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Abstract—This paper considers the control of a linear plant
when plant state information is being transmitted from a sensor
to the controller over a wireless fading channel. The power
allocated to these transmissions determines the probability of
successful packet reception and is allowed to adapt online to both
channel conditions and plant state in order to conserve sensor’s
energy resources. The goal is to design plant input and transmit
power management policies that minimize an infinite horizon cost
combining power expenses and the conventional linear quadratic
regulator control cost. A restricted information structure is
identified allowing the separate designs of plant inputs and
transmit powers. After the separation the optimal plant control
policy is shown to be the standard LQR controller. The optimal
communication policy follows from a Markov decision process
problem minimizing the transmit power at the sensor and the
state estimation error at the controller. The qualitative features of
the optimal power adaptation to channel and plant are examined
for general forward error correcting codes. In the particular case
of capacity achieving codes conventional event-triggered policies
are recovered, where the decision is whether to transmit or not.
Approximate dynamic programming is employed to derive a
family of tractable suboptimal communication policies, exhibiting
the same qualitative features as the optimal one. The performance
of our suboptimal policies is shown in simulations and the
advantages are contrasted to other simple transmission policies.

I. I NTRODUCTION

The networked control systems studied in this paper are
characterized by the separation of sensing and actuation in
different physical devices with control loops involving the
communication of plant state information over a wireless
channel. When sensor and controller communicate over a
wireless channel the cost of controlling the plant gets mixed
with the cost of sending plant state information from the sensor
to the controller. The more information the sensor conveys the
more precise actuation becomes, but the resulting increasein
power consumption at the sensor leads to rapid depletion of
its energy resources. It is therefore apparent that a tradeoff
emerges between plant performance and power consumption.
To quantify this tradeoff we study the problem of selecting
plant inputs and power management policies that minimize a
joint cost that accounts for the plant regulation cost and the
cost of conveying information from the sensor to the controller.

A. Related literature

Early works on networked control systems ignore the cost
of conveying information and focus their analysis on the
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performance of control loops when various communication
effects are taken into account, see e.g., [2]–[5] and references
therein. These works examine packet-based communication
over analog erasure channels, analyzing necessary and suf-
ficient requirements for stability and designing controllers and
estimators to counteract random packet drops and delays.
Alternatively, analog channels can be modeled as input-output
systems and channel randomness can be treated as stochastic
model uncertainty [6]. Controllers under the latter framework
can be synthesized using robust control techniques to han-
dle additive noise channels with signal-to-noise ratio (SNR)
constraints [7]. A different set of issues arise when loops
close over digital channels with data-rate constraints. Insuch
case quantization effects become important and apart from
the controller design an efficient encoding/decoding scheme
is required [8]. Fundamental limits like the minimum bit rate
for stabilization are also known; see, e.g., [9].

In other networked control architectures communication is
not treated as a limitation but becomes an active part of the
design. Typically, these setups depart from the classic peri-
odic communication paradigm, leading to frameworks such
as event-triggered sampling [10], [11], control [12], [13]or
self-triggered control [14]. The underlying concept in these
contributions is to prolong the time elapsed between successive
transmissions or input updates as long as some Lyapunov-
like plant performance criterion is satisfied. Such schemes
exhibit in general an average communication/update rate lower
than periodic schemes that attain similar plant performance.
However, communication costs are not explicitly accounted
for in the triggering design.

Communication costs are explicitly modeled in the context
of remote state estimation in [15]–[18]. In this framework a
sensor measuring the plant state decides whether to transmit
its value to an estimator or not and each transmission incursa
fixed cost. The overall goal is to minimize the estimation error
cost and the communication penalties aggregated over time.
The optimal communication is event-triggered [15], similar
to, e.g., [12], [13], meaning that transmissions are triggered
when the estimation error exceeds a threshold. Computing the
optimal transmission-triggering sets is not tractable, motivating
the development of suboptimal event-triggered schemes [17],
[18]. Related contributions consider plant and communication
controllers jointly optimal with respect to a linear quadratic
and communication cost assuming again a fixed cost per
transmission [19], [20]. The problem turns out to be more
complex than the case of simple state estimation but a sepa-
ration principle can be established [20], and optimal inputs
and schedules can be found by dynamic programming for



a finite horizon. The characterization and determination of
jointly optimal plant and transmission policies in this context
is otherwise open. We note however that in the case of control
over digital channels some aspects of jointly optimal encoder
and controller design have recently been studied [21].

B. Contributions and summary

Instead of accounting for communication cost in terms of
transmissions, in this paper we are interested in the allo-
cation of the actual resource used by the wireless sensors
to communicate, namely, transmitted power. This perspective
permits the incorporation of fading effects in the wireless
channel and provides the flexibility in power allocation to
protect some transmissions more than others. Fading refersto
large unpredictable variations in wireless channel transferences
whose mitigation involves extensive use of power adaptation to
channel conditions [22, Chapters 3,4]. Besides counteracting
fading effects power adaption may be also helpful in closed-
loop control to, e.g., increase the likelihood of successful
packet decoding when the plant state deviates from target. In
this paper transmit powers are allowed to adapt to both, the
fading channel realization and the plant state. The allocated
power and the realization of the fading channel determine the
likelihood of successful packet decoding at the receiver bya
known complementary error function (Section II). This com-
munication model has been used for state estimation in sensor
networks [23], [24] and can be regarded as a generalization of
the erasure channel with i.i.d. dropouts of, e.g., [2]–[5],since
here the probability of packet drops is actively controlledby
an online transmit power adaptation policy.

Given our general communication model, we are interested
in the trade-off between closed-loop plant performance and
power resources. To this end we combine the transmit power
with a conventional linear quadratic regulator (LQR) cost
to form an aggregate infinite horizon cost that we seek to
minimize through proper joint selection of plant and power
control policies (Section II-A). For the novel problem formu-
lation proposed we begin by identifying restricted information
structures that permit decoupling of plant input and power
control policies (Section II-B). For this particular information
structure the usual LQR control law becomes optimal at
the controller side while the optimal communication policy
at the transmitter follows from a Markov decision process
(MDP) formulation accounting for transmit power and the state
estimation error at the controller (Section III). The optimal
power control policy is then expressed in terms of a value
function solving the MDP problem (Section IV). While this
does not allow computation of optimal policies it does allow
us to understand the qualitative characteristics of the optimal
resource allocation.

In contrast to the work in, e.g., [15]–[17], [19] where trans-
mission is based just on plant state, the availability of channel
state information at the transmitter leads to new insights on
the optimal communication policy. In particular when channel
gain is low or estimation error small no transmission is trig-
gered, since it would be costly or unnecessary respectively. On
the other hand, similar to the above work, there is an event/set

of plant and channel states where transmission is triggered,
but the optimal power allocation on this event still needs
to adapt to the channel and plant states. Alternatively, our
power management policy can be viewed as a ’soft’ version
of the event-triggered paradigm of, e.g., [12], as instead of just
deciding whether to transmit or not we select how much power
to allocate to the transmission attempt. This interpretation is
further fostered by the realization that conventional event-
triggered policies emerge as the optimal communication when
the sensor uses capacity achieving forward error correcting
(FEC) codes (Section IV-A).

Finally since optimal communication is not computationally
tractable we devise suboptimal power control policies using
approximate dynamic programming, in particular rollout al-
gorithms (Section V). These policies maintain the same qual-
itative characteristics as the optimal policies for general error
correcting or capacity achieving codes, and this is verifiedin
numerical simulations (Section VI). Our rollout policies are
shown to have significant performance benefits compared to
other simple policies that adapt only to channel conditions
and not the plant state, such as the ones proposed in [23],
[24]. We close the paper with conclusions and suggestions
on how the adopted model can be used for more complex
wireless communication/control design problems in future
work (Section VII).

Notation: Let Nµ,Σ denote then-dimensional Gaussian
distribution with meanµ and covarianceΣ. For a square matrix
M ∈ R

n×n let λmax(M), λmin(M) denote respectively the
largest and smallest eigenvalues in magnitude. For compact-
ness a set of variables{xk, xk+1, . . . , xk+t} is denoted by
xk:k+t. Subscripts of variables as inxk, xk+1 denote discrete
time. When time indexk is clear from the context, subscripts
are omitted and the respective variables are denoted asx, x+.

II. PROBLEM FORMULATION

We consider the architecture shown in Fig. 1 deployed to
control a discrete-time linear time-invariant plant described by
the difference equation

xk+1 = Axk +Buk + wk, k ≥ 0, (1)

wherexk ∈ R
n is the plant’s state withx0 given,uk ∈ R

m the
driving input, and{wk, k ≥ 0} is the process noise composed
of independent identically distributed (i.i.d)n-dimensional
Gaussian random variableswk ∼ N0,W with zero mean and
covarianceW . We assume the plant is unstable (λmax(A) > 1)
but that(A,B) is stabilizable.

The wireless control system considered in this paper in-
cludes a sensor/transmitter collecting state measurements xk
that it communicates with powerpk ∈ [0, pmax] over a wireless
fading channel with coefficienthk. At the other side of the
channel the receiver/controller uses the received information
to determine a control inputuk that it feedbacks into the plant.
The effects of state quantization and transmission delays are
considered negligible and are thus ignored henceforth.

Due to propagation effects the channel gainhk changes
unpredictably [22, Chapter 3]. We adopt the standard block
fading model of wireless communications whereby channels
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Fig. 1. Wireless control system architecture. A sensor measures the plant and
wireless fading channel statesxk, hk respectively and transmits with power
pk. Messages are successfully decoded at the controller with probability qk
that depends on the channel statehk and the powerpk. The sensor receives
acknowledgments with a one-step delay.

