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Abstract—Distributed algorithms are developed for optimal
estimation of stationary random signals and smoothing of (even
nonstationary) dynamical processes based on generally correlated
observations collected by ad hoc wireless sensor networks (WSNs).
Maximum a posteriori (MAP) and linear minimum mean-square
error (LMMSE) schemes, well appreciated for centralized estima-
tion, are shown possible to reformulate for distributed operation
through the iterative (alternating-direction) method of multipliers.
Sensors communicate with single-hop neighbors their individual
estimates as well as multipliers measuring how far local estimates
are from consensus. When iterations reach consensus, the resul-
tant distributed (D) MAP and LMMSE estimators converge to
their centralized counterparts when inter-sensor communication
links are ideal. The D-MAP estimators do not require the desired
estimator to be expressible in closed form, the D-LMMSE ones
are provably robust to communication or quantization noise and
both are particularly simple to implement when the data model
is linear-Gaussian. For decentralized tracking applications, dis-
tributed Kalman filtering and smoothing algorithms are derived
for any-time MMSE optimal consensus-based state estimation
using WSNs. Analysis and corroborating numerical examples
demonstrate the merits of the novel distributed estimators.

Index Terms—Distributed estimation, Kalman smoother, non-
linear optimization, wireless sensor networks (WSNs).

I. INTRODUCTION

I N a companion paper [17], we introduced optimal dis-
tributed estimators for deterministic signals based on

uncorrelated observations collected by ad hoc wireless sensor
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networks (WSNs). Different from WSNs that rely on a fusion
center, ad hoc WSNs are robust against fusion center failures
and require only single-hop communications among neigh-
boring sensors that aim to consent on local estimates formed
over a (possibly large) geographical area. Compared to alter-
native consensus-based distributed algorithms [5], [22]–[24],
the ones in [17] offer i) optimal distributed best linear unbiased
estimators (D-BLUE) and distributed maximum likelihood
estimators (D-MLE) based on the alternating-direction method
of Lagrange multipliers; ii) guaranteed convergence to their
centralized counterparts when inter-sensor links are ideal; and
iii) provable resilience to communication and quantization
noise which causes the estimation variance of [22], [23] to
grow unbounded.

The present paper significantly broadens the scope of [17]
to encompass distributed estimation of random stationary and
nonstationary signals based on generally correlated sensor data
using ad hoc WSNs. In this context, distributed WSN-based
estimation of stationary Markov random field (MRF) models
was pursued in [9]. Distributed LMMSE estimation for MRFs
was considered in [8] when sensor observations obey a linear
Gaussian model. As far as nonstationary signals are concerned,
consensus-based suboptimum (in the MSE sense) Kalman fil-
tering (KF) schemes were developed by [1], [13], [19] for esti-
mation of dynamical state-space processes. These schemes are
well motivated for distributed tracking applications but allow
only for relatively slow varying state processes. Since these
schemes are based on variants of the consensus averaging algo-
rithm of [22], they inherit its noise sensitivity when intersensor
links are nonideal. An alternative distributed KF scheme was
developed in [2], where each sensor forms a weighted average
of state estimates received from its neighbors, and incorporates
them in the filtering process. However, the covariance informa-
tion needed per sensor is global, i.e., requires information from
all sensors in the network.

The contributions and organization of this paper are as
follows: i) distributed maximum a posteriori (D-MAP) and
linear minimum mean-square error (D-LMMSE) optimal algo-
rithms are derived based on the alternating-direction method of
Lagrange multipliers for estimating stationary random signals
(Sections III and IV); ii) the D-MAP scheme does not require
the corresponding centralized estimator to be available in a
known closed form, and the D-LMMSE one requires only avail-
ability of second-order statistics of the signal and sensor data
which are in both cases allowed to be correlated; iii) robustness
to additive quantization and communication noise (Section V);
and iv) any-time MMSE optimal distributed consensus-based
Kalman filtering and smoothing algorithms capable of tracking
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Fig. 1. (Top) Ad hoc wireless sensor network. (Bottom) Implementation of the
D-MAP estimation algorithm.

even fast varying processes, trading off delay for MSE reduc-
tion and remaining resilient to noise (Section VI). We conclude
the paper in Section VII.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider an ad hoc WSN comprising sensors, where
only single-hop communications are allowed; i.e., the th
sensor communicates solely with nodes in its neighborhood

, and . Communication links are symmetric,
and the WSN is modelled as an undirected graph whose vertices
are the sensors and its edges represent the available links; see
Fig. 1 (top). The connectivity information is summarized in the
so called adjacency matrix for which
if , while if . Since
if and only if , it holds that ( stands for
transposition).

The WSN is deployed to i) either estimate a stationary
signal vector using sensor data , or ii) track
a generally nonstationary based on sensor observations

, where denotes discrete time. Without
loss of generality (wlog) both , and are
assumed zero mean. If these vector signals have a nonzero
mean and the nonzero mean is known, what follows applies
to the corresponding mean-compensated signals. Further, we
can compensate for the mean by adding it back to the obtained
estimates. Starting with the stationary case i) and depending
on the available a priori information sensors have about , we
distinguish between two setups.

In the first one, the probability density function (pdf) is
assumed known to all sensors. Conditioned on , are
further assumed independent with pdfs known

. Under these assumptions, the MAP estimator (after

using Bayes’ rule and the natural logarithm ) can be written
as

(1)

The second scenario arises when the observations adhere to
an arbitrary data model, but contrary to (1) only the first- and
second-order statistics of and are known; i.e., sensors know
only (cross-) covariance matrices ,

and , where con-
tains all the sensor observations. Different from
[5], [17], [24], where sensor data are assumed uncorrelated,

does not have to be block diagonal. Sensor has available
, , and . These matrices can

be acquired either from the physics of the problem, or, during
a training phase. Notwithstanding, each sensor does not have to
know the entire matrices and but only a part of them
containing of the total covariance information. When ,

, and are available at a central location, it is possible to
form the LMMSE estimator as, see e.g., [12]

(2)

We will develop distributed iterative algorithms based on
communications with one-hop neighbors that generate (local)
time iterates so that:

s1) if the th sensor knows only and , the local
iterates converge as to the global (i.e., cen-
tralized) MAP estimator, i.e., ,
where is given by (1);

s2) if and are known at the th sensor and
is full rank, then .

