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ABSTRACT | In this paper, a system architecture to provide

end-to-end network connectivity for autonomous teams of

robots is discussed. The core of the proposed system is a cyber–

physical controller whose goal is to ensure network connec-

tivity as robots move to accomplish their assigned tasks. Due to

channel quality uncertainties inherent to wireless propagation,

we adopt a stochastic model where achievable rates are

modeled as random variables. The cyber component of the

controller determines routing variables that maximize the

probability of having a connected network for given positions.

The physical component determines feasible robot trajectories

that are restricted to safe configurations which ensure these

probabilities stay above a minimum reliability level. Local

trajectory planning algorithms are proposed for simple envir-

onments and leveraged to obtain global planning algorithms to

handle complex surroundings. The resulting integrated con-

trollers are robust in that end-to-end communication survives

with high probability even if individual point-to-point links are

likely to fail with significant probability. Experiments demon-

strate that the global planning algorithm succeeds in navigating

a complex environment while ensuring that end-to-end com-

munication rates meet or exceed prescribed values within a

target failure tolerance.

KEYWORDS | Mobile ad hoc networks; motion planning; multi-

robot systems

I . INTRODUCTION

The confluence of advances in wireless communication,

sensing, computing, and control has led to the emergence

of cyber–physical systems. Cyber–physical systems go be-

yond the mere addition of cyber functionalities to physical

systems being typified by a tight blending of cyber and

physical components and functions. A canonical example

of this class of systems is the autonomous robot team

where a group of mobile robots cooperate to accomplish
tasks assigned by human operators. Consider, for example,

a search and rescue mission in a hazardous environment

where a team of robots is deployed to scout points of in-

terest. Designated lead members of the team move to

specified locations while the remaining robots provide

mission support by configuring a multihop wireless net-

work that permits relaying of information back to the

operators. Availability of wireless communications is
critical for task accomplishment because communications

are required to exchange information between robots as

well as to relay information to and from the human
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operators. It then follows that deployment of the team
requires integration of (cyber) wireless communications

with (physical) mobility control. The cyber–physical

perspective posits that this integration is not just a matter

of adding wireless transceivers to the robots but requires a

tight conjoining of communications and mobility control.

Tight integration of communications and mobility

arises in autonomous robot teams because availability of

wireless infrastructure is unlikely in the harsh environ-
ments in which they are to be deployed. In the absence of

infrastructure, robots have to self-organize into a wireless

network capable of supporting the necessary information

exchanges. In this context, the spatial placement of the

robots affects the feasibility of successful communication

because some physical configurations cannot support re-

quired transmission rates between, say, human operators

and some lead members. We can therefore think of com-
munications as determining a set of virtual obstacles that

restrict the movement of the robots. However, this is not a

hard limit as it is possible to reconfigure communication

variables to alter the set of physical configurations for

which communications are feasible. This yields a control

loop that begins with communication variables limiting

mobility and finishes with mobility determining commu-

nication variables. In the end, successful deployment of an
autonomous team of robots requires joint cyber–physical

controllers that determine (physical) trajectories for the

robots while ensuring (cyber) availability of communica-

tion resources [1].

An architecture diagram for the cyber–physical control

of autonomous teams of robots is shown in Fig. 1. As with

any mobility control system, there is a block performing

task specification, a second block executing the control
law, and a third block conducting actuation and state esti-

mation. The task specification block interfaces with the

human operators and integrates robot observations and

requirements to determine specifications that it passes on

to the control block. These specifications come in the form

of a potential function �ðxÞ and basal end-to-end commu-

nication rate requirements aki;minVthe subindex i here de-
notes a source and the superindex k a destination; see
Section II. The goal of the autonomous team is to minimize

the potential �ðxÞ while ensuring that end-to-end com-

munication rates exceed the minimum required level aki;min.

The control block is the core of the cyber–physical

system and the main focus of the work described in this

paper. The purpose of this block is to determine physical

control inputs _xðtÞ that dictate the movement of the robots

and network variables AðtÞ that determine the communi-
cation of information through members of the team. The

control inputs _xðtÞ are conducive to task completion, i.e.,

minimization of the task potential, while ensuring reliable

network operation, i.e., communication at or exceeding

rates aki;min when combined with network variables AðtÞ.
Information about achievable rates between different loca-

tions is necessary to determine mobility and communi-

cation variables. This information is provided by a radio
communication modeling block. Due to the difficulty of

predicting these rates accurately, the output of this block is

in the form of a statistical model of achievable rates. As we

discuss in Section III, models that provide the mean and

variance of achievable rates are reasonable in practice.

The execution block consists of individual robots

implementing the control law _xðtÞ and routing packets

Fig. 1. System architecture. Task specification here represents a generic spatial application defined by a convex task potential functionCðxÞ
while providing a stream of data to the human operator. Individual robot components consist of the low-level robot control, estimation,

and communication. We additionally assume that a subsystem is available to build an onlinemodel of radio communication in the environment.

The focus of this work is on developing concurrent methods for routing and mobility control.
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according to variables AðtÞ. Robots also take observations
yiðtÞ, e.g., a video feed, that they relay to task planning and
perform position estimation x̂iðtÞ that they feedback to the
control block. Using available technologies for mapping,

control, and state estimation, each robot can estimate its

position x̂iðtÞ and control its velocity _xiðtÞ with respect to a

common known map of the environment. Since we do not

provide details about mapping or state estimation in this

paper, we refer the interested reader to, e.g., [2].

A. Communication-Aware Mobility Control
In the design of concurrent communications and mobi-

lity control algorithms for autonomous robot teams there

are three issues that arise naturally: 1) how to translate

robot positions into information about the point-to-point

rates at which pairs of robots can communicate with each

other; 2) how will the cyber–physical control loop in Fig. 1
utilize point-to-point connectivity information in order to

ensure end-to-end network integrity; and 3) how to deal

with uncertainty in the information about point-to-point

channels between individual pairs of robots.

Issues 1) and 2) are related to each other. A simple

answer to issue 1) is to identify the ability to communicate

with spatial proximity, possibly mixed with line-of-sight

information to account for physical obstacles to radio pro-
pagation. Using this model, point-to-point links between

robots are feasible if they are sufficiently close and within

sight of each other and infeasible otherwise. Matched to

this simple model of point-to-point connectivity, the abi-

lity to establish end-to-end connections is identified with

the connectedness of the resulting graph. The problem of

ensuring end-to-end network integrity then becomes one

of letting robots move to accomplish their task while
guaranteeing that the graph of point-to-point connections

consists of a single connected component [3]–[10].