{hk, k ≥ 0} are modeled as i.i.d. random variables taking
values in the positive realsR+ according to some known
distributionmH and are independent of the plant process noise
{wk, k ≥ 0}. We make the technical assumption that the
distributionmH of the channel state has a probability density
function on R+. To allow for transmissions adapted to the
current channel conditions the transmitter has access to the
channel state informationhk before transmitting at timek –
the development is equally valid if estimates are availablein
lieu of hk as discussed in Remark 2.

At the controller side the received signal includes the
information bearing signal and additive white Gaussian noise
(AWGN). The noise power is denoted byN0 and the power
of the information bearing signal is the producthk pk. As-
suming the receiver also has channel state information, suc-
cessful decoding of the transmitted packet is determined by
the signal to noise ratio (SNR) at the receiver defined as
SNRk := hkpk/N0. More precisely, given the particular type
of modulation and FEC code used, the SNR determines the
probability of successful detectionqk. To keep the analysis
general we define a generic complementary error function

qk = q (hk, pk) , (2)

mapping SNRk := hkpk/N0 to the probabilityqk. We assume
that q (h, p) is a known increasing function of the producth p
- see Remark 1.

Considering packet decoding as a part of the communication
process, we can model communication as a sequence of
indicator variablesγk taking valueγk = 1 when information
is successfully decoded andγk = 0 otherwise. Variables
γk ∼ Bern(qk) are Bernoulli distributed with time-varying
success probabilitiesqk. With this communication model the
controller receives the output of the decoding process which
we model by the signalyk = γkxk. We further assume that
the controller also getsγk so that it can distinguish between
the casesxk = 0 andγk = 0. Packet receipt acknowledgment
γk is also sent to the sensor as provided by 802.11 and TCP
protocols. We assume lossless acknowledgments, so that the
sensor knows what information is received at the controller.
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Fig. 2. Complementary error function for FEC and capacity achieving codes.
The probability of successful decodingq for a practical FEC code is a sigmoid
function of the received SNR= h p/N0, while for a capacity achieving code
a threshold value SNR0 determines whether a packet is successfully received.

The problem addressed in this paper is the joint design of
the control inputsuk and the transmit powerspk. The control
input uk is determined by the received informationy0:k, γ0:k.
The powerpk is determined as a function of the plant state
measurementsx0:k, the observed channel realizationsh0:k, and
the controller acknowledgmentsγ0:k. Informally, to conserve
power at the sensor side we want to transmit information
only when the statexk deviates from its desired value or
when the channel realizationhk is favorable. In the first case
transmission is necessary to keep the plant under control. In
the latter case the transmission cost is minimal. A formal
problem specification is presented in the next section after
the following remarks.

Remark 1. The error profiles1 − q (hk, pk) of particular
FEC codes are difficult to determine analytically but can
be measured in actual or simulated experiments [25], [26].
The typical shape ofq (hk, pk) is a sigmoid function of
hk pk with exponential tails as depicted in Fig. 2. In the
theoretical limit, correct decoding depends on the channel
capacityCk = W log2(1 + SNRk), whereW is the channel
bandwidth. If the packet is transmitted at a rate smaller than
Ck bits per second it is almost surely successfully decoded,
and it is almost surely incorrectly decoded otherwise. Thus, we
can write the successful decoding probability as the indicator
function

q (hk, pk) = I

(

hkpk
N0

≥ SNR0

)

, (3)

for some constant SNR0. Determining the threshold SNR0
requires specification of the sampling rateα and quantization
resolution β of the statexk. With α samples per second
and β bits per sample we require a transmission rate of
αβ bits per second. The SNR threshold is then given by
SNR0 = 2αβ/W −1. Our interest in (3) is conceptual as it will
allow us to recover results in event-triggered communication
[15] as arising from the use of capacity achieving codes – see
Section IV-A. The form of (3) is shown in Fig. 2.

Remark 2. The assumption that channel state information
(CSI) is available at the transmitter is typical in modern
wireless communication setups [22, Chapter 9]. To measure
the wireless channel conditions a short pilot signal of fixed
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Fig. 3. Equivalent wireless control system architecture. Ascheduler decides
the successful decoding probabilityqk and transmits the state measurement
xk with the required powerpk = p(hk, qk). The controller receives the
message with probabilityqk.

power can be sent from the transmitter and then the fading
characteristics can be estimated at the receiver and sent back
to the transmitter by utilizing the reverse channel. Although
accurate CSI is difficult to acquire at the transmitter side,our
development is still valid if channel estimates are available
in lieu of the actual channel valuehk. Reinterpretinghk
as an estimate of the fading coefficient the complementary
error functionq(h, p) in (2) captures not only the success of
decoding but also the uncertainty over the real channel gain.
It suffices to integrateq(h, p) with respect to the conditional
distribution of the channel realization given the estimate.

Remark 3. There is a distinction to be made between errors
that are detected by the receiver and errors that are undetected
and may confuse the controller. The model here handles the
former and ignores the latter. This is justified because practical
communication schemes include the use of cyclic redundancy
checks (CRC) for error detection that can drive the probability
of undetected errors to very small values [27]. The use of
simple CRCs reduces the probability of undetected errors to
10−3, while longer codes can reduce this probability to10−7.

A. Joint design of plant and power control

To formulate the joint design of plant controller and power
management we introduce an equivalent architecture. In view
of (2), choosingpk is equivalent to choosing the desired prob-
ability of successful decodingqk at time k and transmitting
with the minimum required power to achieve thisqk, namely

pk = p(hk, qk) := inf {0 ≤ p ≤ pmax : q(hk, p) ≥ qk} . (4)

We can therefore interpretqk as our decision variable with
p(hk, qk) denoting the cost of selecting transmission success
probability qk. This leads to the equivalent control system
architecture shown in Fig. 3 where a scheduler block respon-
sible for decidingqk replaces the sensor/transmitter block of
Fig 1. Our formulation generalizes the simple transmit-or-not
decision as considered in, e.g., [15].

We note for future reference that the assumed monotonicity
of the function q(h, p) on the producth p implies that the

power functionp(h, q) is increasing inq and decreasing in
h. Using maximum powerpmax, the transmitter can achieve
a maximum successful decoding probabilityqmax(h) :=
q(h, pmax) for a given channel stateh. Therefore, the decision
variablesqk belong in the interval[0, qmax(hk)]. We also make
the following assumptions.

Assumption 1. The maximum achievable successful decoding
probability qmax(h) satisfies

Ehqmax(h) > qcrit := 1− 1/λmax(A)
2, (5)

where expectation is taken over the channel distributionmH .

Assumption 2. For any channel realizationh, the function
p(h, q) in (4) is continuous in the successful decoding proba-
bility variable q.

Assumption 1 is essentially a stability condition, statingthat
transmitter has enough power to keep the plant state bounded
in second moment, as we discuss later after (17), and it will
be used to establish our main Theorems 1 and 2. Assumption
2 is of a technical nature and will be used in Theorem 2.

In the architecture of Fig. 3 the communication decision
qk is chosen as a function of the information available at
the sensor, while the plant control signaluk is a function
of the information available at the controller. These choices
are in general allowed to be randomized. The sequenceπ :=
{q0, q1, . . .}, or equivalently the power allocation{p0, p1, . . .},
is termed the communication policy, whereas the sequence
θ := {u0, u1, . . .} denotes the control policy. With fixed poli-
ciesπ, θ, all random variables are defined on an appropriate
product space and have a measure that we denote asP

π,θ. We
useEπ,θ to signify integration with respect toPπ,θ, which we
simplify to E when not leading to confusion. We remark that
sensor and controller know each other’s policy.

The policy pair(π, θ) incurs a control cost and a commu-
nication cost. As a control cost we adopt the standard linear
quadratic regulator cost

JN
LQR(π, θ) := E

π,θ
N−1
∑

k=0

xTkQxk + uTkRuk, (6)

for some pair of matricesR > 0 andQ ≥ 0, with (A,Q1/2)
detectable. The communication cost is given by the expected
power consumption

JN
PWR(π, θ) := E

π,θ
N−1
∑

k=0

p(hk, qk). (7)

To quantify the tradeoff between plant performance and power
consumption we combine the LQR cost in (6) and the power
cost in (7) into the limit aggregate cost

J(π, θ) := lim sup
N→∞

1/N
[

JN
LQR(π, θ) + λJN

PWR(π, θ)
]

, (8)

for some positive constantλ > 0. Our goal is to design plant
and power control policiesθ andπ respectively that minimize
the joint cost (8). These policies depend on what information is
available to the sensor and controller. The specific information
structure considered in this paper is introduced in the following
section.



B. Information structure

Denote asOk the information known at the controller side
at timek just before deciding the inputuk. This information
includes the given initial plant statex0, the history of decoding
success variablesγ0:k and the decoded signalsy0:k, as well as
the previously chosen control inputsu0:k−1, i.e.,

Ok := {x0, γ0:k, y0:k, u0:k−1}. (9)

Then the control inputuk is chosen as a function ofOk,
or more formally, measurable with respect to theσ-field
generated byOk.

