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Abstract—We develop adaptive scheduling and power control
algorithms for random access in a multiple access channel where
terminals acquire instantaneous channel state information but do
not know the probability distribution of the channel. In each time
slot, terminals measure the channel to the common access point.
Based on the observed channel value, they determine whether to
transmit or not and, if they decide to do so, adjust their trans-
mitted power. We remark that there is no coordination between
terminals and that adaptation is to the local channel value only.
It is shown that the proposed algorithm almost surely maximizes
a proportional fair utility while adhering to instantaneous and
average power constraints. Important properties of the algorithm
are low computational complexity and the ability to handle non-
convex rate functions. Numerical results on a randomly generated
network with heterogeneous users corroborate theoretical results.

Index Terms—Random access, channel state information,
adaptive algorithms, optimization, multiuser diversity.

I. INTRODUCTION

THIS paper considers wireless random access channels in
which terminals contend for access to a common access

point (AP) as is the case in wireless local area networks
and cellular systems. To exploit favorable channel conditions
terminals adapt their transmitted power and access decisions
to the state of the random fading channels linking them to the
AP. The challenges in developing this adaptive scheme are that
terminals have access to their own channel state information
(CSI) only, and that the probability distribution function (pdf)
of the fading channel is unknown. The goal of this paper is to
develop a distributed learning algorithm to determine optimal
transmitted power and channel access decisions relying on
local CSI only.

The idea of adapting medium access and power control
to CSI has been extensively explored in wireless communi-
cations. Early references dealing with power adaptation on
the uplink of multiuser systems focus on centralized power
control schemes where the AP collects channel states for all
terminals to select the one to be scheduled. In, e.g., [2],
the AP schedules the terminal with the best channel gain
with a power adapted to the channel condition. Similar ideas
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have also been used for scheduling and resource allocation in
broadcast downlink channels, see e.g., [3]–[5]. Although these
centralized schemes exploit multiuser diversity, they require
significant information exchange between terminals and the
AP; a problem exacerbated when the number of users is
large. To avoid this overhead, recent work integrates channel
adaptation into random access protocols. Exploiting the idea of
aligning schedules to good channel opportunities, [6] develops
a distributed channel-aware Aloha protocol in which terminals
transmit only when their channel gains exceed pre-defined
thresholds. This algorithm is shown to be asymptotically
optimal in the sense that the only performance loss compared
to a centralized scheme is due to user contention.

Under simple collision models, it has been shown that
distributed threshold-based schedulers with properly designed
thresholds maximize total throughput of a network with ho-
mogeneous users and total logarithmic throughput in the case
of heterogeneous users [7]. Similar threshold-based decentral-
ized adaptive random access schemes have been investigated
for other types of networks with different packet reception
models, see e.g., [8]–[14]. To compute the optimal thresholds,
however, terminals are assumed to know the probability distri-
bution of their fading channels. This is a restrictive assumption
because the channel fading distribution is usually unknown
and can only be estimated based on channel observations.
Overcoming this limitation motivates the development of
adaptive algorithms to learn optimal operating points based
on local CSI [15], [16]. The work in [15] proposes a heuristic
adaptive algorithm for threshold-based schedulers in which the
thresholds are tuned based on local channel realizations in a
time window. The work in [16] develops an online learning
algorithm for transmission probability and power control under
rate constraints using game-theoretic approaches. However,
neither [15] nor [16] guarantees global optimality.

The contribution of this paper is the development of an
optimal distributed adaptive algorithm for scheduling and
power control given that terminals only have access to local
CSI and operate independently of each other. At each time
slot, terminals observe their channel states and decide whether
to transmit or not. If they decide to transmit, they choose a
power for their communication attempt. As time progresses,
power budgets are satisfied almost surely, while the network
almost surely maximizes a weighted proportional fair util-
ity. We remark that terminals operate independently without
access to the channel state of other terminals and that the
channel pdf is unknown. The proposed algorithm can handle
general non-convex, even discontinuous, rate functions with
manageable computational complexity. It is worth noting that
under the frame work of network utility maximization (NUM)
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algorithms for computing optimal channel access probabilities
in random access networks are developed (see e.g. [17]).
However, neither fading nor power adaptation is considered
in these work.

The presentation begins by formulating optimal adaptive
random access as a utility maximization problem whose objec-
tive is to maximize a weighted sum of throughput logarithms
(Section II). The variables to be determined as a solution
of this optimization problem are a scheduling function that
determines if a terminal should transmit or not based on its
CSI, and a power allocation function that maps a terminal CSI
to its transmit power. It is important to remark that: (i) because
fading takes on a continuum of values, this optimization
problem is infinite-dimensional; (ii) the constraints modeling
random access are non-convex; (iii) despite the existence of
these non-convex constraints optimization problems of this
form are known to have null duality gap [18]; and (iv) since the
number of constraints turns out to be finite the optimization
problem is finite-dimensional in the dual domain. A further
complication is that the original problem formulation yields
solutions that require access to global CSI.

We start by overcoming the dependence on global CSI
by introducing an equivalent decomposition in per-terminal
subproblems whereby nodes maximize local utilities (Section
III.A). While this reformulation yields solutions that depend
on local CSI only, attempting a solution in the primal domain
is difficult because the per-terminal subproblems inherit infi-
nite dimensionality and lack of convexity from the original
problem formulation, as well as the need to have access to
the channel pdf. We therefore exploit the lack of duality gap
to approach their solution through a stochastic subgradient
descent algorithm in the dual domain (Section III.B). Based on
channel realizations in each time slot, the algorithm computes
instantaneous values for the scheduling and power allocation
functions and updates Lagrangian multipliers in a direction
that can be proven to point towards the set of optimal dual
variables in an average sense (Proposition 1). Exploiting
this fact we prove that the throughput utility achieved by
the algorithm almost surely converges to a value close to
the optimal utility. The gap between the optimal and the
achieved utility can be made arbitrarily small by reducing
a fixed step size (Theorem 1). The paper closes with a
numerical evaluation of the proposed algorithm for a randomly
generated heterogeneous network (Section IV). To illustrate
generality of the proposed approach we consider a system
with terminals employing capacity achieving codes (Section
IV-A) and a more practical scenario with nodes employing
adaptive modulation and coding (Section IV-B). Concluding
remarks are presented in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a multiple access channel with 𝑛 terminals con-
tending to communicate with a common AP. Time is divided in
slots identified by an index 𝑡. We assume a backlogged system,
i.e., all terminals always have packets to transmit in each
time slot. The time-varying nonnegative channel ℎ𝑖(𝑡) ∈ R+

between terminal 𝑖 and the AP at time 𝑡 is modeled as
block fading. Channel gains ℎ𝑖(𝑡1) and ℎ𝑖(𝑡2) of terminal 𝑖
at different time slots 𝑡1 ∕= 𝑡2 are assumed independent and

identically distributed (i.i.d.) with pdf 𝑓ℎ𝑖(⋅). Channel gains
ℎ𝑖(𝑡) and ℎ𝑗(𝑡) of different terminals 𝑖 ∕= 𝑗 are also assumed
independent. Channels are assumed to have continuous pdf.
This latter assumption holds true for models used in practice,
e.g., Rayleigh, Rician and Nakagami [19, Ch. 3]. We assume
each terminal 𝑖 has access to its channel gain ℎ𝑖(𝑡) at each time
slot 𝑡. While there are various alternatives to obtain channel
state information, the simplest would be for the AP to send a
beacon signal at the beginning of each time slot. This beacon
signal would serve the double purpose of providing a reference
for channel estimation as well as a synchronization signal.

Based on its channel state ℎ𝑖(𝑡), node 𝑖 decides whether to
transmit or not in time slot 𝑡 by determining the value of a
scheduling function 𝑞𝑖(𝑡) := 𝑄𝑖(ℎ𝑖(𝑡)) : R

+ → {0, 1}. Node
𝑖 transmits in time slot 𝑡 if 𝑞𝑖(𝑡) = 1 and remains silent if
𝑞𝑖(𝑡) = 0. Notice that each terminal has a different scheduling
function and that schedules 𝑞𝑖(𝑡) are determined based on the
CSI of each node independently of other terminals. Although
each node has access to its local CSI ℎ𝑖(𝑡), the underlying pdf
𝑓ℎ𝑖(⋅) is unknown.

Besides channel access decisions, terminals also adapt trans-
mission power to their channel gains through a power control
function 𝑃𝑖(ℎ𝑖(𝑡)) : R+ → [0, 𝑝inst

𝑖 ], where 𝑝inst
𝑖 ∈ R+ is

a constant representing the instantaneous power constraint
of node 𝑖. By using this function, terminal 𝑖 adjusts its
transmission power 𝑃𝑖(ℎ𝑖(𝑡)) in response to ℎ𝑖(𝑡). Similar to
𝑞𝑖(𝑡), we define 𝑝𝑖(𝑡) := 𝑃𝑖(ℎ𝑖(𝑡)), representing the power
allocated to node 𝑖 in time slot 𝑡. If node 𝑖 transmits in
time slot 𝑡, 𝑝𝑖(𝑡) and ℎ𝑖(𝑡) jointly determine the transmission
rate through a function 𝐶𝑖(ℎ𝑖(𝑡)𝑝𝑖(𝑡)) : R+ → R+. The
exact form of 𝐶𝑖(ℎ𝑖(𝑡)𝑝𝑖(𝑡)) depends on how the signal is
modulated and coded at the physical layer. Examples con-
sidered later in the paper include capacity-achieving codes
and adaptive modulation and coding (AMC). With capacity-
achieving codes, 𝐶𝑖(ℎ𝑖(𝑡)𝑝𝑖(𝑡)) takes the form

𝐶𝑖(ℎ𝑖(𝑡)𝑝𝑖(𝑡)) = 𝐵 log

(
1 +

ℎ𝑖(𝑡)𝑝𝑖(𝑡)

𝐵𝑁0

)
, (1)

where 𝐵 and 𝑁0 are the channel bandwidth and the power
spectral density of the channel noise, respectively. With AMC,
there are 𝑀 transmission modes available. The 𝑚th mode
affords communication rate 𝜏𝑚 and is used when the signal to
noise ratio (SNR) ℎ𝑖(𝑡)𝑝𝑖(𝑡)/𝐵𝑁0 is between 𝜂𝑚 and 𝜂𝑚+1.
The rate function is therefore

𝐶𝑖(ℎ𝑖(𝑡)𝑝𝑖(𝑡)) =

𝑀∑
𝑚=1

𝜏𝑚𝕀

(
𝜂𝑚 ≤ ℎ𝑖(𝑡)𝑝𝑖(𝑡)

𝐵𝑁0
≤ 𝜂𝑚+1

)
,

(2)
where 𝕀(⋅) denotes the indicator function. To keep the analysis
general we do not restrict 𝐶𝑖(ℎ𝑖(𝑡)𝑝𝑖(𝑡)) to take either specific
form. It is only assumed that 𝐶𝑖(ℎ𝑖(𝑡)𝑝𝑖(𝑡)) is a nonnegative
increasing function of the product of ℎ𝑖(𝑡) and 𝑝𝑖(𝑡) that
takes finite values for finite arguments. These assumptions are
satisfied by (1) and (2) and are likely to hold in practice.