The advantage of this approach is that network-wide

indicators of connectedness such as the second largest

eigenvalue of the graph Laplacian or the k-connectivity of
the network’s graph are computationally tractable. It is

therefore not difficult to insert connectivity constraints

into the task planner and, if there is leeway in the selection
of different spatial configurations, to find configurations

that optimize connectivity in terms of the metric under

consideration. Do notice that path planning is computa-

tionally challenging even in the absence of communication

constraints. The tractability of graph connectedness indi-

cators simply means that the computational complexity of

the cyber–physical control loop is comparable to that of a

communication-unaware controller.
Aside from the value of simplicity, associating small

distance and line-of-sight with connectivity is not entirely

justified. Early solutions to wireless networking for sys-

tems of dynamic nodes were indeed based on the concept

that reliable point-to-point links could be detected and

established [11], [12]. However, it was quickly noticed that

binary channel models were not accurate representations

of wireless links [13]. As a consequence, attention was
devoted to methods that explicitly consider the reliability

of point-to-point links and choose routes to optimize end-

to-end reliability metrics such as probability of delivery

[14]–[16]. These more nuanced models of wireless connec-

tivity can be incorporated without much difficulty into

mobility control algorithms that use indicators of graph

connectedness [17], [18]. If links are characterized by

reliability indicators, the binary connectivity graph can be
replaced by a weighted graph. Information about the

number of connected components can be similarly ex-

tracted from, for example, the second largest eigenvalue of

the weighted graph’s Laplacian.

Either based on binary or weighted graphs, connected-

ness is an indirect indicator of the ability to establish end-

to-end communications. Having a single connected

component just implies that multihop paths from sources
to destinations exist but does not determine whether the

network formed by the robots is able to support desired

communication rates. It is possible that some links in the

connectivity graph can support rates that are too low, or

that the resulting configuration contains bottlenecks that

limit information flow. In the cyber–physical control loop

depicted in Fig. 1, graph connectedness does not solve for

the network variables AðtÞ. Instead, it restricts movement
so that a necessary but not sufficient condition for the

existence of feasible network variables AðtÞ is not violated.
In fact, one could argue that these controllers are not

cyber–physical because the integration of wireless commu-

nications with physical mobility is minimal. A true cyber–

physical design should consider end-to-end rates and

conjoin the design of mobility and network control as done

in the systems described in the following section.

B. Robust Cyber–Physical Control
An honest metric of network integrity has to rely on the

achievability of target end-to-end communication rates.

Communication rates, however, do not depend solely on

the spatial configuration but also on the manner in which

packets are routed through the network. This leads to the

problem of joint cyber–physical control of trajectories and
routing variables [1], [19]. For given spatial configuration x,
pairs of achievable point-to-point communication rates

RijðxÞ are assumed available at the radio modeling block.

The cyber part of the controller queries the modeling block

and attempts to determine routing variables AðxÞ that

support desired communication rates aki;min. If this attempt

is unsuccessful, spatial configuration x is marked as un-

allowable. If the attempt succeeds, joint configuration
ðx;AðxÞÞ is deemed feasible and, in particular, spatial

configuration x is deemed allowable. The physical part of

the controller utilizes the information on allowable con-

figurations x to plan physical routes that achieve

minimization of the task potential �ðxÞ while ensuring

that end-to-end rates exceed basal requirements at all

points in time. See Section II.
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Ensuring continuous reliable communication is chal-
lenging, however, because significant uncertainty in

achievable rates is inherent to the deployment of an auto-

nomous robot team. Due to shadowing and small scale

fading, even small variations in robots’ positions lead to

significant changes in channel strength [13], [20], [21]

which translate into commensurable changes in achievable

communication rates between pairs of robots. Precise

channel state information can be acquired through mea-
surements over time, but mobility planning algorithms

necessitate access to channel quality indicators at future

positions to which the robots are yet to be deployed. Thus,

from the perspective of the system in Fig. 1, rates RijðxÞ are
random. The outputs of the radio modeling block are rate

estimates �RijðxÞ whose variances ~RijðxÞ are typically large.
See Section III.

Since achievability of end-to-end rates cannot be gua-
ranteed because of rate uncertainties, it is natural to rede-

fine network survivability in terms of the probability of

end-to-end rates exceeding their basal rates aki;min. Packet

routing variables AðxÞ are then determined in order to

maximize this probability [1]. The resulting routes are

robust because they are chosen to minimize the probability

of failure. At this point it has to be noted that the goal of

the self-organized network is to maintain reliable end-to-
end communication, not point-to-point communication.

Consequently, we can think of robust routes as exploiting

spatial redundancy to minimize the effect of point-to-point

uncertainty in end-to-end communication rates. Indeed,

by splitting traffic flows between various neighboring ro-

bots, we can ensure that while failure of a particular link

may reduce end-to-end communication rates, it does not

interrupt them completely. See Section IV.
The integration of robust routing with the physical con-

trol loop is discussed in Section V. We develop local plan-

ning algorithms for simple environments (Section V-A) that

we test in simulations for teams composed of three and four

robots (Section V-B). These simulations demonstrate that

the performance of local controllers is hindered by local

minima. To overcome this problem as well as to handle

complex environments, we leverage the local controllers to
design global planning algorithms (Section V-C). Global

planners are tested with experimental results in an indoor

office space at the University of Pennsylvania (Section V-D).

The experiments demonstrate that the global planning

algorithm succeeds in navigating a complex environment

while ensuring that end-to-end communication rates meet

or exceed prescribed values within a target failure tolerance.

We close the paper with concluding remarks (Section VI).

II . COMMUNICATIONS AND MOBILITY

Consider a team of N robots and denote their positions as

xi, for i ¼ 1; . . . ;N. The robots are kinematic and fully

controllable which allows us to consider simple mobility

models of the form _xiðtÞ ¼ uiðtÞ, where uiðtÞ is the control

input to robot i. A human operator is located at the fixed
operation center that we index as i ¼ 0 at position x0.
Further define vectors x :¼ ðx0; . . . ; xNÞ 2 R2ðNþ1Þ and
_x :¼ ð _x0; . . . ; _xNÞ 2 R2ðNþ1Þ to group all positions and

velocities, respectively. The task assigned to the team is

specified through a generic scalar convex task potential

function� : R2ðNþ1Þ ! R. If the potential minimum�min

is attained at x�, i.e., if �ðx�Þ ¼ �min, the configuration

x� satisfies task completion. For example, if a designated
leader agent ‘ must visit a target location x‘;goal 2 R2, we

can define �ðxÞ ¼ kx‘ � x‘;goalk2. The minimum �min ¼
0 is attained by any configuration x� ¼ ðx0; . . . ; x‘; . . . ;
xNÞ for which x‘ ¼ x‘;goal, or equivalently by any member

of the set x� 2 fx ¼ ðx0; . . . ; x‘; . . . ; xNÞ : x‘ ¼ x‘;goalg.
Irrespective of the particular form of �ðxÞ, the control

problem is to find velocities _xðtÞ such that at some time tf
the team configuration xðtf Þ ¼ xð0Þ þ

R tf
0
_xðtÞdt satisfies

task completion in that we have �ðxðtf ÞÞ ¼ �min.