Given the possibility of lost packets as indicated byγk = 0,
the controller has partial information on the plant statexk. It is
then of importance to study the MMSE estimateE

π,θ(xk|Ok).
This estimation is complicated by the fact that the event
γk = 0 possibly contains information about the statexk
through the dependence of the probabilityqk on the value
of xk – see Remark 4. To avoid this complication we discard
the information given by events of the formγk = 0. Formally,
defineτk := max{0 ≤ l ≤ k : γl = 1} as the time of the last
successful transmission by timek and define the sequence of
σ-fields

Gk := {x0, γ0:τk , y0:τk , u0:k−1}. (10)

with G0 = {x0}. Whenγk = 1, Gk coincides withOk. When
γk = 0, Gk only contains information received till the last
successful transmission which occurred at timeτk < k.

We restrict attention to control policiesθ selecting inputs
uk as functions ofGk, possibly randomized, and denote the
set of all such policies byΘ. Unlike E

π,θ(xk|Ok), the state
MMSE estimatex̂k := E

π,θ(xk|Gk) with respect toGk is
easy to compute. Whenγk = 1 the statexk = yk becomes
known at the receiver side. Whenγk = 0 no new information
becomes available and̂xk is obtained by propagatinĝxk−1

through the plant’s dynamics in (1). Putting these two cases
together yields

x̂k := E
π,θ(xk|Gk) =

{

yk if γk = 1,
Ax̂k−1 +Buk−1 if γk = 0

,

(11)
with x̂0 = x0 since the initial state is given.

At the other side of the link at timek the sensor/transmitter
has access to the channel realizationhk and the plant state
xk which allows selection of the successful transmission
probability qk to depend on the values of both ofhk, xk.
This affects the controller design however, because when the
controller decidesuk−1 to controlxk, it should consider the
indirect effect onqk. This information structure renders the
joint communication and control co-design problem hard to
analyze. To overcome this, we restrict transmission policies
to depend on the channel statehk and the information about
plant statexk that the controller does not know. More precisely
consider the difference between the sensor measurementxk
and the controller’s estimatêxk by (11) if the kth packet is
not successfully decoded, that is

εk := xk − (Ax̂k−1 +Buk−1), (12)

with ε0 := 0. Observe that the term in the parenthesis is known
to the sensor since by the acknowledgment mechanism the

controller’s previous estimatêxk−1 and inputuk−1 can be
replicated at the sensor. Alternatively the termsεk can be
viewed as the innovations of the controller’s estimate (11)
when a new message is received.

We restrict then information at the sensor side to the setFk

defined as a collection of the channel historyh0:k, the history
of innovationsε0:k, and past decisionsq0:k−1, i.e.,

Fk := {ε0:k, h0:k, q0:k−1}. (13)

Let us also add a technical requirement that the sensor selects
maximum transmit powerpmax when the innovationεk gets
too large and the channelhk is favorable. In particular consider
a positive constantL > 0, and a threshold on channel values
ht ∈ R+ where a positive success probability can be achieved
qmax(ht) > 0 that also satisfies

∫

h≥ht

qmax(h) dmH(h) > qcrit, (14)

with qcrit given in (5). Such a channel threshold exists by
Assumption 1. We consider then communication policiesπ
selecting decoding successqk as functions ofFk for each
k, possibly randomized, and also satisfyingqk ∈ Q(εk, hk)
where

Q(ε, h) :=

{

qmax(h) if ‖ε‖ ≥ L andh ≥ ht
[0, qmax(h)] otherwise

.

(15)
We denote the set of all such policies withΠ. The technical
power saturation requirement is inconsequential as we may
pickL arbitrarily large, and will be used to prove Proposition 2
and Theorem 2 in the sequel. Similar requirements have
been introduced in [15], [16], however our setup is further
complicated by the availability of the random channel states.

The proposed information structure is depicted in Fig. 4.
The sensor block is split into a pre-processor and a sched-
uler. The pre-processor based on the samplexk and the
acknowledgmentγk−1 computes and feedsεk to the scheduler
who, upon measuring the channelhk decides the transmission
success probabilityqk while incurring power costp(hk, qk).
Our goal in this paper is to study policiesπ ∈ Π and θ ∈ Θ
that are optimal with respect to the joint objective (8), that is

minimize
π∈Π,θ∈Θ

J(π, θ). (16)

In particular, the next section shows that the information
structure we introduced allows a separate design of the optimal
communication and control policies. We then leverage this
result to study optimal communication policies in Section IV
and to develop tractable suboptimal policies in Section V.

Remark 4. If the controller uses the complete information
Ok to estimatexk, the optimal plant estimate is notx̂k given
by (11) anymore. When a sequence of packet dropsγk =
γk−1 = . . . = 0 is observed, and since the communication
policy is known, the controller should consider the possibility
that the sensor did not actually transmit anything, and this
could in general give indirect information about the expected
value ofxk. This issue is further discussed in [19], [20]. We
note that the restriction toGk in (10) is not necessary for the
separation results of Section III, but it is necessary to obtain
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Fig. 4. Wireless control system with a restricted information structure. The sensor consists of two blocks. A pre-processor computes the errorεk given the
measurementxk and the acknowledgmentγk−1. A scheduler decidesqk based onεk and the channel statehk, and transmitsxk with the required power
pk = p(hk, qk). The controller receives the message with probabilityqk, computes the state estimatex̂k and provides inputuk to the plant.

linear dynamics of the estimation errorek and the relatedεk
as described next by (17) and (18) respectively.

III. SEPARATION OF DESIGNS

In this section we show that with the imposed restrictions on
the information available at sensor and controller the control
law θ ∈ Θ and the communication policyπ ∈ Π can
be designed separately. In particular the control policy has
no effect on the estimation process at the receiver and by
utilizing a separation principle the optimal controller becomes
the standard linear quadratic one.

Let us denote the difference between the plant state and
the estimate kept at the controller byek := xk − x̂k and its
covariance as seen at the controller byΣk := E

π
[

eke
T
k

∣

∣Gk

]

.
The estimation error dynamics can be found by subtracting
(11) from the system dynamics (1) to get

ek = (1− γk)(Aek−1 + wk−1), (17)

with e0 = 0 sincex0 is given. Stabilizability of estimation
error is guaranteed by Assumption 1. Indeed if transmitter
were to use maximum power all the time the dynamics in
(17) become a jump linear system sinceγk are Bernoulli with
constant probability equal to the left hand side of (5). Then
condition (5) is sufficient for bounded second moment as, e.g.,
in [2, Theorem 2]. It is also tight in the sense that estimation
error becomes unstable ifEhqmax(h) < qcrit.

Turning our attention to the innovation substitutingxk by
(1) in the definition ofεk in (12) givesεk = Aek−1 + wk−1.
The term ek−1 equals (1 − γk−1)εk−1 as seen by (17),
thereforeεk evolves according to

εk = (1− γk−1)Aεk−1 + wk−1, (18)

with initial valueε0 = 0. The following proposition establishes
a separation principle in our restricted information structure
setup, stating that the control action has no effect on the quality
of the future estimates at the controller.

Proposition 1. Consider any communication policyπ select-
ing successful decoding probabilitiesqk as functions ofFk

given in (13), possible randomized, withεk defined in (12)
and channel stateshk independently drawn from a distribution
mH . Then at any stepk the distributions of the future
processes{εℓ, qℓ, γℓ, eℓ, ℓ > k} givenGk do not depend on
the chosen control policyθ ∈ Θ.

Proof: First note that the processes{wk, hk, k ≥ 0} are
by assumption independent of any other process. Then we
follow an induction argument to prove the claim. Atk = 0,
ε0 is equal to 0,q0 depends only onh0 and ε0, γ0 is
an independent Bernoulli with successq0, and e0 is also 0
since x0 is initially known. Consider then a timek with a
given Gk, the corresponding estimation errorek given Gk

having zero mean and covarianceΣk, and a control input
uk that is a function ofGk as described by the control
policy θ. The termεk+1 equalsAek + wk, as indicated by
the arguments preceding (18), which givenGk has mean
0 and covarianceAΣkA

T + W . The choiceqk+1 ∈ Fk+1

by construction depends on past variables inFk which by
causality do not depend on the actionuk, as well as the new
variablesεk+1, hk+1 which are also independent ofuk. Also
the distribution ofγk+1 ∼ Bern(qk+1) only depends on the
distribution ofqk+1, and the same holds forek+1 which equals
(1 − γk+1)εk+1 again by the arguments preceding (18). To
sum up all variablesεk+1, qk+1, γk+1, ek+1 givenGk do not
depend onuk.

The intuition behind this proposition is that the effect
of control inputs is subtracted fromxk when forming the
innovation termsεk in (12) that are fed to the communication
policy π. Similar separation results based on innovation terms
have been utilized in setups where the sensor just decides
whether to transmit or not [19], even though this need not be
optimal [20], as well as in encoder/decoder design for digital
channels [9]. The above proposition restates the separation
principle for our problem of power selection in the presence
of channel state information in addition to plant measurements.



Since the power costJN
PWR(π, θ) in (7) only depends on

pairs (qk, hk), the above proposition shows that the control
policy θ has no effect on the power cost. Thus we can rewrite
the objective in (8) as

J(π, θ) = lim sup
N→∞

1

N
JN

LQR(π, θ) + λ lim sup
N→∞

1

N
JN

PWR(π).

(19)

This means that the optimal control policyθ ∈ Θ for a
given communication policyπ ∈ Π is the one minimizing
the limit LQR cost. It turns out that the above proposition
can help establish a stronger result, that the form of the
optimal controller does not depend on the communication
policy, leading to a stronger separability than what follows
from (19).

