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Abstract—This paper considers the control of a linear plant performance of control loops when various communication
when plant state information is being transmitted from a sensor  effects are taken into account, see e.g., [2]-[5] and retere
to the controller over a wireless fading channel. The power iharein These works examine packet-based communication

allocated to these transmissions determines the probability of | h | vz d suf
successful packet reception and is allowed to adapt online to both over analog erasureé channels, analyzing necessary and sur-

channel conditions and plant state in order to conserve sensor's ﬁCi?m requirements for stability and designing contnallend
energy resources. The goal is to design plant input and transmit estimators to counteract random packet drops and delays.
power management policies that minimize an infinite horizon cost Alternatively, analog channels can be modeled as inpyseaut
combining power expenses and the conventional linear quadratic systems and channel randomness can be treated as stochastic

regulator control cost. A restricted information structure is .
identified allowing the separate designs of plant inputs and model uncertainty [6]. Controllers under the latter frarnew

transmit powers. After the separation the optimal plant control ¢an be synthesized using robust control techniques to han-
policy is shown to be the standard LQR controller. The optimal dle additive noise channels with signal-to-noise ratio RN
communication policy follows from a Markov decision process constraints [7]. A different set of issues arise when loops
problem minimizing the transmit power at the sensor and the |n56 ver digital channels with data-rate constraintsuch
state estimation error at the controller. The qualitative features of Lo .

the optimal power adaptation to channel and plant are examined case quantlzatlon_ effects b_e(_:ome |mpqrtant and_ apart from
for general forward error correcting codes. In the particular case the controller design an efficient encoding/decoding sehem
of capacity achieving codes conventional event-triggered policies is required [8]. Fundamental limits like the minimum biteat
are recovered, where the decision is whether to transmit or not. for stabilization are also known; see, e.g., [9].

Approximate dynamic programming is employed to derive a |, giher networked control architectures communication is

family of tractable suboptimal communication policies, exhibiting t treated limitation but b i t of th
the same qualitative features as the optimal one. The performae Ot lréateéd as a limitation but becomes an active part of the

of our suboptimal policies is shown in simulations and the design. Typically, these setups depart from the classié per
advantages are contrasted to other simple transmission policies. odic communication paradigm, leading to frameworks such
as event-triggered sampling [10], [11], control [12], [13]
. INTRODUCTION self-triggered control [14]. The underlying concept in gbe

The networked control systems studied in this paper atlzgntrlbutlons is to prolong the time elapsed between sgdees

characterized by the separation of sensing and actuationtrlf;?{]sm'SS'ons or input up_dat_es as Iong as some Lyapunov-
e plant performance criterion is satisfied. Such schemes

different physical devices with control loops involvingeth ; S o
Q{;]Ibl'[ in general an average communication/update raterlo

communication of plant state information over a wirelest iodi h that attain simil lant ¢
channel. When sensor and controller communicate over- & Periodic sc e.mets. a at ain S|m|tar p?n.tlper orreartmd
wireless channel the cost of controlling the plant gets nhix%—Iowever, communication costs are nhot explicitly accounte

with the cost of sending plant state information from theseen or in the trl_gge_rlng design. - .
to the controller. The more information the sensor conviags t Communication costs are explicitly modeled in the context

more precise actuation becomes, but the resulting incieas®’ "6Mote state estimation in [15]-{18]. In this framework a

power consumption at the sensor leads to rapid depletion.sc‘ﬁnsor measuring the plant state decides whether to transmi

its energy resources. It is therefore apparent that a tfadd value to an estimator or not and each transmission ireurs

emerges between plant performance and power consumptif d cost. The overall goal is to minimize the estimatioroerr

To quantify this tradeoff we study the problem of selectin@,os‘t a”o,' the communica’Fion .penalties gggregated over _time.
plant inputs and power management policies that minimize Qe optimal communication is event-triggered [15], simila

joint cost that accounts for the plant regulation cost aral tlllo}% e'q['r’] [12],[’, [13t'], meaning tha; trantimls?cigs Care tm?ge h
cost of conveying information from the sensor to the cotgrol when the estimation error exceeds a threshoid. “omputeg
optimal transmission-triggering sets is not tractabletivating

A. Related literature the development of suboptimal event-triggered schemels [17
8]. Related contributions consider plant and commuiocat
ntrollers jointly optimal with respect to a linear quatitra
nd communication cost assuming again a fixed cost per
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Early works on networked control systems ignore the co%
of conveying information and focus their analysis on thg



a finite horizon. The characterization and determination of plant and channel states where transmission is triggered
jointly optimal plant and transmission policies in this text but the optimal power allocation on this event still needs
is otherwise open. We note however that in the case of conttol adapt to the channel and plant states. Alternatively, our
over digital channels some aspects of jointly optimal eecodpower management policy can be viewed as a ’soft’ version
and controller design have recently been studied [21]. of the event-triggered paradigm of, e.g., [12], as instefgdst
deciding whether to transmit or not we select how much power
to allocate to the transmission attempt. This interpretats
further fostered by the realization that conventional &ven
Instead of accounting for communication cost in terms afiggered policies emerge as the optimal communicationnwhe
transmissions, in this paper we are interested in the allfre sensor uses capacity achieving forward error cormgctin
cation of the actual resource used by the wireless sens(FEC) codes (Section IV-A).
to communicate, namely, transmitted power. This persgecti  Finally since optimal communication is not computatiopall
permits the incorporation of fading effects in the wirelesgactable we devise suboptimal power control policies gisin
channel and provides the flexibility in power allocation t@approximate dynamic programming, in particular rollout al
protect some transmissions more than others. Fading refergjorithms (Section V). These policies maintain the same-qual
large unpredictable variations in wireless channel treemesices itative characteristics as the optimal policies for gehersor
whose mitigation involves extensive use of power adaptatio correcting or capacity achieving codes, and this is verified
channel conditions [22, Chapters 3,4]. Besides countegctnumerical simulations (Section VI). Our rollout policiesea
fading effects power adaption may be also helpful in closegdhown to have significant performance benefits compared to
loop control to, e.g., increase the likelihood of succdssfgther simple policies that adapt only to channel conditions
packet decoding when the plant state deviates from tanget.and not the plant state, such as the ones proposed in [23],
this paper transmit powers are allowed to adapt to both, tf®4]. We close the paper with conclusions and suggestions
fading channel realization and the plant state. The akmtaton how the adopted model can be used for more complex
power and the realization of the fading channel determiee tlireless communication/control design problems in future
likelihood of successful packet decoding at the receiveabywork (Section VII).
known complementary error function (Section II). This com- Notation Let N, s denote then-dimensional Gaussian
munication model has been used for state estimation in seng@tribution with mean: and covarianc&. For a square matrix
networks [23], [24] and can be regarded as a generalizafion/g ¢ R™*" let Apax (M), Amin (M) denote respectively the
the erasure channel with i.i.d. dropouts of, e.g., [2]-f#iice largest and smallest eigenvalues in magnitude. For compact
here the probability of packet drops is actively controlled ness a set of variablery, zx11, ..., 7,4} iS denoted by
an online transmit power adaptation policy. Ty.x4¢. Subscripts of variables as i, 2,1 denote discrete
Given our general communication model, we are interestéicthe. When time index is clear from the context, subscripts
in the trade-off between closed-loop plant performance aage omitted and the respective variables are denoted.as.
power resources. To this end we combine the transmit power
with a conventional linear quadratic regulator (LQR) cost Il. PROBLEM FORMULATION

to form an aggregate infinite horizon cost that we seek to . ) o
minimize through proper joint selection of plant and power We consider the architecture shown in Fig. 1 deployed to

control policies (Section I1-A). For the novel problem fam contrpl a discrete—time linear time-invariant plant désed by
lation proposed we begin by identifying restricted infotioa  the difference equation
structures .that perm!t decoupling of pIanF input. and.power Trr1 = Az + Buy, +wy, k>0, )
control policies (Section II-B). For this particular infoation
structure the usual LQR control law becomes optimal atherex; € R” is the plant’s state with, given,u; € R™ the
the controller side while the optimal communication policgriving input, and{wy, k¥ > 0} is the process noise composed
at the transmitter follows from a Markov decision processf independent identically distributed (i.i.d)-dimensional
(MDP) formulation accounting for transmit power and theestaGaussian random variables, ~ Ny with zero mean and
estimation error at the controller (Section 1lI). The opmm covariancd?. We assume the plant is unstablg,((A) > 1)
power control policy is then expressed in terms of a valumit that(A, B) is stabilizable.
function solving the MDP problem (Section 1V). While this The wireless control system considered in this paper in-
does not allow computation of optimal policies it does allowludes a sensor/transmitter collecting state measuremgnt
us to understand the qualitative characteristics of therapt that it communicates with powey, € [0, pmax] Over a wireless
resource allocation. fading channel with coefficienk;. At the other side of the

In contrast to the work in, e.g., [15]-[17], [19] where transchannel the receiver/controller uses the received infiona
mission is based just on plant state, the availability oincled  to determine a control input,, that it feedbacks into the plant.
state information at the transmitter leads to new insights dhe effects of state quantization and transmission delagys a
the optimal communication policy. In particular when cheinn considered negligible and are thus ignored henceforth.
gain is low or estimation error small no transmission is-trig Due to propagation effects the channel gaip changes
gered, since it would be costly or unnecessary respecti@ely unpredictably [22, Chapter 3]. We adopt the standard block
the other hand, similar to the above work, there is an event/éading model of wireless communications whereby channels