Mathematically, we can write this mobility control formu-

lation as

min
_xðtÞ;t2½0;tf �

� xðtf Þ
� �

subject to xðtÞ ¼ xð0Þ þ
Z t

0

_xðuÞ du: (1)

As robots move to accomplish their task, they maintain

end-to-end data communication flows between members of

the team and/or members of the team and the operation

center. Information flows are indexed as k ¼ 1; . . . ;K.
Flows may have multiple sources and multiple destina-

tions. The set of destinations of the kth information flow is

denoted as destðkÞ. For agent i and flow k, the variable

aki;min represents the required communication rate between

agent i and any of the agents in the set of destinations

destðkÞ. For example, if the only communications of inter-

est are from the lead robot ‘ to the operation center, there

are only K ¼ 1 flows. Since the flow k ¼ 1 is intended to
the operating center, destð1Þ ¼ 0 and a1‘;min denotes the

minimum level of service for the communication from the

leader to the operating center. All other variables

aki;min ¼ 0 are null.

We model point-to-point connectivity through a rate

function RijðxÞ ¼ Rijðxi; xjÞ that determines the amount of

information that agent i at position xi can send to agent j at
position xj. Since direct communication between the
source and the destination of an information flow is not

always possible, terminals self-organize into a multihop

network to relay packets for each other. Packet relaying is

determined by routing variables �k
ij which describe the

fraction of time node i spends transmitting data for flow k
to node j; see Fig. 2. Thus, the product �k

ijRijðxÞ determines

the rate of point-to-point information transmission from
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i to j. If we consider the transmission to all neighboring
terminals for which RijðxÞ > 0, the total rate at which pa-

ckets leave agent i is
PN

j¼0 �
k
ijRijðxÞ. Likewise, the total rate

at which i receives packets from other terminals isPN
j¼0;j 62destðkÞ �

k
jiRjiðxÞ. The information rate aki ðA;xÞ

available for flow k at source i is the difference between

outgoing and incoming rates

aki ðA;xÞ ¼
XN
j¼0

�k
ijRijðxÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Outgoing packets

�
XN

j¼0;j62destðkÞ
�k
jiRjiðxÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Incoming packets

(2)

where we define the vector A grouping all routing

variables �k
ij. Notice that the variables �k

ij represent time
slot shares and must therefore satisfy 0 � �k

ij � 1 for all i, j,
and k. It must also be that

P
j;k �

k
ij � 1 for all i to ensure

that the sum of all time shares at terminal i does not exceed
1. It is possible to, alternatively, require

P
i;j;k �

k
ij � 1 if we

wish for only one link to be active at any time across the

entire network.

Routing variables A and configuration-dependent rates

RijðxÞ determine the set aki ðA;xÞ of end-to-end commu-
nication rates from each node i and flow k as per (2). The
task specification requires that end-to-end rates exceed

the minimum threshold aki;min. Therefore, integrity of the

communication network necessitates that

aki ðA;xÞ � aki;min; for all i; k: (3)

Notice that aki ðA;xÞ is a function of positions x and rout-
ing variables A. To control end-to-end connectivity, i.e., to

satisfy (3), we can resort to control of positions x, to
control of routes A, or both.

Since communication is necessary for task completion,

the mobility control problem as summarized in (1) is

redefined. The new goal is to find algorithms and control

policies that govern robot motions in order to satisfy the

task specifications in (1) and (3). Reducing �ðxÞ as per (1)
and ensuring network integrity as per (3) may be

conflicting requirements. We therefore replace (1) by a

concurrent search of trajectories xðtÞ and routes AðtÞ so
that the task potential is minimized without ever breaking

communication connectivity. Mathematically, we write

this objective as the optimization problem

min
AðtÞ; _xðtÞ;t2½0;tf �

� xðtf Þ
� �

subject to aki AðtÞ;xðtÞð Þ � aki;min

xðtÞ ¼ xð0Þ þ
Z t

0

_xðuÞ du (4)

where rates aki ðAðtÞ;xðtÞÞ are given by the expression

in (2) with A ¼ AðtÞ and x ¼ xðtÞ.
A drawback of the formulation in (4) is the difficulty of

ensuring that the constraints in (3) are satisfied. As seen

in (2), rates aki ðA;xÞ depend on the link reliabilities RijðxÞ,
which are difficult to estimate. Propagation knowledge is
used by the radio communication modeling block in Fig. 1

to provide rough rate estimates �RijðxÞ. Agents can further

measure received signal strength indicators (RSSIs) to

refine the rate estimates for the current configuration xðtÞ;
see, e.g., [22]. The challenge here is that �RijðxÞ estimates

are needed not only for configuration xðtÞ, but for nearby
configurations to which the robots may move. The high

variability of wireless channels makes �RijðxðtÞÞ a poor
predictor of RijðxÞ even if x is close to xðtÞ. In general,

channel estimates �RijðxÞ at future positions x follow from

radio propagation modeling and corrections from RSSI

observations.

In formal terms, uncertainty of channel estimates

means that the variances ~RijðxÞ of channel estimates �RijðxÞ
are typically large for possible future positions x.
Variances ~RijðxÞ can be provided by the radio modeling
block and are therefore assumed to be available at the

controller along with the mean estimates �RijðxÞ. We seek

to redefine (4) in a manner that takes into account this

probabilistic formulation of channel rates. The important

observation here is that if point-to-point link rates become

random, so do the rates aki ðA;xÞ of end-to-end commu-

nication flows [cf. (2)]. Consequently, it is not possible to

guarantee satisfaction of the constraints in (3). Rather, we
introduce a reliability tolerance � and require that for all i
and k

P aki ðA;xÞ � aki;min

h i
� �: (5)

That is, we require that the end-to-end link between all

sources i and the destinations of all corresponding flows k

Fig. 2. Communication network. The nodes are deployed to support

end-to-end rates from node i to destination (or flow) k. Routing

variables �k
ij determine the fraction of time node i sends packets to

node j for flow k. Rij is defined as the supported rate of the wireless

channel from node i to node j.
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exceed their minimum required level of service with pro-
bability larger than �. As in the case of the rate require-

ment in (3), we can satisfy (5) by controlling A and x
separately or jointly.

In order to robustly satisfy the networking constraints

in (5), the concurrent routing and mobility problem (4) is

replaced by

min
AðtÞ; _xðtÞ;t2½0;tf �

� xðtf Þ
� �

subject to P aki ðA;xÞ � aki;min

h i
� �

xðtÞ ¼ xð0Þ þ
Z t

0

_xðuÞ du: (6)

The focus of this paper is the solution of (6).