Indeed for any finite horizon by the above separation
principle standard dynamic programming arguments show that
the optimal control law is given by the standard LQR one, and
this has been shown when e.g. the sensor just decides whether
to transmit or not [19], [20]. We are interested however in the
infinite horizon problem. Formally the controller has partial
state information. However the setup differs from, e.g., the
standard problem of Gaussian observation noise and Kalman
filtering, where the estimation error covarianceΣk is shown
to converge to some limit and the system is assumed to start
at time k = 0 with this limit estimation error. In our setup
whenever a packet is successfully decoded the estimation
error is reset to zero, otherwise it grows, so for the general
communication policiesπ ∈ Π under consideration it is not
clear whether some limit covariance exists. Alternativelythe
following proposition shows that estimation errors admit a
uniform bound in second moment.

Proposition 2. Suppose Assumption 1 holds. Then there exists
a finite positive constantM such that for any communication
policy π ∈ Π selecting successful decoding probabilities
qk with respect toFk given in (13), possibly randomized,
satisfying the additional restrictionqk ∈ Q(εk, hk) given by
(15), and for everyk = 0, 1, . . ., it holds that

E
πeTk ek ≤M. (20)

Proof: See Appendix A
With this bound on expected magnitude of estimation error

established, uniform overk and over any policyπ ∈ Π, the
following theorem shows that the optimal control law for the
average infinite horizon case is indeed the standard steady-
state LQR one.

Theorem 1 (Optimal control policy). Consider the wireless
control system of Fig. 4 with any communication policyπ :=
{q0, q1, . . .} ∈ Π selecting successful decoding probabilities
qk as functions ofFk given in (13), possibly randomized, with
innovation termsεk as defined in (12) and channel states
hk independently drawn from a distributionmH , satisfying
the additional restrictionqk ∈ Q(εk, hk) given by (15).
Suppose Assumption 1 holds. Then for any control policy
θ := {u0, u1, . . .} ∈ Θ composed of inputsuk as possibly
randomized functions ofGk in (10) such that

lim
N→∞

1/N E
π,θxTNxN = 0, (21)

the joint objectiveJ(π, θ) described by (6) - (8) satisfies

J(π, θ) ≥ Tr(PW ) + lim sup
N→∞

1

N
E
π

N−1
∑

k=0

eTk P̃ ek + λp(hk, qk)

(22)

where P is the solution to the standard algebraic Riccati
equationP = ATPA + Q − ATPB(R + BTPB)−1BTPA
for the system in (1) and the linear quadratic regulator cost
(LQR) in (6), and the matrix̃P is defined as

P̃ := ATPA+Q− P. (23)

Moreover, the minimum value in (22) is achieved for the
control policy

uk = Kx̂k, (24)

with x̂k the state estimate described in (11) and the steady
state LQR gainK := −(R+BTPB)−1BTPA.

Proof: See Appendix B
The statement of Theorem 1 determines the optimal control

policy θ as the conventional LQR controller in (24), which
is shown in Fig. 4. The optimal cost given in (22) equals a
constantTr(PW ) and a limit average sum term that only
depends on the communication policyπ ∈ Π. This result
shows that the optimal communication policy needs to jointly
regulate the power consumption at the sensor and the weighted
estimation erroreTk P̃ ek at the controller side.

Observe that as per (11) and (17) it holds thatek = (1 −
γk)εk. Also E

π[γk|Fk] = P
π[γk = 1|Fk] = qk and εk ∈ Fk.

So we can write

E
π[eTk P̃ ek|Fk] = E

π[(1− γk)ε
T
k P̃ εk|Fk] = (1− qk)ε

T
k P̃ εk,

(25)
and taking the expectation in both sides gives

E
π[eTk P̃ ek] = E

π[(1− qk)ε
T
k P̃ εk]. (26)

Substituting the expression (26) into the second summand of
(22) it follows that the optimal communication policyπ ∈ Π
is the one that achieves the infimum cost

J∗
COMM := inf

π∈Π
lim

N→∞

1

N
E
π

N−1
∑

k=0

c(εk, hk, qk), (27)

where we define the cost-per-stage to be

c(ε, h, q) := (1− q)εT P̃ ε+ λp(h, q). (28)

The difference between the sum in (22) and the objective in
(27) is that in the formerek is not known at the sensor at
time k, while εk in the latter is. This way (27) takes the form
of a Markov decision process (MDP) problem with an infinite
horizon average cost criterion. The state of the problem at time
k is the pair(εk, hk) ∈ R

n × R+ and the available action is
qk ∈ Q(εk, hk) by (15). The state transition probabilities can
be obtained from (18) and are given by

P(ε+, h+|ε, h, q)

=
[

q N0,W (ε+) + (1− q) NAε,W (ε+)
]

mH(h+). (29)

Here ε, h and ε+, h+ denote the current and next states
respectively, andq the current action. Whenq is chosen at



state (ε, h), a variableγ ∼ Bern(q) is drawn. By (18) on
the eventγ = 1, ε+ = w ∼ N0,W , while on the event
γ = 0, ε+ = Aε + w with w ∼ N0,W , which is equivalent
to ε+ ∼ NAε,W . Since h+ is independent ofε, h, ε+, its
distribution mH appears as a product in (29). We denote
E
[

ε+, h+
∣

∣ ε, h, q
]

the integration with respect to the above
transition probability measure.

To sum up, we have exploited the proposed decoupling in-
formation structure to determine the optimal control policy as
the standard LQR control input. We proceed in the following
section to show that an optimal communication policy exists
and we characterize its main features in the case of general
FEC codes and in the special case of capacity achieving codes.

Remark 5. The technical condition (21) for the controller in
Theorem 1 can be viewed as an additional stability condition
requiring that the norm of the plant state grows at a sub-linear
rate. Such conditions appear in general in optimal control
problems with average cost, see e.g. [28, Vol.II, p.254-5],and
have also been used in average linear quadratic problems [28,
Vol.II, p.272-3]. This technical condition may potentially be
relaxed by employing a different proof technique.

IV. OPTIMAL COMMUNICATION POLICY

Exploiting the MDP formulation of (27) we can show that
optimal communication policies for the co-design problem in
(16) exist. This existence result provides a characterization
of these policies from which we infer the general features
of optimal transmit powerspk and corresponding successful
decoding probabilitiesqk as a function of innovation termsεk
and channel realizationshk.

In general the existence of optimal policies for average
infinite-horizon MDPs on Borel spaces requires some technical
conditions [29]. In our case restriction to communication
policiesπ ∈ Π that uniformly satisfy (15) guarantee existence,
as the following theorem shows, and a useful characterization
of this policy is provided.

Theorem 2 (Optimal communication policy). Consider the
Markov decision process with optimal cost as in (27), state
transition probabilities as in (29), and actions restricted to
qk ∈ Q(εk, hk) with Q(ε, h) abiding to (15). If Assumptions
1 and 2 hold true there exists a functionV : Rn × R+ 7→ R

such that for allε ∈ R
n and h ∈ R+ it satisfies

V (ε, h) = min
q∈Q(ε,h)

{c(ε, h, q)− J∗
COMM

+E
[

V (ε+, h+)
∣

∣ ε, h, q
]}

. (30)

The optimal communication cost can be written asJ∗
COMM =

Ew,hV (w, h), whereEw,h denotes integration with respect to
the product measureN0,W ×mH . The optimal communication
policyπ∗ achieving the minimum cost can be written as a func-
tion of the error and channel states at timek, q∗k = q∗(εk, hk),
and is the one achieving the minimum in the right hand side
of (30), i.e.

q∗(ε, h) := argmin
q∈Q(ε,h)

{c(ε, h, q)− J∗
COMM

+E
[

V (ε+, h+)
∣

∣ ε, h, q
]}

. (31)

Proof: See Appendix C.
The theorem states that the optimal communication policy

exists, is deterministic, and also stationary in the sense thatq∗k
adapts only to the current state(εk, hk) and not the complete
history Fk in (13). The optimal policy is described by (31)
in terms of a functionV (ε, h) that solves (30). Note that this
function is unique up to a constant. Related characterizations
of optimal policies when the decision is whether to transmit
or not have appeared in [15], [16]. Our setup however differs
since the decision is on the transmit power and this depends
on the random wireless channel state. The proof of the
theorem relies on constructing a Lyapunov-like function that is
common for all policiesπ ∈ Π and applying the MDP results
of [30]. This methodology has been used in [16], however a
refined construction is required here to take into account the
random channel states as well.

An informal interpretation of the theorem and the condition
(30) based on finite state spaces [28] is the following. The
Markov chain induced by any stationary policyqk = q(εk, hk)
is (positive) recurrent. Fix some state(ε̂, ĥ), and then the
optimal costJ∗

COMM in (27) of any stationary policy can be
expressed as the optimal expected cost gathered starting from
(ε̂, ĥ) till the first return to (ε̂, ĥ), divided by the expected
number of steps this transition takes. On the other hand (30)
has exactly the form of standard Bellman equation but for
a relative cost per stagec(ε, h, q) − J∗

COMM, indicating how
far we are from the optimal average cost per stage. The
functionV (ε, h) expresses the expected relative cost gathered
starting from state(ε, h) and following the optimal policy till
the first return to(ε̂, ĥ). Thus the termV (ε+, h+) on the
right hand side of (30) refers to this cost evaluated at the
next state(ε+, h+). Bellman’s equation states that the optimal
choiceq at every step minimizes the sum of the current-stage
relative costc(ε, h, q)−J∗

COMM and the expected future relative
costE

[

V (ε+, h+)
∣

∣ ε, h, q
]

. The minimization over the current
actionq gives again the valueV (ε, h) at the current state, as
in the left hand side of (30).

