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Yichuan Hu, Student Member, IEEE, and Alejandro Ribeiro, Member, IEEE

Abstract—This paper considers distributed algorithms to opti-
mize random access multihop wireless networks in the presence of
fading. Since the associated optimization problem is neither convex
nor amenable to distributed implementation, a problem approxi-
mation is introduced. This approximation is still not convex but it
has zero duality gap and can be solved and decomposed into local
subproblems in the dual domain. The solution method is through
a stochastic subgradient descent algorithm that operates without
knowledge of the fading’s probability distribution and leads to an
architecture composed of layers and layer interfaces. With limited
amount of message passing among terminals and small computa-
tional cost, the proposed algorithm converges almost surely in an
ergodic sense. Numerical results on a randomly generated network
corroborate theoretical results.

Index Terms—Cross-layer design, random access, wireless net-
working.

I. INTRODUCTION

O PTIMAL design is emerging as the future paradigm for
wireless networking. The fundamental idea is to select

operating points as solutions of optimization problems, which,
inasmuch as optimization criteria are properly chosen, yield the
best possible network. Results in this field include architectural
insights, e.g., [1], and protocol design, e.g., [2] and [3], but a
drawback shared by most of these works is that they rely on
global channel state information (CSI); i.e., the optimal vari-
ables of a terminal depend on the channels between all pairs
of terminals in the network. While availability of global CSI
is plausible in certain situations, it is unlikely to hold if time
varying fading channels are taken into account.
We consider optimal design of wireless networks in the more

practical situation where, due to the presence of random fading,
only local CSI is available. This restriction implies that oper-
ating variables of each terminal are selected as functions of
the channels linking the terminal with neighboring nodes and
further leads to the selection of random access as the natural
medium access choice. Indeed, if transmission decisions depend
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on local channels only and these channels are random and inde-
pendent for different terminals, transmission decisions can be
viewed as random and resultant link capacities as limited by
collisions. Thus, we can restate our goal as the development of
algorithms to find optimal operating points of wireless random
access networks in the presence of fading. Operating points are
characterized by external arrival rates, routes, link capacities,
average power consumptions, instantaneous channel access de-
cisions, and power allocations. Our goal is to select these vari-
ables to be optimal in terms of ergodic averages.
Optimal design of multihop random access networks has

been considered in [4]–[10]. Assuming that capacities of links
in the network are fixed and that terminals transmit with certain
probabilities without coordination, these works focus on com-
puting terminal transmission probabilities that are optimal in
some sense. For example, distributed algorithms are proposed
in [4] and [5] for achieving proportionally fair utility, and in
[6]–[8] for general utility functions. To reduce algorithm com-
plexity and increase convergence speed, several enhancements
are discussed in [9] and [10]. However, optimization across
fading states is not considered in any of these works.
Adapting transmission decisions to random fading states

has been considered in the particular case of random mul-
tiple access protocols [11]–[18]. In this case it is known that
a threshold-based policy in which terminals transmit when
their channels exceed a threshold and stay silent otherwise is
optimal. This was originally proved for simple collision models
[11], and later extended to other scenarios with different packet
reception assumptions [12]–[18]. Since these works consider
single hop wireless networks they do not apply directly to
the multihop wireless fading networks considered here. An
existing approach to optimal multihop random access is [19]
where threshold-based policies are applied in multihop random
access networks. Our work differs from [19] in that i) While
routes are fixed in [19] we consider them as variables to be
optimized and ii) while terminals in [19] are assumed to have
access to the channels’ probability distributions, we develop
online algorithms that operate without this prior knowledge.
This paper builds on recent results showing that non-convex

wireless networking optimization problems have null duality
gap as long as the probability distributions of underlying
fading channels have no points of strictly positive measure
[20]. Given this result it is possible to develop stochastic
subgradient descent algorithms in the dual domain that have
been proven optimal in an ergodic almost sure sense [21].
While global CSI is assumed available in general wireless
networking problems considered in [20] and [21], our goal is
to find solutions for a specific scenario where only local CSI is
available and random access is used at the physical layer. To
do so we begin by introducing an optimization problem that
defines the optimal random access network (Section II). Since
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this problem is not amenable to distributed implementation we
proceed to a suboptimal approximation through a problem that
while still not convex has zero duality gap [20] (Section II-B).
We further observe that solution is simpler in the dual do-
main—and equivalent because of the lack of duality gap—and
proceed to develop stochastic dual descent algorithms that
converge to the optimal operating point (Section III). The
resultant algorithm decomposes in a layered architecture and
is computationally tractable in that iterations require a few
simple algebraic operations (Section III-B). We also explain a
decentralized implementation based on information exchanges
with neighboring terminals (Section III-C). Results on ergodic
stochastic optimization from [21] are finally leveraged to show
that the proposed algorithm yields operating points that are
almost surely close to optimal (Section IV). Numerical results
and concluding remarks are presented in Sections V and VI.

II. PROBLEM FORMULATION

Consider an ad-hoc wireless network consisting of termi-
nals indexed as . Network connectivity is modeled
as a graph with vertices rep-
resenting the terminals and edges connecting
pairs of terminals that can communicate with each other. Denote
the neighborhood of terminal as and
define the interference neighborhood of the link as the set
of nodes whose transmission can
interfere with a transmission from to . The network supports
a set of end-to-end flows through multihop
transmission. The average rate at which -flow packets are gen-
erated at is denoted by . Terminal transmits these packets
to neighboring terminals at average rates and, consequently,
receives -flow packets from neighbors at average rates . To
conserve flow, exogenous rates and endogenous rates at
terminal must satisfy

for all and (1)

Further denote the capacity of the link from as . Since
packets of different flows are transmitted from to at rates
it must be

for all (2)

