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T he role of social networks in learning and opinion for-
mation has been demonstrated in a variety of scenar-
ios such as the dynamics of technology adoption [1], 
consumption behavior [2], organizational behavior 
[3], and financial markets [4]. The emergence of net-

work-wide social phenomena from local interactions between con-
nected agents has been studied using field data [5]–[7] as well as 
lab experiments [8], [9]. Interest in opinion dynamics over net-
works is further amplified by the continuous growth in the 
amount of time that individuals spend on social media Web sites 
and the consequent increase in the importance of networked phe-
nomena in social and economic outcomes. As quantitative data 

become more readily available, a research problem is to identify 
metrics that could characterize emergent phenomena such as 
conformism or diversity in individuals’ preferences for consumer 
products or political ideologies [10]. With these metrics available, 
a natural follow-up research goal is the study of mechanisms that 
lead to diversity or conformism and the role of network properties 
like neighborhood structures on these outcomes. All of these 
questions motivate the development of theoretical models of opin-
ion formation through local interactions in different scenarios.

The canonical model of learning in networks considers a set of 
connected agents, each endowed with private information regard-
ing a common underlying random state. Each agent uses his pri-
vate information to form a probability distribution on the state of 
the world and selects an action from an allowable set that is opti-
mal with respect to this belief. The definition of optimality with 
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respect to the belief varies, but a general model is to postulate the 
existence of a utility function that depends on the selected action, 
the state of the world, and possibly on the actions selected by other 
members of the network. If the state of the world were known, we 
would say that we have complete information and select the action 
that maximizes the utility. However, information is incomplete 
because only a belief on the state is available. Therefore, agents 
proceed to select actions that maximize the expectation of their 
utilities with respect to their beliefs. In a networked setting, agents 
further observe actions taken by agents in their connectivity 
neighborhoods. These observations contain information on the 
state that a rational agent would feel compelled to incorporate into 
his belief leading to the selection of a different optimal action. This 
phenomenon of observations of neighboring actions affecting 
decision making of agents is called information externality. In 
general, at a given point in time, any given agent has seen a his-
tory of neighboring actions that he combines with his private 
information to update the probability distribution on the state of 
the world. This belief determines an action that is optimal with 
respect to the expected utility. As time progresses, agents learn the 
state of the world ~ in the sense that they refine their knowl-
edge—i.e., the mass of the belief becomes more concentrated—
through the observation of neighboring actions. The focus is often 
on the characterization of asymptotic properties of the belief and 
the actions of agents as well as algorithmic considerations.

When utilities of agents depend not only on the unknown state 
of the world but also on the unknown actions of other agents, we 
say that there are payoff externalities. In most social learning sce-
narios, payoff externalities and information externalities coexist in 
that the action chosen by agent i is determined by both an infor-
mational component pertaining to agents’ beliefs about the under-
lying state of the world and a payoff externality corresponding to 
their beliefs about the actions taken by all the other agents in the 
network. In stock markets, for instance, the actions of each indi-
vidual affect the utility of all the other agents and agents respond 
strategically to actions based on their beliefs. At the same time, 
these actions contain information about stocks’ intrinsic valua-
tions that market participants are intent on learning. By selecting 
certain actions, agents are revealing, perhaps unwillingly, pieces of 
private information about the true value of the stock [11], [12]. 
The focus is the study of asymptotic behavior of agents’ actions 
and their beliefs given a fixed network that determines the flow of 
information; see the section “Learning with Payoff Externalities.”

There exists an extensive literature on Bayesian learning over 
networks for scenarios without payoff externalities [13]–[16]. One 
may think of this problem as a variant of distributed estimation 
since agents intend to compute an estimate based on global infor-
mation by aggregating local information and successively refining 
their estimates using those of their neighbors. Linear and nonlin-
ear estimation problems are well-studied in the signal processing 
literature; see, e.g., [17]. The main difference between distributed 
estimation problems and the ones considered here is that in the 
former network nodes may exchange observations, estimates, and 
even some auxiliary variables [18]–[26]. In the problems consid-
ered here, on the other hand, agents try to infer the state of the 

world by observing actions of neighboring nodes. The former is a 
suitable model for algorithm and protocol design, but the latter is 
a more appropriate model of social and economic interactions. 
Besides signal processing, models with purely informational exter-
nalities have been studied in economics [14], [15], [27], [28], com-
puter science [29], statistics [30], and control theory [31]–[34].

Even though Bayesian learning stands as the normative behav-
ioral model for agents in social networks, it is often computation-
ally intractable even for networks with a small number of agents. 
This is since a Bayesian update requires an agent to infer not only 
the information of his neighbors but also that of the neighbors of 
his neighbors and so on. Because of such computational intracta-
bility, little is known about Bayesian learning besides the asymp-
totic behavior. However, under some structural assumptions on 
distribution of information [30] or the network structure [29], 
Bayesian learning is shown to be tractable in the absence of payoff 
externalities. In this article, we present a tractable algorithm for 
the case when agents also face payoff externalities, assuming that 
agents’ initial private signals are normally distributed; see the sec-
tion “Gaussian Quadratic Network Games.” We use the algorithm 
to numerically study the effect of the network structure on con-
vergence time; see the section “Numerical Examples.”

BAYESIAN LEARNING IN NETWORKS
The network learning models considered in this article are com-
posed of an unknown state of the world !~ X and a group of 
agents { , , }NN 1 f=  whose interactions are characterized by a 
network ( , ) .G N E=  At subsequent points in time , , , ,t 0 1 2 f=  
agents in the network observe private signals s ,i t that carry infor-
mation about the state of the world ~ and decide on an action a ,i t 
belonging to some common compact metric action space A that 
they deem optimal with respect to a utility function of the form

 , , { } .u a a, , \Ni i t j t j i~ !^ h  (1)

Besides his action ,a ,i t  the utility of agent i depends on the state of 
the world ~ and the actions { }a , \Nj t j i!  of all other agents in the 
network. This dependence tries to capture tradeoffs that arise in 
social and economic networks. For example, the state of the world 
~ may represent the inherent value of a service, the private signals 
s ,i t quality perceptions after use, and a ,i t decisions on how much 
to use the service. The utility of a person derives from the use of 
the service depending not only on the inherent quality ~ but also 
on how much other people use the service.