B. Contributions and summary



I Lp--mmreee- —

1
ug Plant: Tk Sensor/ he L S SR
Tht1 = Az, + Bug + wi SN Transmitter | | |
; : Lo _L____ L __ 0\ ____1____1____J
1 1 | | |
! 1 Tk, Pk | | |
Tk—11 ! e e i E
o mm - A | | I
| | Channel ! D 44 ___q
! =q(} ‘ I I I | |
10 e =aq(hepr) | | | | |
Z,I\ ok~ Bern(gr) e
— 7 I .
Wl L YR TR | _ | == Practical FEC code i
[ o [ == Capacity achieving code|!
! L T T T |
L Yk T 30 40 50 60 70
Receiver/ | 1 SNR (dB)
Controller

Fig. 2. Complementary error function for FEC and capacity edhp codes.
The probability of successful decodigdor a practical FEC code is a sigmoid
Fig. 1. Wireless control system architecture. A sensor nreasthe plant and function of the received SNR= hp/No, while for a capacity achieving code
wireless fading channel states, hy. respectively and transmits with power a threshold value SNRdetermines whether a packet is successfully received.
pr- Messages are successfully decoded at the controller wathapility g

that depends on the channel stafe and the powep,. The sensor receives

knowled ts with -step delay. L . - .
acknowledgments Wit & one-siep felay The problem addressed in this paper is the joint design of

the control inputa.;, and the transmit powers,. The control
{hk,k > 0} are modeled as i.i.d. random variables takintpput u;. is determined by the received informatigny, vo.-
values in the positive real®, according to some known The powerp,, is determined as a function of the plant state
distributionm z and are independent of the plant process noiseeasurementsy.., the observed channel realizations;, and
{wg,k > 0}. We make the technical assumption that théhe controller acknowledgments.,. Informally, to conserve
distributionmy of the channel state has a probability densitpower at the sensor side we want to transmit information
function onRR;. To allow for transmissions adapted to the@nly when the stater;, deviates from its desired value or
current channel conditions the transmitter has accesseto When the channel realizatidi, is favorable. In the first case
channel state informatioh,, before transmitting at timé& — transmission is necessary to keep the plant under control. |
the development is equally valid if estimates are available the latter case the transmission cost is minimal. A formal
lieu of hy as discussed in Remark 2. problem specification is presented in the next section after

At the controller side the received signal includes thée following remarks.

information bearing signal and additive white Gaussiars@oi

. . R k 1. Th filesl — g (h f particul
(AWGN). The noise power is denoted by, and the power ermar © efror proies a (7, pr) Of particular

f the inf tion beari ional is th q A FEC codes are difficult to determine analytically but can
of the information bearing signal is the produi pi. As- be measured in actual or simulated experiments [25], [26].

suming the receiver also has channel state information, SUG, : . . . :
. . . . e typical shape ofg (hg, is a sigmoid function of
cessful decoding of the transmitted packet is determined /Q - )\/ISith expor?enti(g <tal?lspkazs depictegd in Fig. 2. In the

the signal to noise ratio (SNR) at the receiver defined : - :
. . . eoretical limit, correct decoding depends on the channel
SNR; := hipr/No. More precisely, given the particular type g dep

: . ityC;, = Wlog,(1 + SNRy), wh is the ch [
of modulation and FEC code used, the SNR determines %%zam YO = Wlogy(1 + Re), wherelV" is the channe

bability of ful detecti To k th e dwidth. If the packet is transmitted at a rate smallen tha
probability ot successiul detectiof.. 1o keep the analysis C}, bits per second it is almost surely successfully decoded,
general we define a generic complementary error function

and it is almost surely incorrectly decoded otherwise. Tiugs

ax = q (hi, pr) s (2) can write the successful decoding probability as the irntdica
function
mapping SNR := hipi /Ny to the probabilityg,. We assume B hipk
thatq (h, p) is a known increasing function of the producp q (hi, prr) =1 No 2 SNR, |, ©)

- see Remark 1. -
Considering packet decoding as a part of the communicatig)rf some constant SNR Determining the threshold SNR

N requires specification of the sampling rateand quantization
process, we can model communication as a sequence 0

T . . . : resolution 8 of the statex;. With o samples per second
indicator variablesy;, taking valuey, = 1 when information . . R

. . . and g bits per sample we require a transmission rate of
is successfully decoded ang, = 0 otherwise. Variables : . .

R L . «af bits per second. The SNR threshold is then given by
vk ~ Berm(gy) are Bemoulli distributed with time-varying SNRy = 2%%/W _1. Our interest in (3) is conceptual as it will
success proba_b|I|t|e§k. Wwith this communlcgtlon model the_allow us to recover results in event-triggered communicati
controller receives _the output of the decoding process IWh'flS] as arising from the use of capacity achieving codes — see
we model by the signal, = ~rzr. We further assume that Section IV-A. The form of (3) is shown in Fig. 2
the controller also gets;, so that it can distinguish between ' T
the casex; = 0 and~; = 0. Packet receipt acknowledgmenfRemark 2. The assumption that channel state information
~ is also sent to the sensor as provided by 802.11 and TQPESI) is available at the transmitter is typical in modern
protocols. We assume lossless acknowledgments, so thatwulimeless communication setups [22, Chapter 9]. To measure
sensor knows what information is received at the controllerthe wireless channel conditions a short pilot signal of fixed



LWk power functionp(h, q) is increasing ing and decreasing in

Scheduler: i ; ; ;
‘ . ‘ Ry, . maximum m
U Plant: T decidesq, k h. Using maximum powep,, .., the transmitter can achieve

Tpy1 = Az + Bug + wy usesp(hi, ai) a maximum successful decoding probability,..(h) :=
q(h, pmax) for a given channel state. Therefore, the decision
- Tk, Gk variablesy;, belong in the interval0, gmax (h«)]. We also make
" Channel. | the following assumptions.
Eﬂ 1 ka::B eﬂ?) Assumption 1. The maximum achievable successful decoding
Vi S R probability gmax(h) satisfies
Yks Ve ]EILQIIlax(h) > Qerit = 1- 1//\111ax(A)27 (5)
ggﬁﬁg’lgi where expectation is taken over the channel distributign.

Assumption 2. For any channel realizatioh, the function

Fig. 3. Equivalent wireless control system architecturescheduler decides P(h, ¢) in (4) is continuous in the successful decoding proba-
the successful decoding probabiliy, and transmits the state measuremenbility variable g.

x) With the required powepy, = p(hg,qx). The controller receives the

message with probability. Assumption 1 is essentially a stability condition, statihagt

transmitter has enough power to keep the plant state bounded

in_ second moment, as we discuss later after (17), and it will

power can be sent from the transmitter and then the fad g used to establish our main Theorems 1 and 2. Assumption
characteristics can be estimated at the receiver and sekt bfis of a technical nature and will be used in Theorem 2

to the transmitter by utilizing the reverse channel. Altjou In the architecture of Fig. 3 the communication decision

:cculrate CStI IS dmcultl_'g) i\cqﬁwe a;c the:[_trar:smltter smﬁ, bq’“ is chosen as a function of the information available at
evelopment 1S Stll valid 1t channel estimates are avagiaby, sensor, while the plant control signa} is a function

in lieu of_the actual Char?“e' valu.é,?. Reinterpretinghy, of the information available at the controller. These chsic
as an estimate of tr_]e fading coefficient the complement Yo in general allowed to be randomized. The sequence
error fgnct|onq(h,p) in (2) cap'tures not only the success o 0.q1,...}, of equivalently the power allocaticipo, p1, . . .},
decoo!lng but_also the uncerta_lnty over the real chan_n_el. 93 termed the communication policy, whereas the sequence
It. S“_ﬁ'c?s to integratey(h, p) W't.h respect to the cor_1d|t|ona| 0 := {ug, u1,...} denotes the control policy. With fixed poli-
distribution of the channel realization given the estimate cies, 6, all random variables are defined on an appropriate
Remark 3. There is a distinction to be made between errogroduct space and have a measure that we dend& AswWe

that are detected by the receiver and errors that are unedtetiseE™? to signify integration with respect t8™¢, which we

and may confuse the controller. The model here handles gigplify to E when not leading to confusion. We remark that
former and ignores the latter. This is justified becausetjma@c sensor and controller know each other’s policy.
communication schemes include the use of cyclic redundancyl'he policy pair(w,#) incurs a control cost and a commu-
checks (CRC) for error detection that can drive the proligibil nication cost. As a control cost we adopt the standard linear
of undetected errors to very small values [27]. The use @fiadratic regulator cost

simple CRCs reduces the probability of undetected errors to N—1
103, while longer codes can reduce this probabilitylto”. Jior(T, 0) = E™? Z 2} Qi + ul Ruy, (6)
k=0

for some pair of matrice® > 0 and@Q > 0, with (4, Q'/?)

o ) detectable. The communication cost is given by the expected
To formulate the joint design of plant controller and POW&ower consumption

management we introduce an equivalent architecture. \w vie N1
of (2), choosingyy, is equivalent to choosing the desired prob- N ol N\

ability of successful decoding, at time k& and transmitting Jowr(m, 0) = Z Pk, ar). (7)
with the minimum required power to achieve this namely

A. Joint design of plant and power control

k=0
To quantify the tradeoff between plant performance and powe
e = p(he, qr) == inf {0 < p < prax 1 ¢(ha,p) > qx} - (4)  consumption we combine the LQR cost in (6) and the power

. - . . t in (7) into the limi r
We can therefore interpref, as our decision variable with costin (7) into the t aggregate cost

p(hk, qx) denoting the cost of selecting transmission success J(m,0) :=limsup 1/N [J&’?R(mg) + )\Jé\(NR(yr,@)], (8)
probability ¢;. This leads to the equivalent control system N—oo
architecture shown in Fig. 3 where a scheduler block respdor some positive constant > 0. Our goal is to design plant
sible for decidingg, replaces the sensor/transmitter block odnd power control policied andr respectively that minimize
Fig 1. Our formulation generalizes the simple transmitiot- the joint cost (8). These policies depend on what infornmeio
decision as considered in, e.g., [15]. available to the sensor and controller. The specific infdigna
We note for future reference that the assumed monotonicgiructure considered in this paper is introduced in the¥dglg
of the functiong(h,p) on the producthp implies that the section.