The problem formulation in (6) inherits some standard

complications from the control formulation in (1). The
problem is infinite dimensional and due to, e.g., the

presence of obstacles, not convex. The concurrent search

in (6) is further complicated by the entanglement of the

routing and mobility problems. We deal with this en-

tanglement by fixing x and selecting A in a manner that

optimizes the reliability P½aki ðA;xÞ � aki;min� (Section IV).

We finish with local and global searches on positions x
to minimize �ðxÞ while keeping reliabilities above the
� threshold (Section V).

III . POINT-TO-POINT RATE MODELING

With robots i and j located at positions xi and xj, we seek to
develop a probabilistic model for the supported communi-

cation rate RijðxÞ ¼ Rijðxi; xjÞ between them. More specif-

ically, we wish to model its expected value �RijðxÞ ¼
�Rijðxi; xjÞ and variance ~RijðxÞ ¼ ~Rijðxi; xjÞ. Our intent is to
use simple radios that do not perform rate or power

adaptationVwe use 2.4-GHz Zigbee radios in our experi-
ments; see Section V-D. In that case, the communication

rate Rijðxi; xjÞ is a function of the packet error rate of the

channel, which in turn is a function of the signal-to-noise

ratio [23]. We therefore focus on models of the received

signal strength PRðxi; xjÞ that we cascade into models of the
packet error rate and the supported communication rate

Rijðxi; xjÞ.
Received signal power PRðxi; xjÞ is determined by three

phenomena: path loss due to the distance from the source,

shadowing due to obstacles in the propagation path, and

multipath fading that arises as a result of reflections and

refractions. Of these three phenomena, path loss and sha-

dowing can be incorporated into a predictive model with
relative ease. Fading, however, is difficult to predetermine.

Multipath fading arises due to a spatial wave interference

pattern generated by reflections and refractions of the

electromagnetic wave which, as a consequence, inherits a

space constant in the order of the wave’s wavelength.

Thus, in order to use ray tracing models to predict the

interference pattern we need to locate all potential

reflectors and refractors with precision smaller than this
wavelength. While plausible in principle, this is intractable

in practice because wavelengths at common operating fre-

quencies are too smallVfor example, with radios operating

at 2.4 GHz., the wavelength is about 12 cm. Given this

difficulty we adopt the following model for the received

power PR;dBmðxi; xjÞ ¼ 10 logðPRðxi; xjÞÞmeasured in dBm:

PR;dBmðxi; xjÞ
¼ L0 � 10n � log kxi � xjk

� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Path loss

�Wðxi; xjÞ|fflfflfflffl{zfflfflfflffl}
Shadowing

� F|{z}
Fading

(7)

where the term F is a zero-mean Gaussian random varia-
ble with variance �2

F modeling fading effects. The term L0
is the measured power at a reference distance d0 from the

source, n is a path loss exponent, and Wðxi; xjÞ is a non-

smooth function to model shadowing as a function of the

number of obstacles between source and destination.

Experimental data collected in an indoor office environ-

ment at the University of Pennsylvania along with the

function in (7) having parameters fit to the experimental
data are depicted in Fig. 3. The parameters in Fig. 3 are

L0 ¼ �51 dBm for d0 ¼ 1 m, n ¼ 2:1, Wðxi; xjÞ ¼ 0 for

line-of-sight links and Wðxi; xjÞ ¼ 7.6 dB for non-line-of-

sight links, and �2
F ¼ 32 dB2. Notice that fading can cause

Fig. 3. Experimental characterization of received power model (7) based on 1000 samples when we classify wireless channels based on

line-of-sight. (a) Line-of-sight. (b) Non-line-of-sight.
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variations in received power in the order of �10 dB. This
is verified by the standard deviation of F , which is �F �
5.7 dB. Recall that a 10-dB difference corresponds to a

change of an order of magnitude for the power measured

in linear units.

Translation of received signal strength PRðxi; xjÞ into

packet error rate peðPRðxi; xjÞÞ depends on the type of

modulation and the choice of error correcting codes.

Regardless of specifics, a generally good approximation to
the packet error rate is

pe PRðxi; xjÞ
� �

¼ erfc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k
Pðxi; xjÞ
PN0

s !
(8)

where PN0
is the noise power, erfcðxÞ is the complemen-

tary error function, and k is a constant that depends on

modulation and coding [23]. The translation into commu-

nication rates Rijðxi; xjÞ is now straightforward as it simply

requires multiplying the information rate of transmitted
packets R0 by the probability of successful decoding, i.e.,

Rijðxi; xjÞ ¼ R0½1� peðPRðxi; xjÞÞ�.
The randomness of the fading term F in (7) propagates

into randomness in the error probabilities peðPðxi; xjÞÞ and
subsequently into randomness in the rates Rijðxi; xjÞ. To
compute the mean and variance of Rijðxi; xjÞ we need to

recall that F is a Gaussian random variable. We can then

invoke the delta method [24] to approximate the mean and
variance of Rijðxi; xjÞ in terms of the mean and variance of

PRðxi; xjÞ and the derivatives of the function peðPRðxi; xjÞÞ
in (8). The complete mapping from distance to link rates is

depicted in Fig. 4. Observe that except for very short

distances smaller than 3 m there is significant variability in

achieved link rates. See [1, ch. 4] for details.

While the model we present in this section describes

the statistics of the supported rate Rijðxi; xjÞ in terms of
distances kxi � xjk, we emphasize that this is not a limi-

tation of the proposed cyber–physical controller. In fact,

the controller is agnostic to the particulars of the radio
propagation model and relies only on the ability to query

for means and variances. It is reasonable to expect that

techniques for spatial mapping of point-to-point communi-

cation rates will outperform distance-based models when

considering unknown or highly dynamic environments.

However, as demonstrated by the experiments in

Section V-D, the robust satisfaction of communication

constraints affords the possibility to rely on coarse models
of point-to-point communication rates while still ensuring

maintenance of quality-of-service requirements.

IV. ROBUST ROUTING

The control loop in Fig. 1 embeds a cyber optimization

component and a physical reconfiguration module. The

cyber optimization component optimizes communication
routes for given positions, while the physical component

explores spatial reconfigurations that maintain network

integrity and are conducive to task achievement. The phy-

sical module relies on the cyber module for the determi-

nation of configurations that are feasible from the

perspective of maintaining target communication rates

with some desired reliability.

The major difficulty in designing the cyber component
of this control loop is the uncertainty in achievable trans-

mission rates between nearby agents. As we discussed in

Section III, simple experiments suffice to demonstrate that

achievable rates in wireless links are difficult to predict.

Therefore, assuming that the actual channel rates RijðxÞ
coincide with their estimates �RijðxÞ may result in a drastic

difference between predicted and actual end-to-end rates.