Deciding optimal actions a ,i t would be easy if all agents were 
able to coordinate their actions. All private signals s ,i t could be 
combined to form a single probability distribution on the state of 
the world ~ and that common belief used to select .a ,i t  Agents 
could act together and combine their utilities into a social objec-
tive or they could exhibit strategic behavior and select game equi-
librium actions. Whether there is payoff externality or not, global 
coordination is an implausible model of social and economic 
behavior. We therefore consider agents that act independently of 
each other and couple their behavior through observation of the 
action history of agents in their network neighborhood .Ni
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To be more precise, say that at time ,t 0=  there is a common 
initial belief among agents about the unknown parameter .~  This 
common belief is represented by a probability distribution .P  At 
time ,t 0=  each agent observes his own private signal s ,i 0, which 
he uses in conjunction with the prior belief P to choose and exe-
cute action .a ,i 0  Upon execution of a ,i 0, actions { }a , Nj j0 i!  of neigh-
boring agents become known to node .i  Knowing the actions of its 
neighbors provides agent i with information about the neighbor-
ing private signals { } ,s , Nj j0 i!  which in turn refines his belief about 
the state of the world .~  This new knowledge prompts a re-evalua-
tion of the optimal action a ,i 1 in the subsequent time slot. In gen-
eral, at stage ,t  agent i has acquired knowledge in the form of the 
history h ,i t of past and present private signals s ,i x for , , t0 fx =  
and past actions of neighboring agents { }a ,j j Ni!x  for times 

, , .t1 1fx = -  This history is used to determine the action a ,i t 
for the current slot. In going from stage t to stage ,t 1+  neighbor-
ing actions { }a ,j t j Ni!  become known and incorporated into the 
history of past observations. We can thus formally define the his-
tory h ,i t by the recursion

 , { } , )h h a s, , , ,Ni t i t j t j i t1 1i= !+ +^ . (2)

The component of the game that determines action of agent i 
from observed history h ,i t is his strategy .,i tv  A pure strategy is a 
function that maps any possible history to an action, 

: .h a, , ,i t i t i t7v  The value of a strategy function ,i tv  associated 
with the given observed history h ,i t is the action of agent ,i  .a ,i t  
Given his strategy : { } ,, , ,i i u u 0v v= f 3=  agent i knows exactly what 
action to take at any stage upon observing the history at that 
stage. Hence, the (pure) strategies of all the agents across time 

: { } ,, , , ,Nj u j u t0v v= f! =  specifically, the strategy profile determines 
the path of play, that is, the sequence of histories each agent will 
observe. As a result, if agent i at time t knows the information set 
at time ,t  i.e., { , , },h h h, ,t t N t1 f=  then he knows the continua-
tion of the game from time t onward given knowledge of the 
strategy profile .v

When agents have (common) prior P on the state of the 
world at time ,t 0=  the strategy profile v induces a belief ( )P $v  
on the path of play. That is, ( )P hv  is the probability associated 
with reaching an information set h when agents follow the 
actions prescribed by .v  Therefore, at time ,t  the strategy profile 
determines the prior belief q ,i t of agent i given ,h ,i t  that is,

 ( ) ( | )q P h, ,i t i t$ $= v . (3)

The prior belief q ,i t puts a distribution on the set of possible infor-
mation sets ht at time t given that agents played according to 

, ,t0 1v f -  and i observed .h ,i t  Furthermore, the strategies from time 
t onward , ,tv f 3 permit the transformation of beliefs on the infor-
mation set into a distribution over respective upcoming actions 
{ } .a , , , ,Nj u j u t f 3! =  As a result, upon observing { }a , Nj t j i!  and ,s ,i t  
agent i updates his belief using Bayes’ rule,
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Since the belief is a probability distribution over the set of possible 
actions in the future, agent i can calculate expected payoffs from 
choosing an action. A rational behavior for agent i is to select the 
action a ,i t that maximizes the expected utility given his belief ,q ,i t
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where we have defined conditional expectation operator [ ]hE ,i t$v  
with respect to the conditional distribution ( ) .P h ,i t$v  The rational 
action a ,i t in (5) is optimal given strategy profile ;v  as a result, a ,i t 
is a function of the strategy profile .v

So far, we have not imposed any constraints on the strategy 
profile .v  According to the definition of rational behavior in (5), all 
agents should maximize the expected value of the self-utility func-
tion. With this in mind, we define the Bayesian Nash equilibrium 
(BNE) to be the strategy profile of a rational agent. A BNE strategy 

*v  is a best response strategy such that no agent can expect to 
increase his utility by unilaterally deviating from his strategy ,

*
i tv  

given that the rest of the agents play equilibrium strategies 
{ } ;,

*
\Nj t j iv !  that is, *v  is BNE if for each Ni !  and , , , ,t 0 1 2 f=  

the strategy ,
*
i tv  maximizes the expected payoff 

 ( ) ( , , { ( )} ) .argmaxh u h hE,
*

, ,
*

, \ ,Ni t i t
A

i i j t j t j i i t*

i

!v ~ a v
!

!
a

v 6 @  (6)

We emphasize that (6) needs to be satisfied for all possible histo-
ries h ,i t and not just for the history realized in a particular game 
realization. This is necessary because agent i does not know the 
history observed by agent j but rather has a probability distribu-
tion on histories. Thus, to evaluate the expectation in (5), agent i 
needs a representation of the equilibrium strategy for all possible 
histories .h ,j t

In this article, we restrict our attention to the equilibrium 
notion where agents choose myopically optimal actions as in (5). 
It is also possible to define BNE for nonmyopic agents that dis-
count future payoffs. Agents exhibiting nonmyopic behavior 
might experiment to obtain valuable information to be used in 
the future. In rest of the article, we consider myopic agents play-
ing with respect to BNE strategy *

iv . To simplify future notation, 
we define the expectation operator

 :[ ] [ | ],hE E, ,i t i t*$ $= v  (7)

to represent expectations with respect to the local history h ,i t 
when agents play according to the equilibrium strategy .*v

BNE is an extension of Nash equilibrium to games with incom-
plete information. In this solution concept we assume that agents 
interpret actions of their neighbors knowing that they play accord-
ing to the BNE strategy, i.e., BNE is common knowledge. Note 
that while defining rational behavior in (5), we have not specified 
how agent i models actions of other agents. To calculate his 
expected utility in (5), agent i needs to have a model of strategies 
of other agents. Common knowledge of BNE strategies and ratio-
nality is a particular model of agents’ behavior in which agent i 
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believes, correctly so, that agent j is rational. In other words, 
agent i’s model of behavior of agent \ { }Nj i!  is that j also maxi-
mizes expected payoff as in (6) and further that agent i can cor-
rectly guess j’s actions if he had access to j’s history .h ,j t  In a 
networked setting, agents also require knowledge of the network 
to infer about information of other agents. Hence, we also assume 
network structure is common knowledge. Notice that this equilib-
rium notion couples beliefs and strategies in a consistent way in 
the sense that strategies induce beliefs and the beliefs determine 
optimal strategy. This rational model provides a benchmark for 
comparison with other behavioral models.

NOTIONS OF CONSENSUS
An important research question when studying social learning 
models is whether agents reach consensus and, if they do, whether 
the outcome is efficient according to some criterion. Several dif-
ferent notions of consensus have been studied in the literature. 
Agents are said to reach consensus in their actions if they all even-
tually take the same action, or more formally, if the distance 
between a ,i t and a ,j t goes to zero as time goes to infinity where the 
distance is defined using the metric on the action space .A  If 
agents’ utility functions are the same, then reaching consensus in 
the actions implies that agents obtain the same utility; however, 
the converse is not necessarily true. A different characterization of 
consensus is in terms of agents’ beliefs. Agents i and j are said to 
reach consensus in their beliefs, if the distance (in total variation) 
between probability measures ( )q ,i t $  and ( )q ,j t $  goes to zero as t 
goes to infinity. If this is true for any two pair of agents, we say 
that all agents reach consensus. The consensus belief however 
might be inaccurate in the sense of not corresponding correctly to 
the agents’ observations. Another notion of convergence considers 
expected payoffs. We say that agents are expected to perform 
equally well asymptotically if

 ( , , { } )lim u a aE , , \N
t

i i t k t k i~
"3

!6 @
 ( , , { } ) ,lim u a aE , , \N

t
j j t k t k j~=

"3
!6 @  (8)

where the expectation is over all possible realizations of the state 
of the world .~  The result in (8) establishes a form of consensus 
that is attained in the limit. It is possible that for individual real-
izations of the parameter ,~  the expected payoffs of different 
agents are different; however, if we consider an average across 
realizations of ,~  the payoffs asymptotically coincide. We can 
interpret this result as stating that ex ante all agents are expected 
to obtain the same payoff.