The MAP estimator in s1) is of particular importance for es-
timating stationary signals in generally nonlinear data models
since it is optimal in the sense of minimizing the “hit-or-miss”
Bayes risk (see, e.g., [12, p. 372]). The LMMSE estimator on
the other hand is MSE optimal within the class of linear estima-
tors; but its separate treatment is well motivated because it re-
mains applicable even if the conditional independence required
in (1) does not hold and only and are known per
sensor . Clearly, if and are jointly Gaussian, then

, and consequently scenarios s1) and s2) coin-
cide.

In a third (dynamic) scenario, all sensors wish to track a
common generally nonstationary state process that obeys the
Gauss–Markov model

(3)

where is zero-mean Gaussian with covariance
and denotes the initial state which is also zero-mean
Gaussian with covariance . Matrices and

are assumed known to all sensors. Each sensor, say
the th, observes the time series

(4)
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where is zero-mean Gaussian with variance . Both
and are available at sensor .

If were available at a central lo-
cation, the MMSE optimal estimator of given
is the conditional expectation
which can be recursively obtained using the Kalman filter (KF)
[3]. If one can afford a delay in estimating the state, a
lower MSE can be attained by forming

for via a fixed-lag Kalman
smoother (KS), see e.g., [3, Ch. 8]. Based again on single-hop
communications, we will derive, distributed MSE optimal KS
estimates using local iterates
(starting at and ending at as indicated by the arguments
after semi-colon) so that:

s3) If sensor knows , , as
well as and , then

for and
.

Relative to [13], [19] and [1], the distributed KF and KS
approaches developed here do not limit to vary slowly,
and enjoy well-defined MSE optimality as well as noise re-
silience. If at iteration sensor transmits1 to sensor the
vector the received noisy vector is

, where denotes zero-mean additive noise
at sensor . Vector is assumed uncorrelated across sen-
sors and time, with . This noise
model encompasses: n1) analog communication where is
zero-mean white Gaussian and n2) digital communication with

uniformly distributed over , with
, where denotes the number of

bits used for quantizing each of the entries in , and is
the identity matrix. We further assume that:

a1) the communication graph is connected; i.e., there exists
a path connecting any two sensors;

a2) the pdfs and are (strictly) log-con-
cave with respect to (wrt) , while their sum of logarithms
in (1) is a strictly concave function.

As in [5], [13], [14], [17], [19], [22], and [24] network con-
nectivity in a1) ensures that distributed estimators have access
to all observation vectors, while log-concavity in a2) guarantees
uniqueness even for the centralized MAP estimator and is satis-
fied by a number of unimodal pdfs encountered in practice. Note
that for a2) to be satisfied not all individual pdf summands have
to be strictly log-concave.

III. DISTRIBUTED MAP ESTIMATION

In this section, we derive a distributed (D) MAP estimator
for s1) under a1) and a2). To this end, since the summands in
(1) are coupled through we introduce an auxiliary variable
to represent the local estimate of at sensor . Using we can

1Subscripts specify the sensor at which variables are “controlled” (e.g., com-
puted at and/or transmitted to neighbor sensors), while superscripts denote the
sensor at which the variable is communicated to.

rewrite (1) as a constrained optimization problem

(5)

where the set denotes the bridge sensor subset intro-
duced in [17, Definition 1], and . Note that for a specific

the equality constraint in (5) is imposed for all
those sensors in the neighborhood of ; i.e., all . Recall
that is a bridge sensor subset if and only if a)
there exists at least one so that ; and b) if and

are single-hop neighboring sensors, there must exist a bridge
sensor so that . Each sensor maintains
a local vector via which consensus among local variables
across all sensors is achieved a fortiori, i.e., . The
bridge sensor set can be found during the start-up phase using
e.g., the distributed algorithm in [21].

For the WSN in Fig. 1 (top) the filled circles denote bridge
sensors. Henceforth, the set of bridge neighbors of the th sensor
will be denoted as , and its cardinality by
for . We have proved in [17] that consensus can
be achieved across all sensors, if consensus is reached only
among a subset of them, namely . Conditions a) and b) provide
a necessary and sufficient condition for the equivalence of (1)
and (5) in the sense that .

A. The D-MAP Algorithm

Consider the augmented Lagrangian of (5), given by

(6)

where , , com-
prises the Lagrange multiplier vectors, and are penalty
coefficients corresponding to the constraint .
The penalty terms ensure strict convexity of the
local minimization problems and thus guarantee globally con-
vergent local recursions even when individual sensor pdfs are
not strictly convex. Using the alternating direction method of
multipliers [6] to minimize (6), and allowing for additive noise
in sensor exchanges, we can mimick the steps in [17, App. B]
to prove the following proposition.

Proposition 1: Per time index consider iterates ,
and defined by the recursions

(7)

(8)
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(9)

and let the initial values , and
be arbitrary. Under a1), a2), and assuming ideal

communication links i.e., and , the local
estimates converge to the centralized MAP estimator as

and the WSN reaches consensus; i.e.,
.

Recursions (7)–(9) constitute the D-MAP algorithm. During
the th iteration, sensor receives the noisy consensus vari-
ables from all its bridge neighbors in .
Based on these consensus variables, it updates through (7) the
Lagrange multipliers , which are then utilized to
compute via (8). Then, sensor transmits to each of its
bridge neighbors the vector . Each
bridge sensor receives the vectors

from all its neighbors and averages them after
scaling with to obtain while suppressing noise [cf.
(9)]. Notice, that bridge sensor acquires from their
neighbors during a start-up period of the WSN. This completes
the th iteration, after which all sensors in transmit
to all their neighbors , which can proceed to the st
iteration; see also Fig. 1 (bottom).