Since terminals contend for channel access, transmission
of terminal 𝑖 in a time slot 𝑡 is successful if and only if
𝑞𝑖(𝑡) = 1 and 𝑞𝑗(𝑡) = 0 for all 𝑗 ∕= 𝑖. If the transmission
of terminal 𝑖 is successful, its transmission rate is determined
by 𝐶𝑖(ℎ𝑖(𝑡)𝑝𝑖(𝑡)). As as consequence, the instantaneous trans-
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mission rate for terminal 𝑖 in time slot 𝑡 is

𝑟𝑖(𝑡) = 𝐶𝑖 (ℎ𝑖(𝑡)𝑝𝑖(𝑡)) 𝑞𝑖(𝑡)
𝑛∏

𝑗=1,𝑗 ∕=𝑖

[1− 𝑞𝑗(𝑡)] . (3)

Assuming an ergodic mode of operation, quality of service is
determined by the long term behavior of 𝑟𝑖(𝑡). This implies
that system performance is determined by the ergodic limits

𝑟𝑖 := lim
𝑡→∞

1

𝑡

𝑡∑
𝑢=1

𝑟𝑖(𝑢)

= lim
𝑡→∞

1

𝑡

𝑡∑
𝑢=1

⎡
⎣𝐶𝑖 (ℎ𝑖(𝑢)𝑝𝑖(𝑢)) 𝑞𝑖(𝑢)

𝑛∏
𝑗=1,𝑗 ∕=𝑖

[1− 𝑞𝑗(𝑢)]
⎤
⎦ .
(4)

Assuming ergodicity of schedules 𝑞𝑖(𝑡) = 𝑞𝑖(ℎ𝑖(𝑡)) and power
allocations 𝑝𝑖(𝑡) = 𝑝𝑖(ℎ𝑖(𝑡)), the limit 𝑟𝑖 can be written as a
expected value over channel realizations,

𝑟𝑖 = 𝔼h

⎡
⎣𝑄𝑖(ℎ𝑖)𝐶𝑖(ℎ𝑖𝑃𝑖(ℎ𝑖))

𝑛∏
𝑗=1,𝑗 ∕=𝑖

[1−𝑄𝑗(ℎ𝑗)]

⎤
⎦ , (5)

where we have defined the vector h = [ℎ1, ⋅ ⋅ ⋅ , ℎ𝑛]𝑇 grouping
all channels ℎ𝑖. An important observation here is that since
terminals are required to make channel access and power
control decisions independently of each other, 𝑄𝑖(ℎ𝑖) and
𝑃𝑖(ℎ𝑖) are independent of 𝑄𝑗(ℎ𝑗) and 𝑃𝑗(ℎ𝑗) for all 𝑖 ∕= 𝑗.
This allows us to rewrite 𝑟𝑖 as

𝑟𝑖 = 𝔼ℎ𝑖 [𝑄𝑖(ℎ𝑖)𝐶𝑖(ℎ𝑖𝑃𝑖(ℎ𝑖))]

𝑛∏
𝑗=1,𝑗 ∕=𝑖

[
1− 𝔼ℎ𝑗 [𝑄𝑗(ℎ𝑗)]

]
.

(6)
In addition to instantaneous power constraints 𝑝𝑖(𝑡) ≤ 𝑝inst

𝑖 ,
terminals adhere to average power constraints 𝑝avg

𝑖 ∈ R+ as
in, e.g., [20]. This average power constraint restricts the long
term average of transmitted power that we either write as an
ergodic limit or as an expectation over channel realizations,

𝑝𝑖 := lim
𝑡→∞

1

𝑡

𝑡∑
𝑢=1

𝑞𝑖(𝑢)𝑝𝑖(𝑢) = 𝔼ℎ𝑖 [𝑄𝑖(ℎ𝑖)𝑃𝑖(ℎ𝑖)]. (7)

With rates 𝑟𝑖 given as in (6), the objective is to maximize a
weighted proportional fair (WPF) utility defined as

𝑈(r) =
𝑛∑

𝑖=1

𝑤𝑖 log(𝑟𝑖), (8)

where r = [𝑟1, ⋅ ⋅ ⋅ , 𝑟𝑛]𝑇 is the vector of rates and 𝑤𝑖 ∈ R+

is the weight coefficient for terminal 𝑖. Setting 𝑤𝑖 = 𝑤𝑗 for all
𝑖 ∕= 𝑗 in a homogenous system with all channels having the
same pdf, the WPF utility is equivalent to maximizing the sum
of throughputs. In a heterogeneous network where channel
pdfs vary among users, maximizing 𝑈(r) yields solutions
that are fair since it prevents users from having very low
transmission rates.

Grouping the objective in (8) with the constraints in (6)
and (7), optimal adaptive random access is formulated as the
following optimization problem

P = max 𝑈(r)

s.t. 𝑟𝑖 = 𝔼ℎ𝑖 [𝑄𝑖(ℎ𝑖)𝐶𝑖(ℎ𝑖𝑃𝑖(ℎ𝑖))]
𝑛∏

𝑗=1,𝑗 ∕=𝑖

[
1− 𝔼ℎ𝑗 [𝑄𝑗(ℎ𝑗)]

]
,

𝔼ℎ𝑖 [𝑄𝑖(ℎ𝑖)𝑃𝑖(ℎ𝑖)] ≤ 𝑝avg
𝑖 ,

𝑄𝑖(ℎ𝑖) ∈ 𝒬, 𝑃𝑖(ℎ𝑖) ∈ 𝒫𝑖,∀𝑖 (9)

where 𝒬 is the set of functions R+ → {0, 1} taking values on
{0, 1} and 𝒫𝑖 represents the set of functions R+ → [0, 𝑝inst

𝑖 ]
taking values on [0, 𝑝inst

𝑖 ]. Notice that the joint optimization
across users required to solve (9) introduces functional depen-
dence between the actions of different terminals. This is not
incongruent with the requirement of statistically independent
schedules in each time slot. In fact, the notations 𝑄𝑖(ℎ𝑖) and
𝑃𝑖(ℎ𝑖) in (9) stipulates that terminals are required to make
channel access and power allocation decisions based on local
CSI only. Consequently, although problem (9) requires joint
optimization across users, it restricts optimization to policies
that result in statistically independent operations.

The goal of this paper is to develop an online algorithm
to determine schedules 𝑞𝑖(𝑡) and power assignments 𝑝𝑖(𝑡)
having statistics that solve the optimization problem in (9).
The algorithm is required to: (i) operate without knowledge
of the channel distribution; and (ii) yield functions 𝑞𝑖(𝑡) and
𝑝𝑖(𝑡) that depend on the current and past values of the local
channel ℎ𝑖(𝑡) but are independent of other terminal’s channels
ℎ𝑗(𝑡) for 𝑗 ∕= 𝑖.

Remark 1: In order to allow terminals to know if their
transmissions are successful or not, the AP provides feedback
on whether the transmission attempt was successful or a
collision detected. If a terminal transmits a packet but detects
a collision, it can reschedule the packet for retransmission in
a subsequent time slot. We remark that feedback does not
introduce correlation between the transmission decisions of
different terminals. The provided feedback only tells terminals
if they should retransmit previous packets or not, but does
not enforce them to make channel access or power allocation
decisions.

III. ADAPTIVE ALGORITHMS FOR DECENTRALIZED

CHANNEL-AWARE RANDOM ACCESS

The stated goal is to devise scheduling and power control
policies based on local CSI that are globally optimal as per (9).
These two objectives, i.e., global optimality while relying on
local CSI, seem to contradict each other. Because 𝑟𝑖 depends
not only on 𝑄𝑖(ℎ𝑖) and 𝑃𝑖(ℎ𝑖) but on 𝑄𝑗(ℎ𝑗) for all 𝑗 ∕= 𝑖, it
seems that optimal 𝑄𝑖(ℎ𝑖) and 𝑃𝑖(ℎ𝑖) solving (9) might also
be functions of other terminals’ CSI. To see that this is not the
case, we will show that it is possible to decompose (9) in per
terminal subproblems. After introducing this decomposition
the complicating fact that the channel pdf 𝑓ℎ𝑖(ℎ𝑖) is unknown
remains. To overcome this complication, we will introduce a
stochastic subgradient descent algorithm in the dual domain
that is optimal in an ergodic sense.

A. Problem Decomposition and Its Dual

Begin then by separating (9) in per terminal subproblems.
To do so, we substitute (6) into (8) and express the logarithm
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of a product as a sum of logarithms. As a result, the global
utility in (8) can be rewritten as

𝑈(r) =

𝑛∑
𝑖=1

𝑤𝑖

[
log𝔼ℎ𝑖 [𝑄𝑖(ℎ𝑖)𝐶𝑖(ℎ𝑖𝑃𝑖(ℎ𝑖))]

+
𝑛∑

𝑗=1,𝑗 ∕=𝑖

log
[
1− 𝔼ℎ𝑗 [𝑄𝑗(ℎ𝑗)]

]]
. (10)

Note that each summand in (10) only involves variables related
to a particular node. Thus, we can reorder summands in (10)
to group all of the terms pertaining to node 𝑖. Further defining
𝑤̃𝑖 :=

∑𝑛
𝑗=1,𝑗 ∕=𝑖 𝑤𝑖, we can rewrite (10) as

𝑈(r) =

𝑛∑
𝑖=1

[
𝑤𝑖 log

[
𝔼ℎ𝑖 [𝑄𝑖(ℎ𝑖)𝐶𝑖(ℎ𝑖𝑃𝑖(ℎ𝑖))]

]

+ 𝑤̃𝑖 log
[
1− 𝔼ℎ𝑖 [𝑄𝑖(ℎ𝑖)]

]]
:=

𝑛∑
𝑖=1

𝑈𝑖, (11)

where we have defined the local utilities 𝑈𝑖. Since 𝑈𝑖 only
involves variables that are related to terminal 𝑖, it can be
regarded as a utility function for terminal 𝑖. To maximize
𝑈(r) for the whole system it suffices to separately maximize
𝑈𝑖 for each terminal 𝑖. Introducing auxiliary variables 𝑥𝑖 =
𝔼ℎ𝑖 [𝑄𝑖(ℎ𝑖)𝐶𝑖(ℎ𝑖𝑃𝑖(ℎ𝑖))] and 𝑦𝑖 = 𝔼ℎ𝑖 [𝑄𝑖(ℎ𝑖)], it follows
that (9) is equivalent to the following per terminal subproblems

P𝑖 = max 𝑤𝑖 log 𝑥𝑖 + 𝑤̃𝑖 log(1 − 𝑦𝑖)
s.t. 𝑥𝑖 ≤ 𝔼ℎ𝑖 [𝑄𝑖(ℎ𝑖)𝐶𝑖(ℎ𝑖𝑃𝑖(ℎ𝑖))] ,

𝑦𝑖 ≥ 𝔼ℎ𝑖 [𝑄𝑖(ℎ𝑖)] ,

𝔼ℎ𝑖 [𝑄𝑖(ℎ𝑖)𝑃𝑖(ℎ𝑖)] ≤ 𝑝avg
𝑖 ,

𝑥𝑖 ≥ 0, 0 ≤ 𝑦𝑖 ≤ 1, 𝑄𝑖(ℎ𝑖) ∈ 𝒬, 𝑃𝑖(ℎ𝑖) ∈ 𝒫𝑖,
(12)

where we relaxed the equality constraints to inequality ones
which can be done without loss of optimality. Finding optimal
solutions of (12) for all terminals 𝑖 is equivalent to solving
(9). Different from (9), however, there is no coupling between
variables of different terminals in (12). This property leads
naturally to optimal 𝑄𝑖(ℎ𝑖) and 𝑃𝑖(ℎ𝑖) that are independent of
other terminals’ CSI as required by problem definition. Alas,
(12) inherits the complex structure of (9).