Unlike wireline networks where are fixed, link capacities in
wireless networks are dynamic. Let time be divided into slots
indexed by and denote the channel between and at time
as . The channel is assumed to be block fading—for this
to be true the length of a time slot has to be comparable to the
coherence time of the channel. As a result, remains con-
stant within a time slot and changes randomly in subsequent
time slots. Channel gains of link are assumed inde-
pendent and identically distributed with probability distribution
function (pdf) . We assume no channel realization has
nonzero probability, something that is true for models used in
practice ([22], Chapter 3). For reference, define the vector of
terminal outgoing channels and
the vector of all channels . Denote
their pdfs as and , respectively.
Based on the channel state of his outgoing links,

terminal decides whether to transmit or not on link in

time slot by determining the value of a scheduling function
. If , terminal

transmits on link and remains silent otherwise. Further
define to indicate
a transmission from to any of his neighbors. We restrict
to communicate with, at most, one neighbor per time slot

implying that we must have . We emphasize that
depends on local outgoing channels only

and not on global CSI. Further note that terminals have access
to instantaneous local CSI but underlying pdfs
are unknown.
Besides channel access decisions, terminals also adapt trans-

mission power to local CSI through a power control function
taking values in . Here, rep-

resents the maximum allowable instantaneous power on link
. The average power consumed by terminal is then given

as the expected value over channel realizations of the sum of
over all , i.e.,

(3)

where we also relaxed the equality constraint to an inequality,
which can be done without loss of optimality. If terminal trans-
mits to node in time slot and determine the
transmission rate through a function whose
form depends on modulation and coding. To keep analysis gen-
eral, we do not restrict to a specific form. We
just assume that it is a nonnegative increasing function of the
signal to noise ratio (SNR) taking finite values for
finite arguments. This restriction is lax enough to allow for dis-
continuous rate functions that arise in, e.g., adaptive modulation
and coding.
Due to contention, a transmission from to at time suc-

ceeds if a collision does not occur. In turn, this happens if i) ter-
minal transmits to , i.e., ; ii) terminal is silent, i.e.,

; iii) no other neighbor of transmits, i.e.,
for all and . Recalling the definition of inter-
ference neighborhood and that if a transmission occurs
its rate is we express the instantaneous trans-
mission rate from to in time slot as

. Assuming an er-
godic mode of operation, the capacity of link can then be
written as

(4)

Because terminals are required to make channel access and
power control decisions independently of each other,
and are independent of and for all

. Since by definition, it
follows that is also independent of for all .
This allows us to write the expectation of the product on the
right-hand side of (4) as a product of expectations,

(5)
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where we also relaxed the equality constraint to an inequality,
which can be done without loss of optimality.1

The operating point of a wireless network is characterized
by variables and functions .
Besides, (1)–(3) and (5) these variables are subject to cer-
tain box constraints. Admission variables, have lower and
upper bounds due to application layer requirements, i.e.,

. Similarly, routing variables, link capac-
ities, and terminal power budgets cannot be negative and are
also subject to given upper bounds, i.e.,

, and . Furthermore, according
to definition, and can only take values from

and , respectively. For notational simplicity,
we define vectors and

to group all
the variables related to terminal and summarize these box
constraints as with

(6)

A. Optimal Operating Point

As network designers, we wish to find the optimal operating
point of the wireless network defined as a set of variables

and functions that satisfy constraints
(1)–(3), (5), and (6) and are optimal according to certain cri-
teria. In particular, we are interested in large rates and low
power consumptions . Define then increasing concave func-
tions representing rewards for accepting units of in-
formation for flow at terminal and increasing convex func-
tions typifying penalties for consuming units of power
at . The optimal network based on local CSI is then defined as
the solution of

constraints (1), (2), (3), (5) (7)

Our goal is to develop a distributed algorithm to solve (7)
without accessing the channel pdf . This is challenging
because i) the optimization space in (7) includes functions

and implying that the dimension of the
problem is infinite; ii) since the capacity constraint (5) is
non-convex and the capacity function may be even discontin-
uous, (7) is a non-convex optimization problem; iii) constraints
(3) and (5) involve expectations over channel states whose
pdf is unknown; and iv) the fact that the transmission rate
is determined not only by the transmitter but also by the

receiver and his neighbors [cf. (5)] hinders the development of
distributed optimization algorithms.
Notice that the number of constraints in (7) is finite. This

implies that while there are infinite number of variables in the
primal domain, there are a finite number of variables in the dual
domain. Thus, while working in the dual domain may entail

1If we have channel reciprocity , the derivation of (5) from
(4) is no longer valid since power control and channel access functions of neigh-
boring nodes will have common arguments implying that and
would not be independent. The general methodology used here seems applicable
but is beyond the scope of the present paper.

some loss of optimality due the non-convex constraints in (7),
it does overcome challenge i) because the dual function is fi-
nite dimensional. It also overcomes challenge ii) since the dual
function is always convex, while challenge iii) can be solved
by using stochastic subgradient descent algorithms on the dual
function; see, e.g., [18] and [21]. However, working with the
dual problem of (7) does not conduce to a distributed optimiza-
tion algorithm due to the coupling introduced by constraint (5).
This prompts the introduction of a decomposable approxima-
tion that we pursue in the next section.