The local minimization problem in (8) is strictly convex, due
to a2) and the strict convexity of the Euclidean norm. Thus, the
optimal solution of (8) is unique and can be obtained accurately
aftersolving,e.g.,usingNewton’smethod, thenonlinearequation

(10)

Resemblance of (7)–(9) with a stochastic gradient algorithm, ex-
plains why additive noise causes to fluctuate around the
optimal solution with the magnitude of fluctuations being
proportional to the noise variance. As with D-MLE in [17], this
implies that in the presence of noise is guaranteed to be
within a ball around with high probability. Noise robust-
ness of D-MAP will be confirmed also by simulations.

Remark 1: The distributed schemes in [5], [8], [16], [22], and
[24] require knowledge of the desired centralized estimator in
closed form. Similar to D-MLE in [17], the D-MAP algorithm in
(7)–(9) does not require a closed-form expression for the MAP
estimator. The edge of D-MAP over D-MLE is twofold: i) sim-
ilar to all Bayesian approaches D-MAP facilitates incorporation
of a priori information about the unknown ; and ii) the condi-
tional independence in (1) allows for correlated sensor data (not
possible in [17] and [24]). Furthermore, the D-MAP formulation
subsumes distributed estimation of Markov random fields [9] if

is formed so that its th entry is the sample of the field mea-
sured by sensor . Although field estimation is beyond the scope
of this paper, the D-MAP approach here allows for distributed
field estimation without imposing the Markovianity assumption
in [9].

Remark 2: In case of a bridge sensor failure, D-MAP incurs
performance loss, but remains operational after the neighbors
of the failed bridge sensor modify their local recursions accord-
ingly. Specifically, if bridge sensor fails, then some of the
nodes in can be converted to bridges as needed, in order for
the new bridge sensor set, call it , to satisfy the properties of

. This conversion can be accommodated using the algorithm in
[21]. Then, all sensors in can modify their local recursions
(7)–(9) by adding the corresponding terms associated with the
new bridges in , and removing the ones corresponding to .
D-MAP will converge to the MAP estimate given in (1) after ex-
cluding the term associated with sensor . The same approach
can also be followed in the following distributed algorithms.

B. Linear-Gaussian and Quantized Observations

Consider as a special case the popular linear-Gaussian model
, where is deterministic, is zero-mean

Gaussian, and is zero-mean Gaussian with covariance
and uncorrelated across sensors. Clearly is Gaussian
with mean and covariance matrix . After making
the necessary substitutions in (10), the optimal solution of (8) is
now available in closed form as

Because the matrix inverse does not depend on and can be
evaluated off-line, it is clear that D-MAP is simple to implement
for the important class of linear-Gaussian models.

The next special case entails a nonlinear data model, where
due to limited sensing capabilities sensors have to rely on a
binary quantized version of to estimate ; see also [18].
Also, note that such harsh quantization allows for employment
of powerful error control codes, where many redundant bits
can be used to mitigate nonideal channel effects. Each local
quantizer, say that of the th sensor, splits the measurement
space into convex regions . Vector quantiza-
tion of yields , where denotes the
indicator function; i.e., vector has binary 0/1 entries (1 if
and only if falls in the quantization region ). The MAP
estimator can be determined as in (1), with substi-
tuted by ,
where denotes Kronecker’s delta, while

. Being the integral of a log-concave
function over the convex set , is log con-
cave. Thus, the D-MAP algorithm is still applicable despite the
fact that the centralized MAP estimator is not expressible in
closed form. The local estimate is determined from
(8) after replacing with .

Example: Consider the D-MAP estimator with sen-
sors, each quantizing as described earlier. Nodes are ran-
domly placed in the unit square [0,1] [0,1] with uniform dis-
tribution. In this and all simulations of this paper the WSN is
generated using the geometric random graph model [10], where
two sensors are able to communicate if their Euclidean distance
is less than 1/4. Sensor acquires observations and has
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Fig. 2. Normalized error versus iteration index for D-MAP in pres-
ence of (top) reception noise with SNR 15, 25, and dB, and (bottom)
quantization noise using 5, 10 and number of bits.

dimensionality with . The entries
of are random uniformly distributed over [ 0.5,0.5] and
noise vectors are zero-mean Gaussian with

. The quantizer at the th sensor has regions

. The penalty coeffi-
cients are set to . The normalized error

is used as figure of merit.
Fig. 2 (top)–(bottom) indicates that as

under ideal links, corroborating Proposition 1. In the presence
of reception or quantization noise, we average over 50
independent realizations of D-MAP estimates. Fig. 2 (top) de-
picts with , where is selected so that
SNR 15 dB and SNR 25 dB.
Similar behavior is observed in Fig. 2 (bottom) when vectors

and are quantized be-
fore transmission to their neighbors.

IV. DISTRIBUTED LMMSE ESTIMATION

Here, we confine distributed estimators to be linear in the data
[cf. s2)] but allow correlation among sensors and do not require
conditional independence as in the D-MAP estimation setup s1).

A. The D-LMMSE Algorithm

Although is well known in the centralized form (2),
the equivalent expression given in the next lemma lends itself
to a distributed LMMSE estimation algorithm (see Appendix A
for the proof).

Lemma 1: With representing an auxiliary vector, the
LMMSE in (2) can be equivalently expressed as

(11)
where with denoting the
th block sub-vector of , and .

Different from D-MAP and distributed estimators for deter-
ministic signals in [17] the constraint entails also
sensor correlations and motivates besides a local estimate2

of per sensor . Using the bridge sensor set along with
the variables and , the following separable formulation of
(11) can be obtained along the lines of the proof in [17, App. A].