Each of the notions of agreement discussed above might be 
relevant in certain applications. Moreover, they do not neces-
sarily coincide. Agents might reach consensus in their actions 
without having the same beliefs if agents’ actions do not com-
pletely reflect the beliefs held by them. On the other hand, 
agents might reach consensus in their beliefs (and even learn 
all the information) and yet take disparate actions.

In the following sections, we consider learning in a class of 
games in which actions are on the real line and the utility function 

is quadratic in agents’ actions and the state of the world. In the 
section “Learning with Payoff Externalities,” we survey a recent 
result that shows convergence in expected payoffs. This result is 
essential in proving that agents’ reach consensus in their actions 
in the limit. In the section “Gaussian Quadratic Network Games,” 
we derive tractable recursions for rational learning given that 
agents’ private signals are normally distributed.

LEARNING WITH PAYOFF EXTERNALITIES
The presence of payoff externalities adds another layer of com-
plexity to the learning process compared to models with purely 
informational externalities, since it prohibits agents from inter-
preting the actions of their neighbors as solely revealing informa-
tion about the true state of the world. Instead, they have to keep 
track of motives of other agents and at the same time incorporate 
the new information effectively. The interested readers can refer 
to “Example of Learning with Payoff Externality” for an illustra-
tion of the rational learning process with both payoff and infor-
mational externalities. An example of learning with only 
informational externalities is given in [16]. In this section, we 
introduce games with utility functions that are quadratic both in 
the state of the world and agents’ actions. We then exemplify this 
quadratic form in the context of financial markets. Finally, we 
provide asymptotic convergence results for learning in quadratic 
games over networks.

QUADRATIC GAMES
At any time ,t  selection of actions { : }a a R, Ni i t i!= !  when the 
state of the world is R!~  results in agent i receiving a payoff,

 ( , , { } )u a a \Ni i j j i~ !

 ,a a a a c
2
1

\N N

j
j

ij i j i
j i

2 2b d ~ ~=- + + +
! !

/ /  (9)

where ,ijb  d, and c are real-valued constants. The constant ijb  
measures the effect of j’s action on i’s utility. For notational 
convenience, we let 0iib =  for all .Ni !

Since ui is a strictly concave function of ai (i.e., /ui
22 a 0i

22 1 ), 
the myopically optimal action can be computed explicitly by tak-
ing the derivative with respect to ,ai  equating the result to zero, 
and solving for .ai  As a result, the rational action, defined in (5), 
for agent i in response to any strategy { }, \Nj t j iv !  is a linear func-
tion of the strategies of other agents and the underlying parameter 

 [ ( )] [ ] .a hE E, , , , ,
\N

i t ij i t j t j t i t
j i

b v d ~= +
!

/  (10)

According to the equilibrium definition (6), at each state agents 
play a myopic best response given the observed history against 
other agents’ actions, which in turn are myopic best responses. 
Consequently, for the quadratic utility function an equilibrium 
strategy profile { },

*
Ni t iv !  solves the following set of equations:

 ( ) [ ( )] [ ],h hE E,
*

, , ,
*

, ,
\N

i t i t ij i t j t j t i t
j i

v b v d ~= +
!

/  (11)

for all .Ni !
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COORDINATION GAMES
In his general theory of economics, Keynes argues that if a person 
is asked to guess the beauty contest winner, he should evaluate 
each contestant with respect to what he thinks other people’s cri-
teria of beauty is. Similarly, an investment in the stocks of a com-
pany entails a player not only to consider his own estimate of how 
well the company is doing but also what everyone else thinks 
about the company’s status [11]. Let R!~  be the true stock value 
of a company. In this context, action a ,i t represents player i’s valua-
tion of the asset; i.e., it is the price that agent i is willing to pay per 
stock share at time .t  The payoff function for agent i is given by

 ( , , { } )u a a \Ni i j j i~ !

( )
( )

( ) ,a
N

a a
2

1
2 1 \N

i i j
j i

2 2m ~ m=- - - -
-

-
!

/  (12)

where ( , ) .0 1!m  This payoff function is reminiscent of that of a 
coordination game (or potential game) [35], [36] with the only dif-
ference being the addition of a term corresponding to an estima-
tion problem. The first term of the payoff function measures the 
desire of the player to estimate the true value of the stock as the 
quadratic distance between i’s action and .~  The second term is 
the coordination (or the beauty contest) term measuring the pay-
off associated with being close to valuations of other members of 

the society. It represents how the actions of others affect the payoff 
of agent .i  The constant m gauges the relative importance of coor-
dination and estimation.

Using (6), the BNE strategy *v  in this quadratic game 
solves the following set of equations:

 
( ) ( ) ( ) ,
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h
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*
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*

,
\N

i t i t i t i t j t j t
j i

! !

v m ~ m v= - +
- !

6 6@ @/
 

(13)

Since the payoff (12) is of the form in (9), the equilibrium 
equations in (10) are linear in strategies of other agents as in (11).

The same payoff function can also be motivated by looking 
at coordination among a network of mobile agents starting 
with a certain formation trying to move toward a finish line on 
a straight path [12], [37]. Each agent collects an initial noisy 
measurement of the true heading angle ,~  that is, the angle 
that achieves the shortest path toward the finish line. In this 
example, the actions of agents represent their choice of head-
ing direction or movement angle. We assume the agents move 
with constant and equal velocity. The first term in (12) repre-
sents agents’ goal to estimate the correct heading angle. The 
desire of agent i to maintain the initial formation is captured 
by the second term in (12).

EXAMPLE OF LEARNING WITH PAYOFF EXTERNALITY
In this section, we give an example of rational behavior in a 
model with both informational and payoff externalities. The 
example illustrates how rational agents are able to rule out 
possible states of the world upon observing actions of their 
neighbors.

There are three agents in a line network; that is, { , , },N 1 2 3=  
{ },N 21 =  { , },N 1 32 =  and { } .N 23 =  The possible states of the 

world belong to the set, { , , } .1 2 3~ ~ ~X =  Agents have a com-
mon uniform prior over the possible states. At the beginning, 
agents receive private signals ,s1  ,s2  and .s3  Based on ,s1  Agent 1 
can distinguish whether the true state is 3~  or belongs to the set 
{ , } .1 2~ ~  The private signal of s2 does not carry any information. 
s3 reveals whether the true state is 1~  or belongs to the set 
{ , } .2 3~ ~  We assume that agents know the informativeness of 
the private signals of all agents, i.e., the partition of the private 
signals is known by all agents. There are two possible actions, 

{ , } .A l r=

Agent i ’s payoff depends on the actions of the other two 
agents : { }a a\ \N i j j iN= d  in the following way:

 =( , , )
, , { , },
, , { , },u a a
a l a l l
a r a r r

1
4
0

if
if
otherwise.