B. Information structure controller's previous estimaté;, ; and inputu;_; can be
Denote as0;, the information known at the controller side'éplicated at the sensor. Alternatively the terms can be

at time k just before deciding the input;. This information viewed as the innovations of the controller's estimate (11)

includes the given initial plant state, the history of decoding When a new message is received. _

success variableg)., and the decoded signajs.,,, as well as e restrict then information at the sensor side to thefget

the previously chosen control inputs.;_1, i.€., defined as a collection of the ch_ar_mel hist%yk, the history
of innovationseg.;, and past decisiong.;_1, i.e.,
Ok = {20, Y0:k> Y0:k, Y0:k—1}- ()]
Fi, :={co0:k, ho:k» Q0:k—1}- (13)

Then the control inputy, is chosen as a function aby,
or more formally, measurable with respect to thefield Letus also add a technical requirement that the sensortselec

generated by),. maximum transmit powep,,., when the innovatiorx; gets

Given the possibility of lost packets as indicatedhy= 0, oo large and the channk}, is favorable. In particular consider
the controller has partial information on the plant stateltis @ positive constanL > 0, and a threshold on channel values
then of importance to study the MMSE estim@te’ (z;|0). 7t € Ry where a positive success probability can be achieved
This estimation is complicated by the fact that the evefitax(h:) > 0 that also satisfies
v = 0 possibly contains information about the statg
through the dependence of the probability on the value /’>h max(h) dmp (h) > qerit, (14)
of z;, — see Remark 4. To avoid this complication we discard. =

the information given by events of the form = 0. Formally, With gcri: given in (5). Such a channel threshold exists by
definery, := max{0 <1 < k : v, = 1} as the time of the last Assumption 1. We consider then communication policies

successful transmission by tinkeand define the sequence of€lecting decoding succegg as functions of ) for each
o-fields k, possibly randomized, and also satisfyigg € Q(ek, h)
Gk = {x0770:‘rk7yO:T;‘,yu(J:kfl} (10) Where .

with Go = {z0}. When~, = 1, G, coincides withO,. When Q(e, h) :== { [qénaw(h)(hﬂ gtf‘i‘r‘wzisé andh > h;

vr = 0, G only contains information received till the last » dmax (15)
successful transmission which occurred at time< k.

We restrict attention to control policies selecting inputs
uy as functions ofGy, possibly randomized, and denote th
set of all such policies by. Unlike E™Y(x;|O;,), the state
MMSE estimatei; := E™(x;|G}) with respect toGy, is
easy to compute. Whety, = 1 the stater;, = y, becomes

We denote the set of all such policies with The technical
power saturation requirement is inconsequential as we may
Pick L arbitrarily large, and will be used to prove Proposition 2
and Theorem 2 in the sequel. Similar requirements have
been introduced in [15], [16], however our setup is further

) : / ) complicated by the availability of the random channel state
known at the receiver side. Whep = 0 no new information  the proposed information structure is depicted in Fig. 4.

becomes available and; is obtained by propagatingi—1  The sensor block is split into a pre-processor and a sched-
through th_e plant’s dynamics in (1). Putting these two casgf,; The pre-processor based on the sampleand the
together yields acknowledgmenty,_;, computes and feeds, to the scheduler

. ) Yk if v, =1, who, upon measuring the chanrtel decides the transmission
o = BT (2k|Gy) = { AZp_1 +Buy_; if =0 °  success probability, while incurring power cosp(hy, qi).
(11) Our goal in this paper is to study policiesc II andf € ©
with &y = x¢ since the initial state is given. that are optimal with respect to the joint objective (8),ttisa
At the other side of the link at tim& the sensor/transmitter L
has access to the channel realizatignand the plant state minimize J (7,0). (16)

xz which allows selection of the successful transmissiq

n . . . .
probability ¢, to depend on the values of both of.zg. particular, the next section shows that the information

This affects the controller design however, because when %ructurelweilntroduced allows a.sgparate design of thenapti :
communication and control policies. We then leverage this

controller decides.;_; to control z, it should consider the . . ST -
- o : result to study optimal communication policies in Sectivh |
indirect effect ong,. This information structure renders the . S .
- L . and to develop tractable suboptimal policies in Section V.
joint communication and control co-design problem hard to
analyze. To overcome this, we restrict transmission pediciRemark 4. If the controller uses the complete information
to depend on the channel stdtg and the information about O, to estimater,, the optimal plant estimate is néj given
plant stater, that the controller does not know. More preciselypy (11) anymore. When a sequence of packet drgps=
consider the difference between the sensor measurementy,_; = ... = 0 is observed, and since the communication
and the controller's estimatey, by (11) if the kth packet is policy is known, the controller should consider the podiybi
not successfully decoded, that is that the sensor did not actually transmit anything, and this
o . could in general give indirect information about the expdct
e 1= ok — (ABg1 + Bug—), (12) Value of 2. This issue is further discussed in [19], [20]. We
with £y := 0. Observe that the term in the parenthesis is knowrote that the restriction t&/; in (10) is not necessary for the

to the sensor since by the acknowledgment mechanism #Heparation results of Section Ill, but it is necessary taiobt



lwk

Plant: Tk Pre-processor: €k Sg?iggger: hi
Th1 = Az + Bug + wy e = (1 — yp—1)Ack—1 + wr—1 usesp(hr ;k)
qk
Uk _ T | - - __ l ,,,,,,
Th ! Channel !
=] e~ Bema) |
| Yk = YTk |
"Yk [ _| — - — 1
Yk, Vk
Controller:
Tk = yerr + (1 — ) (AZk—1 + Bug—1)
ur = K,

Fig. 4. Wireless control system with a restricted informat&tructure. The sensor consists of two blocks. A pre-psmmesomputes the errar, given the
measurement;, and the acknowledgment, _. A scheduler decideg;, based ore;, and the channel stafe,, and transmitse,, with the required power
pr = p(hg,qr). The controller receives the message with probability computes the state estimatg and provides inputy; to the plant.

linear dynamics of the estimation erreg and the related; Proposition 1. Consider any communication poliey select-
as described next by (17) and (18) respectively. ing successful decoding probabilitieg as functions ofF},
given in (13), possible randomized, with defined in (12)
and channel statek;, independently drawn from a distribution
myg. Then at any stepk the distributions of the future
In this section we show that with the imposed restrictions Qitocesses ey, q¢, Ve, €0, ¢ > k} given Gy, do not depend on
the information available at sensor and controller the @nt the chosen control policy € ©.
law # € © and the communication policyr € II can
be designed separately. In particular the control policg ha  Proof: First note that the process¢sy, hi, k > 0} are
no effect on the estimation process at the receiver and by assumption independent of any other process. Then we
utilizing a separation principle the optimal controllercbenes follow an induction argument to prove the claim. At= 0,
the standard linear quadratic one. €o is equal to 0,qp depends only onhy and g, 7o IS
Let us denote the difference between the plant state aanl independent Bernoulli with succegs, and e, is also 0
the estimate kept at the controller by := z;, — &, and its since xq is initially known. Consider then a timé with a
covariance as seen at the controllerdyy := E™ [eke{ | Gk}. given Gy, the corresponding estimation erreg given Gy,
The estimation error dynamics can be found by subtractigving zero mean and covariangg,, and a control input

Ill. SEPARATION OF DESIGNS

(11) from the system dynamics (1) to get ug that is a function ofG, as described by the control
policy 6. The terme; equalsAey + wy, as indicated by
er = (1 — ) (Aeg—1 + wi—1), (I7) the arguments preceding (18), which giveh, has mean

. p ;
with o — 0 sincex is given. Stabilizability of estimation 0 @nd covariancedx, A~ + W. The choicegy, € Fiia

error is guaranteed by Assumption 1. Indeed if transmittgy coqstructlon depends on past _varlablesFi;p which by
were to use maximum power all the time the dynamics ﬁ;]au_sahty do not depen.d on the act!op, as well as the new
(17) become a jump linear system singeare Bernoulli with variablesy. .1, hx+1 Which are also independent af. Also
constant probability equal to the left hand side of (5). Thefe distribution ofyy1 ~ Bernge11) only depends on the

condition (5) is sufficient for bounded second moment as, e_§|stribution Ofgk-41, a_nd the same holds fe.., Whi(.:h equals
in [2, Theorem 2]. It is also tight in the sense that estimmatia | — Vk-+1)ek+1 again by the arguments preceding (18). To

error becomes uUnstable [, gua (1) < Gerst. sum up all variablesy 1, qr+1, V641, €x+1 given Gy do not
Turning our attention to the innovation substitutimg by depend oruy,. .