B. Problem Approximation

For reasons that will become clear in Section III, a distributed
solution of the problem in (7) is not possible because scheduling
functions and are coupled as a product in con-
straint (5). If we reformulate this constraint into an expression
in which the terms and ap-
pear as summands instead of as factors of a product the problem
will become decomposable in the dual domain. This reformula-
tion can be accomplished by taking logarithms on both sides of
(5), yielding

(8)

where we defined . While scheduling functions of
different terminals now appear as summands on the right-hand
side of (8), the link capacity constraint (2) mutates into the non-
convex constraint . To avoid this issue, we
use the linear lower bound and approximate this
constraint as . Upon defining the average
attempted transmission rate of link as

(9)

and the transmission probability of terminal as

(10)

the original optimization problem is approximated by

(11)

where we defined and relaxed the defini-
tions of attempted transmission rate and transmission proba-
bility, which we can do without loss of optimality. Problems (7)
and (11) are not equivalent because of the linear approximation
to the link capacity constraint. However, since is a lower
bound on , any operating point that satisfies the constraints
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in (11) also satisfies the constraints in (7). In particular, the so-
lution of (11) is feasible in (7), although possibly suboptimal.
Further note that variables associated with different terminals
appear as different summands of the objective and constraints
in (11). This is the signature of optimization problems amenable
to distributed implementations as we explain in the next section.

III. DISTRIBUTED STOCHASTIC LEARNING ALGORITHM

To define the dual of the optimization problem in (11) intro-
duce Lagrange multipliers , associated with terminal where

. The dual variable
is associated with the flow conservation constraint in (1), the

multiplier with the reformulated rate constraint
, the variable with the link capacity constraint

, multiplier with the at-
tempted transmission rate constraint in (9), with the transmis-
sion probability constraint in (10), and with the average power
constraint in (3). The Lagrangian for the optimization problem
in (11) is given by the sum of the objective and the products of
the constraints with their respective multipliers

(12)

where we introduced vectors , and grouping
, and for all nodes . The dual function is now

defined as the maximum of the Lagrangian in (12) over the set
of feasible and and the dual problem as the minimum
of over positive dual variables, i.e.,

(13)

Despite being non-convex, the structure of the problem in (11)
is such that as long as the fading distribution has no
realization of nonzero probability; see [20]. This lack of duality
gap implies that the finite dimensional and convex dual problem
is equivalent to the infinite dimensional and nonconvex primal
problem.
Further note that the Lagrangian in (12) exhibits a separable

structure because all summands involve a single primal variable.

Consider all summands of (12) that involve network variables
associated with terminal and define the local Lagrangian at
terminal as

(14)

Define also the local per channel Lagrangian
grouping all summands of (12)

that involve resource allocations of a given terminal and a
given channel realization , i.e.,

(15)

It is easy to see by reordering summands in (12) that we can
rewrite the Lagrangian as a sum of the local terms
and an expectation of the local per channel components

,

(16)

This separability on per-terminal terms and per-
terminal and per-channel elements is ex-
ploited in the next section to develop a distributed stochastic
subgradient descent algorithm on the dual domain that solves
the dual problem (13) and, indirectly, the primal problem (11).

A. Stochastic Subgradient Descent

The dual stochastic subgradient descent algorithm consists of
recursive updates of dual variables along stochastic subgradient
directions moderated by a constant stepsize ,

(17)

where the operator denotes projection to the nonnegative
quadrant. The stochastic subgradient in (17) is a vector
whose expectation is a descent direction of the dual function.
The important observation is that a stochastic sub-

gradient can be computed from primal maxi-
mizers of the Lagrangian . At time
terminal proceeds to compute primal variables

that maximize

the local Lagrangian ,

(18)
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It then observes local channel realizations and
determines instantaneous resource allocation variables

that optimize the local per-channel
Lagrangian associated with the
observed channel realization , i.e.,

(19)

Based on the primal Lagrangianmaximizers and de-
fined in (18)–(19), a stochastic subgradient is obtained by
evaluating the resultant constraint slack; see e.g., [21]. E.g., the
multiplier is associated with the flow conservation constraint

. Consequently, the stochastic subgra-
dient component along the direction is given by the
constraint slack

(20)

Likewise, components along the direction and
along the direction can be obtained as

(21)

For the components , and along the ,
and directions the corresponding constraints involve expec-
tation with respect to the channel distribution. Since we imple-
ment stochastic subgradient descent algorithm, we compute in-
stantaneous constraint slacks where the expectation is replaced
by the values associated with the current channel realizations

(22)

Further note that since network variables
appear as separate summands in

[cf. (16)], the maximization in (18) can be
carried out separately with respect to individual variables.
Specifically, and are obtained by solving the
following maximization problems

(23)

Notice that the maximands in (23) are linear functions of
bounded variables which therefore have trivial solutions. E.g.,

if and
otherwise. Solving for and is also easy

as it involves maximizing concave functions over convex sets
of variables,

(24)

Closed-form solutions for the maximizations in (24) can be
easily obtained by solving for the zero of the derivative with
respect to the optimization variable, and projecting the result
on the feasible set. For example, the solution for the attempted
transmission rate is .
The maximization in (19) can be written explicitly as

(25)

Different from the maximizations in (23)–(24), the one in (25)
is a non-convex problem because may be a non-
convex function of and in any event the channel access in-
dicator is an integer variable. Solving (25) is still simple,
however, as it involves just two variables; see Remark 1.
To complete the definition of the stochastic subgradient de-

scent algorithm we need an expression for . Recall that in
formulating (11) we made , which implies
that at time we should set

(26)

While the sequence of primal variables and is a
byproduct of the dual stochastic subgradient descent algorithm,
it is the optimality of these sequences, not , that we want
to study. In general, individual primal iterates and
may not be optimal but sequences and have er-
godic limits that are almost surely feasible and give a utility
yield close to ; see Section IV. In order to simplify upcoming
discussions, define the ergodic limit of the sequence of oper-
ating points as

(27)

Note that subsumed in the definition in (27) are corre-
sponding definitions for each of the individual sequences
of admission rates , routes,

, link capacities
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, powers ,
attempted transmission rates ,
and transmission probabilities .
Remark 1: To find and that solve (25) observe

that since and the constraints on are separate for
different , the optimal selection for is

(28)

Also note that can only take values from and
that only one of the variables can be set to 1. If all
the optimal objectives computed by (28) are negative, i.e.,

, the optimal
solution for (25) is for all neighbors. Otherwise, the
optimal solution for (25) is obtained by setting for
the neighbor with the largest objective in (28). In summary, we
determine

(29)

and set for . For we set
as long as
or we make otherwise.