, \

\

\N

N

Ni i t i

i i

i i

1

3~
~ ~
~ ~

= = =

= = =*  (S1)

According to (S1), Agent i earns a payoff only when all the 
agents choose l and the state is 1~  or when all the agents 
choose r  and the state is .3~

Initial strategies of agents consist of functions that map their 
observed histories at t 0=  (which only consist of their signals) 
to actions. Let ( , , ),

*
,

*
,

*
1 0 2 0 3 0v v v  be a strategy profile at t 0=  

defined as
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=

'

'
Note that since Agent 2’s signal is uninformative, he needs 
to take the same action regardless of his signal.

Agents’ strategies at a time t 1$  map their observed histories 
to actions. For t 1$  let the ( , , ),

*
,

*
,

*
t t t1 2 3v v v  be a strategy profile 

defined as

 otherwise,
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( )
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,
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1 1

2 2

3 3
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1 3

1 1 3 1

3 1

3 2 3

v

v

v
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~

~
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=

=

=

=
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=

=

- -

'
'
'

Note that even though agents’ strategies could depend on 
their entire histories, in the above specification Agent 1’s 
and 3’s actions only depend on their private signals, whereas 
Agent 2’s actions only depend on the last actions taken by 
his neighbors.

We argue that ( )*
,
*

, , ,Ni t i t 0 1v v= f! =  as defined above is an 
equilibrium strategy. We assume that the strategy profile *v  is 
common knowledge and verify that agents’ actions given any 
history maximizes their expected utilities given the beliefs 
induced by the Bayes’ rule.

First, consider the time period .t 0=  Suppose that Agent 1 
observes { , } .s1 1 2~ ~=  He assigns one half probability to the 
event 1~ ~=  in which case—according to *v —Agent 2 plays r 
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ASYMPTOTIC PROPERTIES 
OF LEARNING IN QUADRATIC GAMES
In this section we present results from [12] and [38] that focus 
on symmetric, supermodular, and diagonally dominant games.

The game defined by the utility function in (9) is symmetric 
when the pairwise influences ijb  are equal for any pair; that is, 

ijb b=  for constant R!b  for all Ni !  and \ .Nj i!  A game 
is supermodular when agents’ strategies are complementary to 
each other. Strategic complementarity between agents i and j 
means that the marginal utility of agent i’s action increases 
with an increase in j’s action. For a twice differentiable utility 
function, this is equivalent to requiring that ( ) /u a a 0i i j

2 $2 2 2 2  
for any two agents i and .j  For our quadratic utility function in 
(9), the actions of i and j are strategic complements when 

0ij $b  for all Ni !  and \ .Nj i!  We further restrict our 
attention to games in which the Hessian matrices of the utility 
function are strictly diagonally dominant. For the utility func-
tion in (9), this is equivalent to requiring that there exists 11t  
such that

 .Nifor all
\N

ij
j i

# !b t
!

/  (14)

The interpretation of (14) is that an agent’s utility is more sensi-
tive to changes in his own actions than to changes in the actions 

of other agents. Notice that the payoff function (12) of the coor-
dination problem satisfies all of these properties.

According to the learning framework introduced in the 
section “Bayesian Learning in Networks,” agents take actions 
specified by the equilibrium strategy, observe neighboring 
actions, update their beliefs according to the Bayes’ rule, and 
then start the next stage as a new game with beliefs different 
from the previous stage. This means that the equilibrium of the 
new game is not necessarily the same as the equilibrium of the 
previous stage. However, since agents accumulate information 
about the unknown state over time, it is possible to show that 
under the equilibrium behavior in (6), agents’ expected utilities 
converge for the utility function in (9) [12]. By the same token 
agents’ equilibrium actions : ( )a h,

*
,

*
,i t i t i tv=  defined in (11) con-

verge in the limit 

 .Na a ifor all ,
*

,
*

i t i" !3  (15)

Existence of limit actions implies that the agents can learn their 
neighbors’ limit actions. Since i observes actions of ,Nj i!  agent 
j’s action at time t 1-  is in the information set of agent i at time ;t  
i.e., .a h,

*
,j t i t1 !-  This implies that a ,

*
j t 1-  is measurable with 

respect to the information of i at time .t  Therefore, since 
a a,

*
,

*
j t j" 3 and i’s information is an increasing set that converges 

as t goes to infinity, the limit action a ,
*
j 3 is measurable with 

and Agent 3 plays ,l  and he assigns one half probability to state 
2~ ~=  in which case Agent 2 plays r and Agent 3 plays .r  There-

fore, his expected payoff is zero regardless of the action he takes; 
that is, he does not have a profitable unilateral deviation from 
the strategy profile .*v  Next, suppose that Agent 1 observes 

{ } .s1 3~=  In this case he knows for sure that 3~ ~=  and that 
Agents 2 and 3 both play .r  Therefore, the best he can do is also 
to play r—which is the action specified by .*v  This argument 
shows that Agent 1 has no profitable deviation from *v  regard-
less of the realization of .s1  Next, we focus on Agent 2. He has no 
information at .t 0=  Therefore, he assigns one-third probability 
to the event 1~ ~=  in which case ,a a l, ,1 0 3 0= =  one-third prob-
ability to the event 3~ ~=  in which case a l,1 0 =  and ,a r,3 0 =  
and one-third probability to the event 2~ ~=  in which case 

.a a r, ,1 0 3 0= =  Therefore, his expected payoff of taking action r  
is / ,4 3  whereas his expected payoff of taking action l is / .1 3  Finally, 
considering Agent ,3  if he observes { },s3 1~=  he knows that 
Agents 1 and 2 play l and ,r  respectively, in which case he is indif-
ferent between l and .r  If he observes { , },s3 2 3~ ~=  on the other 
hand, he assigns one-half probability to 2~ ~=  in which case 
a l,1 0 =  and ,a r,2 0 =  and one-half probability to 3~ ~=  in which 
case .a a r, ,1 0 2 0= =  Therefore, he strictly prefers playing r in this 
case. We have shown that at ,t 0=  no agent has an incentive to 
deviate from the actions prescribed by .*v  We have indeed 
shown something stronger. Strategies ,

*
1 0v  and ,

*
2 0v  are dominant 

strategies for Agents 1 and 3, respectively; that is, regardless of 
what other agents do, Agents 1 and 3 have no incentive to devi-
ate from playing these strategies.

Next, consider the time period .t 1=  In this time period, Agent 
2 knows the strategies that Agents 1 and 3 used in the previous 
time period and learns the true state; specifically, if they played 

{ , }l l  the state is ,1~  if they played { , }r r  the state is ,3~  and 
otherwise the state is .2~  Also, by the above argument Agents 
1 and 3 will never have an incentive to change their strategies 
from what is prescribed by .*v  Therefore, *v  is consistent with 
equilibrium at t 1=  as well. The exact same argument can be 
repeated for .t 12

Now that we have shown that *v  is an equilibrium strategy, we 
can focus on the evolution of agents’ expected payoffs. For the 
rest of the example, assume that .1~ ~=  At ,t 0=  Agent 3 learns 
the true state. Agents 1, 2, and 3 play ,l  ,r  and ,l  respectively. Since 
Agents 1 and 2 know that Agent 2 will play ,a r,2 0 =  their condi-
tional expected payoffs at t 0=  are zero. Agent 2 on the other 
hand, assigns one third probability to the state 3~  and action 
profile ( , , );r r r  therefore, his expected payoff is given by / .4 3  At 

,t 1=  all agents play .l  Agent 2 learns the true state. Since Agents 
2 and 3 know the true state and know that the action profile 
that is chosen is ( , , ),l l l  their expected payoffs are equal to one. 
On the other hand, Agent 1 does not know whether the state is 

1~  or 2~  but he knows that the action profile taken is ( , , );l l l  
therefore, his conditional expected payoff is equal to / .1 2  In later 
stages, agents change neither their beliefs nor their actions.