This mismatch subsequently leads to situations in which
the communication optimization module asserts network

integrity when actual rates do not suffice to support the

task assigned by operators.

A simple way to account for the uncertainty in RijðxÞ is
to discount �RijðxÞ in order to reduce the likelihood of

having actual rates smaller than the assumed value. This is

definitely possible but would result in underutilization of

communication resources. A better way to account for the
uncertainty in channel rates is to recall that end-to-end

rather than point-to-point failures are relevant. With re-

ference to Fig. 2, say that robot i decides to convey infor-

mation to k by forwarding it through l. If the rate RilðxÞ
happens to be substantially smaller than estimated, com-

munication is interrupted. If, on the contrary, robot i de-
cides to send part of the information through l and some

other part through j, the communication between i and k
survives as long as the rate RijðxÞ is larger than estimated.

This example illustrates that it is possible to exploit spatial

redundancy through traffic splitting in order to devise ro-

bust routes that guarantee small changes in end-to-end rates

despite large variability in point-to-point rates RijðxÞ [25].
To develop robust routing algorithms, start by noticing

that computing the probability in (5), which is part of the

Fig. 4. Mapping from distances kxi � xjk between a transmitter at

location xi and a receiver at position xj to normalized link rates

Rijðxi; xjÞ=R0.
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problem formulation in (6), necessitates modeling the
probability distribution of aki ðA;xÞ. This is difficult in

general. However, if we explicitly consider the stochastic

model of point-to-point links via their means and va-

riances, we can compute the mean and variance of end-to-

end rates aki ðA;xÞ as

�aki ðA;xÞ :¼E aki ðA;xÞ
� �

¼
X
j

�k
ij
�RijðxÞ �

X
j62destðkÞ

�k
ji
�RijðxÞ (9)

~aki ðA;xÞ :¼ var aki ðA;xÞ
� �

¼
X
j

�k
ij

� �2
~RijðxÞ þ

X
j62destðkÞ

�k
ji

� �2
~RijðxÞ: (10)

A proxy for the probability in (5) is the difference between

aki ðA;xÞ and its mean �aki ðA;xÞ normalized by its standard

deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~aki ðA;xÞ

q
. Indeed, a typical approximation for

the probability constraint in (5) is the condition

Pki ðA;xÞ :¼
�aki ðA;xÞ � aki;minffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~aki ðA;xÞ
q � ��1ð�Þ (11)

for some function ��1ð�Þ. If the probability distribution of

rates RijðxÞ is Gaussian, (11) is equivalent to (5) if��1ð�Þ is
the inverse of the normal distribution’s cumulative

distribution function. For other probability distributions,

we can apply Chebyshev’s inequality with ��1ð�Þ ¼
ffiffiffiffiffiffiffi
1=�

p
to demonstrate that (11) is a sufficient condition for

satisfying (5) though this will usually be a conservative

approximation.

For given positions x, the goal of the cyber optimiza-

tion component is to find routing variables A that satisfy

(11) which is equivalent to, approximate to, or a sufficient

condition to satisfy (5). In either case, there is some inde-

terminacy because there is a nonunique set of variables A
that satisfy the corresponding inequality. This indetermi-

nacy provides a degree of freedom that can be used to

increase the reliability beyond the required level. For a

given configuration x, we would like to find routes

A ¼ AðxÞ that provide the maximum possible reliability.

Doing so is not conceptually difficultVit requires determi-

nation of routes AðxÞ that maximize the probability pro-

xies Pki ðA;xÞ in (11) in some sense. Considering that there
is a rate variable aki for each source–destination pair, there

are several possible choices to define this maximization.

One possibility is to maximize the sum of these probability

proxies. Another possibility is to select routes AðxÞ that
make the smallest of these terms as large as possible.

Maximizing this minimum implies that the constraints in

(11) are satisfied with significant slack and that there is

significant liberty to change the physical configuration
without violating communication constraints. This free-

dom of movement facilitates implementation of the physi-

cal mobility control block as we discuss in Section V.

An important observation here is that the probability

proxy constraints in (11) can be written in a manner that

defines a cone in the joint space of routing variables and

end-to-end rates [1, ch. 5]. A consequence of this property

is that the optimization problems that need to be solved to
maximize them are second-order cone program (SOCPs).

SOCPs are a particular class of convex optimization

problem that can be solved by efficient polynomial-time

algorithms. For the problems considered here, the compu-

tational complexity of these algorithms is represented as a

polynomial function of the number of agents N and the

number of flows (destinations) K, as OððK � N2Þ3:5Þ. In
practical implementations, the N2 term can be reduced by
eliminating links for which rate estimates �RijðxÞ are below
a certain threshold.

Recall that the motivation for robust routing algorithms

is to reduce uncertainty in end-to-end communication

rates. We do so by taking advantage of spatial redundancy,

for which it is necessary to split traffic among various

different routes. It is fitting that we do expect to obtain this

type of solution from the maximization of the probability
proxies Pki ðA;xÞ in (11). Indeed, increases in these terms

can be brought about by either increasing the mean

�aki ðA;xÞ or decreasing the variance ~aki ðA;xÞ. Since the

mean is a linear function of A, traffic splitting has a minor

effect on �aki ðA;xÞ. However, traffic splitting reduces

~aki ðA;xÞ by a factor proportional to the splitting because

the variance is a quadratic function of AVrecall that

�ij � 1. Thus, traffic splitting tends to increase the proba-
bility proxies because it keeps �aki ðA;xÞ more or less con-

stant and reduces ~aki ðA;xÞ significantly.

V. CONTROL

As per (6), the objective of mobility control is to decrease

�ðxÞ while satisfying the probability proxy constraints in

(11)Vwhich are equivalent or approximations to

P½aki ðA;xÞ � aki;min� � �. To check for the feasibility of a
cyber–physical configuration ðA;xÞ, we define the prob-

ability margin as the minimum slack in probability proxy

constraints across all flows and sources

�ðA;xÞ :¼ min
i;k

�aki ðA;xÞ � aki;minffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~aki ðA;x0Þ

q � ��1ð�Þ

2
64

3
75: (12)

Notice that a necessary and sufficient condition for

feasibility of the physical configuration x is to have

�ðAðxÞ;xÞ � 0, with routing variables AðxÞ as given by

the solution of the SOCP described in Section IV. A
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sufficient condition for feasibility of physical configuration
x0 is the existence of a cyber configuration A for which

�ðA;x0Þ � 0. In particular, for x0 close to x, we expect to
have �ðAðxÞ;x0Þ � 0 since the channel statistics at x and

x0 are close.

A. Gradient Controller
In general, gradient controllers define velocities _xðtÞ

proportional to the negative gradients �r�ðxðtÞÞ of the
task potential. Since the problem in (6) is subject to com-

munication constraints, a local controller will be based on

potential gradients projected onto the feasible set
�ðA;xÞ � 0. The complex description of the feasible set,

however, precludes computation of projected gradients.