Remark 2: If the channel probability distribution is known
we can compute powers corresponding not only to as in
(19), but to generic channel realization

(30)

We can then use knowledge of the channel distribution to com-
pute not instantaneous constraint slacks as in (22) but actual (av-
erage) constraint slacks

(31)

The constraint slacks , and are gradients
of the dual function and can be used in the descent (17) in lieu
of the stochastic subgradients , and . This
will result in faster convergence but necessitates estimation of
the channel probability distribution. The use of stochastic sub-
gradients not only avoids this estimation problem but is also
less computationally demanding and makes it easier to adapt to
changes in channel statistics.

B. Network Operation, Layers, and Layer Interfaces

To describe the role of different variables as computed in
(23)–(26) in the network’s operation it is convenient to think
in terms of a layered architecture with associated with the
transport layer, with the network layer, with the link
layer, , and with the medium access (MAC)

layer, and and with the physical layer; see Figs. 1
and 2.
Variables and determine

network operation by controlling the flow of packets through
queues associated with their corresponding layers; see Fig. 2.
In the transport and network layers there are queues associ-
ated with each of the flows. In the link and physical layers,
queues for each of the outgoing links are main-
tained. The value of determines how many packets are
moved from the -flow queue in the transport layer to the -flow
queue at the network layer at time . The number of packets
transferred at time from the -flow network layer queue to the

queue at the link layer is determined by . Notice that
packets of a particular queue in the network layer may be dis-
tributed to different queues in the link layer. Conversely, packets
in a particular queue in the link layer may come from different
network layer queues, i.e., they may belong to different flows.
At time there are packets moved from the queue
at the link layer to the queue at the physical layer.
At the physical layer queues are emptied through transmis-

sion to neighboring terminals. Resource allocation variables
and determine the scheduling and transmitted

power of link . If a transmission is scheduled and suc-
cessful, i.e., a collision does not occur, units
of information are transferred to terminal from the
physical layer queue at terminal . If a collision occurs, they
stay at the same queue awaiting retransmission in a future time
slot. When a packet is successfully decoded by terminal it
determines which flow they belong to and what destination they
are heading for. If the terminal happens to be the destination,
packets are forwarded to the application layer. If the terminal
is not the designated destination, packets are put into a network
layer queue according to their flow identifications.
Besides administering queues, layers are also responsible for

updating the values of their corresponding primal variables ac-
cording to (23)–(26); see Fig. 1. The transport layer updates

as in (24), the network layer keeps track of as per
(23), while the link layer computes as in (23) and
using (26). The MAC layer updates , and ac-
cording to the expressions in (24), while the physical layer de-
termines and as dictated by (25).
Computation of these primal per layer updates necessitates

access to Lagrange multipliers motivating the introduction
of layer interfaces to maintain and update their values. E.g.,
since is associated with the flow conservation constraint
that relates transport variables and network variables

it provides a natural interface between the transport
and network layers. Thus, we introduce a transport-network
interface tasked with computing the dual stochastic subgra-
dient component in (20) and executing the update

. Similarly, a network-link
interface is introduced to keep track of multipliers , com-
pute the dual stochastic subgradient component in (21),
and execute the corresponding update. A link-MAC interface
does the proper for multipliers and dual stochastic sub-
gradient components in (21). The remaining multipliers

, and provide a MAC-physical interface with
stochastic subgradient components , and
as given in (22). Observe that primal variables are updated with
information available at adjacent interfaces, while dual variable
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Fig. 1. Layers and layer interfaces. The stochastic subgradient descent algorithm in terms of layers and layer interfaces. Layers maintain primal variables
as well as auxiliary variables , and while multipliers and are associated

with interfaces between adjacent layers. Primal variables can be easily computed based on multipliers from interfaces to adjacent layers and dual variables are
updated using information from adjacent layers.

Fig. 2. Queue dynamics. Terminal operates by controlling queues in different layers based on operating points and . In the
transport layer and the network layer, each flow has a queue. In the link layer and the physical layer, each outgoing link maintains a queue. In this particular
example, there are two flows and , and there are two neighboring nodes and . Packets for flow are marked red while packets for are in blue.

updates are undertaken with information available at adjacent
layers. Their definition is thereby justified, because information
is exchanged only between adjacent layers and interfaces.
We remark that MAC layer variables , and

do not affect network operation, i.e., queue dynamics, at time
. The role of these variables is to record average behaviors of
the terminal to affect determination of , and
in subsequent time slots. This role is consistent with the defi-
nitions of as the average transmitted power [cf. (3)], as
the average attempted transmission rate [cf. (9)], and as the
(average) transmission probability [cf. (10)].

C. Message Passing

Most primal and dual variable updates in Fig. 1 can be done
locally at terminal . E.g., the physical layer update at terminal

requires access to multipliers , and which are
available at the physical-MAC interface of terminal . The up-
dates for primal variables and , as well as duals
and , however, necessitate access to variables of other ter-
minals. The update of multiplier at the network-transport
interface depends on network variables and which
are available at terminal , but also on the variable avail-
able at (neighboring) terminal . Similarly, the update
at the network layer depends on locally available multipliers

and , but also on the neighboring multiplier .
The update of multiplier is somewhat more complex as
it depends on local variables and , 1-hop neighbor-
hood variables , and 2-hop neighborhood variables
for all . Likewise, the update for at the MAC
layer depends on local dual variables , 1-hop neighborhood
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Fig. 3. Message passing. (a) Terminal begins by transmitting dual variables
and to all neighbors . (b) It then computes and shares

with all . This information, along with locally avail-
able multipliers, is then used to perform the primal iterations associated with all
the layers in Fig. 1. (c) Terminal passes primal variables and to
all neighbors . (d) It then evaluates and broadcasts to