In principle one can findV (ε, h) using value iteration or
policy iteration algorithms which involve iterative application
of (30) [29]. This procedure is, however, computationally
onerous as each iteration requires minimizing the right hand
side of (30) for all possible state pairs(ε, h) ∈ R

n × R+.
Nevertheless, (30) still gives qualitative information onthe
optimal policy.

Let us ignore the case‖ε‖ ≥ L, h ≥ ht in (15) as it
is irrelevant for the following discussion. IntegratingV (ε, h)
with respect to the transition (29) gives

E
[

V (ε+, h+)|ε, h, q
]

= qEw,h+V (w, h+) + (1− q)Ew,h+V (Aε+ w, h+). (32)

We substitute this and the cost-per-stagec(ε, h, q) defined
by (28), and the expressionJ∗

COMM = Ew,hV (w, h) in the
minimization of (31), and upon reordering terms, the optimal
communication policy can be written as

q∗(ε, h) = argmin
q∈[0,qmax(h)]

λp(h, q) + (1− q)R(ε), (33)
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Fig. 5. Optimal power allocation for FEC codes with differentcomplementary
error functions. The optimal transmit powerp∗ is plotted as a function of the
factorR(ε) for a fixed channel stateh using FEC codes with differentq-SNR
characteristics. When theq-SNR curve becomes steeper, the optimal power
allocation resembles a step function.

where for convenience we defined the function

R(ε) := Ew,h [V (Aε+ w, h)− V (w, h)] + εT P̃ ε. (34)

The optimal policy q∗(ε, h) depends on the shape of the
function p(h, q). In general it takes values anywhere in the
interval [0, qmax(h)]. The optimal power allocation can be
found by converting (33) to power by (2), (4), and is described
by

p∗(ε, h) := argmin
p∈[0,pmax]

λp+ (1− q(h, p))R(ε). (35)

Despite the fact thatV (ε, h) andR(ε) are hard to compute,
the above expression is an important characterization of the
optimal power allocation. It provides a tool for qualitative
analysis of different FEC codes in wireless control systems.
We illustrate this in Fig. 5 where we examine how theq-
SNR relationship of a FEC code affects the optimal power
allocation. For simplicity we assume a fixed channel state
h and we plotp∗ in Fig. 5 as a function ofR(ε). In all
cases, when the error penaltyR(ε) is below some threshold,
the best option is to not transmit. Above the threshold, the
optimal power increases withR(ε). For powerful FEC codes
characterized by a steepq-SNR relationship, close to the
theoretical limit in (3), the optimal power allocation resembles
a step function, since the probability of successful decoding
becomes practically one for large powers. For fatq-SNR tails,
this behavior deteriorates as the sensor needs to transmit with
higher power to achieve a largerq.

Then in Fig. 6 we present qualitative plots of the optimal
decoding probabilityq∗ and optimal transmit powerp∗ as
functions of both the factorR(ε) and the channel stateh for a
givenq-SNR characteristic. The blue region indicate the event
where no transmission occurs. This happens if channel gain
h is low, where transmission is costly, or if errorε has a low
penalty, meaning that there is no need to update the receiver’s
estimate. We note that this no-transmission region becomes
larger if one increases the power scaling factorλ. Outside this
region a transmission occurs and transmit power adapts to both
channel and error states. In principle when channel gainh is
high, small amounts of power suffice. For intermediate values
of channelh power takes a large range of values depending

Fig. 6. Optimal decoding probability and power allocation for a FEC code.
Color intensity indicates the magnitude of optimal decoding probability q∗

and optimal transmit powerp∗ as functions of the factorR(ε) and the channel
stateh.

on the error as well. Overall this optimal power management
displays different features from the standard ”0-1” event-
triggered transmission paradigms, as in e.g., [15] or [12].It
can be though as a ’soft” version of these policies since the
power decision ranges between[0, pmax], or equivalently the
decodingq between[0, qmax(h)]. Finally we note that the
transmit power/estimation problem has also been studied in
the very recent works [23], [24], however the former allows
only power adaptation to channel and does not adapt to plant
state, while the latter does not provide the important qualitative
characterization we discuss here and the connections with the
event-triggered paradigm.

A. Optimal solution for capacity achieving codes

Consider now the case of capacity achieving codes. By (3),
at time k the transmitter needs to use eitherpk = 0, i.e.
not transmitting, orpk = p0/hk with p0 := N0SNR0, which
certainly guarantees correct packet delivery. Any other power
allocation is unfavorable. However the instantaneous power is
bounded bypk ≤ pmax, so the sensor can transmit only when
p0/hk ≤ pmax, or equivalently when the channel state exceeds
hk ≥ p0/pmax.

In this case we are looking again for a randomized policy,
i.e. a distribution on the two power options{0, p0/hk} when
hk ≥ p0/pmax. With a slight abuse of notation we denote
qk ∈ [0, 1] the probability of choosing powerp0/hk. Then
when hk ≥ p0/pmax the transmitter draws independent
γk ∼ Bern(qk) and transmits with powerpk = γk p0/hk. The
decoding success at the receiver is given by the sameγk. The
expected power consumption becomes

E

N−1
∑

k=0

pk = E

N−1
∑

k=0

qk
p0
hk

I

(

hk ≥
p0
pmax

)

. (36)

Observe that this is of the form as the expected power con-
sumption of the original problem given in (7) withp(h, q) =
q p0/h I (h ≥ p0/pmax). Then the statements of the results so



far hold for the capacity achieving codes as well. For this
special case forp(h, q) however the minimization in (33)
becomes linear inq, and the optimal communication policy
is deterministic,

qCA(ε, h) :=

{

0 if hR(ε) ≤ λ p0 or h ≤ p0/pmax

1 otherwise
,

(37)
or in terms of power

pCA(ε, h) :=

{

0 if hR(ε) ≤ λ p0 or h ≤ p0/pmax

p0/h otherwise
.

(38)
This is an event-triggered transmission scheme along the

lines of, e.g., [15], except that now the decision is also affected
by the current channel stateh apart from the errorε. This
deterministic policy was expected as the limit behavior of
powerful FEC codes in Fig. 5. The region of the plant/channel
state spaceRn × R+ outside of which it is optimal for the
sensor to transmit is described in (38) ashR(ε) > λp0 and
h ≥ p0/pmax. Qualitatively the conditionhR(ε) > λp0 shows
that when the channel is in a good state, transmitting is worthy
since it does not cost much, while when a measureR(ε) of
the error is large, it is necessary to transmit in order to reset
it to zero. This region gets larger whenp0 increases, since
successful transmission in this case requires more power, or
when λ increases, since then power penalty becomes more
important.

In the following section we present a simple computable
approximation of the above optimal communication policies,
which we examine with simulations in Section VI.

V. A ROLLOUT COMMUNICATION POLICY

The optimal communication policyq∗(ε, h) is described by
Theorem 2 in terms of the relative value functionV (ε, h).
The practical value of this characterization is limited because
determination ofV (ε, h) is not computationally tractable in
general. The purpose of this section is to show how approxi-
mate dynamic programming techniques can be used to devise
approximations ofV (ε, h) leading to tractable suboptimal
policies.

As shown in Theorem 2, the optimal communication policy
q∗(ε, h) given by (31) is to choose the current decisionq that
minimizes a combination of the current costc(ε, h, q) and the
optimal expected future costE [V (ε+, h+)|ε, h, q]. However
the functionV (ε, h) is not available, so modeling the optimal
future cost is not possible.

Suppose on the other hand that some communication policy
π suboptimal in general is available, for which the correspond-
ing relative value functionV π(ε, h) is known at all state pairs
(ε, h). If we assume that at all future time steps the sen-
sor/transmitter employs this given policyπ we can model the
expected future cost induced byπ asE [V π(ε+, h+)|ε, h, q].
Then the optimal current action selected with respect to this
suboptimal assumption on future communication decisions is
described by

qroll(ε, h) := argmin
q∈[0,qmax(h)]

c(ε, h, q) + E
[

V π(ε+, h+)|ε, h, q
]

.

(39)

This approximation defines a rollout algorithm [28, Vol. I].If
the suboptimal policyπ is not far from the optimal policy the
rollout transmission success probabilityqroll(ε, h) is close to
the optimalq∗(ε, h).

To find a family of policies with computable relative value
function suppose we adaptqk = q(hk) to the current channel
statehk but not to the innovationεk. Policies of this form have
been proposed in prior works [23], [24]. Since channel states
are independent ofεk the policy q(h) results in successful
packet decodings with expected probabilitȳq := Ehq(h)
implying that the communication success indicator variable
is γk ∼ Bern(q̄). The expected power consumption at every
stage is also constant given byEhp(h, q(h)). Thus the cost of
this policy q(h) for the MDP problem in (27) becomes

Jq(·) := lim sup
N→∞

1

N
E

N−1
∑

k=0

(1− q̄)εTk P̃ εk + λEhp(h, q(h)).

(40)
For any policy of the formqk = q(hk) the corresponding
relative value functionV q(·)(ε, h) can be determined in closed
form as stated in the following theorem that also provides an
explicit expression for the costJq(·).

