covariance matrix , and
is uncorrelated across sensors and time. Furthermore, let

, where
is a permutation matrix whose structure is detailed in [1], while

is the incidence matrix of the communication
graph for which if edge is incoming to sensor ,

if the edge is outgoing, and zero otherwise; is
a diagonal matrix with diagonal entries and denotes
the total number of edges.

Concatenating (46) , the global CO-BLUE recur-
sion in the presence of noise is

(47)

where contains all the noise summands in (46), while
. Using the steps in Section V-C we can also

establish the noise-robustness of CO-BLUE; i.e.

(48)

(49)

where is the covariance matrix of , and
are the eigenpairs of matrix . From (47) it can

be seen that CO-BLUE also achieves consensus in the mean
across the WSN so long as .

Remark 6: It is apparent from (41) that the convergence
rate of RD-BLUE can be adjusted by the penalty coefficients

, while in CO-BLUE this can be done through the
coefficient . Thus, RD-BLUE has degrees of freedom for
adjusting the convergence speed, while CO-BLUE has only
one. Furthermore, notice that ’s in RD-BLUE can assume
any positive value, while in CO-BLUE must be restricted in
the interval to ensure convergence.
These features explain why RD-BLUE is more flexible than
CO-BLUE in trading-off convergence speed for steady-state
error.

E. Simulations

Here we test the convergence of D-BLUE and RD-BLUE, and
compare them with the CO-BLUE in [1] and the consensus av-
erage (CA) BLUE in [20]. Furthermore, we examine the noise
resilience properties of the aforementioned algorithms in the
presence of either reception or quantization noise. We use the
same WSN with sensors as in Section III-D where the
th sensor observations obey , . In Fig. 3 (top)

we consider ideal channel links and plot the normalized error
in (19) versus for D-BLUE, RD-BLUE, CO-BLUE,

and CA-BLUE. For the D-BLUE and RD-BLUE algorithms, the
penalty coefficients are set to . For the CO-BLUE
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Fig. 3. Normalized error versus for D-BLUE, RD-BLUE,
CA-BLUE and CO-BLUE under ideal channel links (top); Average noise vari-
ance per sensor versus in the presence of reception noise with
(bottom).

algorithm, we set where is the optimal value yielding
the highest possible convergence rate. Specifying requires
global network information, see, e.g., [18]; hence, this choice is
the best case scenario for [1]. Also, for CA-BLUE we adopt the
max-degree and Metropolis weights, which allow for distributed
implementation as in [20, eqs. (8) and (9)]. Clearly, Fig. 3 (top)
demonstrates that D-BLUE and RD-BLUE attain higher con-
vergence rates, outperforming both CA-BLUE and CO-BLUE.
The price paid for higher convergence speed is a slightly higher
steady-state error in RD-BLUE.

Fig. 3 (bottom) displays the average noise variance per
sensor, namely , versus iteration index ,
after incorporating reception noise in the sensor links so
that . Specifically, the noise variance per
sensor is computed via ensemble averaging across sensors and
across 50 different realizations of the RD-BLUE, D-BLUE,
CO-BLUE and CA-BLUE algorithms. For a fair comparison
between RD-BLUE and CO-BLUE we set the for

and such that the steady-state noise vari-
ance is , which amounts
to an average noise variance of per sensor. The
penalty coefficients for D-BLUE are set as in RD-BLUE.
As expected, CA-BLUE eventually diverges in the presence
of noise. Notice though that similar to D-MLE the D-BLUE
algorithm exhibits noise resilience, at the expense of a higher
steady-state variance than RD-BLUE. But RD-BLUE achieves
higher convergence rate than CO-BLUE while the steady-state
error variance is the same for both schemes. Thus, RD-BLUE
is flexible to tradeoff convergence rate for steady-state error
variance.

Fig. 4. Normalized error versus for RD-BLUE in the presence of
reception noise with , 25 and (top). Average noise variance
per sensor versus for RD-BLUE and CO-BLUE in the presence of quantiza-
tion noise when using , 10 and bits per observation (bottom).

In Fig. 4 (top), we plot for different reception
SNRs. Clearly, as the SNR increases the steady-state error
reduces, while for all sensors converge to the
BLUE. The same behavior is also displayed by RD-BLUE
in Fig. 4 (bottom), which depicts the average noise variance
per sensor versus , for a variable number of quantization bits
(common across all sensors). Furthermore, the convergence
rate of RD-BLUE is higher than that of CO-BLUE for the same
steady-state noise variance.

In Fig. 5, we test the convergence of RD-BLUE for different
coefficients under ideal channel links, and compare it with
CO-BLUE for . Simulations indicate that a proper selec-
tion of is , where is a positive real scalar. Intu-
itively, these coefficients weigh evenly the cost function and the
constraints in the augmented Lagrangian in (22). Observe that a
reasonable selection for is to set it equal to .
Fig. 5 indicates that proper selection of leads to high conver-
gence speeds, enabling D-BLUE and RD-BLUE to outperform
CA-BLUE and CO-BLUE (cf. Fig. 3 (top) and Fig. 5).