(1) in the definition ofe;, in (12) givese, = Aeg—1 + wg_1. The intuition behind this proposition is that the effect

The terme,_; equals (1 — yx_1)ex_1 as seen by (17), of control inputs is subtracted from;, when forming the

thereforee,, evolves according to innovation termgy, in (12) that are fed to the communication
policy 7. Similar separation results based on innovation terms
ek = (1 — ye—1)Ack—1 + wi—1, (18) have been utilized in setups where the sensor just decides

whether to transmit or not [19], even though this need not be
optimal [20], as well as in encoder/decoder design for digit
channels [9]. The above proposition restates the separatio
principle for our problem of power selection in the presence
of channel state information in addition to plant measurrene

with initial valueey = 0. The following proposition establishes
a separation principle in our restricted information stiue
setup, stating that the control action has no effect on tladitgju
of the future estimates at the controller.



Since the power costi} (7, 6) in (7) only depends on the joint objective/(r, #) described by (6) - (8) satisfies

pairs (qx, hi), the above proposition shows that the control No1
policy 6 has no effect on the power cost. Thus we can rewrige(m@) > Tr(PW) + lim sup l]Ew Z eI Pey, + Ap(hi, qi)
the objective in (8) as - N—oo N = £~

J(m,0) = limsup iJN (m,0) + Alim sup iJN (m) (22)
’ Nosoo N THRVD Novoo N TPWRVE where P is the solution to the standard algebraic Riccati
(19) equationP = ATPA+ Q — ATPB(R+ BTPB)~"'BTPA
This means that the optimal control poligy € © for a for the system in (1) and the linear quadratic regulator cost
given communication policyr € II is the one minimizing (LQR) in (6), and the matrix” is defined as
the limit LQR cost. It turns out that the above proposition 5. T
can help establish a stronger result, that the form of the P=ATPA+Q-P (23)
optimal controller does not depend on the communicatiddoreover, the minimum value in (22) is achieved for the
policy, leading to a stronger separability than what fokowcontrol policy
from (19). up = KTy, (24)
Indeed for any finite horizon by the above separation. . . . .
principle standard dynamic programming arguments shotv tﬁ'\ét'th oy, the s;ate estimate deTSC”bej mT(ll) and the steady
the optimal control law is given by the standard LQR one, ar%ate LQR gaink" .= —(R + B PB)" B PA.
this has been shown when e.g. the sensor just decides whether Proof: See Appendix B u
to transmit or not [19], [20]. We are interested however i@ th The statement of Theorem 1 determines the optimal control
infinite horizon problem. Formally the controller has pairti policy ¢ as the conventional LQR controller in (24), which
state information. However the setup differs from, e.ge ths shown in Fig. 4. The optimal cost given in (22) equals a
standard problem of Gaussian observation noise and Kalmgnstant7r(PW) and a limit average sum term that only
filtering, where the estimation error covarianEg is shown depends on the communication poliey € II. This result
to converge to some limit and the system is assumed to ststibws that the optimal communication policy needs to jgintl
at time £ = 0 with this limit estimation error. In our setup regulate the power consumption at the sensor and the weighte
whenever a packet is successfully decoded the estimatigstimation errore,{ﬁe,C at the controller side.
error is reset to zero, otherwise it grows, so for the generalObserve that as per (11) and (17) it holds that= (1 —
communication policiesr € II under consideration it is not ~;)ey. Also E™[vyi|Fi] = P™[yx = 1|Fx] = qx andey, € Fy.
clear whether some limit covariance exists. Alternativillg So we can write

following proposition shows that estimation errors admit a__ , - . T T
uniform bound in second moment. E¥lex Pex|Fi] = ET[(1 = )ey PexlFi] = (1 - ar)ey, Pex,

(25)
Proposition 2. Suppose Assumption 1 holds. Then there exisiad taking the expectation in both sides gives
a finite positive constant/ such that for any communication R . T
policy = € II selecting successful decoding probabilities E™[e Pex] = ET[(1 — qr)ey, Pey]. (26)

qr With respect toF; given in (13), possibly randomized,sybstituting the expression (26) into the second summand of
satisfying the additional restriction), € Q(ex, hx) given by (22) it follows that the optimal communication poliey € II

(15), and for everyk =0, 1, ..., it holds that is the one that achieves the infimum cost
E”egek < M. (20) 1 N-1
J& = inf U —E™ h 27
Proof: See Appendix A n COMM = 211 N'3eo N 2 clek b ) 7)

. . . . . k=
With this bound on expected magnitude of estimation error ’

established, uniform ovek and over any policyr € II, the where we define the cost-per-stage to be

following theorem shows that the optimal control law for the (e, h,q) := (1 — q)e” Pe + \p(h, q). (28)
average infinite horizon case is indeed the standard stead%- ] ) o
state LQR one. The difference between the sum in (22) and the objective in

(27) is that in the formek; is not known at the sensor at
Theorem 1 (Optimal control policy) Consider the wireless time £, while ¢, in the latter is. This way (27) takes the form
control system of Fig. 4 with any communication policy=  of 5 Markov decision process (MDP) problem with an infinite
{a0,q1,...} € 1I selecting successful decoding probabilitie,orizon average cost criterion. The state of the problerime t
i as functions off}, given in (13), possibly randomized, withy, is the pair(cy,, hy,) € R” x R, and the available action is
innovation termse;, as defined in (12) and channel stateg, Q(ex, hy,) by (15). The state transition probabilities can

the additional restrictiong;, € Q(ex,hr) given by (15).

Suppose Assumption 1 holds. Then for any control policy P(¢: 7 |e, h, q)
0 := {ug,u1,...} € © composed of inputs; as possibly = [gNow (") + (1 = q) Nacw(e™)] mu(h™).  (29)

randomized functions af;, in (10) such that
ki (10) Here ¢,h and ¢, denote the current and next states

R 1/N E™?zfan =0, (21) respectively, and; the current action. Wheg is chosen at



state (¢, h), a variabley ~ Bern(q) is drawn. By (18) on Proof: See Appendix C. [ |
the eventy = 1, ¥ = w ~ Ny w, while on the event  The theorem states that the optimal communication policy
v =0, et = Ae + w with w ~ Ny w, which is equivalent exists, is deterministic, and also stationary in the senatyt
to e ~ Nacw. Since h™ is independent ok, h,c", its adapts only to the current statey, h;) and not the complete
distribution my appears as a product in (29). We denotRistory I in (13). The optimal policy is described by (31)
E [e*,hT | e, h,q] the integration with respect to the abovén terms of a function/ (¢, h) that solves (30). Note that this
transition probability measure. function is unique up to a constant. Related characteoizati
To sum up, we have exploited the proposed decoupling iof optimal policies when the decision is whether to transmit
formation structure to determine the optimal control pols or not have appeared in [15], [16]. Our setup however differs
the standard LQR control input. We proceed in the followingince the decision is on the transmit power and this depends
section to show that an optimal communication policy existsn the random wireless channel state. The proof of the
and we characterize its main features in the case of genafmorem relies on constructing a Lyapunov-like functioat iis
FEC codes and in the special case of capacity achieving codgsmmon for all policiesr € II and applying the MDP results

Remark 5. The technical condition (21) for the controller in®' [30]- This methodology has been used in [16], however a

Theorem 1 can be viewed as an additional stability condititfﬁ‘f'ned construction is required here to take into accoust th

requiring that the norm of the plant state grows at a sukah'nerandom channel states as well.

rate. Such conditions appear in general in optimal control AN informal interpretation of the theorem and the condition
problems with average cost, see e.g. [28, Vol.II, p.254a6} (30) based_or_1 finite state spaces [28] is _the following. The
have also been used in average linear quadratic problems [$8rkov chain induced by any stationary poligy = q(ex, hx)

Vol.Il, p.272-3]. This technical condition may potentialbe S (POsitive) recurrent. Fix some staté,h), and then the

relaxed by employing a different proof technique. optimal costJéoyy in (27) of any stationary policy can be
expressed as the optimal expected cost gathered starbimy fr

(¢,h) till the first return to (&, h), divided by the expected

number of steps this transition takes. On the other hand (30)

Exploiting the MDP formulation of (27) we can show thay g eyactly the form of standard Bellman equation but for
optimal communication policies for the co-design problem iy roiative cost per stage(e, i, q) — Jioyy, indicating how

(16) exist. T.hi.s existence.result provides a characteozat far we are from the optimal average cost per stage. The
of these policies from which we infer the general feature§ion 1/ (<, 1) expresses the expected relative cost gathered
of optimal transmit powerg;, and corresponding successfukaing from statde, 1) and following the optimal policy til
decoding probabilitieg, as a function of innovation terms. e first return to(é,ﬁ). Thus the termV(e+, At) on the
and channel reahzatl_orlsk. . . right hand side of (30) refers to this cost evaluated at the
_ In general the existence of optimal policies for averagg,y; siatg=+, h*). Bellman's equation states that the optimal
infinite-horizon MDPs on Borel spaces requires some tedh”'%hoiceq at every step minimizes the sum of the current-stage

coqd_itions [29]. In our case restriction to commupicatiopemive coste(e, h, q)— Jeouy and the expected future relative
policies7 € II that uniformly satisfy (15) guarantee existence,qqig [V(sﬂ ) ‘ e, h, q} "The minimization over the current

as th_e follpwir_lg theqrem shows, and a useful charactem'rzatiactionq gives again the valu® (<, 1) at the current state, as
of this policy is provided. in the left hand side of (30).