Theorem 3 (Cost of channel-adaptive communication poli-
cies). Consider the Markov decision process with state pair
(ε, h) and state transition probabilities as in (29). Consider
policiesq(·) for which the success transmission probability is
selected as a functionq(h) independent of the innovation terms
ε. For any policy of this form satisfyinḡq := Ehq(h) > qcrit
for the critical probabilityqcrit of Assumption 1, the costJq(·)

in (40) becomes

Jq(·) = Tr(P̃E) + λEhp(h, q(h)), (41)

where the matrixE is the unique solution of

E = (1− q̄)(AEAT +W ). (42)

Furthermore, the relative value functionV q(·) is given by

V q(·)(ε, h) =
1− q(h)

1− q̄
εTHε+ λp(h, q(h)), (43)

where the matrixH is the unique solution of

H = (1− q̄)(ATHA+ P̃ ). (44)

Proof: See Appendix D.
Theorem 3 provides an explicit formula for a family of

relative value functionsV q(·)(ε, h) that can be used in the
rollout algorithm in (39). Substituting (43) into (39) and
removing constants from the resulting expression we find the
rollout policy

qroll(ε, h) := argmin
q∈[0,qmax(h)]

λp(h, q) + (1− q)
εTHε

1− q̄
. (45)

Computing such policies is easy. Given the parameterq̄ that
models the suboptimal future actions, we can computeH by
(44) and then solve (45) given the functionp(h, q). Observe
that (45) is of the same form as the optimal communication
policy (33) except that the optimal unknown functionR(ε)
is replaced by the quadratic formεTHε/(1 − q̄). Since the



rollout policy is suboptimal the quadratic can be viewed as an
approximation of the functionR(ε). As a side note, the rollout
policy need not satisfy the technical requirementqroll(ε, h) ∈
Q(ε, h) of (15).

For the particular case of a capacity achieving FEC we can
repeat the analysis in Section IV-A to modify (45) and obtain
the explicit (suboptimal) policy

qroll,CA(ε, h) :=







0 if h
εTHε

1− q̄
≤ λ p0 or h ≤

p0
pmax

1 otherwise
.

(46)
Again we managed to approximate the unknown functionR(ε)
in (37) by a quadratic that we can compute by (44). This gives
us an explicit event triggered communication policy, wherethe
events depend on the current values of the channel stateh and
the errorε.

A question that arises is how suboptimal is the performance
of these policies compared to the optimal costJ∗

COMM. Un-
fortunately since the rollout is a heuristic it is not easy to
characterize the optimality gap. It is however guaranteed to
perform not worse than the reference policy, and in many
practical problems the improvement is significant [28, Vol.I].
In the following section we simulate the constructed policies
and characterize numerically the improvement to the reference
policies adapting to channel only.

VI. SIMULATIONS

We begin by presenting simulations of the rollout algorithm
for capacity achieving codes given in (46). We assume the
channel state distribution to be exponential with mean0.5.
The plant is given by

A =

[

2 0
1 0.8

]

, B =

[

2
1

]

. (47)

The rest of the parameters areQ = W = I, R = 1,
λ = 50, p0 = 1. As a reference communication policy
we use q(h) = I (h ≥ ht) which transmits whenever the
channel state is above some threshold valueht that induces
q̄ ≈ 0.79. The simulations of the rollout policy reveal
a dramatic decrease in the empirical rate of transmissions
qemp = 1/N

∑N−1
k=0 γk ≈ 0.37, which is also much lower

than the minimum non-adaptive policyqcrit = 0.75 that
would keep the error stable. Similarly, the empirical cost
Jemp = 1/N

∑N−1
k=0 e

T
k P̃ ek + λγkp0/hk ≈ 56 decreased

compared to the referenceJq(·) ≈ 124.
The event-triggered nature of the rollout policy in the case

of capacity achieving codes is captured in Fig. 7 where we
plot the two plant states along with the channel,|εk,1|, hk
and |εk,2|, hk during the simulation. Blue points indicate the
decision not to transmit,qk = 0, while red are the points
where qk = 1. When the channel fading coefficienthk
is low, the sensor avoids transmission as it requires large
power consumption. The rollout policy is also adapted to the
plant structure. The error stateεk,1 is related to the unstable
eigenvalue ofA, so the sensor always decides to transmit when
this state is far from0. The hyperbolic shape of the|εk,1|, hk
plot was expected by the form of the rollout algorithm in (46).
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Fig. 7. Simulation results of the rollout policy for a capacity achieving
code. The points|εk,1|, hk and |εk,2|, hk are plotted respectively, with blue
indicating the decision to not transmit,qk = 0, and red to transmit,qk = 1.
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Fig. 8. Comparison of the optimal threshold policy and the resulting rollout
policy performance for a capacity achieving code. The power and estimation
error costs of the two policies are plotted for different values of the weighting
factorλ. The estimation error cost for the reference increases at a faster rate
than the rollout.

In contrast, such a correlation between the error stateεk,1 and
the decision to transmit is not clear. Even whenεk,2 takes large
values, the sensor might choose not to transmit. The reason
is that this state’s dynamics are related to a stable eigenvalue,
so informally it will remain bounded even if the sensor takes
no action. More precisely, as long as the sensor keepsεk,1
bounded,εk,1 will also be bounded.

Next, for the plant and channel described above we compare
the performance of the rollout algorithm with that of the
reference policy we used to compute the value function in (43).
For different values ofλ we find the optimal threshold policy
q(h) = I (h ≥ ht), i.e. the one that minimizes (41), and the
corresponding rollout policy in (46). The resulting power cost
1/N

∑N−1
k=0 γkp0/h and estimation cost1/N

∑N−1
k=0 e

T
k P̃ ek

that we got from simulating the rollout algorithm are plotted
separately in Fig. 8 along with the costs of the reference policy.
As λ increases the power consumption decreases, since it is
penalized more in the aggregate cost (27), and the decrease
rate is similar for the rollout and the reference policies. On
the other hand, whenλ increases the estimation cost increases,
since the sensor decides to transmit less often. However the
increase for the rollout policy is slower than that of the
reference policy. The reason is that the reference only adapts
to the channel, avoiding transmissions when the channel state
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Fig. 9. Simulation results of the rollout policy for a FEC code. The points
‖εk‖, hk during the simulation are plotted with colors denoting the magnitude
of the chosen decoding probabilityqk. Practicallyqk takes values either 0 or
close to 1.

hk is low. The rollout algorithm adapts not only to the channel,
but also to the errorεk. By transmitting only whenεk is large,
it results in only a moderate increase in the estimation cost
without sacrificing too much power.

Finally, we simulate the rollout algorithm in (45) for the
above plant and channel model when a FEC code is employed.
The probabilitiesqk of successful decoding that the rollout
provided during the simulation are plotted in Fig. 9 on
‖εk‖, hk axes (compare with the optimal policy in Fig. 6).
Unlike the capacity achieving codes, the decisionsqk take
values smaller than 1. However, due to the sigmoid form of
the q-SNR characteristic of the FEC code, we observeqk that
are practically either 0 or very close to 1, especially when the
channel state is good (hk large). For low channel fading gain
hk there is a very high power penalty if the sensor wants to
transmit with high success probability. In this case, the rollout
policy is either to not transmit (qk = 0) or transmit with a
success probabilityqk very close to 1. In general, we observe
that the points in the plot are accumulated at the region where
the error‖εk‖ is small. The reason is that when the error gets
larger,qk is chosen close to 1 by the communication policy,
so a successful transmissionγk = 1 occurs with very high
probability and resets the error.

VII. C ONCLUSIONS AND FUTURE WORK

In this paper we examined a control system with a wireless
fading channel between the sensor and the controller. The
sensor adapts transmit power to plant and channel states
and affects the probability of successful decoding at the
controller. For the problem of co-designing transmit powers
and control inputs to minimize an average LQR and power
cost a method to separate the two designs is provided, leading
to the standard LQR controller. The optimal power allocation
is then characterized qualitatively for general FEC codes and
capacity achieving codes. Tractable suboptimal policies are
derived and their performance is compared with alternative
policies in simulations.

The design of near-optimal and computationally efficient
policies for the general co-design framework requires further
research. For example the performance of power manage-
ment policies adapting to the plant state directly, not the
estimation innovation term, needs to be evaluated. Further
work includes also the incorporation of other wireless channel
models, such as Markov. Moreover interference effects when
multiple control loops close over the same channel need
to be considered, although they are expected to be limited
since sensors abstain from transmitting in unfavorable channel
conditions and/or favorable plant states. Overall the proposed
framework can be expanded to accommodate modeling and
analysis of more complex wireless sensor & actuator networks.
This unified control/wireless networking framework could lead
to novel communication/control design problems, such as a
control-aware network resource allocation, or a resource-aware
networked controller synthesis.

APPENDIX

A. Proof of Proposition 2

First note that, by the same arguments we use to derive (26)
later, if we condition onFk we can rewrite

E
π eTk ek = E

π(1− qk)ε
T
k εk. (48)

The uniform bound of (20) will be proved by an equivalent
bound on the innovation process{εk, k ≥ 0}. By Proposition 1
for any communication policyπ ∈ Π this process is indepen-
dent of the chosen control policyθ ∈ Θ and its evolution is
given by (18). This evolution can be described more formally
along with the i.i.d. channel processhk ∼ mH by a stochastic
transition kernel given the values ofε, h and actionq at each
step as

P(ε+, h+|ε, h, q)

=
[

q N0,W (ε+) + (1− q) NAε,W (ε+)
]

mH(h+). (49)

This expression is included later again in (29), where its
derivation is explained in detail.