The example illustrates an important aspect of learning in 
presence of payoff externalities. Agents need to infer about 
the actions of other agents in the next stage based on the 
information available to them and use the knowledge of 
equilibrium strategy to make prediction about how others 
would play. This inference process includes reasoning about 
others’ reasoning about actions of self and other agents, 
which in turn leads to the notion of equilibrium strategy 
that we formally defined in the section “Bayesian Learning 
in Networks.”
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respect to i’s information at infinity. In other words, agent i is able 
to identify the limit action of a neighboring agent .j

The fact that agents can identify the limit actions of their 
neighbors leads to a number of interesting conclusions by mak-
ing use of the so-called imitation principle [14], [15]. The imita-
tion principle states that the expected payoff of agent i with 
respect to his history cannot increase if he adopts an action of a 
neighboring agent
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u a a

u a a j
E

E

, ,
*

,
*

\

, ,
*

,
*

\

N

N

i i i k k i

i j k k i i$ !

~

~

3 3 3

3 3 3

!

!

6
6

@
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(16)

The inequality in (16) is due to the definition of a ,
*
i t as the maxi-

mizing action in (6). Notice that (16) is only true for neighboring 
nodes because i only observes (and hence can identify) the actions 
of his neighbors. Actions of other 
agents, on the other hand, are not 
observed by i and may not be mea-
surable with respect to .q ,i 3

By applying the imitation 
principle and making use of the 
assumption on the strategic com-
plementarity of the actions 
between agents i and ,Nj i!  we can show that neighboring 
agents are expected to receive the same payoff whether i plays his 
own limit action a ,

*
i 3 or any of his neighbors’ limit actions a ,

*
j 3 

[12]; that is,
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(17)

The intuitive argument behind (17) is as follows. By the symme-
try property of the utility function strategic complementarity 
implies that unilateral deviations by i and j to each other’s 
actions are at least as good as playing their own limit actions in 
expectation. However, by the imitation principle in (16), this 
behavior can never yield strictly higher payoffs. Hence, it must be 
the case that deviations to neighbors’ limit actions result in no 
change in the expected performance of agents. Note that this is 
true only for neighboring agents.

By the imitation principle in (16), the left-hand side of (17) is 
no larger than the right-hand side for all .~  Hence, it must be 
case that the equality holds almost surely when we remove the 
outer expectation in (17) 

( , , { } ) ( , , { } ) ,
.N

u a a u a a
jfor all 

E E, ,
*

,
*

\ , ,
*

,
*

\N Ni i i k k i i i j k k i

i!

~ ~=3 3 3 3 3 3! !6 6@ @
 
(18)

According to (18), agent i expects his limit action to result in a 
payoff no worse than if he were to play the limit action of one of 
his neighbors; i.e., from the perspective of agent i, agent j’s limit 
action is just as good as self-limit action.

An immediate corollary of (18) is that for a connected network 
agents reach consensus in their actions. The result is proved 

by the following argument. Given (18) the limit action of agent j 
is a maximizer of the expected utility of agent ;i  i.e., 

( , , { } ) .argmaxa u aE,
*

, ,
*

\Nj A i i k k ii ~ a=3 3 3! !a 6 @  By strict concavity 
of (9) the myopically optimal action in (5) is unique. Hence, it 
must be the case that a a,

*
,

*
i j=3 3 for all Ni !  and Nj i! . Given 

that the network is connected, this implies that a a,
*

,
*

i j=3 3 for 
any pair of agents. This conformity result proved in [12] extends 
some of the results in [15] to models with payoff externalities.

GAUSSIAN QUADRATIC NETWORK GAMES
In this section, we restrict our attention to games with qua-
dratic utility functions as in (9) and private signals that are nor-
mally distributed, and we show that the equilibrium strategies 
can be computed explicitly. The results of this section are pre-
sented more formally and in more detail in [37]. Assume that 

at time ,t 0=  agent i receives a 
private noisy signal s Ri !  about 
the unknown parameter 

  ,si i~ e= +  (19)

where ie  is normal with mean zero 
and variance .Ci  The grouping of 
all private signals is denoted by the 

vector of private signals : [ , , ] .s ss Rn
T N

1
1f != #  Further, 

agents’ common prior for ~ is an (improper) uniform measure 
over .R  Hence, the posterior at time ,t 0=  ( , | )P ssT

i~  is normal.
To see how equilibrium responses can be computed explic-

itly, assume for the sake of argument that at given time t it is 
possible to write the minimum mean squared error (MMSE) 
estimates of the state of the world i and the private signals s as 
linear combinations of the private signals themselves; i.e., at 
time t there are vectors k ,i t and matrices L ,i t for which we 
can write

 , ,  .NL ifor allk s s sE E, , , ,i t i t
T

i t i t !~ = =6 6@ @  (20)

Notice that (20) does not imply that MMSE estimates E ,i t ~6 @ and 
sE ,i t 6 @ are computed as linear combinations of the private sig-

nals .s  This is not possible because agent i does not know the val-
ues of all private signals—if this were the case, he would have 
complete information and the expression Ls sE , ,i t i t=6 @  would be 
pointless. Our assumption is that whatever may be the computa-
tions that agents perform, they are equivalent to computing the 
linear combinations in (20).

The validity of (20), which we assume for the moment with-
out a proof, is instrumental in simplifying the computation of 
best responses and the associated fixed points that define the 
equilibrium actions. For that matter, we solve (6) by postulating 
that the best response action can be written as a linear combina-
tion [ ]a v sE,

*
, ,i t i t

T
i t=  of the private signals’ MMSE estimates with 

weights given by some vector v ,i t to be determined. Given this 
candidate solution, we can rewrite the best response fixed point 
condition in (6) as

 [ ] [ ] [ ] .v s v sE E E E, , , , , ,
\

i t
T

i t ij i t j t
T

j t i t
j iN

b d ~= +
!

6 @/  (21)

EACH AGENT EXPECTS HIS LIMIT 
ACTION TO RESULT IN A PAYOFF 
NO WORSE THAN IF HE WERE TO 
PLAY THE LIMIT ACTION OF ONE 

OF HIS NEIGHBORS.
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Since we are assuming that (20) holds and that in particular 
the private signal MMSE estimate is ,Ls sE , ,i t i t=6 @  we can 
rewrite the double expectations inside the summation in 
(21) as

 [ ] .Lv s v sE E E, , , , , ,i t j t
T

j t i t j t
T

j t=6 6@ @  (22)

Substituting the expression in (22) into (21), and further not-
ing that as per (20), the MMSE estimate of the world state is 

k sE , ,i t i t
T~ =6 @  and the estimate of the private signals is 

[ ] ,Ls sE , ,i t i t
T=  we can simplify the equilibrium condition to

 ,L L Lv s v s k s, , , , , ,
\

i t
T

i t ij j t
T

j t i t i t
T

j iN
b d= +

!