Theorem 2 (Optimal communication policy) Consider the  In principle one can find/ (e, h) using value iteration or
Markov decision process with optimal cost as in (27), statlicy iteration algorithms which involve iterative apgition
transition probabilities as in (29), and actions restridtéo of (30) [29]. This procedure is, however, computationally
ar € Q(ex, hx) with Q(e, h) abiding to (15). If Assumptions onerous as each iteration requires minimizing the rightdhan
1 and 2 hold true there exists a functidn: R™ x R, — R side of (30) for all possible state paifs,h) € R™ x Ry.

IV. OPTIMAL COMMUNICATION PoLICY

such that for alle € R™ and h € R, it satisfies Nevertheless, (30) still gives qualitative information tire
. . optimal policy.

Vieh) = qeg}'?,h) {e(e, 1) = Jeomm Let us ignore the casés|| > L,h > hy in (15) as it

+E [V(e, h) | e, h,q]} . (30) s irrelevant for the following discussion. Integratifig(c, h)

with respect to the transition (29) gives
The optimal communication cost can be written &g,y =

E.,V(w,h), whereE,, ;, denotes integration with respect to & [V(g-"_’h"’_)‘g’h,q}
the_prociuct mea_\sumfow_x_m,q. The optimal Communlcatlon = @By V(w, h ) + (1 — q)Ey s V(Ae + w, hY). (32)
policy 7* achieving the minimum cost can be written as a func-

tion of the error and channel states at tiheq;, = ¢"(ex, i), \we substitute this and the cost-per-stage, h, ¢) defined
and is the one achieving the minimum in the right hand siq% (28), and the expressiofioyy = EwnV (w,h) in the

of (30), i.e. minimization of (31), and upon reordering terms, the optima
¢*(e,h) := argmin {c(e, h, q) — Jeoum communication policy can be written as
qGQ(E,h)
+E[V(eT,h")|e,hoq]}.  (31) q"(e,h) = argmin Ap(h,q) + (1 —-q)R(e),  (33)

q€[0,gmaz(h)]
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Fig. 5. Optimal power allocation for FEC codes with differenmplementary Factor R) Factor RE)

error functions. The optimal transmit powgt is plotted as a function of the

factor R(¢) for a fixed channel statk using FEC codes with differerqt SNR -::-

characteristics. When thg-SNR curve becomes steeper, the optimal powe o 02 04 06 08 1 0 Prax
allocation resembles a step function.

Fig. 6. Optimal decoding probability and power allocation &FEC code.
Color intensity indicates the magnitude of optimal decodingbpbility ¢*
and optimal transmit power* as functions of the factaR(<) and the channel
stateh.

where for convenience we defined the function

R(g) := By [V(Ae +w,h) — V(w,h)] + TP, (34)

The optimal policy ¢*(¢, ) depends on the shape of the the error as well. Overall this optimal power management
function p(h, q). In general it takes values anywhere in thﬁisplays different features from the standard "0-1" event-

interval [0, gmaz(h)]. The optimal power allocation can beyjggered transmission paradigms, as in e.g., [15] or [12].
found by converting (33) to power by (2), (4), and is desdib& o e though as a 'soft” version of these policies since the

by power decision ranges betwefn p,,..], or equivalently the
p*(e,h) == argmin \p+ (1 — q(h, p))R(e). (35) decodingq between|0, gmas(h)]. Finally we note that the
PE[0,Pmaz] transmit power/estimation problem has also been studied in

Despite the fact that’(=. & dR hard t ¢ the very recent works [23], [24], however the former allows
thesplbe € fact tha ({?’ ) an (f) a:reh ar ¢ o_cotr_npu ef, nly power adaptation to channel and does not adapt to plant
€ above expression 1S an important characterization © ate, while the latter does not provide the important ¢atale

0pt|m§I power allocation. It prov_|des. a tool for qualitativ characterization we discuss here and the connections kéth t
analysis of different FEC codes in wireless control system

Svent-triggered paradigm.
We illustrate this in Fig. 5 where we examine how the 99 P 9
SNR relationship of a FEC code affects the optimal power
allocation. For simplicity we assume a fixed channel stafe Optimal solution for capacity achieving codes

h and we plotp” in Fig. 5 as a function ofR(¢). In all Consider now the case of capacity achieving codes. By (3),
cases, when the error penali(c) is below some threshold, 5t time % the transmitter needs to use either = 0, i.e.

the best option is to not transmit. Above the threshold, they transmitting, oy, = po,/hs. With po := NoSNRy, which
optimal power increases witk(e). For powerful FEC codes cerainly guarantees correct packet delivery. Any othevaso
characterized by a steepSNR relationship, close to thegjcation is unfavorable. However the instantaneous pasve
theoretical limit in (3), the optimal power allocation resigles 5 nded bybr < Pmas, SO the sensor can transmit only when

a step functioq, since the probability of successful de@xydipo/hk < Prmaz, OF €quivalently when the channel state exceeds
becomes practically one for large powers. Forg@NR tails, hie > Po/Pmas-

this behavior deteriorates as the sensor needs to transtnit w In this case we are looking again for a randomized policy

higher power to achieve a larger _i.e. a distribution on the two power optiod$, py/hi} when
Then in Fig. 6 we present qualitative plots of the opnmq;k > po/pmas. With a slight abuse of notation we denote
decoding probabilityg* and optimal transmit powep* as e € [0,1] the probability of choosing poweps,/hx. Then
functions of both the factoR(¢) and the channel statefor a \ynen he > po/pmas the transmitter draws independent
given ¢-SNR characteristic. The blue region indicate the eve% -~ Bern((i) and transmits with powes, = i, po/hy. The

where no transmission occurs. This happens if channel 938coding success at the receiver is given by the sagm&he
h is low, where transmission is costly, or if errothas a low expected power consumption becomes

penalty, meaning that there is no need to update the retseiver

estimate. We note that this no-transmission region becomes = =

larger if one increases the power scaling factoOutside this 2 Z pe=E Z K hi I (h’f =
region a transmission occurs and transmit power adaptstto bo k=0 k=0

channel and error states. In principle when channel gain Observe that this is of the form as the expected power con-
high, small amounts of power suffice. For intermediate \v@lusumption of the original problem given in (7) with(h, ¢) =

of channelh power takes a large range of values depending/h1(h > po/pmaz). Then the statements of the results so

Po ) (36)
pmaw



far hold for the capacity achieving codes as well. For thiBhis approximation defines a rollout algorithm [28, Vol. Iff.
special case fop(h,q) however the minimization in (33) the suboptimal policyr is not far from the optimal policy the
becomes linear iy, and the optimal communication policyrollout transmission success probabilif}f" (<, h) is close to

is deterministic, the optimalg* (e, h).
oA [0 if hR(e) < Apo OF h < Po/Dmas To.find a family of policies with computable relative value
q (e h) { 1 otherwise ) function suppose we adapt = ¢(hy) to the current channel
(37) stateh;, but not to the innovation,,. Policies of this form have
or in terms of power been proposed in prior works [23], [24]. Since channel state
_ are independent of; the policy ¢(h) results in successful
pCAe, h) = { 0 if hR(e) < Apo OFh<po/Pmaz  packet decodings with expected probabilify := Enq(h)
po/h  otherwise implying that the communication success indicator vagabl

(38) ~vr ~ Bern(g). The expected power consumption at every
This is an event-triggered transmission scheme along tﬁe '

lines of, e.g., [15], except that now the decision is alseciéd thigeéﬁcals?hgigft&n; %/.l\ges [ﬁdr%)zi)(lz’rg(i}r?)(é;)h E‘Zég?ﬂgg‘c’t of
by the current channel state apart from the erroe. This policyq P

deterministic policy was expected as the limit behavior of _ 1 Nz o
powerful FEC codes in Fig. 5. The region of the plant/channel/?"” = IIJ{IH sup > (1= q)ef Pey, + AE4p(h, q(h).
state spac&R™ x R, outside of which it is optimal for the e k=0 (40)

zegsor /to traanlTa:ItitlaSLtiS:ISCtrr:Zegog:jigi:iﬁii};ER()E> >)\)\psoh§\r/]vi For any policy of the formg, = q(hx) the corresponding
= Po/Pmaz- y £) > Ao relative value functio’¢") (¢, h) can be determined in closed

that when the channel is in a good state, transmitting ishwort : : .
) . ) form as stated in the following theorem that also provides an
since it does not cost much, while when a measfite) of - . 3
explicit expression for the cost?'".