The following technical lemma shows that under Assump-
tion 1 one can construct a Lyapunov-like function common for
all communication policies, satisfying explicitly the technical
requirements of [30, Assumptions 3.1, 3.2]. The uniform
bound (20) is a direct consequence of these requirements,
while the lemma will be subsequently used to prove Theorem 2
based on the results of [30].

Lemma 1. Suppose Assumption 1 holds and consider the
innovation and channel processes{εk, hk, k ≥ 0} described
by the transition (49), with communication decisions satisfying
qk ∈ Q(εk, hk) given in (15). Then there exists a measurable
functionW on R

n ×R+ bounded below by a constantγ > 0
such that

(1− q)εT ε+ c ≤ KW (ε, h), (50)

wherec ≥ 0 is some constant, for allε, h ∈ R
n × R+, q ∈

Q(ε, h), for some positiveK. Moreover there exists a non-
trivial measureν on R

n × R+, a non-negative measurable



function φ(ε, h, q) for ε, h ∈ R
n × R+, q ∈ Q(ε, h), and a

positive constantµ < 1 such that

(i) ν(W ) :=

∫

W (ε, h)dν(ε, h) <∞,

(ii) P(ε+ ∈ B1, h
+ ∈ B2|ε, h, q) ≥ ν(B1, B2)φ(ε, h, q)

for all measurable subsets(B1, B2) ∈ B(Rn × R+),

(iii) E
[

W (ε+, h+)|ε, h, q
]

≤ µW (ε, h) + φ(ε, h, q)ν(W )

(iv)
∫

φ(ε, h, q)dν(ε, q) > 0 for all q ∈ Q(ε, h).

Proof: Let
ν := N0,W ×mH , (51)

φ(ε, h, q) := q. (52)

Let us denote the set where the choice ofq is free as

S := {(ε, h) ∈ R
n × R+ : ‖ε‖ < L or h < ht}. (53)

We chooseµ < 1 such that

µ > 1− qmax(ht) + qmax(ht)ν(S), (54)

and
µ > (1− q̄)λmax(A)

2, (55)

where q̄ denotes the integral introduced in (14),

q̄ :=

∫ +∞

ht

qmax(h)dmH(h). (56)

The left hand side of (54) is less than 1 because the eventS
under the measureν happens with probability less than 1 and
we have assumedqmax(ht) > 0. The left hand side of (55) is
also less than 1 because of Assumption 1 and by the choice
for ht that satisfies (14).

Finally for any L > 0 when ‖ε‖ ≥ L observe that by
construction of the setQ(ε, h) we can upper bound

1− q ≤ 1− qmax(h)I (h ≥ ht) =: ψ(h), (57)

where we named the quantity on the rightψ(h) to be used
within this proof. This inequality holds because whenh < ht,
q ≥ 0, and whenh ≥ ht, q = qmax(h).

Then we pick

W (ε, h) :=ψ(h)εTHε+ β I (ε, h ∈ S) + γ, (58)

where β, γ > 0 are appropriate positive constants that will
be designed next, andH > 0 is a positive definite matrix
satisfying

(1− q̄)ATHA− µH = −Θ, (59)

for some positive definite matrixΘ > 0. This Lyapunov
equation is feasible by our choice ofµ that satisfies (55).

First observe thatW (ε, h) ≥ γ > 0 by construction. Then
we check (50). When‖ε‖ < L, we have

(1− q)εT ε+ c ≤ L2 + c ≤ K(β + γ) ≤ KW (ε, h), (60)

for a sufficiently largeK, where the last inequality follows
from the form ofW (ε, h) on ‖ε‖ < L. On the other hand if
‖ε‖ ≥ L, we may use (57) to upper bound

(1− q)εT ε+ c ≤ ψ(h)εT ε+ c

≤ K(ψ(h)εTHε+ γ) ≤ KW (ε, h), (61)

for a sufficiently largeK, by our choice for the function
W (ε, h) when‖ε‖ ≥ L.

We proceed by showing that parts (i)-(iv) in the statement
of the lemma also hold. Part (i) holds because the integral of
W (ε, h) with our chosen measureν equals

ν(W ) = (1− q̄)Tr(HW ) + ν(S)β + γ <∞. (62)

Part (ii) holds because the transition probability in (29) gives

P(ε+ ∈ B1, h
+ ∈ B2|ε, h, q)

= [q N0,W (B1) + (1− q) NAε,W (B1)] mH(B2)

≥ q N0,W (B1) mH(B2) = φ(ε, h, q)ν(B1, B2). (63)

Part (iv) follows by our choiceφ(ε, h, q) = q and the
construction of the setQ(ε, h) in (15) because

∫

φ(ε, h, q)dν(ε, h) ≥

∫

ε,h∈Sc

qmax(h)dν(ε, h)

= q̄

∫

‖ε‖≥L

dN0,W (ε) > 0. (64)

To prove the remaining part (iii) first observe that by the
transition defined in (29) and our choices forν andφ we have

E
[

W (ε+, h+)|ε, h, q
]

= φ(ε, h, q)ν(W )

+ (1− q)

∫

W (ε+, h+)dNAε,W (ε+) d mH(h+). (65)

Substituting (65) in (iii), we only need to show that

(1− q)

∫

W (ε+, h+)dNAε,W (ε+) d mH(h+) ≤ µW (ε, h).

(66)
Plugging the expression ofW (ε, h) given by (58) in the
integral of the left hand side, condition (66) becomes

(1− q) { (1− q̄)
[

εTATHAε+ Tr(HW )
]

+βNAε,W ×mH(S) + γ} ≤ µW (ε, h). (67)

We can boundNAε,W × mH(S) ≤ ν(S) for any ε ∈ R
n,

and also(1− q)(1− q̄)Tr(HW ) ≤ Tr(HW ). So a sufficient
condition for (67) is to show that

(1− q)
{

(1− q̄)εTATHAε+ β ν(S) + γ
}

+ Tr(HW )

≤ µW (ε, h) (68)

holds for every choice ofq ∈ Q(ε, h).
Let us first study the case‖ε‖ ≥ L. Using again (57) to

upper bound1− q ≤ ψ(h), and upon substitutingW (ε, h) in
(68) and rearranging terms, we need to show equivalently that

ψ(h)
{

εT
[

(1− q̄)ATHA− µH
]

ε

+βν(S) + γ}+ Tr(HW ) ≤ µ {βI (h < ht) + γ} (69)

By the choice ofH in (59) the quadratic on the left hand side
is negative definite equal to to−εTΘε. And since‖ε‖ ≥ L we
can upper bound−εTΘε ≤ −λmin(Θ)L2 ≤ 0. After these, a
sufficient condition for (69) is

Tr(HW ) + ψ(h) {βν(S) + γ} ≤ µ {βI (h < ht) + γ} (70)

We now take two cases forh. If h < ht, the above condition
(70) becomes

Tr(HW ) + βν(S) + γ ≤ µ(β + γ). (71)



On the other hand ifh ≥ ht we have thatqmax(h) ≥
qmax(ht) by monotonicity assumption, so we may bound
ψ(h) = 1− qmax(h) ≤ 1− qmax(ht). Condition (70) becomes

Tr(HW ) + (1− qmax(ht)) {βν(S) + γ} ≤ µγ. (72)

We pick aγ > to satisfy (72) with equality, that is

γ =
(1− qmax(ht))ν(S)β + Tr(HW )

µ− (1− qmax(ht))
(73)

where the denominator is positive by the choice ofµ in (54).
We will show that condition (71) also holds by an appropriate
choice forβ.

Let us now examine condition (68) in the case‖ε‖ < L.
Thenq ≥ 0 ⇒ 1− q ≤ 1 and it is sufficient for (68) to show
that

sup
‖ε‖<L

εT (1− q̄)ATHAε+ Tr(HW ) + βν(S) + γ

≤ µ(β + γ) (74)

where on the right hand side we lower bounded the quadratic
term ofW by 0. This is of the general form

C2 + βν(S) + γ ≤ µ(β + γ) (75)

for some constantC2, like the left over condition (71).
Plugging in (75) the chosenγ by (73) leads to a condition
of the form

C3 +
qmax(ht) ν(S)µβ

µ− (1− qmax(ht))
≤ µβ, (76)

for some constantC3. We want this to hold for an arbitrarily
large positiveβ becauseC3 might be negative, so we need the
coefficient ofµβ on the left side to bestrictly smaller than
the coefficient ofµβ on the right hand side. This turns out to
be equivalent to

µ > 1− qmax(ht) + qmax(ht)ν(S), (77)

which corresponds to our choice ofµ in (54).
Turning back to the proof of Proposition 2, combining (48)

with condition (50) of the above Lemma we have that
E
π eTk ek ≤ K E

πW (εk, hk), so it suffices for (20) to show
that a uniform bound on the expected value ofW (εk, hk)
exists.

By result (ii) of the above lemma for(B1, B2) = (Rn,R+)
we have thatφ(ε, h, q) ≤ 1/ν(Rn,R+). Plugging this in (iii)
leads to

E
[

W (ε+, h+)|ε, h, q
]

≤ µW (ε, h) +
ν(W )

ν(Rn,R+)
(78)

Iterated applications of this inequality across some policy π ∈
Π yields

E
πW (εk, hk) ≤ µk

EW (ε0, h0) +
ν(W )

(1− µ)ν(Rn,R+)
(79)

Thus sinceµ < 1 a uniform bound onEπW (εk, hk) exists
and this completes the proof.