. Dual updates associated with the layer interfaces in Fig. 1 are now
performed using these and locally accessible primal variables. We proceed to
(a) for the next iteration.

variables for all , and 2-hop neighboring vari-
ables for all in the neighborhood of for some

in the neighborhood of . Therefore, implementation
of these four updates requires sharing appropriate variables with
1-hop and 2-hop neighbors.
Given that these four updates depend on quantities available

at 1-hop and 2-hop neighbors it is necessary to devise a mes-
sage passing mechanism among terminals to share the neces-
sary values. For doing so we use the 4-step message passing
mechanism illustrated in Fig. 3. At the beginning of primal it-
eration, terminal transmits and to all his neigh-
bors ; Fig. 3(a). As a result, terminal receives multi-
pliers and from all of their neighbors .
Terminal follows by computing and broadcasting the term

to all his neighbors ; Fig. 3(b). Upon
receiving this information, terminal subtracts from the
received value to evaluate the expression .
The terms required for computing primal variables and

are now available at . Since the variables necessary for
the remaining primal updates are locally accessible the primal
iterations associated with all the layers in Fig. 1 are performed
at each terminal.
After completing the layer updates, primal iterates and
need to be exchanged between neighbors to perform the

dual updates associated with the layer interfaces in Fig. 1. Ter-
minal starts passing variables and to all his neigh-
bors; Fig. 3(c). Having received from all ter-
minal computes and broadcasts the sum to all
his neighbors; Fig. 3(d). With this information in hand terminal
adds and subtracts from this value to evaluate

. Quantities
necessary to update and are now available along
with the terms necessary for the remaining dual updates that
were locally available. The dual updates associated with the
layer interfaces in Fig. 1 are now performed and we proceed
to the next primal iteration.

We remark that and are transmitted to 1-hop
neighbors, whereas and are sent to 2-hop neighbors.
This latter fact holds because transmissions of a given terminal
can interfere with neighbors two hops away from her.

D. Successive Convex Approximation

As mentioned in the problem reformulation in Section II-B,
we a use linear lower bound to approximate the capacity con-
straint. In general, we can use a concave function which
is smaller than to approximate . As a result, instead
of directly computing link capacity variable , an approxi-
mated version is calculated in the primal iteration. In the
network operation, the link capacity is used
in the link layer. While this approximation convexifies the ca-
pacity constraint and provides a feasible solution to the original
problem, it reduces the size of the feasible set of primal vari-
ables. This implies that this obtained link capacity may
not be optimal to the original problem. To reduce its impact on
optimality, we use different at different time slots and
hope the approximations become better as time grows. Define
then and lower bound with
the first order approximation

(32)

Notice that the right-hand side of (32) is a linear function of
and thus concave. We can then choose

to approximate at time slot
.

IV. FEASIBILITY AND OPTIMALITY

Solving the optimization problem in (7) entails finding op-
timal variables , and power allocations that satisfy
problem constraints and offer optimal yield . This would re-
quire knowledge of the channels’ probability distributions and a
joint optimization among terminals. To overcome these restric-
tions and develop an adaptive distributed solution, we reformu-
lated the problem as in (11) entailing a performance degrada-
tion to . This reformulation permits introduction of the
dual stochastic subgradient descent algorithm, defined by recur-
sive application of (17)–(25), that produces a sequence of net-
work operating points and —as well as sequences
of auxiliary variables and —which given results
in [21] are expected to be almost surely feasible and give a
utility yield close to in an ergodic sense. Notice however, that
since (17)–(25) descends on the dual function of the reformu-
lated problem, feasibility holds with respect to the constraints
in (11). Our main intent here is to show that sequences of oper-
ating points and generated by (17)–(25) are also
feasible for the optimization problem in (7). Specifically, our
goal is to prove the following theorem.
Theorem 1: Consider a wireless network using

random access at the physical layer so that ergodic link capac-
ities are as given in (5). Let

and be sequences of network operating points
generated by the stochastic descent algorithm in (17)–(25) and
denote as , and the corresponding ergodic limits
of , and . Assume the following
hypotheses: (h1) The second moment of the norm of the sto-
chastic subgradient is finite, i.e., .
(h2) There exists a set of strictly feasible primal variables that
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satisfy the constraints of the reformulated optimization problem
in (11) with strict inequality. (h3) The dual function of the
reformulated problem as defined in (13) has a unique minimizer
. It then holds:
i) Near feasibility of physical layer constraints. There
exists a function with such that
the average transmission rate constraint in (5) is almost
surely satisfied with feasibility gap smaller than in
an ergodic sense, i.e.,

(33)

ii) Feasibility of upper layer constraints. The flow con-
servation constraint in (1), the link capacity constraint in
(2) and the average power constraint in (3) are almost
surely satisfied in an ergodic sense, i.e.,

(34)

(35)

iii) Utility yield. The utility yield of the ergodic averages
of sequences and converges to a value within

of , i.e.,

(36)

The feasibility results in (34) for the flow conservation and rate
constraints are identical to (1) and (2). As such they imply that
the ergodic limits obtained from recursive applica-
tion of (17)–(25) satisfy these constraints with probability 1. No-
tice that these limits may be different for different realizations
of the algorithm’s run. Nonetheless, constraints (1) and (2) are
satisfied for almost all runs. The feasibility result in (33) for the
link capacity constraint, however, is not identical to (5). The
difference is not only the presence of the feasibility gap,
but the fact that (5) involves an expectation over channel real-
izations whereas (33) does not. In fact, asides from the
constant, (33) is stronger than (5). The feasibility result in (33)
states that even though sequences and may not
be ergodic, the possibly different ergodic limits in the right and
left-hand sides of (33) satisfy the stated inequality. This implies
that operating the network using variables and as
generated by (17)–(25) results in long-term feasibility in that
all packets are (almost surely) delivered to their corresponding
destinations. Further notice that the power feasibility result in
(35) is not identical to the corresponding power constraint in
(3) because (3) involves an expected value whereas (35) does
not. The same comments stated for the comparison of (33) and
(5) extend naturally.
The utility yield result in (36) states that the long term per-

formance of the network, as determined by average end-to-end

rates and powers , is close to the optimal yield of the re-
formulated problem. The gap between and the attained yield
can be controlled by reducing . Notice that reducing the step
size also reduces the feasibility gap in (33). We also re-
mark that the use of constant step sizes endows the algorithm
with adaptability to time-varying channel distributions. This is
important in practice because wireless channels are non-sta-
tionary due to user mobility and environmental dynamics.