the error is large, it is necessary to transmit in order tetres
it to zero. This region gets larger when increases, since Theorem 3 (Cost of channel-adaptive communication poli-
successful transmission in this case requires more power,c@®s) Consider the Markov decision process with state pair
when )\ increases, since then power penalty becomes mdegh) and state transition probabilities as in (29). Consider
important. policiesq(-) for which the success transmission probability is

In the following section we present a simple computablkeelected as a functiof(/) independent of the innovation terms
approximation of the above optimal communication policies. For any policy of this form satisfying := Exq(h) > qerit
which we examine with simulations in Section VI. for the critical probabilityg,.,.;; of Assumption 1, the cogt(")

in (40) becomes

J9O) = Tr(PE) + AEyp(h, q(h)), (41)

—

V. A ROLLOUT COMMUNICATION POLICY

The optimal communication policy* (e, k) is described by o . _
Theorem 2 in terms of the relative value functi®f(c,h). Where the matrixt is the unique solution of
The practical value of this characterization is limited doese _ T

S . ) i E=(01-q(AEA" +W). 42

determination ofV (e, h) is not computationally tractable in (1=a) +W) (42)
general. The purpose of this section is to show how approfurthermore, the relative value functioi“(”) is given by
mate dynamic programming techniques can be used to devise 1 q(h)
approximations ofV (e, h) leading to tractable suboptimal VIO (e, h) = ﬁETHS—i—)\p(hq(h)), (43)
policies. o . _

As shown in Theorem 2, the optimal communication policywhere the matrix/ is the unique solution of
q* (e, h) given by (31) is to choose the current decisipthat

— T =
minimizes a combination of the current ce$t, h, ¢) and the H=(1-qA"HA+P). (44)
optimal expected future cosE [V (e*, ht)|e, h, q]. However Proof: See Appendix D. [
the functionV (g, h) is not available, so modeling the optimal Theorem 3 provides an explicit formula for a family of
future cost is not possible. relative value functiong/?¢)(¢, h) that can be used in the

Suppose on the other hand that some communication poligfiout algorithm in (39). Substituting (43) into (39) and
7 suboptimal in general is available, for which the corresponremoving constants from the resulting expression we find the
ing relative value functioV' ™ (¢, h) is known at all state pairs rollout policy
(e,h). If we assume that at all future time steps the sen- Ty
sor/transmitter employs this given polieywe can model the  ¢(c h):= argmin  Ap(h,q) + (1 — q)6 =
expected future cost induced byasE [V™(et, ht)le, h, q]. 9€[0,gmaz (1)) 1—q

Then the Optlmal current action selected with respect t® trﬂ:ompunng such po“cies is easy. Given the paramétﬂ]’at
suboptimal assumption on future communication decisisnsrhodels the suboptimal future actions, we can comiitey

(45)

described by (44) and then solve (45) given the functip(v:, ). Observe
el (e,h) := argmin c(c,h,q) +E [V”(€+7h+)|5,h,q] _ tha_t (45) is of the same form as the optimal communication
4€[0,dmax (h)] policy (33) except that the optimal unknown functidt(e)

(39) is replaced by the quadratic foret He/(1 — g). Since the



rollout policy is suboptimal the quadratic can be viewed s ¢
approximation of the functiod®(¢). As a side note, the rollout
policy need not satisfy the technical requiremefit (¢, h) €
Q(g, h) of (15).

For the particular case of a capacity achieving FEC we cig
repeat the analysis in Section IV-A to modify (45) and obtai
the explicit (suboptimal) policy

-
qroII,CA(a’h) — 0 if h -
1 otherwise

H
S <Apporh< L0

pmaa:

(46)
: ; :ﬁitﬁ Fig. 7. Simulation results of the rollout policy for a capscichieving
Again we managed to approximate the unknown fun E) code. The pointsey, 1], hy, and|ei 2|, by, are plotted respectively, with blue

in (37) by a quadratic that we can compute by (44). This giv@giicating the decision to not transmit, = 0, and red to transmitg, = 1.
us an explicit event triggered communication policy, whibes

events depend on the current values of the channel statel
the errore. 4

A question that arises is how suboptimal is the performan 3K

le, ()1

Power cost

of these policies compared to the optimal coggy,. Un- -
fortunately since the rollout is a heuristic it is not easy tii- -
characterize the optimality gap. It is however guaranteed o, e e iy e e o 1o a0
perform not worse than the reference policy, and in mar

practical problems the improvement is significant [28, Vpl. 4
In the following section we simulate the constructed pebci 307
and characterize numerically the improvement to the rafare »
policies adapting to channel only. 10

Estimation error cost

0 20 40 60 8‘0 100 120 140 160 180 200
V1. SIMULATIONS Parameter A

We begjn by p(es_enting simulgtiong of the rollout algorithmig g, comparison of the optimal threshold policy and the Itgpiroliout
for capacity achieving codes given in (46). We assume thelicy performance for a capacity achieving code. The power estimation
channel state distribution to be exponential with méeah error costs of the two policies are plotted for differentues of the weighting

. . factor A. The estimation error cost for the reference increases aterfeate
The plant is given by than the rollout.

A:[ioog},B:{?] 47)

) In contrast, such a correlation between the error stateand

The rest of the parameters atg = W = I, R = 1, the decision to transmitis not clear. Even whgn takes large

A = 50, pp = 1. As a reference communication policyvalues, the sensor might choose not to transmit. The reason

we useq(h) = I(h > h;) which transmits whenever theis that this state’s dynamics are related to a stable eigezva

channel state is above some threshold valughat induces so informally it will remain bounded even if the sensor takes

g ~ 0.79. The simulations of the rollout policy revealno action. More precisely, as long as the sensor kegps

a dramatic decrease in the empirical rate of transmissiopgundeds; ; will also be bounded.

Gemp = 1/N ZkN;ol v =~ 0.37, which is also much lower Next, for the plant and channel described above we compare

than the minimum non-adaptive policy..,; = 0.75 that the performance of the rollout algorithm with that of the

would keep the error stable. Similarly, the empirical costference policy we used to compute the value function ii. (43

Jemp = 1/N Ziv:_ol e{ﬁek + Mipo/hi =~ 56 decreased For different values of\ we find the optimal threshold policy

compared to the referencE() ~ 124. g(h) = I(h > hy), i.e. the one that minimizes (41), and the
The event-triggered nature of the rollout policy in the casmrresponding rollout policy in (46). The resulting powest

of capacity achieving codes is captured in Fig. 7 where wgN S"1 " vypo/h and estimation cost/N S"p ' el Pey,

plot the two plant states along with the channel, 1|, h; that we got from simulating the rollout algorithm are pldtte

and |e 2|, hy during the simulation. Blue points indicate theseparately in Fig. 8 along with the costs of the referencieyol

decision not to transmitg, = 0, while red are the points As X increases the power consumption decreases, since it is

where ¢, = 1. When the channel fading coefficierit, penalized more in the aggregate cost (27), and the decrease

is low, the sensor avoids transmission as it requires largae is similar for the rollout and the reference policien O

power consumption. The rollout policy is also adapted to thhe other hand, wheR increases the estimation cost increases,

plant structure. The error statg ; is related to the unstablesince the sensor decides to transmit less often. However the

eigenvalue of4, so the sensor always decides to transmit whemcrease for the rollout policy is slower than that of the

this state is far fron0. The hyperbolic shape of they 1|, 2,  reference policy. The reason is that the reference onlytadap

plot was expected by the form of the rollout algorithm in (46)o the channel, avoiding transmissions when the channig sta



1 The design of near-optimal and computationally efficient
policies for the general co-design framework requireshiert
research. For example the performance of power manage-
08  ment policies adapting to the plant state directly, not the
07 estimation innovation term, needs to be evaluated. Further
work includes also the incorporation of other wireless ctehn
models, such as Markov. Moreover interference effects when
multiple control loops close over the same channel need
04 to be considered, although they are expected to be limited
03 Since sensors abstain from transmitting in unfavorablecél
conditions and/or favorable plant states. Overall the pseg
framework can be expanded to accommodate modeling and
01 analysis of more complex wireless sensor & actuator netsvork

0 This unified control/wireless networking framework coudcdl

to novel communication/control design problems, such as a
control-aware network resource allocation, or a resoamare
networked controller synthesis.