Instead, we consider the probability margin �ðAðxÞ;xÞ
and modify the potential �ðxÞ by adding the probability

margin constraint into the objective through a barrier

function

�ðxÞ :¼ �ðxÞ � log � AðxÞ;xð Þð Þ: (13)

Since nonnegativity is necessary and sufficient for feasibi-

lity of physical configuration x, the potential �ðxÞ in (13)

is defined if and only if physical configuration x is feasible.

The local control law is defined to implement gradient
descent on the modified potential �ðxÞ introduced in (13),
which, in explicit terms, is given by

uðtÞ ¼ �r� xðtÞð Þ þ rx� A xðtÞð Þ;xðtÞ½ �
� A xðtÞð Þ;xðtÞ½ � : (14)

The term r�ðxðtÞÞ in (14) drives the system to satisfy the

task potential. The term rx�½AðxðtÞÞ;xðtÞ�=�½AðxðtÞÞ;
xðtÞ� serves as a barrier that drives robots away from con-

figurations for which there is a low probability of exceed-

ing the desired reliability in end-to-end rates.

B. Simulation Results
We implement the local controller with mobility con-

trol inputs given by (14) and communication variables

obtained from Section IV. Computing controls based on

local optimization of the network-level end-to-end rates

allows for a method of realizing team deployment while
maintaining the necessary level of network connectivity.

Fig. 5 depicts an example deployment with three robots for

a time-varying task potential

� xðtÞð Þ ¼
x2;goal ¼ ð4; 0Þ; t G 40

x2;goal ¼ ð8; 0Þ; t G 60

x2;goal ¼ ð6; 5Þ; t � 60.

8<
: (15)

Most importantly, this example demonstrates conver-

gence of the task potential �ðxÞ while maintaining

P½ai � ai;min� > � as depicted in Fig. 6(a) and (c). How-
ever, it is also interesting to observe that when the task

potential is minimized, e.g., t � 30 s, the local control law

(14) maximizes the probability of each end-to-end rate

exceeding its minimum threshold. When the task potential

switches so that �ðxÞ is no longer minimized, the proba-

bility margin is reduced so that the primary objective,

minimization of �ðxÞ, is prioritized. Finally, Fig. 6(b) de-
picts the end-to-end rate of the node x2 that must remain
above a2;min ¼ 0:1. Remember that RijðxÞ is a stochastic

rate that affects the end-to-end rate. The envelope around

�a2 in Fig. 6(b) depicts the effect that different realizations

of communication channels RijðxÞ will have on the end-to-

end rate. Since the pursuit of minimization on �ðxÞ is

constrained to have a probability margin �ðAðxÞ;xÞ > 0,

the end-to-end rate exceeds its threshold in the presence of

deviations to RijðxÞ.
We perform a four robot simulation, depicted in Fig. 7,

to demonstrate how the complexity of the objective func-

tion (13) increases with more nodes. Similar to the three

robot simulation above, the task potential function is time

varying so that �ðxÞ ¼ 0 for t G 50 s and �ðxÞ ¼ kx3 �
ð9; 0Þk for t � 50 s. When t G 40 and the task potential is

already minimized, control of x1 and x2 is based solely on

the maximization of log �ðAðxÞ;xÞ. From the symmetric
initial configuration, the maximization drives x1 and x2
towards a local maxima where they would be positioned at

the same point. In fact, if we consider all configurations

where x1 G x2 and both agents are on the line connecting

the access point, we find that there are two local maxima as

depicted in Fig. 8.

To further illustrate the virtual terrain of the objective

function (13) that drives local control, we observe the
convergence of �ðxðtÞÞ as depicted in Fig. 9(a). For

times 70 s G t G 90 s, convergence of �ðxðtÞÞ slows,

Fig. 5. Deployment via local control law (14) for a system with a

fixed access point, relay node x1 and lead node x2, which is

controlled by a time-varying task potential CðxðtÞÞ.
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�ðAðxÞ;xÞ as depicted in Fig. 9(c) shows little change,
and x1 and x2 cease progress. Fortunately, perturbations in
the simulation are enough to pull the system out of the

local minima so that it can achieve a global minimum at

t ¼ 140 s. As the number of agents increases, the fre-

quency of local minima in��ðAðxÞ;xÞ becomes more and

more of an issue for local control. The addition of obstacles

into the environment adds further difficulties as it not only

affects feasible configurations x due to collision con-

straints, but also introduces nonsmooth components in the

underlying point-to-point communication links RijðxÞ.

C. Global Planning
Gradient-based control will drive the system towards

local minima of (13). However, as we consider larger

teams with more complicated network topologies and

complex environments with obstacles, local minima be-

come more of an issue. We propose that a global search of

(6) is necessary in order to accomplish the high-level

situational-awareness tasks we are interested in.

To consider global search of (6), we redefine the prob-
lem to be more amenable to motion planning approaches

from the robotics literature. Let X be a bounded connected

open subset of R2N that represents the full joint state space

for the team of robots where x0 is the initial configuration

of the team. In general, the goal region will be defined as

Xg ¼ fx : �ðxÞ G �min þ �g. In the telepresence applica-

tion where a lead agent must visit the location x‘;g,�ðxÞ ¼
kx‘ � x‘;gk2 and Xg ¼ fx : kx‘ � x‘;gk G �g. The obstacle
region Xobs contains any configuration that places an

individual robot on a physical obstacle and the infeasible

Fig. 7. Snapshots from a four robot trial. The end-to-end rates and probability of meeting the problem specifications are depicted in Fig. 9.

CðxðtÞÞ ¼ kx3 � ð9;0Þk for t > 50 s and CðxðtÞÞ ¼ 0 for t � 50 s: (a) t ¼ 40 s; (b) t ¼ 75 s; (c) t ¼ 140 s.

Fig. 8. Evaluation of �ðAðxÞ; xÞ, 8x 2 fx ¼ ðx1; x2; x3Þ : x1 G x2 G x3,

x3 ¼ ð5;0Þ, x1, and x2 online connecting access point and x3g.
Local maxima occur at x1 ¼ x2 ¼ 1.9 m and x1 ¼ 1.5 m, x2 ¼ 3 m.

