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D-MAP: Distributed Maximum a Posteriori
Probability Estimation of Dynamic Systems

Felicia Y. Jakubiec and Alejandro Ribeiro

Abstract—This paper develops a framework for the estimation of
a time-varying random signal using a distributed sensor network.
Given a continuous time model sensors collect noisy observations
and produce local estimates according to the discrete time equiv-
alent system defined by the sampling period of observations. Es-
timation is performed using a maximum a posteriori probability
estimator (MAP) within a given window of interest. To mediate
the incorporation of information from other sensors we introduce
Lagrange multipliers to penalize the disagreement between neigh-
boring estimates. We show that the resulting distributed (D)-MAP
algorithm is able to track dynamical signals with a small error.
This error is characterized in terms of problem constants and van-
ishes with the sampling time as long as the log-likelihood function
which is assumed to be log-concave satisfies a smoothness condi-
tion. We implement the D-MAP algorithm for a linear and a non-
linear system model to show that the performance corroborates
with theoretical findings.

Index Terms—Distributed estimation, wireless sensor networks.

I. INTRODUCTION

W E consider the problem of estimating a time varying
signal with a distributed sensor network collecting

noisy observations of the signal of interest. To track this
dynamical system we implement a distributed estimation
algorithm in which sensors rely on local observations and
communication with neighboring nodes. We meet this goal
using maximum a posteriori probability (MAP) estimates and
design a mechanism to incorporate global information into
local estimates. At each time step sensors estimate the state of
the system at the same time while coming close to the optimal
centralized MAP that would be computed if all observations
were available at a central location.
The first idea proposed to mediate the incorporation of global

information within local estimates is the consensus algorithm.
Consensus relies on iterative averaging of neighboring values
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and can be shown to determine linear minimum (LM) mean
squared error (MSE) estimators [2]. Consensus algorithms
are well studied for linear static estimation problems, e.g.,
[3]–[5], and have also been adapted for linear dynamic esti-
mation [6]–[8]. Variants of consensus algorithms include the
concept of running consensus in which consensus iterations
are performed alongside the collection of sensor data [9],
[10] and gossip algorithms in which data exchanges happen
between pairs of neighbors only [11], [12]. Being based on
linear operations, gossip algorithms solve LMMSE estimation
and have been extended to dynamic settings as well [13],
[14]. A drawback of most consensus methods in [6]–[8], [13],
[14] for estimation of time varying signals is the assumption
that communications occur in a time scale separate from the
timeline of the dynamic system. This is necessary because
consensus [2] and gossip [11] are iterative algorithms. Thus,
their implementation in a dynamic setting requires assuming
that an infinite number of communication steps occur between
subsequent states of the dynamic system. An approach that
doesn’t suffer from this drawback is the application of diffusion
algorithms [15] to online Kalman filtering [16] and target
tracking problems [17]. In the particular case of target tracking,
specific algorithms have also been developed in the context of
robot localization[18]–[20].
An alternative approach to incorporate global information

into local estimates is to introduce Lagrange multipliers effec-
tively setting a price on disagreement that sensors try to mini-
mize. This approach can be rendered optimal by introducing La-
grange multiplier updates based in either dual gradient descent
[21] or the alternating direction method of multipliers [22]. This
latter approach is adapted in [23] to deal with linear Gaussian
autoregressive (AR) models giving rise to distributed Kalman
filter implementations. Alternative constructions of distributed
Kalman filters rely on sensor scheduling and focus on the effects
of quantization [24], [25]—see also [26] for a tutorial presenta-
tion of Kalman filtering in distributed sensor networks. An im-
portant advantage of the price mediation methods in [21], [22]
is that they can be used for general, i.e., not necessarily linear,
maximum likelihood estimation problems. The generalization
to dynamic systems in [23], however, is restricted to linear esti-
mation.
This paper generalizes the price mediation algorithms of [21],