0.9
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Fig. 9. Simulation results of the rollout policy for a FEC codée points
llek ||, b during the simulation are plotted with colors denoting the nitagle
of the chosen decoding probability.. Practicallyq,, takes values either O or
close to 1. APPENDIX

A. Proof of Proposition 2

hu, is low. The rollout algorithm ac-ja.pts not only to the channel, First note that, by the same arguments we use to derive (26)
but also to the errory,. By transmitting only whemy, is large, IaEer, if we condition onF}, we can rewrite

it results in only a moderate increase in the estimation cos
Without sacrifici'ng too much power. . . E™ el er = E™(1 — qi)er ex. (48)
Finally, we simulate the rollout algorithm in (45) for the
above plant and channel model when a FEC code is employ&le uniform bound of (20) will be proved by an equivalent
The probabilitiesg;, of successful decoding that the rolloutbound on the innovation processy, £ > 0}. By Proposition 1
provided during the simulation are plotted in Fig. 9 offor any communication policyr € II this process is indepen-
llexll, hi axes (compare with the optimal policy in Fig. 6)dent of the chosen control poligy € © and its evolution is
Unlike the capacity achieving codes, the decisigpstake given by (18). This evolution can be described more formally
values smaller than 1. However, due to the sigmoid form afong with the i.i.d. channel proceas ~ mg by a stochastic
the ¢-SNR characteristic of the FEC code, we obsepvehat transition kernel given the values efh and actiong at each
are practically either O or very close to 1, especially when t step as
channel state is goodf large). For low channel fading gain P
hi there is a very high power penalty if the sensor wants to P(e™, h7 ey q)
transmit with high success probability. In this case, tHoub = [qNow (") + (1 = q) Nacw(eh)] mu(h™). (49)
policy is either to not transmitgf, = 0) or transmit with a . L o )
success probability;, very close to 1. In general, we observe NS €xpression is included later again in (29), where its

that the points in the plot are accumulated at the region evhélerivation is explained in detail.
the error|le;,|| is small. The reason is that when the error gets 1he following technical lemma shows that under Assump-

larger, ;. is chosen close to 1 by the communication poIiC)}!O” 1 one can construct a Lyapunov-like function common for

so a successful transmission = 1 occurs with very high all cgmmunication policies, satisfying explicitly the tm'tcgl
probability and resets the error. requirements of [30, Assumptions 3.1, 3.2]. The uniform

bound (20) is a direct consequence of these requirements,
VIl. CONCLUSIONS AND FUTURE WORK while the lemma will be subsequently used to prove Theorem 2

In this paper we examined a control system with a wireleggsed on the results of [30].

fading channel between the sensor and the controller. Themma 1. Suppose Assumption 1 holds and consider the
sensor adapts transmit power to plant and channel stai@sovation and channel processésy, hx, k > 0} described
and affects the probability of successful decoding at thg the transition (49), with communication decisions $yititg)
controller. For the problem of co-designing transmit pawely, ¢ Q(sy, hi) given in (15). Then there exists a measurable
and control inputs to minimize an average LQR and powgiinction W onR™ x R, bounded below by a constamt> 0
cost a method to separate the two designs is provided, gadsuch that

to the standard LQR controller. The optimal power allogatio (1—q)eTe +c< KW(e,h), (50)

is then characterized qualitatively for general FEC codeb a

capacity achieving codes. Tractable suboptimal policies avherec > 0 is some constant, for alh,h, € R" x R, q €
derived and their performance is compared with alternatiég(e, i), for some positive{. Moreover there exists a non-
policies in simulations. trivial measurer on R™ x R,, a non-negative measurable



function ¢(e, h,q) for e,h € R™ x R4, ¢ € Q(e,h), and a
positive constanf: < 1 such that

@) v /Wshdu(ah)<oo

(") (E S B17h+ S BQ|87h7q> Z V(Bl,BQ)(b(E,h,Q)
for all measurable subse{s3;, B;) € B(R" x R} ),
(ii)) E[W(et, hh)le, hyq) < pW (e, h) + (e, h, q)u(W)

(i) /¢(E, h,q)dv(e,q) > 0 for all g € Q(e, h).

Proof: Let
v:=MNow X mpu, (51)
o(e,h,q) == q. (52)
Let us denote the set where the choice;a$ free as
S:={(e,h) eR" xRy : el <Lorh<h}.  (53)
We choose. < 1 such that
p> 1 — gmax(ht) + Gmax (he)v(S), (54)
and
p> (1= @) Amax(4)?, (55)
whereg denotes the integral introduced in (14),
q:iéjwqmwawmnHmm (56)

The left hand side of (54) is less than 1 because the ey¥ent
under the measure happens with probability less than 1 and(1—q)

we have assumegl,.x(h:) > 0. The left hand side of (55) is

for a sufficiently large K, by our choice for the function
W (e, h) when|le|| > L.

We proceed by showing that parts (i)-(iv) in the statement
of the lemma also hold. Part (i) holds because the integral of
W (e, h) with our chosen measure equals

v(W)=(1—-qTr(HW)+v(S)5 + v < cc. (62)
Part (i) holds because the transition probability in (28)eg
P(ct € By,ht € Byle, h,q)

= [¢ Now(B1) + (1 — ¢) Nac,w(B1)] mu(B2)
> q No,w (B1) my (Bz) = ¢(, h, q)v(By, Ba).

Part (iv) follows by our choiceg(e,h,q)
construction of the sef)(e, k) in (15) because

Jotenaaeny= [ quamien

= Q/ d./\/()’m/(f:') > 0.
llel|>L

To prove the remaining part (iii) first observe that by the
transition defined in (29) and our choices foand ¢ we have

E [W(E+7 h)e, h7q] = ¢(g, h,q)v(W)
+(1- q)/W(8+,h+)d/\/AE,W(5+) dmg(h™). (65)

(63)
q and the

(64)

Substituting (65) in (iii), we only need to show that

/W TR dNaew (eT)d my(hT) < uW (e, h).
(66)

also less than 1 because of Assumption 1 and by the choRiagging the expression ofi (¢,h) given by (58) in the

for h, that satisfies (14).
Finally for any L > 0 when |¢|| > L observe that by
construction of the sef)(e, h) we can upper bound

1- q S 1-— Qmax(h)H (h Z ht) = w(h)v (57)

where we named the quantity on the righth) to be used
within this proof. This inequality holds because wher: h,,
g > 0, and whenh > hy, ¢ = gmax(h).

Then we pick

W(e,h) :=(h)e"He + Bl (s,h € S) +~,  (58)

integral of the left hand side, condition (66) becomes
1-¢9{(1-9 [ TATH Ae + TT(HW)]
+BNacw x mu(S) + v} < uWi(e, h).  (67)

We can boundV4.w x mg(S) < v(S) for anye € R”,

and also(1 —q)(1 —q)Tr(HW) < Tr(HW). So a sufficient

condition for (67) is to show that
(1-¢){(1-q)e TATHAe + Bu(
< pWi(e,h)

)+7}+Tr(HW)
(68)

where 8, > 0 are appropriate positive constants that willtolds for every choice of € Q(e, h).

be designed next, an#f > 0 is a positive definite matrix
satisfying

(1-qATHA - uH = -0, (59)
for some positive definite matri® > 0. This Lyapunov
equation is feasible by our choice pfthat satisfies (55).

First observe that¥ (e, h) > ~ > 0 by construction. Then
we check (50). Wheti¢|| < L, we have

1—qefe+c<L?*+c<K(B+~)<KWl(eh), (60)

for a sufficiently largeK, where the last inequality follows
from the form of W (e, k) on ||| < L. On the other hand if
lell > L, we may use (57) to upper bound

(1—q)efe+c<p(h)eTe +c

< K(¢(h)e"He +~) < KW (e, h), (61)

Let us first study the casgs|| > L. Using again (57) to
upper boundl — ¢ < v(h), and upon substituting¥ (¢, 1) in
(68) and rearranging terms, we need to show equivalentty tha

h) {e" [(1- A" HA - pH] e
+[>’V( T+ Tr(HW) < p{BI(h < hi) +7}  (69)
By the choice ofH in (59) the quadratic on the left hand side
is negative definite equal to tec” ©¢. And since|e|| > L we
can upper bound-c70s < —\in(0)L2 < 0. After these, a
sufficient condition for (69) is
Tr(HW) + ¢(h){Bv(S) + 7} < p{BL(h < h¢) +~} (70)
We now take two cases far. If h < h;, the above condition
(70) becomes

Tr(HW) + Br(S) +~ < u(B +7). (72)



On the other hand ifh > h; we have thatgm.x(h) > B. Proof of Theorem 1

dmax(h¢) by monotonicity assumption, so we may bound Fjst note that sinc&), := E7 [ekeg ’ Gk} we have that
Y(h) = 1 — ¢max(h) < 1= gmax(h:). Condition (70) becomes

TT(HW) + (1 - Qmax(ht)) {EV(S) + 7} < py. (72)

E™[Tr(2:)] = E™el ey (80)

Then under Assumption 1 Proposition 2 states that for any

We pick ay > to satisfy (72) with equality, that is « € 1I condition (20) holds and guarantees that both quantities
in (80) are bounded uniformly oveé.
Y= (1 = gmax(he))v(S)B + Tr(HW) (73)  To establish the optimality of the proposed control law we
= (1 = Gmax(h¢)) use the fact that the Bellman-like equation
where the denominator is positive by the choiceuah (54). V(Gy) + Tr(PW) 4+ Tr(P%y) =

We ywll show that condition (71) also holds by an appropriate min E™ [l’Eka +uT Ruy, + V(Gk+1)\Gk,uk] : (81)
choice forp. wk
Let us now examine condition (68) in the calgd| < L. s satisfied for the function

Theng > 0=1-¢ <1 and it is sufficient for (68) to show -
that V(Gk) =FE" [:L‘k Pl‘k | Gk] s (82)

) T AT with V(Go) = af Pxzo, where P is the solution to the
HZ\IIJEL e (1- A" HAe +Tr(HW) + fu(S) + 7 standard algebraic Riccati equation dnds given by (23). The
existence ofP is guaranteed by the stabilizability ¢f4, B)