Fig. 6. Performance of the local control law (14) demonstrating

convergence ofCðxðtÞÞ in (a), the maintenance of expected end-to-end

rate greater than the threshold of a2;min ¼ 0:1 in (b), and the

P½ai � �i;min� > 0:6. The envelope surrounding E½a2� in (b) depicts the

60% confidence interval for realizations of the end-to-end rate

with stochastic RijðxÞ.
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region represents configurations where it is infeasible to

satisfy the network constraint (11)

Xinf ¼ x :
�aki ðA;xÞ � aki;minffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~aki ðA;xÞ
q G ��1ð�Þ

8><
>:

8 A 2 �k
ij : 0 � �k

ij � 1;
X
j;k

�k
ij � 1

( )9>=
>;: (16)

The free space Xfree is then X n ðXobs [ XinfÞ. Finally, a path
in X is parameterized by a scalar s � 0 and given by

S : ½0; s� ! X. A feasible path, and solution to our global-

planning problem, is then S : ½0; s� ! Xfree such that

Sð0Þ ¼ xinit and SðsÞ 2 Xg.

The dimensionality of our problem and the high com-
putational cost of verifying a state as in Xfree makes deter-

ministic search algorithms impractical. Instead we turn to

probabilistic search methods that offer good space filling

properties and efficient exploration of an unknown space

like the rapidly exploring random tree (RRT) algorithms

[26]. The basic structure of an RRT, as depicted in Fig. 10,

is to start with an initial point x0 and expand to fully

explore the workspace, adding states in a tree structure T
until a point x 2 Xg is added to the tree T . At each step

of the RRT algorithm, we pick a random state x̂ ¼
RANDOMSTATEðX; T Þ and select the point xmin ¼
NEARESTðT ; x̂Þ that is closest to x̂ among those that

have already been added to T . We then attempt a virtual

drive from xmin to x̂ using the subroutine x ¼
EXTENDðxmin; x̂Þ. The point x is the first intersection

of this virtual path with the border of the free space region
Xfree, or, if the border is not reached, the random point x̂.
The point x is then added to the tree T as a branch con-

nected to the point xmin that was closest to x̂ among the

preexisting elements of the tree. The algorithm terminates

when a point x 2 Xg in the goal configuration is added to

the tree.

A common problem encountered when applying RRT

algorithms to high-dimensional state spaces is that com-
putation of Nearest is inefficient for increasing tree sizes.

We adopt the strategy of storing the tree T in a KD-tree

data structure which stores states in Rd by recursively

subdividing based on alternating axis-aligned hyperplanes

[27]. This enables approximate nearest neighbor calcula-

tions that maintain performance even as the dimension

increases. However, there are two additional difficulties

that arise when applying standard RRT algorithms to solve
the specific high-dimensional network connectivity prob-

lem in (6): 1) the verification of feasible states as Extend is

used to expand the tree towards x̂; and 2) the prohibitive

cost of uniformly exploring Xfree for our high-dimensional

problem with slow-to-compute constraints. We discuss this

two issues in the following two sections.

1) Efficient Verification of Feasible States: The
EXTENDðx1;x2Þ algorithm attempts to virtually drive

the system from x1 towards x2 by successively verifying

that points along the line connecting x1 and x2 are in Xfree.

It returns the state x as the closest state to x2 such that all

states sampled with precision �x between x1 and x2 are

in Xfree. In traditional motion planning applications,

Fig. 10.Graphical depictionof theRRT searchprocess visualized inR2.

Fig. 9. (a) Convergence ofCðxÞ, (b) end-to-end rates, and

(c) probability of success for the four robot trial depicted in Fig. 7.
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verification that x 2 Xfree is based on an algebraic con-
straint or collision query with a multitude of efficient

methods for doing so [28]–[30]. While the necessary com-

putation to determine x 62 Xobs is typically small, compu-

tation of x 62 Xinf requires a solution of the SOCP in

Section IV and can be costly for high-dimensional systems.

Consequently, we store AðxÞ for every node in T and

recompute AðxÞ only when necessary to extend new

states. By relying on the fact that an optimal robust routing
solution AðxÞ will be feasible for neighboring states, it is

often possible to extend x towards x̂ without the costly

overhead of numerical optimization.

2) Biased Space Sampling: Random states x̂ are chosen to

sample the space X 	 R2N according to a probability dis-

tribution pxðxÞ representing the belief about configuration
x being part of a feasible path SðsÞ. If nothing is known
about SðsÞ, we choose pxðxÞ uniform in the space X. In
general, at least the final configuration is known in that

SðsÞ 2 Xg. We can then bias the distribution by designing

pxðxÞ to choose configurations in Xg with higher proba-

bility. Goal biasing improves efficiency of RRT algorithms

by reducing the number of samples necessary to find a

feasible path SðsÞ in the high-dimensional space X 	 R2N.

In many cases of interest, however, the volume of Xg is
comparable to the volume of X and goal biasing offers little

improvement over uniform sampling. In, for example, the

telepresence application, the goal position of the leader x‘;g
is known, but the positions of the remaining robots are

free. Thus, goal biasing would reduce the exploration cost

along the components associated with x‘ but keep the cost

of exploring the remaining 2ðN � 1Þ dimensions fixed. To

further reduce exploration cost in this case we construct a
prediction ~Xg 	 Xg of the final configuration and bias

sampling towards this prediction.

Constructing a final configuration prediction ~Xg is task

specific. We describe here a method applicable to the tele-

presence application. To determine the configuration pre-

diction ~Xg we determine configuration predictions ~Xi;g for

each robot and compute ~Xg as the Cartesian product of

these individual sets, i.e., ~Xg ¼
QN

i¼1
~Xi;g. Notice that for the

lead robot we can make ~X‘;g ¼ fx‘ 2 R2 : kx‘ � x‘;gk G �g.
Observe now that X 	 R2N is the Cartesian product

X ¼
QN

i¼1 Xi of the N decoupled spaces Xi 2 R2 corre-

sponding to each individual robot. If we further assume a

homogeneous team of robots, then all robots operate in the

same space Xi ¼ Y, with a common set of physical ob-

stacles Yobs, and consequently a common free space Yfree ¼
Y n Yobs. It follows that the joint free space Xfree is also a
Cartesian product of N identical sets Yfree minus those

configurations for which a network cannot be established

with sufficient reliability

Xfree ¼ ðYfreeÞN n Xinf : (17)

While infeasible network configurations are captured by
Xinf as given in (16), Xfree can otherwise be described by

the free space of individual robots.

To exploit this observation, we first determine an

obstacle-free path � : ½0; s� ! R2 such that �ð0Þ ¼ x0 is

the position of the operating center and �ðsÞ 2 X‘;g. The

obstacle-free path � : ½0; s� ! Yfree is split into N � 1 equal

length segments �k. The ith robot is then assigned to a

segment by the function kðiÞ based on Euclidian distance
to its midpoint. Segments are enlarged to define the region
~Xi;g for i 6¼ 0; ‘. Since this is a heuristic for the goal

configuration, the only requirement on ~Xi;g is that

�kðiÞ : ½0; s� ! ~Xi;g. A typical choice is

~Xi;g ¼ xi : min
s

xi � �kðiÞðsÞ
		 		 G ~dg

n o

where ~dg is a parameter controlling the enlarged size of
~Xi;g. The predicted final configuration is then computed as
the Cartesian product ~Xg ¼

QN
i¼1

~Xi;g . The construction of
~Xg described above is based on the heuristic that a feasible

goal configuration in an environment with obstacles will

resemble a line-of-sight communication chain. Increasing

the size of ~Xg with large values of ~dg limits the implication

of this assumption.