As is the case with (9), solving (12) is difficult because: (i)
The optimization space in (12) includes functions 𝑄𝑖(ℎ𝑖) and
𝑃𝑖(ℎ𝑖) that are defined on R+, implying that the dimension
of the problem is infinite. (ii) The rate function 𝐶𝑖(ℎ𝑖𝑃𝑖(ℎ𝑖))
is in general non-concave with respect to ℎ𝑖𝑃𝑖(ℎ𝑖), and may
be even discontinuous as in (2). (iii) The constraints involve
expected values over random variables ℎ𝑖 whose pdfs are
unknown.

An important observation is that the number of constraints
in (12) is finite. This implies that while there are infinite
variables in the primal domain, there are a finite number
of variables in the dual domain. This observation suggests
that (12) is more tractable in the dual space. Introduce then
Lagrange multipliers 𝝀𝑖 = [𝜆𝑖1, 𝜆𝑖2, 𝜆𝑖3]

𝑇 associated with
the first three inequality constraints in (12); define vectors
x𝑖 := [𝑥𝑖, 𝑦𝑖]

𝑇 and P𝑖(ℎ𝑖) := [𝑄𝑖(ℎ𝑖), 𝑃𝑖(ℎ𝑖)]
𝑇 ; and write

the Lagragian of the optimization problem in (12) as

ℒ𝑖(x𝑖,P𝑖(ℎ𝑖),𝝀𝑖)

=𝑤𝑖 log 𝑥𝑖 + 𝑤̃𝑖 log(1− 𝑦𝑖)
+ 𝜆𝑖1 [𝔼ℎ𝑖 [𝑄𝑖(ℎ𝑖)𝐶𝑖(ℎ𝑖𝑃𝑖(ℎ𝑖))]− 𝑥𝑖]
+ 𝜆𝑖2 [𝑦𝑖 − 𝔼ℎ𝑖 [𝑄𝑖(ℎ𝑖)]] + 𝜆𝑖3

[
𝑝avg
𝑖 − 𝔼ℎ𝑖 [𝑄𝑖(ℎ𝑖)𝑃𝑖(ℎ𝑖)]

]
=𝜆𝑖3𝑝

avg
𝑖 + [𝑤𝑖 log 𝑥𝑖 − 𝜆𝑖1𝑥𝑖] + [𝑤̃𝑖 log(1− 𝑦𝑖) + 𝜆𝑖2𝑦𝑖]

+ 𝔼ℎ𝑖 [𝑄𝑖(ℎ𝑖) [𝜆𝑖1𝐶𝑖(ℎ𝑖𝑃𝑖(ℎ𝑖))− 𝜆𝑖2 − 𝜆𝑖3𝑃𝑖(ℎ𝑖)]] .
(13)

where the second equality follows after reordering terms in the
first equation. Notice that the first term in the second equality
in (13) depends on 𝑥𝑖 only, the second term on 𝑦𝑖 and the
third term on 𝑃𝑖(ℎ𝑖) and 𝑄𝑖(ℎ𝑖). This property is exploited
later on. The dual function is then defined as the maximum
of the Lagrangian over the set of feasible x𝑖 and P𝑖(ℎ𝑖), i.e.,

𝑔𝑖(𝝀𝑖) :=max ℒ𝑖(x𝑖,P𝑖(ℎ𝑖),𝝀𝑖)

s.t. 𝑥𝑖 ≥ 0, 0 ≤ 𝑦𝑖 ≤ 1, 𝑄𝑖(ℎ𝑖) ∈ 𝒬, 𝑃𝑖(ℎ𝑖) ∈ 𝒫𝑖.
(14)

We now can write the dual problem as the minimum of 𝑔𝑖(𝝀𝑖)
over positive dual variables, i.e.,

D𝑖 = min
𝝀𝑖≥0

𝑔𝑖(𝝀𝑖). (15)

In general, the optimal dual value D𝑖 of (15) provides an
upper bound for the optimal primal value P𝑖 of (12), i.e.,
D𝑖 ≥ P𝑖. While the inequality is typically strict for non-
convex problems, for the problem in (12) P𝑖 = D𝑖 as long
as the fading distribution has no realization with positive
probability [18]. Notice that this is true despite the non-
convex constraints present in (12). This lack of duality gap
implies that the finite dimensional convex dual problem
is equivalent to the infinite dimensional nonconvex primal
problem. While this affords a substantial improvement in
computational tractability, it does not necessarily mean that
solving the dual problem is easy because evaluation of the
dual function’s value requires maximization of the Lagrangian.
In particular, this maximization includes an expected value
over the unknown channel distribution 𝑓ℎ𝑖(ℎ𝑖). Still, convexity
of the dual function allows the use of descent algorithms
in the dual domain because any local optimal solution is a
global optimal solution 𝝀∗

𝑖 = [𝜆∗𝑖1, 𝜆
∗
𝑖2, 𝜆

∗
𝑖3]

𝑇 . This property
is exploited next to develop a stochastic subgradient descent
algorithm that solves (15) using observations of instantaneous
channel realizations ℎ𝑖(𝑡).

B. Adaptive Algorithms Using Stochastic Subgradient Descent

Instead of directly finding optimal 𝑥𝑖, 𝑦𝑖, 𝑄𝑖(ℎ𝑖) and 𝑃𝑖(ℎ𝑖)
for the primal problem (12), the proposed algorithm exploits
the lack of duality gap to use a stochastic subgradient descent
in the dual domain. Starting from given dual variables 𝝀𝑖(𝑡),
the algorithm computes instantaneous primal variables 𝑥𝑖(𝑡),
𝑦𝑖(𝑡), 𝑞𝑖(𝑡) and 𝑝𝑖(𝑡) based on channel realization ℎ𝑖(𝑡) in time
slot 𝑡, and uses these values to update dual variables 𝝀𝑖(𝑡+1).
Specifically, the algorithm starts finding primal variables that
optimize the summands of the Lagrangian in (13) (the operator
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[⋅]+ denotes projection in the positive orthant)

𝑥𝑖(𝑡) = argmax
𝑥𝑖≥0

{𝑤𝑖 log 𝑥𝑖 − 𝜆𝑖1(𝑡)𝑥𝑖} =
𝑤𝑖

𝜆𝑖1(𝑡)
, (16)

𝑦𝑖(𝑡) = argmax
0≤𝑦𝑖≤1

{𝑤̃𝑖 log(1− 𝑦𝑖) + 𝜆𝑖2(𝑡)𝑦𝑖} =

[
1− 𝑤̃𝑖

𝜆𝑖2(𝑡)

]+
,

(17)

{𝑞𝑖(𝑡), 𝑝𝑖(𝑡)} =

argmax
𝑞𝑖∈{0,1},𝑝𝑖∈[0,𝑝inst

𝑖 ]

{𝑞𝑖 [𝜆𝑖1(𝑡)𝐶𝑖(ℎ𝑖(𝑡)𝑝𝑖)− 𝜆𝑖2(𝑡)− 𝜆𝑖3(𝑡)𝑝𝑖]} ,
(18)

The maximization in (18) determines schedules and transmit-
ted power associated with current channel realization ℎ𝑖(𝑡).
Since 𝑞𝑖 in (18) takes values on {0,1} the objective is either
0 when 𝑞𝑖 = 0 or 𝜆𝑖1(𝑡)𝐶𝑖(ℎ𝑖(𝑡)𝑝𝑖)− 𝜆𝑖2(𝑡)− 𝜆𝑖3(𝑡)𝑝𝑖 when
𝑞𝑖 = 1. Thus, to solve (18) we only need to find the optimal
𝑝𝑖(𝑡) when 𝑞𝑖(𝑡) = 1 and see if the resulting objective is
greater than 0. Thus, we can rewrite (18) as

𝑝𝑖(𝑡) = argmax
𝑝𝑖∈[0,𝑝inst

𝑖 ]

{𝜆𝑖1(𝑡)𝐶𝑖(ℎ𝑖(𝑡)𝑝𝑖)− 𝜆𝑖2(𝑡)− 𝜆𝑖3(𝑡)𝑝𝑖} ,

𝑞𝑖(𝑡) = 𝐻
(
𝜆𝑖1(𝑡)𝐶𝑖(ℎ𝑖(𝑡)𝑝𝑖(𝑡))− 𝜆𝑖2(𝑡)− 𝜆𝑖3(𝑡)𝑝𝑖(𝑡)

)
,
(19)

where 𝐻(𝑎) denotes Heaviside’s step function with 𝐻(𝑎) = 1
for 𝑎 > 0 and 𝐻(𝑎) = 0 otherwise.

Based on 𝑥𝑖(𝑡), 𝑦𝑖(𝑡), 𝑞𝑖(𝑡) and 𝑝𝑖(𝑡), define the stochastic
subgradient s𝑖(𝑡) = [𝑠𝑖1(𝑡), 𝑠𝑖2(𝑡), 𝑠𝑖3(𝑡)]

𝑇 with components

𝑠𝑖1(𝑡) = 𝑞𝑖(𝑡)𝐶𝑖(ℎ𝑖(𝑡)𝑝𝑖(𝑡))− 𝑥𝑖(𝑡), (20)

𝑠𝑖2(𝑡) = 𝑦𝑖(𝑡)− 𝑞𝑖(𝑡), (21)

𝑠𝑖3(𝑡) = 𝑝
avg
𝑖 − 𝑞𝑖(𝑡)𝑝𝑖(𝑡). (22)

The algorithm is completed with the introduction of a constant
step size 𝜖 and a descent update in the dual domain along the
stochastic subgradient s𝑖(𝑡)

𝜆𝑖𝑙(𝑡+ 1) = [𝜆𝑖𝑙(𝑡)− 𝜖𝑠𝑖𝑙(𝑡)]+ , for 𝑙 = 1, 2, 3. (23)

Notice that computation of variables in (16)-(23) does not
require information exchanges between terminals. This guar-
antees 𝑄𝑖(ℎ𝑖) and 𝑃𝑖(ℎ𝑖) to be independent of 𝑄𝑗(ℎ𝑗) and
𝑃𝑗(ℎ𝑗) for all 𝑖 ∕= 𝑗 as required by problem formulation. The
proposed algorithm is summarized in Table I.

To analyze convergence of (16)-(23) let us start by showing
that s𝑖(𝑡) is indeed a stochastic subgradient of the dual
function as stated in the following proposition.

Proposition 1: Given 𝝀𝑖(𝑡), the expected value of the
stochastic subgradient s𝑖(𝑡) is a subgradient of the dual
function in (14), i.e., ∀𝝀𝑖 ≥ 0,

𝔼ℎ𝑖

[
s𝑇𝑖 (𝑡)∣𝝀𝑖(𝑡)

]
(𝝀𝑖(𝑡)− 𝝀𝑖) ≥ 𝑔𝑖(𝝀𝑖(𝑡)) − 𝑔𝑖(𝝀𝑖). (24)

In particular,

𝔼ℎ𝑖

[
s𝑇𝑖 (𝑡)∣𝝀𝑖(𝑡)

]
(𝝀𝑖(𝑡)− 𝝀∗

𝑖 ) ≥ 𝑔𝑖(𝝀𝑖(𝑡)) − D𝑖 ≥ 0. (25)

Proof: See Appendix A.