<
S pB+7) (7% and detectability of 4, Q1/2).
where on the right hand side we lower bounded the quadratidndeed observe that we can rewrite the term on the right
term of W by 0. This is of the general form hand side of (81) as
T T T
Co + Bu(S) +~ < u(B+7) (75) E™ [V(Gri1)|Gr, ug] = BT [y 1 Prpyr |G, ug]
=E" [(Azy + Bug)” P(Azy + Bug)|Gy, ug] + Tr(PW),
for some constantCs,, like the left over condition (71). (83)
Plugging in (75) the chosen by (73) leads to a condition where the last equality follows by substituting ., from the
of the form ) R
system equation (1). The quadratic minimization ougrat
Gmax (he) v(S) pB (76) the right hand side of (81) takes the usual form appearing

C3+ S,U//87

in LQR problems with partial state information - see e.g.,[28
Vol. 11, Section 5.2]. The argument of the minimization irl§8

}‘or some .f[:.onStg nCs. Vée Wa_nth:htl)s to ho:q for an arbltrz?jng is given by the control law (24). Straightforward substadns
arge positive3 because’s might be negative, so we nee %how that the optimal value of the minimization equals the

coefficient of 43 on the left side to bestrictly smaller than left hand side of (81)
the coefficient ofus on the right hand side. This turns out to The equation (81) can be used to show that the optimal

be equivalent to control policy is (24). First iterate (81) fot=0,...,N —1

p— (1 = gmax(ht))

1> 1 — g (he) + G (he) () (77) @cross some control poligy € © to get
N-1
which corresponds to our choice pfin (54). (] V(Go) + N Tr(PW) +E™ Z Tr(Py)
Turning back to the proof of Proposition 2, combining (48) k=0
with condition (50) of the above Lemma we have that < Jﬁ\éR(m 0) + E™V(Gy) (84)

E™ele, < KE™W (e, hi), so it suffices for (20) to show o ) o
that a uniform bound on the expected value 10%(cy,, hy,) Dividing (84) by N and taking the limit asV’ — oo, the

exists. term on the left hand side tends to
By result (i) of the above lemma fdiB;, B;) = (R",R;) . i
we have thatp(e, h, q) < 1/v(R™, R, ). Plugging this in (iii) h]rvnsup /N |xf Pro+ NTr(PW) +E" Y Tr(P%y)
leads to o k=0
N-1
W) _ . T Tp
+ 4 < v( =Tr(PW)+limsup 1/NE ej. Pey, (85)
B (W ) fe ha] S uW(eh) + e (78) s 2
lterated applications of this inequality across some gatic= Where we used (80) to convel;, to ey _
I yields Then consider the term on the right hand side of (84). Any
control policy§ € © satisfying (21) also satisfies
v(W)

E™W (g, hi) < u* EW (g0, ho) + (79)

lim i}E“ﬁV(GN) =

lim
N—o0 N—oc0

1 s
(1—p)v(R*,Ry) +E O TPy =0 (86)

Thus sincex < 1 a uniform bound onE™W (e, hy) exists by the form of V' given in (82). Thus taking the limit a& —
and this completes the proof. oo, by (86) the term on the right hand side of (84) tends to



the average LQR cost. The inequality in (84) then shows thatPart (i) is trivial, and part (i) is a consequence of the
the average LQR cost df is larger or equal to the limit of continuity of p(h,¢) by Assumption 2. Strong continuity in
the left hand side which was given in (85). The result givepart (iii) is guaranteed by the fact that the transition kérn
in (22) follows by including the power cost that depends onlgiven in (29) has a probability density function. Part (iolds
on the communication policy as suggested by (19). because the transition in (29) is linear 4n and part (v) is
The final step of the proof is to show that the control policrivial.
0* defined by (24) gives exactly the LQR cost given in (85). Having established [30, Assumptions 3.1, 3.2, 3.4], then
This policy satisfies (81) with equality, so (84) also holdthw [30, Theorems 3.5, 3.6] state that in our case the infimum
equality. Dividing by N and taking the limit as before would J&q,,, in (27) exists, there exists a functio¥i(e, k) that
prove the desired result if condition (86) also holds fior satisfies (30), and the optimal policy is the minimizer of the
Indeed useu; = K2 andz, = 2 + e to rewrite the right hand side of (30) as given in (31).
closed loop system equation (1) undg&ras Moreover, observe that (30) still holds if we add any
) constant td/ (e, »). So without loss of generality we may take
Ty = (A+ BE)2; + Aeg + wy. 87) V(0,h) =0 f(or s)omeh Then if we substitute = 0,k = h
Then denotingy := Amax(A + BK) which is stablep < 1, in (30) we get

we can upper bound (83) undét by ) R
. V(Ov h) =0= mInA {C(Ov hv Q) - JéOMM
E™ [V(Giy) il 1€Q(0H)

< 02T Piy + Tr(ATPAS,) + Tr(PW) +E [V(st ) [0, h, q] } . (92)
= p*V(Gh) + Tr((ATPA — p*P)%y) + Tr(PW)  (88)
_ _ _ Note that by (29) ]P(E+ h+|0 h q) M)W(a+)mH(h+)
E”’G*V(Gkﬂ) Sp2Ew,9*V(Gk) get
+Tr((ATPA—p*P)E™? £) + Tr(PW) (89 0= min_ {Ap(ﬁ, q) — Jeomm + EwnV (w, h)} . (93)
. . . q€Q(0,h)
But (80) and (20) imply tha2™?" %, is uniformly bounded o . . .
over k so the term on the second line of (89) is boundebhe minimizer is ¢ = 0 and this gives Jéguy =

by some constani < co. lterating the above inequality (89)]Ew,hV(w7h)-
acrossf* up tok = N yields

(90) D. Proof of Theorem 3

. 1)
E™¢ [m%PajN] < p2NxOTP:170 + T

2
P For any channel-adaptive communication poligy:) with
which guarantees the limit (86) singe< 1. expected success the estimation erroe;, in (17) becomes
a Markov jump linear system, with medg(e;) = 0 for all
C. Proof of Theorem 2 k = 0 and covariance

The proof of _the theorem is a direct application of the  E(¢.el) = (1 — q)(A E(ep_ref_ ) AT +W). (94)
theorems contained in [30]. For these we need to show
that [30, Assumptions 3.1, 3.2, 3.4] hold in our case. I8inceq > q.r;: the covariance reaches a steady state matrix
particular [30, Assumption 3.1] requires that the cost peges F that satisfies the Lyapunov equation (42), andis stable
is boundedc(e, h,q)| < KW (e, h) by a positive measurablein the bounded covariance sense. The cost of such a policy is
function W. This is a consequence of (50) of Lemma 1, sindden given by (41).

N The corresponding relative value functi®i¥(") (¢, h) satis-
le(e 7y @)l < (1= ) Amax(P)e" e+ Mpmaz - O fie the steady state condition [c.f. (30)] &)

which is of the same form as (50). Also [30, Assumption 3.2] ‘ .
requi L 4 NN Vq(>(5,h)+ﬂ(>

quires exactly the conditions given in (i)-(iv) of Lemma 1
Finally [30, Assumption 3.4] requires the following for the = ¢(c, h, q(h)) + E [Vq(')(€+,h+)|€,hﬂ(h) » o (99)
chosen function$?¥ and ¢ satisfying Lemma 1.
where ¢(e, h,q) is given by (28). We need to show that
Vi) (e, h) in (43) satisfies condition (95). First integrate (43)
with respect to (29) to get

Assumption 3. For everye € R", h € Ry
() Q(e,h) is compact,
(i) c(e, h,q) is lower semi-continuous ip € Q(e, h),

(iiiy P(e*,hT|e, h,q) is strongly continuou$in ¢ € Q(e, h), E [Vq(')(g-ﬁ-’ hH)le, b, q(h)} = (1—q(h)eTATH Ae
(iv) the mappingg — E [W(e™, h1)]|e, h, q] is continuous, . N
(v) é(e, h,q) is continuous ing € Q(e, ). +Tr(HW) + AEp+p(h™, q(h7)). (96)

li.e. for every bounded measurable functinon R” x R, the mapping Using (9(_5)' the total cosf*") in (41), and the cost per s-tage
q— E[U(et,hH)|e, h, q] is continuous c(e, h,q) in (28), we conclude thar ) (¢, h) in (43) satisfies



condition (95) if the following equation holds

1*7(J(’1)6TH5 + Ap(h, q(h)) + Tr(PE) + AEp(h, q(h))

+ Tr(HW) + XEp+p(h*,q(h™)).

1—gq

(1 — q(h))eT Pe 4+ Ap(h, q(h)) + (1 — q(h))eT AT H Ae
(97)

(15]

(16]

(17]

Substituting (44) on the left hand side and canceling termsg)
the above condition becomes equivalent to

Tr(PE) = Tr(HW). (98)

This is easily verified if we substitute the explicit expiess
for the solutionsZ, H of the discrete-time Lyapunov equationg2o)
(42), (44) given by

E= i(l — @)t ARW (ATHF, (99)
k=0

H= iu — (AT PAF, (100)
k=0

respectively. The existence and uniqueness of solutiotiseto
Lyapunov equations (42), (44) follows by the assumptjon
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