D. Experimental Results
The randomized motion planner is able to find

feasible configurations that allow target servicing at

Fig. 11. The global planning task for five robots in a complex

environment. We depict the series of waypoints that x5 must visit and

the initial conditions for x1; x2; x3; x4. The inset images depict our

experimental system deployed in the environment.
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positions not attainable with the local control approach

from Section V-A. It can additionally provide a feasible

sequence of configurations to get to the target configura-

tion. To test the global planner on a system with one fixed
access point and five robots, we introduce a sequence of

task potential functions �1ðxÞ;�2ðxÞ; . . . ;�MðxÞ that

require the lead node x5 to visit a sequence of positions
while the remaining four robots act as relays to support

end-to-end communication with the access point of

a5;min ¼ 0:25. We require that this end-to-end rate be

satisfied with probability � ¼ 0:75. The problem is made

more complicated by the introduction of obstacles that not

only block robot motions but also degrade received signal

strength in (7) by 7.6 dBm when line-of-sight is lost.

The global planning algorithm described in Section V-C
is queried to find a feasible path �i : ½0; s� ! R10 for each

task �iðxÞ in order such that �ið0Þ ¼ �i�1ðsÞ and �1ð0Þ ¼
xinit. The trajectory of the lead node x5 for the concate-

nation of paths � ¼ �1j . . . j�M is depicted in Fig. 11. After

solving for a feasible path, _xdesðtÞ is computed so that xðtÞ
follows �.

We conduct an experimental deployment of five robots

controlling the feasible trajectory � for the problem de-
picted in Fig. 11. In this experiment, each robot is

equipped with a 2.4-GHz Zigbee radio that is used to

broadcast and receive packets in order to measure in-

stantaneous received signal strength that can be used to

estimate the supported communication rate R̂ijðtÞ between
node i and j at time t. Using these measurements, in con-

junction with the network routing solution AðtÞ, we can

estimate the actual supported end-to-end rate at time t for
each node i, âiðAðtÞ;xðtÞÞ. The metric for the performance

of our approach is then that each âiðAðtÞ;xðtÞÞ > ai;min

with probability � across the duration of the trial.

Fig. 12 depicts the predicted �aiðAðtÞ;xðtÞÞ and mea-

sured âiðAðtÞ;xðtÞÞ end-to-end rate of each node for the

duration of the experiment. First, note that over the entire

trajectory produced with our global planning methods, the

prediction of end-to-end rates always satisfies the problem
specification that P½aiðA;xÞ � ai;min� � �. Second, when
we examine the actual end-to-end rates based on real

measurements of point-to-point wireless channels we see

that it is generally true that âiðAðtÞ;xðtÞÞ � ai;min. In fact,

if we analyze this constraint across the duration of the

experiment, we find that the fraction of time spent below

Fig. 12. The end-to-end rates of the nodes during the global planning

experiment depicted in Fig. 11. In each plot, the shaded envelope

depicts -ai and the variations that occur with probability � ¼ 0:75 based

on ~ai while the dashed black line depicts the instantaneous rate âi.

Note that a5;min ¼ 0:25 while all other ai;min ¼ 0.

Fig. 13. Snapshots of the network configuration during the experimental deployment based on global planning to satisfy the task in Fig. 11.

The end-to-end rate performance is depicted in Fig. 12. (a) t ¼ 100 s; (b) t ¼ 278 s; (c) t ¼ 482 s; (d) t ¼ 622 s.
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the minimum threshold for each of the instantaneous rates

â1; â2; â3; â4; and â5 is 9.2%, 0.8%, 0.3%, 0.6%, and 2.9%,

respectively.

Representative configurations from the experiment are
depicted in Fig. 13. In Fig. 13, at t ¼ 100 s, the predicted

goal state ~Xg assumes the shortest line-of-sight path which

is the left hallway, i.e., a similar result to the reactive

methods in our local control algorithm. As the system

transitions to Fig. 13(b), where the lead node x5 has been
tasked to a waypoint in the right hallway, the prediction for
~Xg shifts to a chain of relays going through the right

hallway. This shift in the basic topology of ~Xg focuses on
exploration of the joint state space so that x4 moves

towards a configuration that will lower the performance of

the network over the short term. As node x5 completes the

desired loop, it utilizes x4 as a relay channel and is able to

maintain the desired end-to-end rate. It is this dramatic

shift in network topology that highlights the advantage of

our global planning approach as we are able to accomplish

continuous end-to-end rate maintenance that would not be
possible with a purely reactive method.

With regards to the running time of the randomized

global planning algorithm, we note that it is difficult to

characterize the performance of randomized search algo-

rithms. One factor is the complexity of Xfree which is de-

termined both by physical obstacles in the environment as
well as the constraints placed on feasible network configu-

rations, i.e., the solution to AðxÞ. Fig. 14 depicts the run-

ning time for a benchmark environment as we increase the

dimension of the problem N by adding robots to the sys-

tem. We also vary the end-to-end rate threshold amin that

must be maintained for the lead node to demonstrate how

more strict network requirements also increase complexity

of the search space.

VI. CONCLUSION

We propose a system architecture that provides end-to-end

connectivity for autonomous teams of robots as they pur-

sue operator-assigned tasks. This architecture is composed
of a cyber component that determines the configuration of

the wireless network and a physical component that hand-

les mobility. Because the performance of point-to-point

wireless links is difficult to predict, we adopt a stochastic

model for supported rates and develop optimal robust so-

lutions to the wireless routing problem. The strengths of

the proposed approach are that: 1) network availability

takes into account specific thresholds on the end-to-end
rates of individual nodes; 2) considering the stochastic

nature of communication channels network availability is

further defined in probabilistic terms; 3) by specifically

searching for robust solutions, we obtain configurations

with spatial diversity and increased probability of success

in the face of difficult to predict communication channels.

Robust routing solutions are integrated with a physical

component that handles mobility either through local
control or global planning. Local controllers converge to

solutions that are local minima of the concurrent mobility

and network routing problem. The global planner per-

forms a randomized biased search in the space of spatial

configurations in an attempt to jointly solve the mobility

and optimal network routing problems. We perform expe-

riments to demonstrate that the global planning algorithm

succeeds in navigating a complex environment while en-
suring that end-to-end communication rates meet or ex-

ceed prescribed values within a target failure tolerance.

Global planners are able to discover dramatic shifts in

communication topology that allow for continuous commu-

nication that is not possible with purely local methods. h
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