Proposition 1 states that the average of the stochastic subgra-
dient s𝑖(𝑡) is a subgradient of the dual function. We can then
think of an alternative algorithm by replacing 𝔼ℎ𝑖

[
s𝑖(𝑡)

∣∣𝝀𝑖(𝑡)
]

for s𝑖(𝑡) in the dual iteration step (23), which would amount

TABLE I
ADAPTIVE DISTRIBUTED SCHEDULING AND POWER CONTROL

ALGORITHM FOR OPTIMAL RANDOM ACCESS

Algorithm 1: Adaptive scheduling and power control at
terminal 𝑖
Initialize Lagrangian multipliers 𝝀𝑖(0);1
for 𝑡 = 0, 1, 2, ⋅ ⋅ ⋅ do2

Compute primal variables as per (16), (17), and (19):3

𝑥𝑖(𝑡) =
𝑤𝑖

𝜆𝑖1(𝑡)
;

4

𝑦𝑖(𝑡) =

[
1− 𝑤̃𝑖

𝜆𝑖2(𝑡)

]+
;

5
𝑝𝑖(𝑡) = argmax

𝑝𝑖∈[0,𝑝inst
𝑖 ]

{𝜆𝑖1(𝑡)𝐶𝑖(ℎ𝑖(𝑡)𝑝𝑖)− 𝜆𝑖2(𝑡) − 𝜆𝑖3(𝑡)𝑝𝑖};
6

𝑞𝑖(𝑡) = 𝐻
(
𝜆𝑖1(𝑡)𝐶𝑖(ℎ𝑖(𝑡)𝑝𝑖(𝑡)) − 𝜆𝑖2(𝑡) − 𝜆𝑖3(𝑡)𝑝𝑖(𝑡)

)
;7

if 𝑞𝑖(𝑡) = 1 then8
Transmit with power 𝑝𝑖(𝑡);9

end10
Compute stochastic subgradients as per (20)-(22):11
𝑠𝑖1(𝑡) = 𝑞𝑖(𝑡)𝐶𝑖(ℎ𝑖(𝑡)𝑝𝑖(𝑡)) − 𝑥𝑖(𝑡);12
𝑠𝑖2(𝑡) = 𝑦𝑖(𝑡) − 𝑞𝑖(𝑡);13
𝑠𝑖3(𝑡) = 𝑝

avg
𝑖 − 𝑞𝑖(𝑡)𝑝𝑖(𝑡);14

Update dual variables as per (23):15
𝜆𝑖𝑙(𝑡+ 1) = [𝜆𝑖𝑙(𝑡) − 𝜖𝑠𝑖𝑙(𝑡)]

+ , for 𝑙 = 1, 2, 3;16
end17

to a subgradient descent algorithm for the dual function.
Since, 𝔼ℎ𝑖

[
s𝑖(𝑡)

∣∣𝝀𝑖(𝑡)
]
points towards 𝝀∗ – the angle between

𝔼ℎ𝑖

[
s𝑖(𝑡)

∣∣𝝀𝑖(𝑡)
]

and 𝝀𝑖(𝑡) − 𝝀∗
𝑖 is positive as indicated

by (25) –, it is not difficult to prove that 𝝀𝑖(𝑡) eventually
approaches 𝝀∗

𝑖 , e.g., [21, Ch. 2]. However, since we assume
the pdf of ℎ𝑖 is unknown, the subgradient 𝔼ℎ𝑖

[
s𝑖(𝑡)

∣∣𝝀𝑖(𝑡)
]

can only be approximated using past channel realizations
ℎ𝑖(1), . . . , ℎ𝑖(𝑡). While this approach is possible, it is com-
putationally costly.

The computation of the stochastic subgradient s𝑖(𝑡), on the
contrary, is simple because it only depends on the current
channel state ℎ𝑖(𝑡). Furthermore, since s𝑖(𝑡) points towards
the set of optimal dual variables 𝝀∗

𝑖 on average [cf. (25)]
it is reasonable to expect the stochastic subgradient descent
iterations in (23) to also approach 𝝀∗

𝑖 in some sense. This can
be proved true and leveraged to prove almost sure convergence
of primal iterates 𝑥𝑖(𝑡), 𝑦𝑖(𝑡), 𝑝𝑖(𝑡) and 𝑞𝑖(𝑡) to an optimal
operating point in an ergodic sense [22]. Specifically, Theorem
1 of [22] assumes as hypotheses that the second moment of
the norm of the stochastic subgradient s𝑖(𝑡) is finite, i.e.,
𝔼ℎ𝑖

[∥s𝑖(𝑡)∥2∣∣𝝀𝑖(𝑡)
] ≤ 𝑆2

𝑖 , and that there exists a set of
strictly feasible primal variables that satisfy the constraints in
(12) with strict inequality. If these hypotheses are true, primal
iterates of dual stochastic subgradient descent are almost
surely feasible in an ergodic sense. For the particular case
of the problem in (12), [22, Theorem 1] implies that

lim
𝑡→∞

1

𝑡

𝑡∑
𝑢=1

𝑞𝑖(𝑢)𝑝𝑖(𝑢) ≤ 𝑝avg
𝑖 a.s., (26)

lim
𝑡→∞

1

𝑡

𝑡∑
𝑢=1

𝑥𝑖(𝑢) ≤ lim
𝑡→∞

1

𝑡

𝑡∑
𝑢=1

𝑞𝑖(𝑢)𝐶𝑖(ℎ𝑖(𝑢)𝑝𝑖(𝑢)) a.s.,

(27)

lim
𝑡→∞

1

𝑡

𝑡∑
𝑢=1

𝑦𝑖(𝑢) ≥ lim
𝑡→∞

1

𝑡

𝑡∑
𝑢=1

𝑞𝑖(𝑢) a.s. (28)



2708 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 10, NO. 8, AUGUST 2011

It also follows from [22, Theorem 1] that 𝑥𝑖(𝑡) and 𝑦𝑖(𝑡) yield
ergodic utilities that are almost surely within 𝜖𝑆2

𝑖 /2 of optimal,
i.e.,

P𝑖− lim
𝑡→∞

1

𝑡

𝑡∑
𝑢=1

[𝑤𝑖 log 𝑥𝑖(𝑢) + 𝑤̃𝑖 log(1− 𝑦𝑖(𝑢))] ≤ 𝜖𝑆2
𝑖

2
a.s.

(29)
From (26) we can conclude that the ergodic limit of the power
allocated by the proposed algorithm satisfies the average
power constraint. However, (29) does not imply that the
scheduling and power allocation variables 𝑝𝑖(𝑡) and 𝑞𝑖(𝑡) are
optimal. The optimality claim in (29) is for the auxiliary vari-
ables 𝑥𝑖(𝑡) and 𝑦𝑖(𝑡) but the goal here is to claim optimality of
the scheduling and power allocation variables 𝑝𝑖(𝑡) and 𝑞𝑖(𝑡).
To prove optimality of the algorithm, we need to show that
the ergodic transmission rate 𝑟𝑖 of (4), achieved by allocations
𝑞𝑖(𝑡) and 𝑝𝑖(𝑡) is optimal in the sense of maximizing the
throughput utility 𝑈(r) =

∑𝑛
𝑖=1 𝑤𝑖 log(𝑟𝑖).

If the constraints in (12) were satisfied for all times 𝑡, i.e.,
if 𝑥𝑖(𝑡) ≤ 𝑞𝑖(𝑡)𝐶𝑖(ℎ𝑖(𝑡)𝑝𝑖(𝑡)) and 𝑦𝑖(𝑡) ≥ 𝑞𝑖(𝑡), transforming
(29) into an almost sure near optimality claim for the ergodic
limit 𝑟𝑖 is a simple matter of substitution and algebraic
manipulation. However, these inequalities do not necessarily
hold for all times 𝑡. They hold in an ergodic sense as stated
in (27) and (28). This subtle yet fundamental mismatch is
addressed in the proof of the following theorem.

Theorem 1: Consider a random multiple access channel
with 𝑛 terminals using schedules 𝑞𝑖(𝑡) and power alloca-
tions 𝑝𝑖(𝑡) generated by the algorithm defined by (16)-(23)
resulting in instantaneous transmission rates 𝑟𝑖(𝑡) as given
by (3) and ergodic rates 𝑟𝑖 as defined by (4). Define vector
r := [𝑟1, . . . , 𝑟𝑛]

𝑇 , and let 𝑈(r) be the weighted proportional
fair utility in (8). Assume that the second moment of the norm
of the stochastic subgradient s𝑖(𝑡) with components as in (20)-
(22) is finite 1, i.e., 𝔼ℎ𝑖

[∥s𝑖(𝑡)∥2∣∣𝝀𝑖(𝑡)
] ≤ 𝑆2

𝑖 , and that there
exists a set of strictly feasible primal variables that satisfy the
constraints in (12) with strict inequality. Then, the average
power constraint is almost surely satisfied

lim
𝑡→∞

1

𝑡

𝑡∑
𝑢=1

𝑞𝑖(𝑢)𝑝𝑖(𝑢) ≤ 𝑝avg
𝑖 a.s., (30)

and the utility of the ergodic limit of the transmission rates
almost surely converges to a value within 𝜖/2

∑𝑛
𝑖=1 𝑆

2
𝑖 of

optimality,

P−𝑈(r) := P−
𝑛∑

𝑖=1

𝑤𝑖 log

(
lim
𝑡→∞

1

𝑡

𝑡∑
𝑢=1

𝑟𝑖(𝑢)

)
≤ 𝜖

2

𝑛∑
𝑖=1

𝑆2
𝑖 .

(31)
Proof: The hypotheses of Theorem 1 are chosen to sat-
isfy the hypotheses guaranteeing convergence of ergodic
stochastic optimization algorithms [22, Theorem 1]. Thus,
almost sure feasibility and almost sure near optimality of
iterates 𝑥𝑖(𝑡), 𝑦𝑖(𝑡), 𝑝𝑖(𝑡) and 𝑞𝑖(𝑡) follows in the sense
of (26)-(29). To establish almost sure satisfaction of av-
erage power constraints as per (30) just notice that this
inequality coincides with the one in (26). To establish (31)

1The finite assumption of the second moment of the subgradients is
necessary for the proof of almost sure near optimality of the ergodic stochastic
optimization algorithm [22].

start by rearranging terms in (29) to conclude that P𝑖 −
𝜖𝑆2

𝑖 /2 ≤ lim𝑡→∞ 1
𝑡

∑𝑡
𝑢=1 [𝑤𝑖 log 𝑥𝑖(𝑢) + 𝑤̃𝑖 log(1− 𝑦𝑖(𝑢))].