/  (23)

which as (6), or (21) for that matter, we require for all agents 
.Ni !  To solve this systems of equations we observe that it is 

underdetermined. Each vector v ,i t contains N  elements and 
since there are N  of this vectors there are a total of N2 
unknowns. However, there is one equation like (21) for each 
agent leading to a total of N equations. We can take advantage of 
this indeterminacy and proceed to equate the terms that multi-
ply each individual signal s j on each side of (21). This results in a 
set of N equations of the form

 ,L L Lv v k, , , , , ,
\N

i t
T

i t ij i t
T

j t
T

j t i t
j i

b d= +
!

/  (24)

associated with each agent .i  Since we have a total of N agents, 
there are N2 equations that we can use to determine the N2 val-
ues of the vectors v ,i t for all agents .i  Observe that the systems of 
linear equations defined by (24) does not depend on the realiza-
tion of the private signals and that as a consequence neither do 
the coefficients .v ,i t  Irrespective of the realization of the private 
signals ,s  the strategy of agent i at time t is the linear combina-
tion [ ]a v sE,

*
, ,i t i t

T
i t=  with weights .v ,i t  An important consequence 

of this observation is that the coefficient v ,i t can be determined 
locally by each agent as long as he has access to the (known) net-
work parameters without requiring knowledge of the (unknown) 
private signal values. The actions realized, on the other hand, 
depend on the observed history through the MMSE estimate 

[ ]sE ,i t  and hence on the realization of the private signals. As well 
they should.

For future reference, stack all weighting coefficients v ,ti  into 
the aggregate vector : [ , , ]v v v, ,t t

T
N t
T T

1 f=  and all coefficients k ,i t 
into the aggregate : [ , , ] .k k k, ,t t

T
N t
T T

1 f=  Further define the matrix 
L Rt

N N2 2
! #  as the matrix with jth N N#  diagonal block equal to 

L ,j t
T  and off diagonal blocks L L, ,ij i t

T
j t
Tb-  as seen by (25) in the box 

at the bottom of the page.

With these definitions the system of linear equations in 
(24) can be written in the more compact form

 .L v kt t td=  (26)

We have argued that if we can write MMSE estimates as 
linear combinations of private signals as per (20), the determina-
tion of the equilibrium strategy reduces to the solution of the 
system of linear equations in (26). However, is it true that we can 
write the estimates [ ]E ,i t ~  and [ ]sE ,i t  as in (20)? And if this is 
true, what are the values of the vectors k ,i t and the matrices L ,i t 
that are needed to formulate (26)? To answer these questions, we 
offer an inductive argument in the form of a recursive equation 
to update the values of the coefficients k ,i t and .L ,i t

An important consequence of the assumption in (20) (which 
we have not emphasized) is that equilibrium actions can be also 
written as a linear combination of the private signals. Indeed, 
since we can find vectors v ,i t

T —as the solution of the system 
of equations in (26)—such that equilibrium actions are 

[ ],a v sE,
*

, ,i t i t
T

i t=  and since we assume [ ] ,Ls sE , ,i t i t=  we can write 
the action of agent i at time t as

 ,  .Na L ifor allv s,
*

, ,i t i t
T

i t !=  (27)

Do note that as in the case of (20), we do not imply that agent i 
calculates its equilibrium action using (27). This is impossible 
because some private signals are unknown and the correct inter-
pretation of (27) is that whatever computations agents perform 
to determine their equilibrium actions, they are equivalent to 
performing the linear combinations in (27).

The expression in (27) simplifies the understudying of the 
information revealed by the action of a user. From the per-
spective of agent ,i  observing the action a ,j t of agent j is 
equivalent to observing the linear combination of private 
signals. Observing the composition of neighboring actions 

: , , ,a aa ,
*

, ,N t j t j t
T

( )i d i1 f= 6 @  where we use ( )d i  to denote the cardi-
nality of the set ,Ni  is therefore equivalent to observing the 
vector linear combination

 : [ ] ,; ;H L La s v v s,
*

, , , , ( ),N t i t
T

j t
T

j t j t
T

j i t( )i d i d1 1 f= =  (28)

where we have defined the observation matrix : ;H Lv, , ,i t
T

j t
T

j t1 1= 6  
; .Lv R, ( ),

( )
j t
T

j i t
d i N

( )d i df ! #@  If (27) is true for all times ,t  which 
implies that the same is true of (28), it follows that from the per-
spective of agent i estimation of the private signals s and of the 
underlying state of the world ~ is a simple sequential linear 
MMSE (LMMSE) estimation problem. Indeed, at time ,t 1=  the 
prior distribution ( , )P sT~  is Gaussian, and i observes neighbor-

ing actions a ,
*
N 0i  given by the linear 

combination .H s,i
T

0  Incorporating 
the information contained in this 
linear observation changes the pos-
terior distribution to ( , | )P hs ,

T
i 1~  

but this latter distribution is also 
normal. At general time ,t 1+  agent 
i has a normal prior ( , | )P hs ,

T
i t~  
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and observation of neighboring actions Ha s,
*

,N t i t
T

i =  results in 
a normal posterior ( , | ) .P hs ,

T
i t 1~ +  Thus, to track the belief 

( , | )P hs ,
T

i t~  it suffices to keep bearings on the corresponding 
means and variances which we can do using an LMMSE filter.

Specifically, consider agent i at time t and define the private 
signal covariance matrix ( )M ti

ss  and the state-private signal cross 
covariance ( ),M ti

s~  respectively, defined by the expressions

 ( ) : [ ] [ ] ,
( ) : [ ] [ ] .

M t
M t

s s s s
s s

E E E

E E E

, , ,

, , ,

i
i t i t i t

T

i
i t i t i t

T

ss

s ~ ~

= - -

= - -~

^ ^
^ ^

h h
h h

6
6

@
@

 (29)
  (30)

The LMMSE estimation of s from observation Ha s,
*

,N t i t
T

i =  as 
given by (28) requires the definition of the LMMSE gain ( )K ti

s  
given by the product of the cross covariance between the signal s 
and the observation a ,

*
N ti  times the inverse of the covariance 

matrix of the observation .a ,
*
N ti  Since the covariance of s is ( )M ti

ss  
and the observation model is ,Ha s,

*
,N t i t

T
i =  the LMMSE gain is 

given explicitly by

 ( ) ( ) ( ) .K t M t H H M t H, , ,
i i

i t i t
T i

i t
1

s ss ss=
-^ h  (31)

Using the value of the LMMSE gain ( )K ti
s  in (31), the posterior 

mean [ ]sE ,i t 1+  and posterior covariance matrix ( )M t 1i
ss +  after 

observing the neighboring actions a ,
*
N ti  follow from the recur-

sive expressions

 [ ] [ ] ( ) [ ] ,
( ) ( ) ( ) ( ),

K t
M t M t K t H M t1

s s a aE E E, , ,
*

, ,
*

,

N Ni t i t
i

t i t t

i i i
i t
T i

1 s

ss ss s ss

i i= + -

+ = -

+ ^ h  (32)
  (33)

where the executed value of the observations follows from (28) as 
[ ] [ ] .Ha sE E, ,

*
, ,Ni t t i t

T
i ti =  Likewise, for the estimation of the state ~ 

from observations a ,
*
N ti  we compute the LMMSE gain

 ( ) ( ) ( ) ,K t M t H H M t H, , ,
i i

i t i t
T i

i t
1

s ss=~ ~
-^ h  (34)

given by the product of the cross covariance ( )M t H ,
i

i ts~  between 
signal ~ and observation Ha s,

*
,N t i t

T
i =  times the inverse of the 

observation’s covariance ( ) .H M t H, ,i t
T i

i tss  We then have that 
the state’s posterior mean [ ]E ,i t 1 ~+  and posterior cross covari-
ance ( )M t 1i

s +~  after observing the neighboring actions a ,
*
N ti  are 

given by the recursions

 [ ] [ ] ( ) ,
( ) ( ) ( ) ( ).