Lemma 2: The optimization problem in (11) is equivalent to

and (12)
in the sense that , and ; while

with .
If are the Lagrange multipliers associated with

the constraints and respectively, the aug-
mented Lagrangian corresponding to (12) is

where , and .
The main result pertaining to the distributed solution of (12)

is proved in Appendix B and can be summarized as follows.
Proposition 2: For each sensor , let iterates ,

and be defined by the recursions

(13)

(14)

2Note that is not the same as .
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(15)

where and quantities , , and involve only
local quantities and are defined as

(16)

(17)

(18)

(19)

with and
, while . If links are ideal, iterates

and converge under a1) to the LMMSE esti-
mator as ; i.e., for all and , it holds

Recursive updates (13)–(15) constitute the D-LMMSE es-
timator whereby every sensor keeps track of the local es-
timate along with and the Lagrange multipliers

. Sensors update also the consensus
variables and . During the th iteration, sensor re-
ceives from all its bridge neighbors in . Based on these,
it updates its Lagrange multipliers using
(13), which are then used next to compute via (14).
After completing this iteration step, sensor transmits to each
of its neighbors the vectors and

. Each sensor receives these vec-
tors from all its neighbors , multiplies them by and
respectively, and proceeds to compute via (15). This
completes the th iteration, afterwhich all sensors in proceed to
transmit and totheirneighbors .

Because matrix is symmetric, positive definite and does
not depend on , can be found off-line. Hence, the com-
plexity for computing is . Actually,
for the typical case one can take advantage of the spe-
cial structure of and utilize the linear system solving proce-
dure described in, e.g., [7, p. 512] to reduce complexity down
to . Furthermore, the communication process in-
volves transmission of scalars per iteration which is
expected since the correlation information in and is
scattered across the network.

Remark 3: Relative to [8], the D-LMMSE algorithm neither
requires linearity nor Gaussianity in the data model. When the
goal in [8] is to have all sensors consent to the LMMSE esti-
mator of a common signal vector (as here), the scheme in [8]

applies as long as each sensor can exchange information with
all other sensors in the network. However, D-LMMSE guar-
antees convergence to via single-hop links. Notice also
that D-LMMSE inverts in a distributed fashion, through
the local variables which is essential since every sensor
needs to know only a portion of . A fair comparison of
[8] with the present D-LMMSE algorithm does not appear pos-
sible, since the former requires full connectivity among sensors
so that each sensor can consent to the LMMSE estimator of .
Another issue is the fact that [8] relies on inverse covariance ma-
trices which facilitates estimation but leaves open the question
of whether possible and how costly acquiring this information
is. D-LMMSE recursions appear to have similar structure with
the D-BLUE ones in [17]. However, D-LMMSE is more gen-
eral in scope because it can handle correlated sensor data and
guarantees convergence to the MSE optimal linear estimators
regardless of the underlying data model.

Algorithm 1 D-LMMSE Estimation

Initialize , and
to zero. All bridge sensors , acquire

.

for do

Bridge sensor : transmit to its
neighbors in

All : update using (13).

All : update and using (14).

All : transmit and
to each

Bridge sensors : compute and
through (15).

end for

B. D-LMMSE Estimation for the Linear Data Model

For arbitrary data models, D-LMMSE estimation requires
and at sensor . For the linear

model , however, D-LMMSE estimation is pos-
sible so long as sensor has available only its local parameters

, and . Indeed, for the linear model (2) reduces to

(20)
Arguing as in [17, App. A and C] the LMMSE estimator in (20)
can be equivalently written as

(21)

where . Forming the augmented La-
grangian corresponding to (21) and applying the alternating-di-
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rection method of multipliers as in Appendix B, we obtain the
following.

Proposition 3: For each sensor let iterates
and be defined by the recursions

(22)

(23)

(24)

where . Under
ideal links and a1), and converge to the centralized
LMMSE estimator in (20) as ; i.e.,

.
Relative to Proposition 2 which requires at sensor ,

the D-LMMSE estimator for linear data models summarized in
Proposition 3 requires only and which are avail-
able at sensor .

V. NOISE ROBUST D-LMMSE

In this section we derive a provably noise resilient D-LMMSE
algorithm and analyze its convergence by studying the
and updates.

A. Multiplier-Free D-LMMSE

As a first step, we eliminate the Lagrange multipliers
and initialize properly recursions (13)–(15) to rewrite them as
described next (see Appendix C for the proof).

Lemma 3: Initialize (13)–(15) with
, and , with

as in (19). The local iterates in (14) and the
consensus enforcing variables in
(15) can be rewritten for as

(25)

(26)

where , and
.

Devoid of and , recursions (25) and (26) are
simpler than (13)–(15). Through (26) the consensus variables

are expressed as a weighted average of the neigh-
borhood estimates , while the constant terms

are used to initialize . As suggested by Lemma
3, the th iteration starts with all sensors receiving

from their bridge-neighbors to compute
via (25). Then, the bridge-sensors receive from their
neighbors to update using (26),

and finally form that they transmit to their
neighbors to start the st iteration. It follows from (25) and
(26) that is updated using the consensus variables

and for , which are formed using the
local estimates of sensors in the set , that contains all
sensors within a distance of up to two hops from sensor .

B. Differences-Based Noise Resilient D-LMMSE Estimation

Recursions (25) and (26) constitute an intermediate step
based on which we build next a distributed noise-robust al-
gorithm for D-LMMSE estimation. As in [17], we replace

by the local variable . We will show that the
mean of successive differences of converges (in the
mean when the noise is zero-mean) to the LMMSE estimates;
i.e., , while
the covariance matrix of this difference remains bounded.
Intuitively, noise terms that propagate from to
cancel when considering the difference , thus
achieving the desired noise resilience. The following lemma is
the counterpart of Lemma 3 for noise-resilient operation.

Lemma 4: If and , the
second-order recursions

(27)

(28)

yield iterates and whose differences
and equal

the iterates and produced by (25) and (26), re-
spectively.

Proof: Lemma 4 holds true for , 0, since from
and we find that

and .
For , Lemma 4 follows by induction after subtracting the
recursion for from the one for .

Using Lemma 4 and Proposition 2 we deduce that as ,
and converge to under ideal links.