Due to continuity and concavity of the logarithm function we
can further bound P𝑖 − 𝜖𝑆2

𝑖 /2 as

P𝑖 − 𝜖𝑆2
𝑖

2
≤𝑤𝑖 log

[
lim
𝑡→∞

1

𝑡

𝑡∑
𝑢=1

𝑥𝑖(𝑢)

]

+ 𝑤̃𝑖 log

[
1− lim

𝑡→∞
1

𝑡

𝑡∑
𝑢=1

𝑦𝑖(𝑢)

]
. (32)

The limits in (32) are equal to the limits in the left hand sides
of the inequalities in (27) and (28). Thus, using this almost
sure ergodic feasibility results P𝑖 − 𝜖𝑆2

𝑖 /2 is bounded as

P𝑖 − 𝜖𝑆2
𝑖

2
≤𝑤𝑖 log

[
lim
𝑡→∞

1

𝑡

𝑡∑
𝑢=1

𝑞𝑖(𝑢)𝐶𝑖(ℎ𝑖(𝑢)𝑝𝑖(𝑢))

]

+ 𝑤̃𝑖 log

[
1− lim

𝑡→∞
1

𝑡

𝑡∑
𝑢=1

𝑞𝑖(𝑢)

]
. (33)

Ergodicity, possibly restricted to an ergodic component, allows
replacement of the ergodic limits in (34) by the corresponding
expected values, leading to the bound

P𝑖 − 𝜖𝑆2
𝑖

2
≤𝑤𝑖 log𝔼ℎ𝑖 [𝑄𝑖(ℎ𝑖)𝐶𝑖(ℎ𝑖𝑃𝑖(ℎ𝑖))]

+ 𝑤̃𝑖 log𝔼ℎ𝑖 [1−𝑄𝑖(ℎ𝑖)]. (34)

Recall that P =
∑𝑛

𝑖=1 P𝑖 per definition, and consider the sum
of the inequalities in (34) for all terminals 𝑖 so as to write

P−
𝑛∑

𝑖=1

𝜖𝑆2
𝑖

2
≤

𝑛∑
𝑖=1

𝑤𝑖 log𝔼ℎ𝑖 [𝑄𝑖(ℎ𝑖)𝐶𝑖(ℎ𝑖𝑃𝑖(ℎ𝑖))]

+ 𝑤̃𝑖 log𝔼ℎ𝑖 [1−𝑄𝑖(ℎ𝑖)]

≤
𝑛∑

𝑖=1

𝑤𝑖 log

[
𝔼ℎ𝑖 [𝑄𝑖(ℎ𝑖)𝐶𝑖(ℎ𝑖(𝑡)𝑃𝑖(ℎ𝑖))]

𝑛∏
𝑗=1,𝑗 ∕=𝑖

𝔼ℎ𝑗 [1−𝑄𝑗(ℎ𝑗)]

]
, (35)

where the second inequality follows by using the definition
𝑤̃𝑖 :=

∑𝑛
𝑗=1,𝑗 ∕=𝑖 𝑤𝑖, reordering terms in the sum, and rewriting

a sum of logarithms as the logarithm of a product.
The fundamental observation in this proof is that the

scheduling function 𝑄𝑖(ℎ𝑖) and the power allocation function
𝑃𝑖(ℎ𝑖) are independent of the corresponding 𝑄𝑗(ℎ𝑗) and
𝑃𝑗(ℎ𝑗) of other terminals. This is not a coincidence, but
the intended goal of reformulating (9) as (12). Using this
independence, the product of expectations in (35) can be
written as single expectation over the vector channel h to yield

P−
𝑛∑

𝑖=1

𝜖𝑆2
𝑖

2
≤

𝑛∑
𝑖=1

𝑤𝑖 log

[
𝔼h

(
𝑄𝑖(ℎ𝑖)𝐶𝑖(ℎ𝑖𝑃𝑖(ℎ𝑖))

𝑛∏
𝑗=1,𝑗 ∕=𝑖

(1 −𝑄𝑗(ℎ𝑗))

)]
.

(36)

To finalize the proof use ergodicity, possibly restricted to an
ergodic component, to substitute the expectation in (36) by an
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ergodic limit to yield

P−
𝑛∑

𝑖=1

𝜖𝑆2
𝑖

2
≤

𝑛∑
𝑖=1

𝑤𝑖 log

[
lim
𝑡→∞

1

𝑡

𝑡∑
𝑢=1

𝑞𝑖(𝑢)𝐶𝑖(ℎ𝑖(𝑢)𝑝𝑖(𝑢))

𝑛∏
𝑗=1,𝑗 ∕=𝑖

(1− 𝑞𝑗(𝑢))
]
:= 𝑈(r),

(37)

where we have used the definitions of the ergodic rate in
(4) and of the utility in (8). The result in (31) follows after
reordering terms in (37).

Theorem 1 states that the stochastic dual descent algorithm
in (16)-(23) computes schedules 𝑞𝑖(𝑡) and power allocations
𝑝𝑖(𝑡) yielding rates 𝑟𝑖(𝑡) that are almost surely near optimal
in an ergodic sense [cf. (31)]. It also states that 𝑝𝑖(𝑡) satisfies
the average power constraint with probability 1. Notice that
the stochastic dual descent algorithm in (16)-(23) does not
compute the optimal scheduling and power control functions
for each terminal. Rather, it draws schedules 𝑞𝑖(𝑡) and power
allocations 𝑝𝑖(𝑡) that are close to the optimal functions. This
is not a drawback because the latter property is sufficient
for a practical implementation. Further note that the use of
constant step sizes 𝜖 endows the algorithm with adaptability
to time-varying channel distributions. This is important in
practice because wireless channels are non-stationary due to
user mobility and environmental dynamics. The gap between
𝑈(r) and P can be made arbitrarily small by reducing 𝜖.

Remark 2: The desired optimal schedules 𝑄∗(ℎ(𝑡)) and
power allocations 𝑃 ∗(ℎ(𝑡)) as prescribed in Section II are
functions of the current channel realizations only. The pro-
posed online policy, however, computes schedules 𝑞𝑖(𝑡) and
power allocations 𝑝𝑖(𝑡) based on the current channel ℎ𝑖(𝑡)
and dual variables 𝝀𝑖(𝑡). In each time slot the iterative policy
updates 𝝀𝑖(𝑡) using 𝝀𝑖(𝑡−1) and stochastic subgradients s𝑖(𝑡)
which depend on 𝑞𝑖(𝑡), 𝑝𝑖(𝑡) and ℎ𝑖(𝑡). As a result, the dual
variable 𝝀𝑖(𝑡) depends on all previous channel gains from
ℎ𝑖(0) up to ℎ𝑖(𝑡). Since 𝑞𝑖(𝑡) and 𝑝𝑖(𝑡) are functions of 𝝀𝑖(𝑡),
they depend on all previous channel gains as well. This is
not a contradiction because as the algorithm progresses, 𝝀𝑖(𝑡)
approaches the optimal multiplier 𝝀∗

𝑖 , implying that the time-
dependent variables 𝑞𝑖(𝑡), 𝑝𝑖(𝑡) converge towards the optimal
policy 𝑃 ∗(ℎ(𝑡)), 𝑄∗(ℎ(𝑡)). As a matter of fact, 𝝀𝑖(𝑡) does
not converge to 𝝀∗

𝑖 , but to a neighborhood of 𝝀∗
𝑖 . This results

in some residual time dependence in the variables 𝑞𝑖(𝑡), 𝑝𝑖(𝑡)
that accounts for the algorithm’s (arbitrarily small) optimality
penalty as stated in Theorem 1.

C. Structure of the Optimal Primal Solution

While the algorithm in (16)-(23) provides a method to find
the optimal operating point for the random multiple access
channel, it does not provide intuition on the properties of this
operating point. This section studies structural properties of
the optimal primal solution.

In convex optimization problems optimal primal variables
are obtained as the Lagrangian maximizers for optimal dual
variables. The optimization problem in (12) is not convex.
This is not a hindrance because the recovery of optimal
primals from optimal duals through Lagrangian maximization

follows from the lack of duality gap, which is a property
that (12) does possess [18]. Let us then begin by show-
ing that the optimal primal variables x∗

𝑖 = [𝑥∗𝑖 , 𝑦
∗
𝑖 ]

𝑇 and
P∗

𝑖 (ℎ𝑖) = [𝑄∗
𝑖 (ℎ𝑖), 𝑃

∗
𝑖 (ℎ𝑖)]

𝑇 of the primal problem in (12)
can be obtained from the maximizers of the Lagrangian
ℒ𝑖(x𝑖,P𝑖(ℎ𝑖),𝝀

∗
𝑖 ). From the definition of the dual function

in (14), the optimal dual value can be written as

D𝑖 =𝑔𝑖(𝝀
∗
𝑖 ) = maxℒ𝑖(x𝑖,P𝑖(ℎ𝑖),𝝀

∗
𝑖 ) (38)

s.t. 𝑥𝑖 ≥ 0, 0 ≤ 𝑦𝑖 ≤ 1, 𝑄𝑖(ℎ𝑖) ∈ 𝒬, 𝑃𝑖(ℎ𝑖) ∈ 𝒫𝑖.

Since the maximization in (38) is with respect to all primal
variables satisfying the stated constraints and the optimal
variables x∗

𝑖 and P∗
𝑖 (ℎ𝑖) satisfy these constraints, it must be

D𝑖 ≥ ℒ𝑖(x
∗
𝑖 ,P

∗
𝑖 (ℎ𝑖),𝝀

∗
𝑖 ). (39)

Consider now the explicit expression of ℒ𝑖(x
∗
𝑖 ,P

∗
𝑖 (ℎ𝑖),𝝀

∗
𝑖 ) as

it follows from the definition in (13)

ℒ𝑖(x
∗
𝑖 ,P

∗
𝑖 (ℎ𝑖),𝝀

∗
𝑖 )

= 𝑤𝑖 log 𝑥
∗
𝑖 + 𝑤̃𝑖 log(1 − 𝑦∗𝑖 )

+ 𝜆∗𝑖1 [𝔼ℎ𝑖 [𝑄
∗
𝑖 (ℎ𝑖)𝐶𝑖(ℎ𝑖𝑃

∗
𝑖 (ℎ𝑖))]− 𝑥∗𝑖 ]

+ 𝜆∗𝑖2 [𝑦
∗
𝑖 − 𝔼ℎ𝑖 [𝑄

∗
𝑖 (ℎ𝑖)]] + 𝜆

∗
𝑖3

[
𝑝avg
𝑖 − 𝔼ℎ𝑖 [𝑄

∗
𝑖 (ℎ𝑖)𝑃

∗
𝑖 (ℎ𝑖)]

]
.

(40)

Since x∗
𝑖 and P∗

𝑖 (ℎ𝑖) are solutions of (12), they are feasible,
i.e., they satisfy the inequalities in (12). Thus, the terms
𝔼ℎ𝑖 [𝑄

∗
𝑖 (ℎ𝑖)𝐶𝑖(ℎ𝑖𝑃

∗
𝑖 (ℎ𝑖))] − 𝑥∗𝑖 ≥ 0, 𝑦∗𝑖 − 𝔼ℎ𝑖 [𝑄

∗
𝑖 (ℎ𝑖)] ≥ 0,

and 𝑝avg
𝑖 −𝔼ℎ𝑖 [𝑄

∗
𝑖 (ℎ𝑖)𝑃

∗
𝑖 (ℎ𝑖)] ≥ 0 are all nonnegative. Since

the Lagrange multipliers 𝜆𝑖1 ≥ 0, 𝜆𝑖2 ≥ 0, and 𝜆𝑖3 ≥ 0, are
also nonnegative, it holds

D𝑖 ≥ ℒ𝑖(x
∗
𝑖 ,P

∗
𝑖 (ℎ𝑖),𝝀

∗
𝑖 ) ≥ 𝑤𝑖 log 𝑥

∗
𝑖 + 𝑤̃𝑖 log(1− 𝑦∗𝑖 ) = P𝑖,

(41)

where the first inequality follows from (39) and the last
equality from the fact that x∗

𝑖 is optimal. Since the duality gap
is null, i.e., D𝑖 = P𝑖, the inequalities in (41) must hold with
equality. It then must be that x∗

𝑖 and P∗
𝑖 (ℎ𝑖) are a solution

to the maximization in (38). Further note that because x𝑖

and P𝑖(ℎ𝑖) appear in different terms in ℒ𝑖(x𝑖,P𝑖(ℎ𝑖),𝝀
∗
𝑖 ),

the joint maximization with respect to x𝑖 and P𝑖(ℎ𝑖) can be
carried out as separate maximizations with respect to x𝑖 and
P𝑖(ℎ𝑖) [cf. (49)]. In particular, for P∗

𝑖 (ℎ𝑖) we have

{𝑄∗
𝑖 (ℎ𝑖), 𝑃

∗
𝑖 (ℎ𝑖)} ∈

argmax
𝑄𝑖(ℎ𝑖),𝑃𝑖(ℎ𝑖)

𝔼ℎ𝑖 [𝑄𝑖(ℎ𝑖) [𝜆
∗
𝑖1𝐶𝑖(ℎ𝑖𝑃𝑖(ℎ𝑖))− 𝜆∗𝑖2 − 𝜆∗𝑖3𝑃𝑖(ℎ𝑖)]] .