VI. CONCLUDING REMARKS

We developed distributed algorithms for estimation of un-
known deterministic signals using ad hoc WSNs based on suc-
cessive refinement of local estimates. The crux of our approach
is to express the desired estimator, either MLE or BLUE, as the
solution of judiciously formulated convex optimization prob-
lems. We then used the method of multipliers combined with
block coordinate descent updates to enable decentralized im-
plementation. Our methodology does not require the estimator
to be known as a closed-form expression in terms of averages,
while it allows development of distributed algorithms, even for
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Fig. 5. Normalized error versus for RD-BLUE and CO-BLUE in
ideal links and for different penalty coefficients ’s.

nonlinear estimators. In fact, the formulation and resultant algo-
rithms apply even without any random considerations to linear
and nonlinear least-squares fit problems since the latter can be
viewed as BLUE and MLE problems when the data model is
linear and the unmodeled dynamics are assumed Gaussian.

Furthermore, our schemes exhibit resilience to communica-
tion and/or quantization noise. When it comes to decentralized
computation of linear estimators, namely the BLUE, we con-
structed noise-robust algorithms whose convergence can be
analyzed and quantified through the covariance structure of
the noise contaminating the local estimates. Different from the
consensus averaging approach, noise covariance in RD-BLUE
converges to a bounded matrix corroborating its noise resilient
features.

Through the D-BLUE and RD-BLUE algorithms improved
convergence rates were possible for uncorrelated observations
across space. Ongoing research to be reported in part II of this
work considers our optimization framework in developing de-
centralized estimation algorithms with correlated observations
even for random signals, where focus is placed on distributed
computation of the linear minimum mean-square error es-
timator. The same estimation task will also be considered
in dynamic and nonlinear setups. Additional future research
directions include comparisons with spanning tree and gossip
type algorithms on the basis of convergence speed and power
consumption2.

APPENDIX

A. Proof of Proposition 1

We will show first that the constraints for and
are equivalent to . To this end, consider

with and , with the existence of
guaranteed by Definition 1. From the constraints in (4) we

know that

(50)

On the other hand, (a1) guarantees existence of a path con-
necting . Moreover, from Def. 1-(a,b) we know that
every sensor must have at least two neighbors

, otherwise there would be sensors in for which

2The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies,
either expressed or implied, of the Army Research Laboratory or the U. S.
Government.

there is no sensor in at most 2 edges away from them. We can
thus build a path from to of the form

, for which
. Combining the latter with (50),

it follows that for arbitrary . Thus, any
feasible point of (4) satisfies , for all implying
that the arguments of (1) and (4) are equal, which completes the
proof.

B. Proof of Proposition 2

With denoting a bridge sensor subset, we wish to show
that (7)–(9) generate a series of local estimates converging to
the optimal solution of (4), namely the MLE estimator. We will
establish this by showing that (7)–(9) correspond to the steps
involved in the alternating-direction method of multipliers [2,
pg. 255]. To this end, let denote the Lagrange multipliers

at the th iteration. Moreover, define of

size , where

and denotes the vector with th entry one and zero
elsewhere, while are the indices of
the nonzero entries in the th column of . Then, (4) can be
equivalently written as

(51)

where , , while

, and is the polyhedral set

defined so that for it holds that

for all . Inspection of (51) shows
that it has the same form as the optimization problem in [2, Eq.
(4.76)]. Thus, the steps of the alternating-direction method of
multipliers at -st iteration are:

[S1] Set and
to obtain by solving the following minimization
problem

(52)

[S2] For fixed , and setting
after completing step [S1], the consensus

variables for are obtained as

(53)

[S3] Update via (7).
Utilizing (6), we infer that (52) is equivalent to the following

separate sub-problems

(54)



SCHIZAS et al.: CONSENSUS IN AD HOC WSNS WITH NOISY LINKS 361

Similarly, can be obtained by minimizing the cost
function formed by keeping only the th term of the outer sums
in (53). Interestingly, each of the optimization problems in (54)
can be solved locally at the corresponding sensor. Notice that
(54) coincides with (8). Further, setting the gradient of the cost
function formed by the th summand (of the outer sum) in (53),
with respect to , equal to zero we obtain (9). We have shown
that the alternating direction method of multipliers applied to
(1), boils down to (7)–(9). Since (1) is convex and is in-
vertible, recursions (7)–(9) converge to the optimal solution
[2, pg. 257–260].

C. Proof of Lemma 1

The cost in (20), call it , is convex. Its optimal solu-
tion can thus be obtained by applying the first-order optimality
conditions. Specifically, the gradient of is

(55)

Setting , we find that the optimal solution of
(20) coincides with in (2).

D. Proof of Lemma 3

With initial conditions , (25) estab-
lishes that (28) holds true for . Next, arguing by
induction let us assume that is given by (28) for .
Substituting successively in (23), we arrive at

(56)

Substituting (56) into (25), while setting , we obtain
(28) for using:

(57)

Combining (57) with (24), (27) follows easily since

From (24) and after setting and , it
follows that for .