In the presence of noise, let and
. Note that equals the

th summand in (27), and replace (28) by

(29)

Notice that (27)–(28) as well as (27) and (29) produce the same
sequence of under ideal channels. However, when sensors
communicate to their neighbors the vectors and
over nonideal links the noise present per iteration is smaller than
when exchanging and sep-
arately. The steps involved in implementing locally (27) and
(29) are i) all sensors receive from
to form a (noisy) iterate ; and ii) bridge sensors re-
ceive from to form the (noisy)
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iterate . The noisy versions of (27) and (29) are

(30)

(31)
Note that is excluded from the second sum in (30) because if
the th sensor belongs also to then it maintains a noise-free
version of . Similarly, the th bridge sensor has available
locally ; thus, is excluded from the second sum-
mation in (31), The local recursions (30) and (31) form the
noise resilient (R) D-LMMSE algorithm. Both RD-LMMSE
here and the RD-BLUE in [17] involve linear updating of state
variables and and follow the same communication
steps. Although RD-LMMSE recursions appear similar to
those in RD-BLUE, the matrices involved in RD-LMMSE have
different structure necessitating separate convergence analysis.
Pertinent to the ensuing RD-LMMSE convergence analysis
is the global RD-LMMSE recursion formed by stacking (30)
for . To this end, let us define the matrices

and
with and

(32)

where denotes the th column of the adjacency ma-
trix and is the Kronecker product. Upon substituting
(31) into (30), and stacking from (30) in

, we show in Appendix D that

(33)
where , and the noise vectors

and have
entries

(34)

(35)

Observe the differences in matrices , as well as
in and wrt the corresponding ones in RD-BLUE
[17]. Before proceeding with the convergence analysis, we will
find the covariance matrices for the noise vectors in (33) which
are essential for the subsequent derivations. It follows from
(34)–(35) that the covariance matrices of and are
given respectively by

(36)

where . The
matrix is diagonal with diagonal blocks

, while matrix
consists of the submatrices for which

(37)

C. Convergence Results

We want to show that converges to
as , while remains bounded. The
RD-LMMSE global recursion has the same structure as that of
RD-BLUE, but matrices , and are dif-
ferent. In fact, we can express as (cf. [17, App. G])

(38)

where is formed by the submatrices
, , and

, while and . The mean of is
equal to the first term in (38). The per iteration noise covariance
matrix

can be evaluated using [17, eq. (44)] after
making the necessary substitutions. The following proposition
summarizes the asymptotic behavior of the RD-LMMSE esti-
mator (see Appendix D for the proof).

Proposition 4: The RD-LMMSE recursions (30)–(31) reach
consensus in the mean sense, i.e.,

(39)

while the noise covariance matrix converges to

(40)

where denote the th largest eigenvalue of
and the corresponding left and right eigenvectors, respectively,
for , while
and .

Remark 4: The bounded covariance asserted by Proposition 4
has to be contrasted with the unbounded noise that is inherent to
consensus averaging [23]. Notice also that Proposition 4 holds
universally for general data models, allowing for and exploiting
arbitrary correlation patterns among sensor data (not possible
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with the RD-BLUE in [17]). Further, the noise-robust frame-
work and the corresponding analysis carries over to the simpli-
fied D-LMMSE algorithm for linear-Gaussian models.

D. Simulations

Here we test the convergence of D-LMMSE and RD-LMMSE
along with their noise resilience properties in the presence of
either reception or quantization noise. Consider sen-
sors with observations obeying the linear model in Section III-B.
Fig. 3 (top) depicts the normalized error versus itera-
tion index for different SNR values. The penalty coefficients
for both D-LMMSE and RD-LMMSE are set to .
Analytical guidelines for selecting seem to be difficult to
derive if not impossible without global information. However,
we have observed that increasing up to a point usually im-
proves the convergence speed. Notice that under ideal channel
links both D-LMMSE and RD-LMMSE iterates coincide as as-
serted by Lemma 4, and as as per
Proposition 2. In the presence of reception noise, we average

over 50 independent D-LMMSE and RD-LMMSE es-
timates. As expected by Proposition 4, obtained from
RD-LMMSE exhibits error floor confirming that the noise co-
variance converges to a matrix with bounded entries. Relative
to RD-LMMSE, the D-LMMSE algorithm exhibits noise re-
silience at the expense of higher steady-state variance. Clearly,
as the SNR increases the steady-state error for both D-LMMSE
and RD-LMMSE decreases. RD-LMMSE and D-LMMSE ex-
hibit the same behavior also in Fig. 3 which depicts the ensemble
average of over 50 independent realizations, for a vari-
able number of quantization bits (common across all sensors).

VI. OPTIMAL DISTRIBUTED KALMAN FILTERING AND

SMOOTHING

In this section we consider distributed estimation and
smoothing under the dynamical setup s3). For future use, recall
the information form of the correction step of the centralized
KF for obtaining and , see e.g., [3, pp. 40 and 139]

(41)

(42)

(43)

(44)

where denotes the filtered covariance matrix of the es-
timation error and likewise for the predicted co-
variance , while . If sen-
sors had available local estimates and the corre-
sponding covariance , they could run (41) and
(42) in a distributed fashion since and are as-
sumed locally known. However, (43) and (44) can be run only
if quantities

(45)

(46)

Fig. 3. Normalized error versus iteration index for D-LMMSE and
RD-LMMSE in the presence of (top) reception noise with SNR 15, 22, and

dB, and (bottom) quantization noise using 5, 10, and number of
bits.

could be somehow estimated at each sensor . This is possible
because as the last equalities in (45) and (46) show, and

can be expressed as averages with the th summand avail-
able at sensor .

Through iterations that start at and end at , [1],
[19] proposed (in our notation) to form estimates
and using the consensus averaging based algo-
rithms in [15], [20], and [24], respectively; see also [13], where

was adopted since only one iteration can be afforded
during the interval . With these estimates plugged into
recursions (43) and (44), it is possible to obtain local filtered
estimates , that become available at .
Clearly, there is a delay in forming these estimates limiting
the operation of [1], [19] only to applications with slow varying

and/or fast communications needed to complete con-
sensus steps between and . In addition, [1] and [19] in-
herit the noise sensitivity of [20] and [24]. More important, the
estimates in [1], [13], and [19] are not MSE
optimal given the available information in , unless

. This suboptimality renders the D-KF estimates in [1],
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[13], [19] inconsistent with the underlying data model, which
in turn is known to yield tracking errors violating the uncer-
tainty bounds [4, p. 233]. In the distributed approach of [2] each
sensor performs local KF after substituting its local state predic-
tions in (41) and (44) with a weighted average of the neighboring
sensors predictions. Though, each sensor should also update ap-
propriately the covariance matrices of the resulting prediction
error. However, this update requires global statistical informa-
tion from all other sensors (cf. [2, eq. (11) and (15)]).