(42)

where the relation is belong to (∈) rather than equality
(=) because there might be more than one argument that
maximizes the expression in (42).

Due to linearity of the expectation operator 𝔼ℎ𝑖 [⋅], to
maximize the expected value with respect to the functions
𝑄𝑖(ℎ𝑖) ∈ 𝒬 and 𝑃𝑖(ℎ𝑖) ∈ 𝒫𝑖 it is equivalent to maximize
with respect to individual values. Therefore, it must be for all
ℎ𝑖 > 0,

{𝑄∗
𝑖 (ℎ𝑖), 𝑃

∗
𝑖 (ℎ𝑖)} ∈

argmax
𝑞𝑖∈{0,1},𝑝𝑖∈[0,𝑝inst

𝑖 ]

{𝑞𝑖 [𝜆∗𝑖1𝐶𝑖(ℎ𝑖𝑝𝑖)− 𝜆∗𝑖2 − 𝜆∗𝑖3𝑝𝑖]} . (43)
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Using the expression in (43) it is possible to infer that the
optimal scheduling function 𝑄∗

𝑖 (ℎ𝑖) is a threshold rule as
stated in the following theorem.

Theorem 2: The optimal scheduling function 𝑄∗
𝑖 (ℎ𝑖) solv-

ing (12) is a threshold rule. I.e., there exists a constant ℎ0
such that 𝑄∗

𝑖 (ℎ𝑖) = 𝐻(ℎ𝑖 − ℎ0).
Proof: Let us start by elaborating on the implications of (43).
Define 𝑢𝑖(𝑝𝑖, ℎ𝑖) := 𝜆∗𝑖1𝐶𝑖(ℎ𝑖𝑝𝑖)− 𝜆∗𝑖2 − 𝜆∗𝑖3𝑝𝑖 as the part of
the maximand of (43) that depends on 𝑝𝑖 and let 𝑣𝑖(ℎ𝑖) :=
max𝑝𝑖∈[0,𝑝inst

𝑖 ] {𝑢𝑖(𝑝𝑖, ℎ𝑖)} be the maximum of 𝑢𝑖(𝑝𝑖, ℎ𝑖) over
allowed 𝑝𝑖. If for given ℎ𝑖, we have 𝑣𝑖(ℎ𝑖) > 0 it then must be
𝑄∗

𝑖 (ℎ𝑖) = 1 because 𝑞𝑖 = 1 is the sole argument maximizing
the expression in (43). Likewise, if 𝑣𝑖(ℎ𝑖) < 0 it must be
𝑄∗

𝑖 (ℎ𝑖) = 0. When 𝑣𝑖(ℎ𝑖) = 0 the value of 𝑄∗
𝑖 (ℎ𝑖) cannot

be inferred from (43) because both 𝑞𝑖 = 0 and 𝑞𝑖 = 1 are
maximizing arguments. We then conclude the following two
implications pertaining to 𝑄∗

𝑖 (ℎ𝑖) = 1: (i) if 𝑣𝑖(ℎ𝑖) > 0 then
𝑄∗

𝑖 (ℎ𝑖) = 1; and (ii) if 𝑄∗
𝑖 (ℎ𝑖) = 1 then 𝑣𝑖(ℎ𝑖) ≥ 0.

To prove that the optimal schedule is a threshold rule it
suffices to prove that if 𝑄∗

𝑖 (ℎ𝑖) = 1 for some given ℎ𝑖
then 𝑄∗

𝑖 (ℎ
′
𝑖) = 1 for any ℎ′𝑖 > ℎ𝑖. We will prove that

for ℎ′𝑖 it must be 𝑣𝑖(ℎ′𝑖) > 0 from where 𝑄∗
𝑖 (ℎ

′
𝑖) = 1

follows as per implication (i) of the previous paragraph.
To prove that 𝑣𝑖(ℎ′𝑖) > 0 let 𝑝0 denote a maximizer of
𝑢𝑖(𝑝𝑖, ℎ𝑖) so that 𝑣𝑖(ℎ𝑖) = 𝑢𝑖(𝑝0, ℎ𝑖). Since 𝑄∗

𝑖 (ℎ𝑖) = 1 it
follows from implication (ii) in the previous paragraph that
𝑢𝑖(𝑝0, ℎ𝑖) = 𝑣𝑖(ℎ𝑖) ≥ 0. Observing that for 𝑝𝑖 = 0 we have
𝑢𝑖(0, ℎ𝑖) = −𝜆∗𝑖2 < 0 it follows that it must be 𝑝0 > 0. Define
now power 𝑝′0 = (ℎ𝑖/ℎ

′
𝑖)𝑝0. With this selection it follows

ℎ𝑖𝑝0 = ℎ′𝑖𝑝
′
0 and as a consequence 𝐶(ℎ𝑖𝑝0) = 𝐶(ℎ′𝑖𝑝

′
0). We

can then write the difference 𝑢𝑖(𝑝′0, ℎ
′
𝑖)− 𝑢𝑖(𝑝0, ℎ𝑖) as

𝑢𝑖(𝑝
′
0, ℎ

′
𝑖)− 𝑢𝑖(𝑝0, ℎ𝑖)

=
[
𝐶(ℎ′𝑖𝑝

′
0)− 𝜆∗𝑖2 − 𝜆∗𝑖3𝑝′0

]
−
[
𝐶(ℎ𝑖𝑝0)− 𝜆∗𝑖2 − 𝜆∗𝑖3𝑝0

]
= 𝜆∗𝑖3𝑝0

(
1− ℎ𝑖

ℎ′𝑖

)
> 0 (44)

where the inequality indicating a strictly positive difference
follows from the fact that ℎ′𝑖 > ℎ𝑖 and that 𝑝0 ∕= 0. Since
𝑢𝑖(𝑝0, ℎ𝑖) ≥ 0 it follows from (44) that 𝑢𝑖(𝑝′0, ℎ′𝑖) > 0 and as a
consequence that the maximum value 𝑣𝑖(ℎ′𝑖) ≥ 𝑢𝑖(𝑝′0, ℎ′𝑖) > 0.
From implication (i) it then follows that 𝑄∗

𝑖 (ℎ
′
𝑖) = 1 and that

the optimal schedule is a threshold rule as already argued.

When there is no power control function and the rate
function is continuous, the optimality of threshold-based
schedulers has been proved in [7]. This result is extended
here to general cases allowing for power control and the use
of discontinuous rate functions. It is worth emphasizing that
the optimality of a threshold-based scheduler is independent
of the specific form of the rate function 𝐶𝑖(ℎ𝑖𝑃𝑖(ℎ𝑖)). Recall
that the sole constraint on the function 𝐶𝑖(ℎ𝑖𝑃𝑖(ℎ𝑖)) is that is
must be finite for finite argument.

If the form of the transmission rate function 𝐶𝑖(ℎ𝑖𝑃𝑖(ℎ𝑖))
is known, it is also possible to infer functional forms for the
optimal power control functions 𝑃 ∗

𝑖 (ℎ𝑖). If AMC is used at
the physical layer the rate function takes the form in (2). In
this case it is possible to find unique maximizers of (43) that
as a consequence determine the form of the optimal power
allocation 𝑃 ∗

𝑖 (ℎ𝑖). The corresponding functional form requires

finding the AMC mode 𝑚∗ = argmax𝑚={1,...,𝑀}{𝜆∗1𝜏𝑚 −
𝜆∗2 − 𝜆∗3 𝜂𝑚𝑁0𝐵

ℎ𝑖
} and setting the transmitted power to

𝑃 ∗
𝑖 (ℎ𝑖) =

𝜂𝑚∗𝑁0𝐵

ℎ𝑖
𝑄𝑖(ℎ𝑖), (45)

With capacity achieving codes used at the physical layer the
rate function takes the form in (1). The optimal power control
function then takes the form

𝑃 ∗
𝑖 (ℎ𝑖) =

(
𝜆∗𝑖1
𝜆∗𝑖3

− 𝑁0

ℎ𝑖

)
𝐵𝑄(ℎ𝑖), (46)

because the 𝑃 ∗
𝑖 (ℎ𝑖) in (46) are the unique arguments maxi-

mizing (43). The expression in (46) implies the optimality of
power waterfilling across fading states.

Remark 3: Since the optimal policy is a function of the
channels’ probability distribution, it seems that these distribu-
tions have to be estimated in order to design the optimal policy.
However, the proposed algorithm in Table I only maintains
three Lagrange multipliers 𝜆𝑖1(𝑡), 𝜆𝑖2(𝑡) and 𝜆𝑖3(𝑡). The
reason for this is that as can be seen in (43) the optimal
solution can be uniquely determined by the optimal La-
grange multipliers 𝜆∗𝑖1, 𝜆

∗
𝑖2 and 𝜆∗𝑖3. Thus, instead of learning

the channels’ probability distribution it suffices to learn the
optimal dual variables 𝝀∗

𝑖 . Learning 𝝀∗
𝑖 is, in effect, the

purpose of the algorithm in Table I. This is an important
simplification. Whereas the unknown channel distributions are
infinite-dimensional, the dual variables 𝝀∗

𝑖 are 3-dimensional.
Remark 4: It is possible to interpret (43) in economic

terms. Consider 𝜆∗𝑖1 as the reward for transmitting a unit
of information, while regarding 𝜆∗𝑖2 and 𝜆∗𝑖3 as the prices
for accessing the channel once and for consuming a unit
of transmit power, respectively. With these interpretations,
𝑢𝑖(𝑝𝑖, ℎ𝑖) represents the profit generated by transmitting with
power 𝑝𝑖 when the channel state is ℎ𝑖, and 𝑣𝑖(ℎ𝑖) is the
maximum profit that can be obtained while satisfying the
instantaneous power constraint. Consequently, (43) can be
interpreted as stating that terminals are allowed to transmit
if and only if their maximum possible profits are positive.