K t
M t M t K t H M t1

a aE E E, , ,
*

, ,
*

,

N Ni t i t
i

t i t t

i i i
i t
T i

1

s s ss

i i~ ~= + -

+ = -

~

~ ~ ~

+ ^ h6 @  (35)
  (36)

We emphasize that it is possible to write a similar 
variance update for the world state variance ( ) :M ti =~~  

( [ ])E E, ,i t i t
2~ ~-6 @ but this is inconsequential to our argument. 

Further note that the somewhat unfamiliar form of the LMMSE 
gains ( )K ti

s  in (31) and ( )K ti
~  in (34) are due to the fact that the 

observation model Ha s,
*

,N t i t
T

i =  in (28) is noiseless. We have 
therefore concluded that if we have linear actions as per (27), 
which is true as long as (20) is true, the propagation of beliefs 

( , | )P hs ,
T

ti~  reduces to the recursive propagation of means and 
covariances in (31)–(36).

From the expressions in (32) and (35), we can see that it 
is possible to write the state and private signal expectations at 
time t 1+  as the linear combinations k sE , ,i t i t

T
1 1~ =+ +6 @  and 

[ ] Ls sE , ,i t i t1 1=+ +  akin to those shown in (20). For the pri-
vate signal MMSE, substitute [ ] ,Ls sE , ,i t i t=  ,Ha s,

*
N t

T
,i i t=  and 

[ ] [ ]H H La s sE E, ,
*

, , , ,Ni t t i t
T

i t i t
T

i ti = =  into (32) to conclude that if 
it is possible to write (20) at time ,t  we can also write it at time 

.t 1+  Perhaps more importantly, these substitutions also yield a 
recursive formula that allows updating the matrices L ,i t as

 ( ) .L L K t H H L, , , , ,i t i t
i

i t
T

i t
T

i t1 s= + -+ ^ h  (37)

The same argument can be made for [ ]E ,i t ~  to conclude that if 
[ ] k sE , ,i t i t

T~ =  at time ,t  it is also true at time t 1+  with the lin-
ear combination coefficients adhering to the recursion

 ( ) .K t H H Lk k, , , , ,i t
T

i t
T i

i t
T

i t
T

i t1 = + -~+ ^ h  (38)

To complete the inductive argument we need to show that (20) is 
true at time ,t 0=  but this is obviously true because sE ,i i0 ~ =6 @  
and s sE ,i j i0 =6 @  for all agents.

The induction loop we just completed is sufficiently long so 
as to warrant retracing. We begin by the assumption that at 
time t we can write MMSE estimates of the state of the world 
~ and the private signals s as linear combinations of the 
private signals themselves as per (20). From this assumption it 
follows that equilibrium actions can be written as the linear 
combinations of private signals in (27). From here it follows 
that beliefs are propagated as per the LMMSE filter 
summarized in (31)–(36). A simple set of substitutions allows 
us to conclude that (20) is true at time t 1+  with the vector 
k ,i t 1+  propagated as per (38) and the matrix L ,i t 1+  propagated 
as in (38).

The expressions in (20) and (27) are neither used to propagate 
beliefs nor to compute equilibrium actions. The actual operations 
carried by each agent are summarized in Figures 1 and 2 and 
described in the following section.

QUADRATIC NETWORK GAME FILTER
To compute and play BNE strategies each node runs a qua-
dratic network game (QNG) filter. This filter entails a full net-
work simulation in which agent i maintains beliefs on the state 
of the world and the private signals of all other agents. These 
joint beliefs allow agent i to form an implicit belief on all other 
actions a ,

*
tj  for all Nj ! , which he uses to find his equilib-

rium action .a ,
*
i t

The QNG filter at node i is an implementation of the 
LMMSE filters defined by (32) and (35) followed by the play 

[ ] .a v E s,
*

, ,i t i t
T

i t=  A block diagram for this filter is shown in 
Figure 1. At time ,t  the input to the filter is the observed actions 
a ,

*
N ti  of agent i’s neighbors. The prediction [ ] [ ]HE a E s, ,

*
, ,Ni t t i t

T
i ti =  

of this vector is subtracted from the observed value and the 
result is fed into two parallel blocks respectively tasked with 
updating the belief [ ]E ,i t ~  on the state of the world ~ and the 
belief [ ]E s,i t  on the private signals s of other agents. To update 
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the belief on ~, we implement (35) by mul-
tiplying the innovation [ ]a E a,

*
, ,

*
N Nt i t ti i-  by 

the gain ( )K ti
~  and add the result to the 

previous state estimate [ ] .E ,i t ~  To update 
the belief on the private signals s we multi-
ply the innovation by the LMMSE gain 

( ) .K ti
s  The result of this amplification is 

added to the previous private signal belief 
[ ]E s,i t  as dictated by (32). To determine the 

equilibrium play, we multiply the private 
signal estimate [ ]E s,i t  by the vector v ,i t

T  
obtained by solving the system of linear 
equations in (26).

Observe that, in the QNG filter, we do 
not use the fact that estimates E ,i t ~6 @ and 

[ ]E s,i t  as well as actions a ,
*
i t can be written 

as linear combinations of the private sig-
nals [cf. (20) and (27)]. While the expres-
sions in (20) and (27) are certainly correct, 
they cannot be used for implementation, 
because s is partially unknown to agent .i  
The role of (20) and (27) is to allow deriva-
tion of recursions that we use to keep 
track of the gains used in the QNG filter. 
These recursions can be divided into a 
group of LMMSE updates and a group of game updates as we 
show in Figure 2.

As it follows from (31), (33), (34), and (36), the update of 
LMMSE coefficients is identical to the gain and covariance 
updates of a conventional sequential LMMSE. The only peculiarity 

is that the observation matrix H ,j t is fed from the game update 
block and is partially determined by the LMMSE gains and covari-
ances of previous iterations. Nevertheless, this peculiarity is more 
associated with the game block than with the LMMSE block. The 
game block uses (37) and (38) to keep track of the matrices L ,j t 

s

{vj,t}jeNi

{Lj,t}jeNi {Lj,t}jeN

-Ei,t [a*Ni,t]

Ei,t [~]

Ei,t [s]
HT

i,t a*
Ni,t a*

i,tR R

RKi
~(t)

Ki
s(t )

Mi

-HT
i,t

vi,t

{kj,t}jeNs s(t )

[FIG1] Block diagram of the QNG filter at agent .i  The QNG filter contains a mechanism 
for belief propagation and a mechanism to calculate equilibrium actions. Inside the 
dashed box, the belief propagation feedback loops that compute the estimates of s 
and ~ as linear combinations of private signals’ estimates of previous time are 
summarized. The observation prediction is subtracted from the observation to form 
the prediction error. Afterward, the belief propagation for s and ~ follow the same 
steps with different gains. The prediction error is multiplied by the corresponding gain 
matrix, and added to the previous mean estimate to form the corrected estimate [see 
(32) and (35)]. Multiplying the corrected signal estimate with the action coefficient 
gives the equilibrium action. The gain coefficients are provided by the LMMSE block in 
Figure 2. The observation matrix and action coefficient are fed from the game block in 
Figure 2. While these coefficients can be calculated by each agent, the mean estimates 