B. Proof of Theorem 1

First note that sinceΣk := E
π
[

eke
T
k

∣

∣Gk

]

we have that

E
π[Tr(Σk)] = E

πeTk ek. (80)

Then under Assumption 1 Proposition 2 states that for any
π ∈ Π condition (20) holds and guarantees that both quantities
in (80) are bounded uniformly overk.

To establish the optimality of the proposed control law we
use the fact that the Bellman-like equation

V (Gk) + Tr(PW ) + Tr(P̃Σk) =

min
uk

E
π
[

xTkQxk + uTkRuk + V (Gk+1)|Gk, uk
]

, (81)

is satisfied for the function

V (Gk) = E
π
[

xTk Pxk
∣

∣Gk

]

, (82)

with V (G0) = xT0 Px0, where P is the solution to the
standard algebraic Riccati equation andP̃ is given by (23). The
existence ofP is guaranteed by the stabilizability of(A,B)
and detectability of(A,Q1/2).

Indeed observe that we can rewrite the term on the right
hand side of (81) as

E
π [V (Gk+1)|Gk, uk] = E

π
[

xTk+1Pxk+1|Gk, uk
]

= E
π
[

(Axk +Buk)
TP (Axk +Buk)|Gk, uk

]

+ Tr(PW ),
(83)

where the last equality follows by substitutingxk+1 from the
system equation (1). The quadratic minimization overuk at
the right hand side of (81) takes the usual form appearing
in LQR problems with partial state information - see e.g. [28,
Vol. II, Section 5.2]. The argument of the minimization in (81)
is given by the control law (24). Straightforward substitutions
show that the optimal value of the minimization equals the
left hand side of (81).

The equation (81) can be used to show that the optimal
control policy is (24). First iterate (81) fork = 0, . . . , N − 1
across some control policyθ ∈ Θ to get

V (G0) +N Tr(PW ) + E
π

N−1
∑

k=0

Tr(P̃Σk)

≤ JN
LQR(π, θ) + E

π,θV (GN ) (84)

Dividing (84) by N and taking the limit asN → ∞, the
term on the left hand side tends to

lim sup
N→∞

1/N

[

xT0 Px0 +N Tr(PW ) + E
π

N−1
∑

k=0

Tr(P̃Σk)

]

= Tr(PW ) + lim sup
N→∞

1/N E
π

N−1
∑

k=0

eTk P̃ ek (85)

where we used (80) to convertΣk to ek.
Then consider the term on the right hand side of (84). Any

control policyθ ∈ Θ satisfying (21) also satisfies

lim
N→∞

1

N
E
π,θV (GN ) = lim

N→∞

1

N
E
π,θxTNPxN = 0 (86)

by the form ofV given in (82). Thus taking the limit asN →
∞, by (86) the term on the right hand side of (84) tends to



the average LQR cost. The inequality in (84) then shows that
the average LQR cost ofθ is larger or equal to the limit of
the left hand side which was given in (85). The result given
in (22) follows by including the power cost that depends only
on the communication policyπ as suggested by (19).

The final step of the proof is to show that the control policy
θ∗ defined by (24) gives exactly the LQR cost given in (85).
This policy satisfies (81) with equality, so (84) also holds with
equality. Dividing byN and taking the limit as before would
prove the desired result if condition (86) also holds forθ∗.

Indeed useu∗k = Kx̂k and xk = x̂k + ek to rewrite the
closed loop system equation (1) underθ∗ as

xk+1 = (A+BK)x̂k +Aek + wk. (87)

Then denotingρ := λmax(A + BK) which is stable,ρ < 1,
we can upper bound (83) underθ∗ by

E
π,θ∗

[V (Gk+1)|Gk]

≤ ρ2x̂Tk P x̂k + Tr(ATPAΣk) + Tr(PW )

= ρ2V (Gk) + Tr((ATPA− ρ2P )Σk) + Tr(PW ) (88)

Taking expectation on both sides we have that

E
π,θ∗

V (Gk+1) ≤ ρ2Eπ,θ∗

V (Gk)

+ Tr((ATPA− ρ2P )Eπ,θ∗

Σk) + Tr(PW ) (89)

But (80) and (20) imply thatEπ,θ∗

Σk is uniformly bounded
over k so the term on the second line of (89) is bounded
by some constantδ < ∞. Iterating the above inequality (89)
acrossθ∗ up to k = N yields

E
π,θ∗ [

xTNPxN
]

≤ ρ2NxT0 Px0 +
δ

1− ρ2
(90)

which guarantees the limit (86) sinceρ < 1.

C. Proof of Theorem 2

The proof of the theorem is a direct application of the
theorems contained in [30]. For these we need to show
that [30, Assumptions 3.1, 3.2, 3.4] hold in our case. In
particular [30, Assumption 3.1] requires that the cost per stage
is bounded|c(ε, h, q)| ≤ KW (ε, h) by a positive measurable
functionW . This is a consequence of (50) of Lemma 1, since

|c(ε, h, q)| ≤ (1− q)λmax(P̃ )ε
T ε+ λpmax (91)

which is of the same form as (50). Also [30, Assumption 3.2]
requires exactly the conditions given in (i)-(iv) of Lemma 1.
Finally [30, Assumption 3.4] requires the following for the
chosen functionsW andφ satisfying Lemma 1.

Assumption 3. For everyε ∈ R
n, h ∈ R+

(i) Q(ε, h) is compact,
(ii) c(ε, h, q) is lower semi-continuous inq ∈ Q(ε, h),
(iii) P(ε+, h+|ε, h, q) is strongly continuous1 in q ∈ Q(ε, h),
(iv) the mappingq → E [W (ε+, h+)|ε, h, q] is continuous,
(v) φ(ε, h, q) is continuous inq ∈ Q(ε, h).

1i.e. for every bounded measurable functionΨ on R
n ×R+, the mapping

q 7→ E[Ψ(ε+, h+)|ε, h, q] is continuous

Part (i) is trivial, and part (ii) is a consequence of the
continuity of p(h, q) by Assumption 2. Strong continuity in
part (iii) is guaranteed by the fact that the transition kernel
given in (29) has a probability density function. Part (iv) holds
because the transition in (29) is linear inq, and part (v) is
trivial.

Having established [30, Assumptions 3.1, 3.2, 3.4], then
[30, Theorems 3.5, 3.6] state that in our case the infimum
J∗

COMM in (27) exists, there exists a functionV (ε, h) that
satisfies (30), and the optimal policy is the minimizer of the
right hand side of (30) as given in (31).

Moreover, observe that (30) still holds if we add any
constant toV (ε, h). So without loss of generality we may take
V (0, ĥ) = 0 for someĥ. Then if we substituteε = 0, h = ĥ
in (30) we get

V (0, ĥ) = 0 = min
q∈Q(0,ĥ)

{

c(0, ĥ, q)− J∗
COMM

+E

[

V (ε+, h+)
∣

∣ 0, ĥ, q
]}

. (92)

Note that by (29),P(ε+, h+|0, ĥ, q) = N0,W (ε+)mH(h+),
and if we substitutec(0, ĥ, q) = λp(ĥ, q) by (28) in (92), we
get

0 = min
q∈Q(0,ĥ)

{

λp(ĥ, q)− J∗
COMM + Ew,hV (w, h)

}

. (93)

The minimizer is q = 0 and this gives J∗
COMM =

Ew,hV (w, h).

D. Proof of Theorem 3

For any channel-adaptive communication policyq(h) with
expected success̄q, the estimation errorek in (17) becomes
a Markov jump linear system, with meanE(ek) = 0 for all
k ≥ 0 and covariance

E(eke
T
k ) = (1− q̄)(A E(ek−1e

T
k−1) A

T +W ). (94)

Since q̄ > qcrit the covariance reaches a steady state matrix
E that satisfies the Lyapunov equation (42), andek is stable
in the bounded covariance sense. The cost of such a policy is
then given by (41).

The corresponding relative value functionV q(·)(ε, h) satis-
fies the steady state condition [c.f. (30)]

V q(·)(ε, h) + Jq(·)

= c(ε, h, q(h)) + E

[

V q(·)(ε+, h+)|ε, h, q(h)
]

, (95)

where c(ε, h, q) is given by (28). We need to show that
V q(·)(ε, h) in (43) satisfies condition (95). First integrate (43)
with respect to (29) to get

E

[

V q(·)(ε+, h+)|ε, h, q(h)
]

= (1− q(h))εTATHAε

+ Tr(HW ) + λEh+p(h+, q(h+)). (96)

Using (96), the total costJq(·) in (41), and the cost per stage
c(ε, h, q) in (28), we conclude thatV q(·)(ε, h) in (43) satisfies



condition (95) if the following equation holds

1− q(h)

1− q̄
εTHε+ λp(h, q(h)) + Tr(P̃E) + λEhp(h, q(h))

= (1− q(h))εT P̃ ε+ λp(h, q(h)) + (1− q(h))εTATHAε

+ Tr(HW ) + λEh+p(h+, q(h+)). (97)

Substituting (44) on the left hand side and canceling terms,
the above condition becomes equivalent to

Tr(P̃E) = Tr(HW ). (98)

This is easily verified if we substitute the explicit expressions
for the solutionsE,H of the discrete-time Lyapunov equations
(42), (44) given by

E =
∞
∑

k=0

(1− q̄)k+1AkW (AT )k, (99)

H =

∞
∑

k=0

(1− q̄)k+1(AT )kP̃Ak, (100)

respectively. The existence and uniqueness of solutions tothe
Lyapunov equations (42), (44) follows by the assumptionq̄ >
qcrit.
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