IV. NUMERICAL RESULTS

To illustrate performance of the proposed algorithms, we
conduct numerical experiments on a network with 𝑛 = 20
terminals randomly placed in a square with side 𝐿 = 100
m and a common AP located at the center of the square.
Numerical experiments here utilize the realization of this
random placement shown in Fig. 1. Communication between
terminals and the AP is over a bandlimited Gaussian channel
with bandwidth𝐵 and noise power spectral density𝑁0. We set
𝐵 = 1 so that capacities are measured in bits per second per
Hertz (b/s/Hz) and 𝑁0 = 10−10 W. Channel gains ℎ𝑖(𝑡) are
Rayleigh distributed with mean ℎ̄𝑖 and are independent across
terminals and time. The average channel gain ℎ̄𝑖 := 𝔼 [ℎ𝑖]
follows an exponential pathloss law, ℎ̄𝑖 = 𝛼𝑑−𝛽

𝑖 with 𝛼 =
10−6m−1 and 𝛽 = 2 constants and 𝑑𝑖 denoting the distance
in meters between terminal 𝑖 and the AP. All weights in the
proportional fair utility in (8) are set to 𝑤𝑖 = 1. Throughout,
the performance metric of interest is the average transmission
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Fig. 1. An example multiple access channel with 𝑛 = 20 nodes commu-
nicating with a common access point (AP). Nodes are randomly placed in a
100 m × 100 m square and the AP is located at the center of the square.
Nodes’ labels represent indexes and distances to the AP. Subsequent numerical
experiments use this realization of the random placement.

rate 𝑟𝑖(𝑡) of terminal 𝑖 at time 𝑡 defined as

𝑟𝑖(𝑡) =
1

𝑡

𝑡∑
𝑢=1

𝑟𝑖(𝑢), (47)

where 𝑟𝑖(𝑢) is normalized so that it represents bits/s/Hz. The
system’s throughput utility by time 𝑡 is then defined in terms
of 𝑟𝑖(𝑡) as 𝑈̄(𝑡) :=

∑𝑛
𝑖=1 𝑤𝑖 log(𝑟𝑖(𝑡)).

The algorithm in (16)-(23) is first tested in a network where
nodes use capacity achieving codes and have instantaneous
power constraints but do not have average power constraints;
see Section IV-A. We then consider nodes that have average
as well as instantaneous power constraints using AMC; see
Section IV-B.

A. System with Instantaneous Power Constraint

Assume the use of capacity achieving codes so that the rate
function for terminal 𝑖 takes the form in (1). Further assume
that there is an instantaneous power constraint 𝑝inst

𝑖 = 100 mW
for each terminal, but that there is no average power constraint.
Since the rate function is a nonnegative increasing function
of power it is optimal for each terminal to transmit with its
maximum allowed instantaneous power every time it decides
to transmit. Therefore, the power control function is a constant
𝑝𝑖(𝑡) = 𝑝

inst
𝑖 and the system’s performance depends solely on

the terminals’ scheduling functions 𝑞𝑖(𝑡). In this simplified
setting, a closed form solution for 𝑞𝑖(𝑡) is known if the channel
pdf is available [7]. Our interest in this simplified problem is
that it allows a performance comparison between the schedules
yielded by (16)-(23) and those of the optimal offline scheduler.

Convergence of (16)-(23) to a near optimal operating point
is illustrated in Fig. 2 for step size 𝜖 = 0.1. The ergodic utility
𝑈̄(𝑡) is shown through 500 iterations and is compared with the
utility of the optimal offline scheduler. When using (16)-(23)
the total throughput utility converges to a value with negligible
optimality gap with respect to the offline scheduler. Observe
that convergence is fast as it takes less than 180 iterations to
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Fig. 2. Convergence of the proposed algorithm to near optimal utility with
instantaneous power constrains but no average power constraints. Throughput
utility of the proposed adaptive algorithm and of the optimal offline scheduler
are shown as functions of time for one realization and for the ensemble
average of realizations. In steady state the adaptive algorithm operates with
minimal performance loss with respect to the optimal offline scheduler. A
utility gap smaller than 10 is achieved in about 350 iterations. Power constraint
𝑝inst
𝑖 = 100 mW, step size 𝜖 = 0.1, capacity achieving codes.

reach a utility with optimality gap smaller than 20 and 360
iterations to get an optimality gap smaller than 10. Figs. 3 and
4 respectively show average rates and transmission probabil-
ities after 500 iterations for each terminal. Observe in Fig. 3
that all terminals achieve average rates that are very close to
the optimal ones. Further observe that even though terminals
experience different channel conditions, fair schedules are
obtained as a consequence of the use of a logarithmic utility.
Indeed, as seen in Fig. 4, average transmission probabilities
are close for all terminals. Note, however, that the achieved
rates shown in Fig. 3 are different because terminals have
different average channels.

To test how the optimality gap changes as the step size 𝜖
varies, we ran the algorithm (16)-(23) with different step sizes.
Fig. 5 shows the optimality gap when the step size 𝜖 varies
between 10−2 to 10−1. The optimality gap indeed decreases
as the step size 𝜖 is reduced. This corroborates the result of
Theorem 1 that ensures a vanishing optimality gap as 𝜖→ 0.
Using smaller step size, however, leads to slower convergence.
This tradeoff between convergence speed and optimality gap
determines the choice of 𝜖 for practical implementations.

B. System with Average Power Constraint

For the same network in Fig. 1, consider now the case
in which each terminal adheres to both, instantaneous and
average power constraints. We also deviate from Section IV-A
in the use of AMC instead of capacity achieving codes at the
physcial layer, so that the rate function for terminal 𝑖 takes
the form in (2). Each terminal has 𝑀 = 4 AMC modes with
respective rates 𝜏1 = 1 bits/s/Hz, 𝜏2 = 2 bits/s/Hz, 𝜏3 = 3
bits/s/Hz, and 𝜏4 = 4 bits/s/Hz. The transitions between AMC
modes are at SNRs 𝜂1 = 1, 𝜂2 = 4, 𝜂3 = 8, and 𝜂4 = 16. The
instantaneous power constraint is set to 𝑝inst

𝑖 = 100 mW and
the average power constraint to 𝑝avg

𝑖 = 5 mW for all terminals
𝑖.
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Fig. 3. Average transmission rates (bits/s/Hz) in 500 time slots, i.e., 𝑟𝑖(500)
as defined in (47), for all terminals. The optimal offline scheduler and the
proposed adaptive algorithm yield similar close to optimal average rates. The
variation in achieved rates is commensurate with the variation in average
signal to noise ratios (SNRs) due to different distances to the access point.
For the network in Fig.1 and the pathloss and power parameters used here,
average signal to noise ratios vary between 0.4 and 10. Instantaneous power
constraint 𝑝inst

𝑖 = 100 mW, step size 𝜖 = 0.1, capacity achieving codes.
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Fig. 4. Average transmission probabilities in 500 time slots for all terminals.
Offline and adaptive optimal schedulers shown. Despite different channel con-
ditions all terminals transmit with a similar probability close to 1/𝑛 = 0.05.
This is consistent with the use of a logarithmic, i.e., proportional fair, utility.
Instantaneous power constraint 𝑝inst

𝑖 = 100 mW, step size 𝜖 = 0.1, capacity
achieving codes.

To demonstrate optimality of the proposed algorithm, we
compute the primal objective 𝑈̄(𝑡), the dual value 𝐷(𝑡) =∑𝑛

𝑖=1 𝑔𝑖(𝝀𝑖(𝑡)), and examine the duality gap between them.
Fig. 6 shows 𝑈̄(𝑡) and 𝐷(𝑡) for 103 time slots. As time grows,
the duality gap decreases and eventually approaches a small
positive constant, implying near optimality of the proposed
algorithm.

To test the satisfaction of the average power constraint,
define the average power consumption of terminal 𝑖 by time
𝑡 as

𝑝𝑖(𝑡) =
1

𝑡

𝑡∑
𝑢=1

𝑝𝑖(𝑢). (48)
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Fig. 5. Steady state optimality gap between proposed adaptive algorithm
and optimal offline scheduler as a function of step size 𝜖. Values of 𝜖
between 10−2 and 10−3 shown. As the step size decreases, the optimality
gap decreases. The optimality gap can be made arbitrarily small by reducing
𝜖. Instantaneous power constraint 𝑝inst

𝑖 = 100 mW, capacity achieving codes.
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Fig. 6. Primal and dual objectives when instantaneous and average power
constraints are in effect. One realization and ensemble average of realizations
shown. As time grows the duality gap decreases, eventually approaching a
small positive constant and implying near optimality of the achieved rates.
Instantaneous power constraint 𝑝inst

𝑖 = 100 mW, average power constraint
𝑝

avg
𝑖 = 5 mW, step size 𝜖 = 0.1, adaptive modulation and coding with

𝑀 = 4 modes with rates 𝜏1 = 1 bits/s/Hz, 𝜏2 = 2 bits/s/Hz, 𝜏3 = 3
bits/s/Hz, and 𝜏4 = 4 bits/s/Hz and transitions at SNRs 𝜂1 = 1, 𝜂2 = 4,
𝜂3 = 8, and 𝜂4 = 16.

Average power consumptions 𝑝3(𝑡) and 𝑝13(𝑡) for terminals
3 and 13 are shown in Fig. 7. Observe that in both cases the
average power constraints are satisfied as time increases. For
Terminal 3, 𝑝3(𝑡) is always smaller than 𝑝avg

3 since channel
conditions are unfavorable, resulting in Terminal 3 utilizing
only mode 1 for communication to the AP. Finally, notice that
the average power consumed by Terminal 3 is smaller than the
available budget 𝑝avg

3 = 5 mW. For Terminal 13, 𝑝13(𝑡) falls
below 𝑝avg

13 after 600 iterations. This is as expected due to the
almost sure feasibility result of Theorem 1.

Fig. 8 illustrates the relationship between instantaneous
power allocations 𝑝𝑖(𝑡) and instantaneous channel gains ℎ𝑖(𝑡)
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Fig. 7. Average power consumption for terminals 3 and 13, i.e., 𝑝3(𝑡)
and 𝑝13(𝑡) as defined in (48). Average power constraints 𝑝avg

𝑖 = 5 mW are
satisfied as time grows. Power 𝑝3(𝑡) consumed by Terminal 3 is smaller than
the allowed budget 𝑝avg

3 due to unfavorable channel conditions. Terminal 13
adheres to its power budget after approximately 600 iterations. Parameters as
in Fig. 6.

for terminals 3 and 13. Consistent with the fact that the optimal
power allocation is a threshold rule, no power is allocated
when channel realizations are bad. Further note that Terminal 3
only uses the AMC mode with the lowest rate 𝜏1 = 1 bits/s/Hz
while Terminal 13 uses two modes with rates 𝜏2 = 2 bits/s/Hz
and 𝜏3 = 3 bits/s/Hz. This happens because terminal 13, being
closer to the AP, has a better average channel than terminal 3.

V. CONCLUSION

We developed optimal adaptive scheduling and power con-
trol algorithms for random multiple access channels. Terminals
are assumed to know their local channel state information but
have no access to the probability distribution of the channel
or the channel state of other terminals. In this setting, the
proposed online algorithm determines schedules and transmit-
ted powers that maximize a global proportional fair utility.
The global utility maximization problem was decomposed
in per-terminal utility maximization subproblems. Adaptive
algorithms using stochastic subgradient descent in the dual
domain were then used to solve these local optimizations.
Almost sure convergence and almost sure near optimality of
the proposed algorithm was established. Important properties
of the algorithm are low computational complexity and the
ability to handle non-convex rate functions. Numerical results
for a randomly generated network under different physical
layer settings corroborated theoretical results.

Future research will provide extensions to multi-packet re-
ception models, multi-carrier systems, and to general multihop
random access networks.