A. Proof of Theorem 1

Hypotheses (h1) and (h2) are sufficient for [21, Theorem 1]
to hold. The utility yield result in (36) is a direct consequence of
[21, Theorem 1]. It also follows that all constraints in problem
(11) are almost surely satisfied in an ergodic sense. Since the
flow conservation constraint in (1) and the power constraint in
(3) are part of (11) the first inequality in (34) and the inequality
in (35) follow from direct application of [21, Theorem 1]. In ad-
dition, considering the constraint Theorem
1 of [21] gives us

(37)

Recall now that at every iteration we set the link capacity to
. Substituting this equality into (37) the

second inequality in (34) follows from the definition
.

The result that does not follow as a simple application of
[21, Theorem 1] is the almost sure near feasibility of the av-
erage transmission rate constraint as shown in (33). Since we
introduced auxiliary variables and and decomposed the
average transmission rate constraint in two separate constraints
[21, Theorem 1] does not make a claim on the feasibility of (5).
Instead, the claim is for the last three constraints in (11), i.e.,

(38)

(39)

(40)

Since link capacity iterates are set to we
use the fact that for all to write

(41)

Substitute now the inequality in (38) into the exponent in (41)
to obtain

(42)
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where in the equality we cancelled out the exponential and loga-
rithm functions. Further substituting (39) and (40) into the right-
hand side of (42) yields

(43)

While similar, (43) is substantially different from the statement
in (33) that we want to prove. To see the difference exploit er-
godicity, possibly restricted to an ergodic component, to replace
the ergodic limit in (33) by the corresponding expected value so
as to write

(44)

Similarly, consider the product of ergodic limits in (43) and use
ergodicity, also possibly restricted to an ergodic component, to
write each individual limit as an expectation,

(45)

If schedules of different terminals were independent, the expec-
tation in (44) would coincide with the product of expectations
in (45) yielding the result in (33) with after sub-
stituting (44) into (45). However, due to the message passing
between neighboring terminals correlation in transmission de-
cisions is introduced, independence is violated, and the expec-
tation in (44) may not coincide with the product of expectations
in (45). It follows from this discussion that the key point in es-
tablishing (33) is to show that the correlation between schedules
introduced by message passing is small so that the expectation
in (44) equals the product of expectations in (45) except for the
vanishingly small difference .
To prove so start noting that while

and for correlate through message passing,
they are conditionally uncorrelated if multipliers are given.
This is true because for given schedules and power allo-
cations depend only on local channel realizations, which are
assumed independent for different channels. We can therefore
write

(46)

The conditional expectations in (46) and the (unconditional)
ones in (44) and (45) can be related through double integration,
e.g.,

(47)

The crucial observation is that since (17)–(25) descends in the
dual domain, approaches the optimal multiplier as
grows; see e.g., [21, Theorem 2]. This motivates the introduc-
tion of a set containing all multipliers within a given small
distance of , i.e., . We can
then separate the integration with respect to in (47) into
terms that contain multipliers inside and outside ,

(48)

By making small enough the first integral in (48) can be made
arbitrarily close to . Since gets
close to as increases, the second integral can be made small
for sufficiently large .
While we have exemplified the argument for the expectation

the same is true for the other expectations in (44) and
(45). The idea to complete the proof is to show that for suf-
ficiently large all expectations can be written as conditional
expectations given plus small error terms. Conditional inde-
pendence is then used to claim (46) from the equivalence of the
right-hand sides of (44) and (45). In summary we need to make
the following arguments in order to conclude the proof:
A1) For sufficiently large , the probability of staying

within a small distance of is close to 1. The distance
can be made arbitrarily small and the probability arbi-
trarily close to 1 by reducing . This argument is for-
malized and proved in Lemma 1.

A2) All of the expectations in (44) and (45) can be written
as integrals of conditional expectations of the form
shown in (48) for . By making the ball
sufficiently small the (first) integral with respect to
multipliers can be made arbitrarily close to
the expectation conditional on . From A1) it
follows that for any small ball the (second) integral
with respect to for multipliers can be
made close to 0 by reducing . Therefore, it follows
that unconditional, e.g., , and conditional, e.g.,

, expectations get arbitrarily
close as . This argument is formalized and proved
in Lemma 2.

A3) From Argument A2), it follows that the unconditional
expectation in (44) can be expressed as an expectation
conditioned on plus an arbitrarily small
error term. Recalling the fact that given schedules
and power allocations for different terminals are uncor-
related we can write the resulting conditional expecta-
tion as a product of conditional expectations [cf. (46)].
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In turn, Argument A2) implies that each of these expec-
tations is close to the unconditional expectation plus an
small error term. The result in (33) follows from ergod-
icity. This argument is formalized after Lemma 2 to con-
clude the proof.

Let us start by formalizing argument A1) in the following
lemma. The proof of is technical and relegated to Appendix A.
Lemma 1: Consider the stochastic descent algorithm in

(17)–(25) with the same hypotheses and definitions of Theorem
1. Let the dual variable at given time be given. Then,
there exists time such that for all it holds

(49)

where is a function of the step size such that
.