A. Smoothing Versus Filtering

Instead of filtering advocated by [1], [2], [13], and [19], the
delay incurred by the consensus averaging iterations needed
to form prompts us to consider fixed-lag dis-
tributed Kalman smoothing. Specifically, our first idea is to seek
at time instant , local MSE optimal smoothed estimates,

for , that take advantage of
all available data during the interval and generally yield
a lower MSE than the filtered estimates . Fur-
ther, we wish to obtain zero delay filtered estimates,
i.e., , as well as any-time MSE optimal estimates

which are not available
in the alternatives [1], [2], [13], [19].

To this end, we first express the fixed-lag Kalman smoother
(KS) as a KF applied to a properly augmented state model. Con-
sider the augmented state model [cf. (3)]

...
. . .

...
...

(47)

where . The aggregate observa-
tions obey

(48)

where and
has covariance matrix . Note
that this state augmentation guarantees that the augmented noise

is uncorrelated across time. The latter readily implies
that fixed-lag centralized KS can be implemented equivalently
as a centralized KF on the augmented model in (47) and (48),
as follows (cf. (41)–(44) and [3, p. 177]):

(49)

(50)

(51)

(52)

where and are the predicted and filtered esti-
mates of , while and denote the covariance
matrices for the corresponding state estimation and prediction
errors.

Since
, the KF estimate for the augmented state contains

both a filtered estimate of the original state as well as
smoothed estimates of , for , using
all the available data up to .

B. The D-KS Algorithm

The second summand in (52) is the LMMSE esti-
mator based on the innovations

. This estimator could be formed in
a distributed fashion using the D-LMMSE estimator developed
in Section IV-B. However, if D-(or RD-) LMMSE is run for a
finite number of consensus steps , to track a fast varying ,
sensors can only use local estimates which are
suboptimum because data becoming available during
are not exploited. Next, we develop a distributed algorithm that
guarantees any-time MSE optimality under ideal links, while
being robust when noise is present.

To derive such an algorithm we will need local estimates of
, and the

covariance [cf. (51) and (52)]. But since
and , it suffices

to devise distributed estimators of and . Towards this
objective, let us re-express vector in (46) as

(53)

where the term is locally available at sensor
. Matrix in (45) can be rewritten likewise. Then, we can

readily utilize the alternating-direction method of multipliers to
form as in Section V iterates whose successive differences yield
estimates and which converge to

and respectively as under ideal channel links.
Indeed, upon modifying (27) and (28) by setting and
substituting , ,

and , the estimate
can be formed locally at the th sensor after setting

in (27), and computing the
differences of the successive iterates produced after steps by
the modified pair of recursions (27), (28). Likewise,

can be obtained after replacing the vector iterates in (27)
and (28) with matrices ( ’s are in this case matrices),
while setting .

Following the steps used to derive the RD-LMMSE global
recursion in (38), we can write the local recursions for

and for , in compact form as

(54)

(55)

where

and ,
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while the matrix contains coefficient sub-
matrices that weigh appropriately only the information received
by the bridge neighbors in , thus allowing for distributed im-
plementation. The local estimates in (54) and (55) are initialized
as follows:

(56)

(57)

where and .
Interestingly, it turns out that and

are linearly related. Specifically, we prove in Appendix E
that:

Lemma 5: Under ideal channel links, and
are linearly related; i.e.,

(58)

where is zero-mean Gaussian with covariance
defined by the recursion

(59)

where is the covariance ma-
trix of the noise vector

.
The recursion in (59) is initialized by

, where
.

Note that is the th diagonal block of
.

In terms of the augmented state model, (58) can be expressed
as

(60)

where .
Our key idea is to view in (60) as a “consensus
enriched” local observation vector per sensor , and rely on it
to derive any-time MSE optimal state estimates. Note that be-
sides , quantity includes “consensus data”
fromneighboringsensorswhosenumber increasesas increases.
Since contains more information than , state
estimates based on it will clearly exhibit improved performance.

What is left to derive is a distributed algorithm for computing
, which we provide next (see Appendix F for the

detailed derivation).
Lemma 6: Consider per sensor the matrix
factor of obtained recursively as

(61)

where
and (61) is initialized using

(62)

(63)

with denoting the square root matrix of
. Then, the modified noise covariance can be

obtained locally at sensor as

(64)

Equations (61)–(64) express the local recur-
sively, thus allowing the D-KS algorithm to implement its iter-
ations as summarized in the following proposition.

Proposition 5: Consider per sensor the local augmented
state estimates , with

, obtained at time instant through the KS re-
cursions

(65)

(66)

(67)

(68)

corresponding to the state model in (47) and the obser-
vation model in (60). Then, the local estimates

are MSE optimal in the sense
that

. Fur-
ther, as the number of local iterates the local
augmented state estimates converge to their centralized coun-
terparts; i.e., , ,

(69)

(70)

Proof: MSE optimality of holds
because these estimates are derived by local KS recursions that
adhere to the state model in (47) and (60). Thus,

is the MMSE estimator of at sensor
given the available data that contain

“consensus enriched” information up to time . Further,
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recall that under ideal links
and for . Thus,
(65)–(68) coincide with (49)–(52) and convergence of

to and follows readily.