[ ]E s,i t  and equilibrium action a ,
*
i t can only be calculated by agent .i

(a) (b)

Variable

Lj, t

Hj, t

Update

(38)

(37)

(I - Lt)vt = dkt (26)

(28)

vi, t Hi, t

To FilterTo Filter

kj, t

vj, t

Lj, t+1 = Lj, t + K
j

kT
j, t+1 = kT

j, t + K j

s(t )(Hj, t - Hj, t Lj, t)

~,(t )(Hj, t - Hj, t Lj, t)

Hj, t := [vT
k1,t Lk1,t ;…; vT

kd ( j ),tLkd ( j ),t]
T

K j
w(t)

Kj
s(t)

Hj, t

Variable Update

(31)

(34)

(33)

(36)

To FilterTo Filter

K j
s(t )

K j
~(t) K j

~(t) = Mj
~s(t)Hj, t (HT

j, tM
i
ss(t )Hj, t)-1

Kj
s(t) = Mj 

ss(t )Hj, t (HT
j, tM

i
ss(t)Hj, t)-1

M j
ss(t ) M j 

ss(t ) -M j
ss(t + 1) = K j

s(t)HT
j, t M

j 
ss(t )

M j
~s(t ) M j

~s(t + 1) = K j
~(t)HT

j, t M
j 
ss(t)M j

~s(t ) -

Ki
~(t )Ki
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[FIG2] Propagation of gains required to implement the QNG filter of Figure 1. Gains are separated into interacting LMMSE and 
game blocks. All agents perform a full network simulation in which they compute the gains of all other agents. This is necessary 
because when we compute the play coefficients v ,j t in the game block, agent i builds the matrix Lt that is formed by the blocks 
L ,j t of all agents [see (25)]. This full network simulation is possible because the network topology and private signal models are 
assumed to be common knowledge.
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and the vectors .k ,j t  The matrices L ,j t are used as building blocks 
of the matrix Lt and the vectors k ,j t are stacked in the vector kt 
and used to formulate the systems of equations in (26). Solving 
this system of equations yields the coefficients v ,j t which in turn 
determine the observation matrix H ,j t as per (28). As we 
mentioned before, the game block feeds the matrices H ,j t to the 
filter block as these are used in the LMMSE gains and covariance 
updates. The LMMSE block feeds the gains ( )K tj

s  and ( )K tj
~  to the 

game block as these are needed to update L ,j t and .k ,j t

A fundamental observation is that agent i is keeping track of 
the matrices and vectors in Figure 2 in their entirety and not 
only of their components corresponding to himself. The reason 
for this is the step in the game block in which we compute the 
play coefficients .v ,j t  To solve this system of equations we need to 
build the matrix Lt that is formed by the blocks L ,j t of all agents. 
All of these computations for other agents are internal, however. 
The QNG as shown in Figure 1 simply needs access to the 
LMMSE gains ( )K ti

s  and ( )K ti
~  fed from the filter block as well as 

the observation matrix H ,i t and the play coefficients v ,i t fed from 
the game block.

NUMERICAL EXAMPLES
We use the QNG filter derived earlier to explicitly propagate indi-
vidual beliefs and compute the equilibrium actions locally for the 
coordination game introduced earlier. Agents weight estimation 
and coordination components of the payoff (12) equally, that is, 

. .0 5m =  In all of the examples, we set the true value of the stock 
to be $ ,5US~ =  and signal structure is as given by (19) where ie  
is Gaussian with mean zero and .C 1i =  We test the QNG filter on 
various networks.

We first consider line ( ),N 5=  star ( )N 5= , and ring ( )N 10=  
networks depicted in Figure 3. The evolution of each agent’s 
action over time is depicted in Figure 4(a)–(c) for the correspond-
ing line, star, and ring networks. The results show that agents 
reach consensus in their actions as indicated by the asymptotic 
consensus result described in the section “Asymptotic Properties 
of Learning in Quadratic Games.” Furthermore, the consensus 
action is the optimal estimate of the stock value : [ | ]sE*~ ~=t , 
which is also the BNE of the complete information game. Note 
that this does not necessarily imply that agents learn the true 
value of all the private signals; rather, this implies that they learn 
the sufficient statistic (in this case, the mean of the private signals) 
to calculate the optimal estimate of .~

We further evaluate convergence behavior of the QNG filter 
in geometric and random networks shown in Figure 5(a) and 
(b), respectively. Both networks contain N 50=  agents. For the 
geometric network, agents are randomly placed on a m m4 4#  
square, and then pairs that are less than 1 m apart are con-
nected. In the random network, pairs are connected with proba-
bility . .0 2  The evolution of each agent’s action values over time 
is depicted in Figure 6(a) and (b) for the geometric and random 
networks, respectively. In this case, we also observe that the 
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[FIG3] Line, star, and ring networks.

[FIG4] Parts (a)–(c) show the values of agents’ actions over time for the coordination game and networks in Figure 3, respectively. Each 
line plots agent i ’s action at each time. Agents reach consensus in the optimal estimate *~t  in the number of steps equal to the 
diameter of the corresponding network.
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action consensus is achieved at *~t  imply-
ing that consensus holds for any con-
nected network.

Our characterization of agents’ updates 
enables us to characterize the convergence 
rates based on network properties. In the 
three benchmark networks of Figure 3, the 
diameter of the network D is the sole deter-
minant of the convergence rate, that is, 
agents’ actions converge in exactly D steps 
in all these cases; see Figure 4(a)–(c). The 
diameters of the geometric and random 
networks are seven and three, respectively. 
Convergence to consensus action happens 
in ( )O D  for both networks; see Figure 6(a) 
and (b). In all of these examples, we 
observe that D is the sole determinant of 
convergence rate. It is shown in [30] that 
agents on a connected network converge 
to *~t  in at most N2 D steps for the pay-
off function ( , ) ( ) .u a ai i

2~ ~=- -  In the 
same paper, it is also conjectured that con-
vergence occurs in ( )O N  steps. The model 
exhibiting no payoff externalities with the 
payoff function ( , ) ( )u a ai i

2~ ~=- -  is a 
specific case of the general framework pre-
sented in this article. Therefore, we expect 
similar results regarding convergence rates 
to hold for the QNG filter. Furthermore, 
our simulation results indicate that N2 D 
and ( )O N  are crude upper bounds for the 
convergence rate. We conjecture that con-
vergence happens in ( )O D  steps; however, 
proving this remains an open problem.

CONCLUDING REMARKS
This article provides an overview of recent 
results in social learning models in presence of payoff exter-
nalities with a focus on agent behavior. We presented a frame-
work to model repeated games of incomplete information over 
networks and showed that when agents’ utilities are qua-
dratic—under certain assumptions—agents over a connected 
network eventually reach consensus in their actions and 
expected payoffs.

Algorithmic aspects of rational learning received special atten-
tion. We derived the QNG filter for propagating beliefs in QNGs 
when signals are Gaussian. Numerical examples were provided 
for various network structures. Based on simulations, we stated 
and discussed results that show convergence rates based on net-
work diameter.
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