Proof: See Appendix A.
Lemma 1 states, as required by argument A1), that the prob-

ability of being outside arbitrarily small distance
of is the arbitrarily small factor . To formalize A2), we
introduce a bounded function to stand in for the
functions inside the expectations in (44) and (45). We show that
for arbitrary bounded function , its unconditional
mean is within a small constant of its expectation condi-
tional on as long as the conditional expectation is a
continuous function of .
Lemma 2: Consider the stochastic descent algorithm in

(17)–(25) with the same hypotheses and definitions of Theorem
1. Let be a nonnegative contin-
uous function of and upper bounded by .
Assume the dual variable at given time is given and
that the conditional expectation is
continuous in . Then almost surely there exists
such that for all it holds

(50)

where the first and the second expectations are with respect to
and , respectively, and is a function

of the step size such that .
Proof: Start noting that we can write

as an integral of condi-
tional expectations [cf. (47)],

(51)

where the second equality follows because is a Markov
process. Partitioning the integration space into the sets

and
allows us to rewrite (51) as [cf. (48)]

(52)

Since we are assuming that we can
bound the second integral on the right-hand side of (52) by

(53)

According to Lemma 1, we know that there exists time
such that for all we have

. Substituting this
bound into (53) yields

(54)

for all times . For the first integral on the right-hand side
of (52), observe that since is contin-
uous in we can use the mean value theorem to write the
integral as

(55)

for a certain . Since for any we have
, it follows that

. Substituting this into (55), we
have

(56)

Substituting (54) and (56) into (52) yields

(57)

To show that (50) is true we find upper bounds for

and its opposite
. Define

and observe that since
is continuous in and ,

it follows that . Using this definition for
and the upper bound in (57), we obtain

(58)
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Similarly, using the definition of and the lower bound in
(57) we have

(59)

where the last inequality follows from the fact that
. From (58) and (59), we conclude

(60)

Making in (60) yields (50). Since
both and approach 0 as goes to 0, it follows

.
In Lemma 2, continuity of is as-

sumed. Specifically, we need continuity of
and . This is indeed true as
claimed by the following lemma.
Lemma 3: Consider the calculation of primal variables

and as shown in (25), and
are continuous functions of

.
Proof: See Appendix B.

Using Lemma 3 we conclude that the hypotheses of Lemma
2 are satisfied. Applying the result in Lemma 2 we then have
that for sufficiently large time index we can rewrite (45) as

(61)

where . Given
and are uncorrelated [cf. (46)]. This allows us to write
the product of expectations on the right-hand side of (61) as an
expectation of products, i.e.,

(62)

Using Lemma 2 again, the conditional expectation on the right-
hand side of (62) can be expressed as an unconditional expecta-
tion plus a small term , leading us to

(63)

Fig. 4. Connectivity graph of a network with terminals randomly
placed in a square with side meters. Terminals can communicate with
neighbors whose distances are within 30 meters. The numbers on each edge
shows the distance (in meters) between two communicating terminals.

where . Define and
substitute (44) into (63) to obtain (33).

V. NUMERICAL RESULTS

We illustrate performance of the proposed algorithm by im-
plementing and simulating it over a network with ter-
minals randomly placed in a square with side meters.
Terminals can communicate with neighbors whose distances are
within 30 meters. Numerical experiments here utilize the re-
alization of this random placement shown in Fig. 4. Channel
gains are Rayleigh distributed with mean and are
independent across links and time. The average channel gain

follows an exponential pathloss law,
with denoting the distance in meters between and and
constants m and . Assume the use of ca-
pacity achieving codes so that the instantaneous transmission
rate takes the form

(64)

where is the channel noise set to for all links.
Fading channels are generated as i.i.d. There are two flows sup-
ported by the network, one from to and the other from
to . For each flow the minimum and maximum amount

of information to be delivered are constrained by
bits/s/Hz and bits/s/Hz for all nodes . The routing
and link capacity variables are bounded by
bits/s/Hz and bits/s/Hz. The maximum av-
erage power consumption per terminal and maximum instanta-
neous power consumption per terminal are set to 2, i.e.,

. Our objective is to maximize total amount of in-
formation delivered by the network, i.e., and

. We set and the simulation is conducted
for time slots. Successive convex approximation is used.
Fig. 5 shows feasibility of the proposed algorithm in terms of

constraint violations. Specifically, and
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, representing average violations of the flow conservation,
link capacity, average rate and average power constraints, re-
spectively, are presented in the figure. At each time , we com-
pute

(65)

(66)

(67)

(68)

(69)

If the above values are nonnegative, it means the corresponding
constraints are satisfied in an average sense. As we can see, after
about 500 steps all constraints are satisfied within toler-
ance. The average rate constraint takes the longest time to be
satisfied (see Fig. 5(c)). This is because the transmission rate on
link depends not only on schedules and powers of
but also on those of and his neighbors. This requires infor-
mation to be received from, and propagated to, 2-hop networks.
To show optimality of the algorithm we compare ergodic

primal and dual objectives. Since we are maximizing total ad-
mission control variables, the ergodic primal objective is

(70)

Furthermore, upon defining average Lagrange multipliers
as

and , we
can compute the ergodic dual objective as

(71)

Fig. 6(a) compares the ergodic primal and dual objectives. As
time grows, the convergence of the proposed algorithm is ob-
served as the primal and dual values approach each other. By
Theorem 1, the algorithm is almost surely near optimal in the
sense that the ergodic average of the utility almost surely con-
verges to a value with optimality gap smaller than with
respect to the optimal objective. Indeed, this is true as shown in
Fig. 6(a) that the gap between primal and dual values becomes
a small constant (about 0.05) as increases. Moreover, we com-
pute the correlation between and using samples
from time 1 to . The result is shown in Fig. 6(b). At the begin-
ning, there is significant correlation between and .
But as time grows, the correlation vanishes and becomes negli-
gible.
Optimal routes for flow 1 and 2 are shown in Fig. 7(a) and (b).