Over the interval , D-KS produces a sequence of
local MSE optimal state estimates , for

. Generally, the MSE associated with ,
decreases as increases since improves with

. Depending on the delay that can be afforded, D-KS trades
off estimation accuracy (i.e., MSE) for estimation delay. Recall
that the motivation for developing a D-KS was to utilize the in-
herent time delay in computing filtered state estimates and form
smoothed estimates. Fulfilling this objective, each sensor at time

provides the MSE optimal state estimates
with . Upon recalling that

, the augmented state filtered
estimate formed by D-KS at comprises both a filtered es-
timate of the original state as well as the smoothed es-
timates , exploiting all
the ’s available up to time .

Different from [2], D-KS consists only of local recursions
through which each sensor obtains its local state estimate and
corresponding covariance information by communicating only
with its single-hop neighbors. The D-KS scheme is tabulated as
Algorithm 2. The D-KS scheme is tabulated as Algorithm 2.

Remark 5: Besides being able to form filtered and smoothed
state estimates, D-KS exhibits noise robustness and trades off
delay for MSE reduction. Indeed, even though (58) holds only
approximately in the presence of noise, and are robust to
noise because they are formed via differences as in (27) and (28).

Algorithm 2 D-KS Algorithm

For all initialize and
.

At time instant

For all and form estimates
and using (54)

and (55).

For all and form augmented state
estimates using (65)–(68).

C. Numerical Examples

Here we test the D-KS algorithm in terms of estimation-error
covariance, and compare it with [13], [19] and [2], abbreviated
here SD-KF, OD-KF, and AD-KF, respectively. We consider

60 sensors as in Section III-B and a scalar state process,
with , , and initial conditions
and . Sensor acquires at time the scalar ob-
servation for which is normally distributed,
while . The number of consensus iterations used to
estimate and via (54) and (55) is set to . The
penalty coefficients are chosen as .

Fig. 4. The estimation error is within the curves for
D-KS (top); while the estimation error associated with SD-KF and OD-KF are
not bounded by the corresponding curves (bottom).

Fig. 4 (top) depicts the estimation error at
sensor 2. Notice that this error falls within the
curves. This is reasonable since the local KS schemes are con-
sistent with the data model of . However, this is
not the case with SD-KF and OD-KF as can be seen in Fig. 4
(bottom) which being inconsistent with the underlying observa-
tion model, cannot provide MSE optimal estimates [4, p. 233].

Another interesting property of D-KS is its ability to trade
off time delay for MSE reduction. Specifically, depending on
application-dependent delay constraints, all sensors at time
can utilize any of the smoothed estimates for

. This is to be contrasted with SD-KF that only
provides an estimate for after iterations, without
using the observations over the interval . Fig. 5 (top)
depicts the estimation error and corresponding bounds at
sensor , when estimating at time the state via

, for 0, 1 and 5. Note that longer delays
lead to lower MSEs. This can also be seen in Fig. 5 (bottom)
where the MSE is plotted for various time delays. Observe that
the MSE associated with the filtered (zero-delay) local state es-
timates , is much smaller than the MSE attained
when each sensor estimates using only its own observations
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Fig. 5. Estimation error and curves versus (top) and estimation MSE
(bottom) for variable delays at sensor .

(local filtering). Also, notice that the MSE is greatly re-
duced even when a one-step delay can be afforded. As the delay
increases, the MSE associated with decreases
and approaches that of the centralized KS.

We now examine the MSE achieved by the filtered estimates
provided by SD-KF, OD-KF, AD-KF and D-KS. Recall that
SD-KF produces an estimate once every consensus steps;
thus, in order to have a fair comparison, at time , state is
estimated via at sensor . Fig. 6
depicts the MSE as a function of time under ideal communi-
cation links. It can be seen that D-KS tracks the state process
through the local filtered estimates , and the MSE
reaches steady-state. The MSE associated with the local esti-
mates provided by SD-KF and OD-KF diverges. This is to be ex-
pected since both SD-KF and OD-KF are inconsistent with the
true observation model, causing errors to accumulate for the fast
varying . The AD-KF outperforms OD-KF and SD-KF, and
its corresponding MSE converges close to the one achieved by
D-KS. Though, recall that the corresponding covariance at every
sensor in AD-KF requires global statistical information from
all sensors in the network. In Fig. 6 (bottom) reception noise
is present in the “refined” observations for

, and the weighted filtered state estimates in [2].

Fig. 6. Empirical estimation MSE versus time index for D-KS, SD-KF,
OD-KF and AD-KF under ideal channel links (top); and in presence of
reception noise (bottom) at sensor

The noise-resilience properties of D-KS are apparent since the
MSE converges to a finite value outperforming AD-KF, SD-KF
and OD-KF, while the MSE for SD-KF and OD-KF grows un-
bounded.

VII. CONCLUDING REMARKS

We developed distributed algorithms for estimation of
random signals using ad hoc WSNs based on successive re-
finement of local estimates. The essence of our approach is
to express the desired estimator, either MAP or (L)MMSE, as
the solution of pertinent convex optimization problems. We
then relied on the alternating-direction method of multipliers
to enable decentralized implementation. The decentralized
estimators take into account all the available a priori informa-
tion, while they allow for arbitrary correlations among sensor
data. The novel framework does not require knowledge of the
estimator in closed form, and leads to decentralized estimation
algorithms that exhibit resilience to communication noise.
Furthermore, the distributed LMMSE estimator is provably
noise resilient. We also derived distributed estimators of non-
stationary random signals. Different from existing suboptimal
approaches, an MMSE optimal distributed Kalman smoother
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was developed that offers any-time optimal state estimates. The
novel distributed smoother is flexible to trade off estimation
delay for MSE reduction, while it exhibits noise resilience.

APPENDIX

A. Proof of Lemma 1

The cost in (11), call it , as well as the
linear equality constraint are convex. The
optimal solution can thus be obtained by applying the
first-order optimality conditions to the Lagrangian func-
tion , where

is the Lagrange multiplier corresponding to the equality con-
straint in (11). Specifically, the gradient of wrt

is . Setting
, we obtain that the optimal and

should satisfy . From the equality constraint in
(11) and the invertibility of it follows that ,
from which we deduce that .