E. Proof of Lemma 4
Using the initial conditions , and

we obtain that ,
and . Thus, Lemma 4 holds
true for . Next, using (29) we obtain the recursions
for and and subtract the second from the first,
while we replace the terms by (30) to arrive at

(58)

From (58) and after recalling that
and , it follows

immediately that the iterates are equal to
in (27) for and subsequently the iterates

have the same value with in (28).

F. Proof of (36)
From (33) and (34) we obtain the following:

(59)

The first two terms in (36) as well as the first term in
can be obtained readily by stacking the first two terms in (59).
Similarly the noise terms and can be obtained by
stacking the last two terms in (59). Here, we show how to obtain
the second matrix term in , as well as . Toward this end,
we can express the third term in (59) as follows (we exclude the

term):

(60)

Stacking the third term in (59) in a column vector,
namely , and using (60) we obtain

(61)
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from which we readily obtain that .
Following the same approach we can derive the fourth term in
(36).

G. Proof of (41)

Using induction we first show that (41) holds true for .
After substituting in (41) and using (41) we obtain after
easy manipulations that

, and
, which both hold true from (36). Next, assuming

that (41) holds true for we show that the same applies for
. To this end, recall that , and let

. Then, we have

(62)

where the second equality in (62) is derived after utilizing (41)
to expand . Upon recognizing that the sum of the first three
summands in (62) is equal to and subtracting this vector
from the rhs of (62), it follows easily that is given by
(41).

H. Proof of Proposition 4

First we will establish properties of matrix which will be
used in the convergence analysis of RD-BLUE. These properties
are summarize next:

Lemma 6: The eigenvalues of ordered so that
and the corresponding right and left

eigenvectors and satisfy the following properties:
(a) It holds that for ; while

for .
(b) The dominant right eigenvectors have the

form , where
denotes the vector having one in its th entry and zeros
elsewhere.

(c) The dominant left eigenvectors

are given by:

(63)

Proof: We will first prove (a) and (b) together. To
this end, let be an eigenvalue and the corresponding
right eigenvector of . Upon defining with

, and recalling that , or equiva-
lently we deduce that

, where denotes
conjugate transposition. The next step is to express as a
function of , as well as the entries of and show that
this function has amplitude less than one. Utilizing the structure

of matrices , in (36) and letting
with we obtain

The roots of the latter second order equation with respect to
are , where

(64)

(65)

Based on (64) and (65) we will show that . If ,
then is complex with nonzero imaginary part, which im-
plies that . Applying the Cauchy-Schwartz in-
equality on (65) we find:

(66)

Using the definition of we obtain
. Since

the first summand of the latter is strictly positive, we infer
that . Now if then is real and
using (66) we obtain that , from which we deduce that

and . The last case
we consider is . Applying (66) to the
numerator of it follows directly that

(67)
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For brevity, let denote the second term in the rhs of
(67). Using (67) only for the first summand in and
factorizing the expression inside the square root,
we obtain the equation shown at the top of the page.
Equation (66) implies that the maximum value the square
root can attain is ; thus, . Strict equality,

holds when

, or equivalently if and only if

for . As can be
absorbed in the corresponding left eigenvector, we set
w.l.o.g. But since a right eigenvector associated with the

, satisfies , we have that . Thus,
if and only if , for .
Furthermore, since for

, the geometric multiplicity of is .
The remaining step is to show that the algebraic multiplicity

of is also . Due to space limitations, we only sketch
the proof of the latter which relies on the Jordan canonical form

, where is invertible and
is block diagonal matrix. Matrix contains diag-

onal blocks associated with the eigenvalue whose struc-
ture can be found in [6]. Let for denote the th
of those diagonal blocks with size . Note that
equals the algebraic multiplicity of [6]. It suffices to have

, which we prove by contradiction. Specifically, we
assume that for which , and try to solve the system
of equations which turns out not to have a solution
allowing us to conclude that for .

Next, we proceed with part (c). The dominant left eigenvec-
tors (corresponding to the eigenvalue 1), denoted by ,
satisfy , through which we obtain the equivalent
conditions:

(68)

Combining the two equations in (68) and using the fact that
for we arrive at

(69)

where the second equation comes from (68), and
contains the first entries of the corresponding

right eigenvector . Note that (69) provides sufficient con-
ditions for to be a left eigenvector which are satisfied by
setting as suggested in (c), while the vector can be
obtained from the second equation in (68). This concludes the
proof of Lemma 6.

To proceed with the proof of Proposition 4, we rely
on the matrix eigendecomposition to write

. Using Lemma 6 (a), it follows directly
that .
Since the noise terms in (41) have zero mean, we further have

(70)

with and . Next, we show that the
second and third summand in (70) are zero. Indeed, using
the first equation in (68) we obtain

, while through

the second equation in (68) we have
. It follows that

(71)

where the vector denotes the vector of all ones.
The second equality in (71) follows from (68), and the third one
using (63).

Now we proceed to find the limit of noise covariance matrix
in (43) as . Toward this end, let denote the matrix
between and in (45). Starting from (43) we can write

(72)

where the second equality follows because
. Using the fact that for

, we obtain
and (45) follows.
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