In addition to the shortest path from source to destination, other

longer paths are used to deliver information for both flows. For
example, the shortest path for flow 2 is ,
but a longer path is utilized
as well. It is interesting to note that the longer path delivers
more information than the shorter path does. This is because
the shorter path goes through and which interfere with
the source node of flow 1 . To limit interference with flow
1, some packets in flow 2 are transmitted via other longer paths.

VI. CONCLUSION

We developed algorithms for optimal design of wireless
networks using local channel state information. Due to the
time-varying nature of fading states, random access is the
natural medium access choice leading to the formulation of an
optimization problem for random access networks. To obtain a
distributed solution, we approximated the problem so that it can
be decomposed in the dual domain and developed a stochastic
subgradient descent algorithm. Based on instantaneous local
channel conditions, the algorithm finds network operating
points that are almost surely feasible and optimal in an ergodic
sense. The solution exhibits a layered architecture in which
variables in each layer are computed using information from
interfaces to adjacent layers. The algorithm is fully distributed
in that all operations necessary to achieve optimal operation are
based on local information and information exchanges between
neighboring terminals. The computational cost per iteration is
minimal. In the proposed algorithm, all terminals act indepen-
dently of each other. Algorithms that consider collaboration
among terminals will be a future research direction.

APPENDIX A
PROOF OF LEMMA 1

Define . According to [21, Theorem 2], for
arbitrary falls below at least once
almost surely as grows. If falls below , it may
stay below or jump above . The key idea in this proof
is to show that if exceeds the probability
that it gets even bigger is very small. Let us then define as
a time at which stays below but jumps
above it at time , i.e., . The
rest of the proof relies on the following chain of arguments:
A1) The expected value of the distance between

and the optimal dual variable is bounded by a func-
tion where , i.e.,

(72)

A2) Define and
for

and denotes the indicator function. Then, is a
supermartingale, i.e.,

(73)

A3) Assume is small enough such that
. Define then a stopping rule

or . Let be a stopping time, by the optional
stopping theorem [23, Theorem 10.10] we have

(74)
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Fig. 5. Feasibility. After about 500 steps, all constraints are satisfied in an ergodic sense within tolerance. The average rate constraint takes the longest time
to be satisfied. This is because the transmission rate on link depends not only on schedules and powers of but also on those of and neighbors of
. This requires information to be received from, and propagated to, 2-hop neighbors. (a) Flow conservation constraint, (b) Link capacity constraint, (c) Average

rate constraint, (d) Average power constraint.

Using the fact that and
results in (72) we can further bound (74) by

(75)

According to the stopping rule, either
or . As a result, we can lower bound
by

(76)

Substituting (76) into (75) and dividing both sides by
yields

(77)

A4) For any , the event
happens only when there exists such that is
a stopping time and .
Then, we have

(78)

where the second inequality follows from (77). Substi-
tuting into (78) completes the proof. In
the following, we provide detailed proofs for A1) and
A2).

First, we show that (72) is true, i.e.,
. Start by noting that is a convex function of

with a unique minimizer , then is
equivalent to

(79)
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Fig. 6. (a) Optimality. As time grows, primal and dual objectives approach
each other. (b) Correlation between and . At the beginning, there
is significant correlation between and . But as time grows, the cor-
relation vanishes and becomes negligible.

where is a nonnegative function such that
. According to the dual update (17), we can

write as

(80)

(81)

(82)

where inequality (81) follows because setting negative elements
in to zero reduces its distance to . Expanding
(81) yields (82). Taking expectation conditioned on for
both sides of (82) yields

(83)

Fig. 7. Optimal routes for flow 1 (from to ) and flow 2 (from to ).
(a) Flow 1: from to , (b) Flow 2: from to .

Note that the first term on the right-hand side of (83) is upper
bounded by [cf. (79)]. As per the hypothesis,

is upper bounded by . The third term is
lower bounded by 0 because is subgradient of

[21, Proposition 1]. Plugging these bounds into (83)
yields

(84)

where we defined function . Taking expectation with
respect to on both sides of (84) and defining

lead us to (72).
We then show is a supermartingale. We discuss two

cases and separately. If , it im-
plies either or . If

, then it must be . Since the dual
function is lower bounded by , it implies

. If , it follows
that since

. In either case, and (73) holds for
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equality. If , it must be ,
which implies and

. Since is completely determined by , we
can write following relationship:

(85)

(86)

(87)

where inequality (86) follows because

and equality (87) is true since is a Markov
process. Using the dual update rule (17) we can bound (87) by

(88)

(89)

(90)

where (89) follows because
and is lower bounded
by and (90) follows from the fact that

. Therefore, for both cases and
(73) holds true.

APPENDIX B
PROOF OF LEMMA 3

For notational simplicity, we ignore time index in this proof.
Recall that is uniquely determined by and . Thus, we
can write as a function of and , i.e., . To
show is continuous in , we have to establish
that for any sequence that converges to as

converges to , i.e.,

(91)

To show (91) is true, define

(92)

and

(93)

Note that the objective on the right-hand side of (92) is a linear
function of . Given is the maximum of a set
of linear functions of . As a consequence, is a
convex function of given .Moreover, note that
is the maximum of for all , then given
it is a convex function of as well. Since convexity implies
continuity, is a continuous function of for any
given . This implies

(94)

Recall that equals to 1 if and
0 otherwise. Therefore, converges pointwise
to almost everywhere. Furthermore, note that

is upper bounded by 1. Using dominated con-
vergence theorem [23, Ch. 5.9], (91) follows. The argument
for the continuity of the expectation is
analogous.
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