B. Proof of Proposition 2

We wish to show that (13)–(15) generate a series of local
estimates converging to the optimal solution of (11), namely
the LMMSE estimator, when is a bridge sensor subset. We
will establish this by showing that (13)–(15) correspond to the
steps involved in the alternating-direction method of multipliers
[6, pg. 255]. Toward this end, let and denote the
Lagrange multipliers at the th iteration. Moreover, define

of size , where

and denotes the
vector with th entry one and zero elsewhere, while

are the indexes of the nonzero entries in the th
column of . Then, (12) can be equivalently written as

and (71)

where , , while

, and is the poly-

hedral set defined so as for it

holds that for . Inspection of
(71) shows that it has the same form as the optimization problem
in [6, p. 255, Eq. (4.76)]. Thus, the steps of the alternating-direc-
tion method of multipliers at st iteration are as follows.

S1-a) Set , and similarly fix
, and to obtain

and by solving the following minimization
problem

(72)

S1-b) For fixed , and setting
, after completing step

[S1-a], the consensus variables in and
are obtained as

(73)

S2) Update via (13).

Utilizing (13), we infer that (72) is equivalent to the following
separate subproblems:

(74)
Similarly, and can be obtained by minimizing
the cost function formed by keeping only the th term of the sums
in (73). Interestingly, each of the optimization problems in (74)
can be solved locally at the corresponding sensor. After applying
the KKT optimality conditions (see e.g., [7, p. 244]) to (74), we
can readily obtain (14). Further, setting the gradient of the cost
function formed by the th sum terms in (73), wrt , equal to
zero we obtain (15). We have shown that the alternating direction
method of multipliers applied to (12), boils down to (13)–(15).
Since (12) is convex and is invertible, recursions (13)–(15)
converge to the optimal solution [6, p. 257–260].

C. Proof of Lemma 3

With , both (15) and (26) yield the
same result for . Next, arguing by induction, suppose
that is given by (26) . After successive substitu-
tion of and into (13) and setting and

we arrive at

(75)
where and . Substituting (75) into (15), and
using the induction step we can readily obtain (26). Further, sub-
stituting (75) into (14) and using (25), (26) follows after straight-
forward algebra.
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D. Proof of Equation (33)

Substituting (31) into (30), we obtain

(76)

After stacking the first two terms in (76) we obtain the first two
terms in (33) and the first term in . Likewise, vectors

and are obtained by stacking the noise terms in (76).
Next, the second term in can be obtained after rewriting
the sum of the third term in (76) as

(77)

Stacking the third term in (76) for and using (77)
we find the second term of in (33). Vector can
be obtained similarly after stacking the fourth term in (76).

E. Proof of Proposition 4

Matrix satisfies the properties given in the following
lemma:

Lemma 7: The eigenvalues of ordered so
that and the corresponding right
and left eigenvectors and satisfy the following.

a) Eigenvalues for ; while
for .

b) The dominant left eigenvectors

are given by

(78)

(79)

where
with containing the

columns of with index from
to , , and

denoting the lower
submatrix of .

c) The dominant right eigenvectors
are , where

denotes the vector with its th entry
one and zeros elsewhere.

Proof: Let be an eigenvalue and the corresponding
left eigenvector of . Upon defining with

, and using that we find
, from which after multiplying

both sides from the right with , ( denotes conjugation),
we deduce that ,
where denotes conjugate transposition. Letting

and accounting for
the structure of and we arrive at

(80)

The roots of the second-order polynomial in (80) are given by
, where

(81)

(82)

Using (81) and (82) we will show that . If
then is complex. Applying the Cauchy–Schwartz inequality
to (82) we obtain

(83)

Further, utilizing the Schur complement (see e.g., [11, pg. 472])
it can be shown that is
positive semi-definite. Combining the latter with (83) we infer
that . If , there are two cases of
interest. In the first case , and since (83)
implies that , we immediately have . Next, we
consider and define

(84)
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Since ,
we can easily infer from (83) that and because

we have . Thus, all the eigenvalues of
should have magnitude at most one. To prove that the geometric
multiplicity of is , we must show that for
the matrix has nul-
lity . To this end, notice that

. Specifically, using the structure of we
can readily show that , while , for

as in (78) for . If ,
then (80) gives the iff (83) is tight. This holds true
iff for .
It can be verified after some algebra that the latter is true iff

for , with as in (78). Further,
holds that with which im-
plies that are left eigenvectors of associated with the
eigenvalue 1. Moreover, are linearly independent. Thus,

, and since the vectors in (78)
are left eigenvectors of associated with , we find

.
It remains to show that the algebraic multiplicity of is

also . This can be done using the Jordan canonical form (see
e.g., [11]) , where is invertible
and is a block diagonal matrix. Then, we argue
by contradiction as in [17, App. H]

To prove (c) recall that the dominant eigenvec-
tors, namely , should satisfy and

with as in (78). The vectors in (c) readily
satisfy these conditions.

Since for , we have
. Further, the domi-

nant eigenvectors in (78) satisfy
and , from which it follows

that

(85)
where the fourth equality (85) follow using in Lem. 7. The
limit covariance matrix in (40) can be obtained after:
i) rewriting as , ii) using
the property that , where

is the matrix between and in (40), and iii) using
the equality since

, .

F. Proof of Lemma 5

We first prove (58) for by rewriting as

(86)

From (86) we can readily verify that (58) holds true for ,
while the corresponding noise covariance is given by

. Arguing by induc-
tion, suppose now that (58) holds true for
for and . We will show that (58) is also true
for . From the induction hypothesis,

,
where

for , implying that

(87)

where the third equality in (87) follows from (55) and
is equal to the noise term in the rhs of the second equality

in (87). Notice that is zero-mean Gaussian. From
the second equality in (87) it follows that is
given by (59). Since is uncorrelated across sensors,
and we have

.

G. Proof of Lemma 6

It suffices to prove that

for . This
follows readily for after setting as
in Lemma 5. Using the second equality in (87) we can
easily verify that

, where
and . Further, from (61) it follows that

.
Since both and are produced
by the same recursion, while both are identically initialized

, we find that (64) holds true.
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