APPENDIX A: PROOF OF PROPOSITION 1

Proof: To show that the expected value of the stochastic
subgradient s𝑖(𝑡) given 𝝀𝑖(𝑡) is a subgradient of the dual
function 𝑔𝑖(𝝀𝑖), we have to establish the validity of the
relationship in (24). To do so start noticing that in the
Lagrangian ℒ𝑖(x𝑖,P𝑖(ℎ𝑖),𝝀𝑖(𝑡)) the terms involving x𝑖 and
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Fig. 8. Instantaneous power allocations 𝑝𝑖(𝑡) for terminals 𝑖 = 3 and
𝑖 = 13 plotted against the channel realization ℎ𝑖(𝑡). Notice that the channel
axes scales are different in (a) and (b). In both cases, no power is allocated
when channel realizations are bad. Terminal 3 uses only the AMC mode with
the lowest rate 𝜏1 = 1 bits/s/Hz, while Terminal 13 uses two modes with
rates 𝜏2 = 2 bits/s/Hz and 𝜏3 = 3 bits/s/Hz. This happens because Terminal
13, being closer to the AP, has a better average channel than Terminal 3.
Parameters as in Fig. 6.

P𝑖(ℎ𝑖) are decoupled [cf. (13)]. Consequently, the maxi-
mization of ℒ𝑖(x𝑖,P𝑖(ℎ𝑖),𝝀𝑖(𝑡)) in (14) required to evaluate
the dual function’s value 𝑔𝑖(𝝀𝑖(𝑡)) can be undertaken as
maximizations of separate terms with respect to x𝑖 and P𝑖(ℎ𝑖).
Therefore, 𝑔𝑖(𝝀𝑖(𝑡)) can be written as

𝑔𝑖(𝝀𝑖(𝑡)) = 𝜆𝑖3(𝑡)𝑝
avg
𝑖 +max

𝑥𝑖≥0
{𝑤𝑖 log 𝑥𝑖 − 𝜆𝑖1(𝑡)𝑥𝑖}

+ max
0≤𝑦𝑖≤1

{𝑤̃𝑖 log(1 − 𝑦𝑖) + 𝜆𝑖2(𝑡)𝑦𝑖}

+ max
𝑄(ℎ𝑖),𝑃 (ℎ𝑖)

𝔼ℎ𝑖(𝑡)

[
Γ𝑖(𝑄𝑖(ℎ𝑖), 𝑃𝑖(ℎ𝑖), ℎ𝑖,𝝀𝑖(𝑡))

∣∣∣𝝀𝑖(𝑡)
]
,

(49)

where for notational simplicity we defined Γ𝑖(𝑞𝑖, 𝑝𝑖, ℎ𝑖,𝝀𝑖) :=
𝑞𝑖 [𝜆𝑖1𝐶𝑖(𝑝𝑖, ℎ𝑖)− 𝜆𝑖2 − 𝜆𝑖3𝑝𝑖]. The expected value is condi-
tional with respect to 𝝀𝑖(𝑡) because 𝝀𝑖 is deterministic in (14)
but random in (49).
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The last summand on the right hand side of (49) is the
maximum over the set of functions taking values 𝑄(ℎ𝑖) ∈ 𝒬
and 𝑃 (ℎ𝑖) ∈ 𝒫𝑖. Due to linearity of the expectation operator
𝔼ℎ𝑖(𝑡)[⋅], this maximum over functions is equal to the expected
value of maxima with respect to individual function values.
This allows rewriting of (49) as

𝑔𝑖(𝝀𝑖(𝑡)) = 𝜆𝑖3(𝑡)𝑝
avg
𝑖 +max

𝑥𝑖≥0
{𝑤𝑖 log 𝑥𝑖 − 𝜆𝑖1(𝑡)𝑥𝑖}

+ max
0≤𝑦𝑖≤1

{𝑤̃𝑖 log(1− 𝑦𝑖) + 𝜆𝑖2(𝑡)𝑦𝑖}

+ 𝔼ℎ𝑖(𝑡)

[
max

𝑞𝑖∈{0,1},𝑝𝑖∈[0,𝑝inst
𝑖 ]

Γ𝑖(𝑞𝑖, 𝑝𝑖, ℎ𝑖(𝑡),𝝀𝑖(𝑡))

∣∣∣∣∣𝝀𝑖(𝑡)

]
.

(50)

Notice that the maximizations over 𝑥𝑖, 𝑦𝑖, and {𝑞𝑖, 𝑝𝑖} in (50)
coincide with the primal iteration maximizations in (16)-(18).
Therefore, 𝑥𝑖(𝑡), 𝑦𝑖(𝑡), 𝑞𝑖(𝑡), and 𝑝𝑖(𝑡) obtained from (16)-
(18) maximize the right hand side of (50) implying that (50)
is equivalent to

𝑔𝑖(𝝀𝑖(𝑡)) =𝜆𝑖3(𝑡)𝑝
avg
𝑖 + [𝑤𝑖 log 𝑥𝑖(𝑡)− 𝜆𝑖1(𝑡)𝑥𝑖(𝑡)]

+ [𝑤̃𝑖 log(1 − 𝑦𝑖(𝑡)) + 𝜆𝑖2(𝑡)𝑦𝑖(𝑡)]
+ 𝔼ℎ𝑖(𝑡)

[
Γ𝑖(𝑞𝑖(𝑡), 𝑝𝑖(𝑡), ℎ𝑖(𝑡),𝝀𝑖(𝑡))

∣∣∣𝝀𝑖(𝑡)
]
.

(51)

Because 𝑥𝑖(𝑡) and 𝑦𝑖(𝑡) are deterministic functions of 𝝀𝑖(𝑡)
it follows that 𝑥𝑖(𝑡) = 𝔼ℎ𝑖(𝑡)[𝑥𝑖(𝑡)∣𝝀𝑖(𝑡)] and 𝑦𝑖(𝑡) =
𝔼ℎ𝑖(𝑡)[𝑦𝑖(𝑡)∣𝝀𝑖(𝑡)]. Use this fact and rearrange terms in (51)
to obtain

𝑔𝑖(𝝀𝑖(𝑡)) = [𝑤𝑖 log 𝑥𝑖(𝑡) + 𝑤̃𝑖 log(1 − 𝑦𝑖(𝑡))]
+ 𝜆𝑖1(𝑡)𝔼ℎ𝑖(𝑡)

[
𝑞𝑖(𝑡)𝐶𝑖(ℎ𝑖(𝑡)𝑝𝑖(𝑡))− 𝑥𝑖(𝑡)

∣∣∣𝝀𝑖(𝑡)
]

+ 𝜆𝑖2(𝑡)𝔼ℎ𝑖(𝑡)

[
𝑦𝑖(𝑡)− 𝑞𝑖(𝑡)

∣∣∣𝝀𝑖(𝑡)
]

+ 𝜆𝑖3(𝑡)𝔼ℎ𝑖(𝑡)

[
𝑝

avg
𝑖 − 𝑞𝑖(𝑡)𝑝𝑖(𝑡)

∣∣∣𝝀𝑖(𝑡)
]
. (52)

According to the definitions in (20)-(22) the terms inside the
expectations in (52) are the components 𝑠𝑖(𝑡) of the stochastic
subgradient. It then follows

𝑔𝑖(𝝀𝑖(𝑡)) =𝑤𝑖 log 𝑥𝑖(𝑡) + 𝑤̃𝑖 log(1− 𝑦𝑖(𝑡))
+ 𝔼ℎ𝑖(𝑡)

[
s𝑇𝑖 (𝑡)

∣∣𝝀𝑖(𝑡)
]
𝝀𝑖(𝑡). (53)

Consider now an arbitrary dual variable 𝝀𝑖 ≥ 0 and the
corresponding value of the dual function 𝑔(𝝀𝑖) given by the
maximum of the Lagrangian ℒ𝑖(x𝑖,P𝑖(ℎ𝑖),𝝀𝑖) [cf. 14]. As
was done for 𝝀𝑖 = 𝝀(𝑡) repeat the steps in (49) and (50) to
express 𝑔𝑖(𝝀𝑖) as

𝑔𝑖(𝝀𝑖) =𝜆𝑖3𝑝
avg
𝑖 +max

𝑥𝑖≥0
{𝑤𝑖 log 𝑥𝑖 − 𝜆𝑖1𝑥𝑖}

+ max
0≤𝑦𝑖≤1

{𝑤̃𝑖 log(1− 𝑦𝑖) + 𝜆𝑖2𝑦𝑖}

+ 𝔼ℎ𝑖(𝑡)

[
max

𝑞𝑖∈{0,1},𝑝∈[0,𝑝inst
𝑖 ]
Γ𝑖(𝑞, 𝑝, ℎ𝑖(𝑡),𝝀𝑖)]

∣∣∣∣∣𝝀𝑖(𝑡)

]
,

(54)

where the conditioning on 𝝀𝑖(𝑡) is irrelevant because all
variables are independent of 𝝀𝑖(𝑡) but will be exploited later
on. Since the expression in (54) involves maximizations with
respect to 𝑥𝑖, 𝑦𝑖, and {𝑞𝑖, 𝑝𝑖} a lower bound of 𝑔𝑖(𝝀𝑖)

is obtained by evaluating the maximands at 𝑥𝑖 = 𝑥𝑖(𝑡),
𝑦𝑖 = 𝑦𝑖(𝑡) and {𝑞𝑖, 𝑝𝑖} = {𝑞𝑖(𝑡), 𝑝𝑖(𝑡)}. Thus

𝑔𝑖(𝝀𝑖) ≥𝜆𝑖3𝑝avg
𝑖 + [𝑤𝑖 log 𝑥𝑖(𝑡)− 𝜆𝑖1𝑥𝑖(𝑡)]

+ [𝑤̃𝑖 log(1 − 𝑦𝑖(𝑡)) + 𝜆𝑖2𝑦𝑖(𝑡)]
+ 𝔼ℎ𝑖(𝑡)

[
Γ𝑖(𝑞𝑖(𝑡), 𝑝𝑖(𝑡), ℎ𝑖(𝑡),𝝀𝑖)

∣∣∣𝝀𝑖(𝑡)
]
. (55)

Reordering terms as when obtaining (52) from (51) we rewrite
the bound in (55) as

𝑔𝑖(𝝀𝑖) ≥ [𝑤𝑖 log 𝑥𝑖(𝑡) + 𝑤̃𝑖 log(1− 𝑦𝑖(𝑡))]
+ 𝜆𝑖1𝔼ℎ𝑖(𝑡)

[
𝑞𝑖(𝑡)𝐶𝑖(ℎ𝑖(𝑡)𝑝𝑖(𝑡))− 𝑥𝑖(𝑡)

∣∣∣𝝀𝑖(𝑡)
]

+ 𝜆𝑖2𝔼ℎ𝑖(𝑡)

[
𝑦𝑖(𝑡)− 𝑞𝑖(𝑡)

∣∣∣𝝀𝑖(𝑡)
]

+ 𝜆𝑖3𝔼ℎ𝑖(𝑡)

[
𝑝

avg
𝑖 − 𝑞𝑖(𝑡)𝑝𝑖(𝑡)

∣∣∣𝝀𝑖(𝑡)
]
. (56)

Using the definition of the stochastic subgradient as when
going from (52) to (53) it finally follows

𝑔𝑖(𝝀𝑖) ≥𝑤𝑖 log 𝑥𝑖(𝑡) + 𝑤̃𝑖 log(1− 𝑦𝑖(𝑡))
+ 𝔼ℎ𝑖(𝑡)

[
s𝑇𝑖 (𝑡)∣𝝀𝑖(𝑡)

]
𝝀𝑖. (57)

Subtracting (57) from (53) yields (24). Eq. (25) is a particular
case of (24) with 𝝀𝑖 = 𝝀∗

𝑖 and 𝑔(𝝀𝑖) = 𝑔(𝝀
∗
𝑖 ) = D𝑖.
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