[22] to dynamic nonlinear MAP estimation problems. Our work
also differs from most existing works on dynamic estimation in
that we use a common time scale for communications and the
evolution of the process. When using a single time scale each
iteration of the price update algorithm brings the sensors closer
to agreement on the MAP estimate while the process, and as
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consequence the MAP estimate, drifts to a new value. The tech-
nical contribution of this paper is to characterize this tradeoff
by showing that local estimates approach the centralized MAP
estimator with a small error which we characterize in terms of
problem-specific constants.
Section II starts by introducing the dynamical model in

continuous time and its equivalent sampled model in discrete
time and follows by formulating the global MAP estimation
problem. To avoid memory growth we introduce a time window
to remove older observations and signals from the estimation
problem. The global MAP is then reformulated as a constrained
optimization problem in which local estimates are required to
coincide with each other. Under the assumption that log-like-
lihood functions are concave, the constrained optimization
problem is convex allowing us to work in the dual domain.
The distributed (D)-MAP algorithm is then obtained by imple-
menting gradient descent in the dual function as discussed in
Section II-A. To clarify discussion we particularize D-MAP to
the estimation of a linear Gaussian AR process in Section II-B
and to a nonlinear variant in which estimates rely on quantized
observations in Section II-C.
Convergence properties of D-MAP are studied in Section III.

Since we implement gradient descent in the dual domain, our
focus is to study the distance between dual iterates and the op-
timal dual variables. The proximity between D-MAP and cen-
tralized MAP estimates is proportional to this distance as we
show in Theorem 2. In each step of dual gradient descent the
dual iterate is pulled closer to the optimal dual variable. How-
ever, the optimal multiplier changes between iterations due to
variations in the signal of interest. Once the algorithm reaches
steady state, we expect the distance between dual iterates and
the time-varying optimal dual variable to settle on some gap.
This expectation is formalized in Theorem 1 where we prove
that: (i) The Lagrange multipliers converge in mean to a close
neighborhood around the optimal multipliers. (ii) The Lagrange
multipliers almost surely visit a near optimality region infinitely
often. The size of the optimality neighborhood is characterized
in terms of the condition number of the log-likelihood func-
tion, the connectedness of the sensor network, and a parameter
bounding the changes in the gradient of the log-likelihood as a
function of time. This result implies that the stochastic process
of distances between centralized MAP and D-MAP estimates
becomes small on average [cf. (i)] and that for almost all real-
izations the distances become small infinitely often [cf. (ii)]. If
the log-likelihood is smooth in time in the sense that the param-
eter bounding the changes in its gradient vanishes with time,
these neighborhoods become arbitrarily small by proper selec-
tion of the sampling time. The proof of Theorem 1 is presented
in Section III-A.
Numerical experiments are presented in Section IV.

Section IV-A implements D-MAP for the linear model of
Sections II-B and IV-B for the quantized observations model of
Section II-C. In both cases D-MAP results in smaller MSE than
estimates that rely on local observations only. The advantage
is most noticeable when comparing the worst MSE across
different sensors in a given realization. Section V closes the
paper with concluding remarks.

II. PROBLEM FORMULATION

Consider a symmetric sensor network with sen-
sors and let denote the set of neighbors of sensor
composing an edge set with edges. The network is
deployed to estimate a continuous time-varying vector
signal . Each sensor
collects a vector observation which we denote as

. We assume
that observations collected at different sensors are
conditionally independent given the signal and that the
conditional probability density function (pdf)
is known at each sensor. We further assume that the process
of time-varying signal values can be described by a
differential equation of the form

(1)

where denotes a stationary white driving input signal.
For any time step and given current state , (1) de-
termines a time-invariant transition pdf which we denote as

. We assume that this pdf as well as the
observation model pdf are log-concave, i.e.,
the logarithms and
are concave functions of the signal values and .
To estimate we consider the equivalent discrete

time model obtained by sampling at
intervals of length . Likewise, we consider discrete-time
observations ob-
tained at the same sampling instances and define the vector

stacking the observation samples of all
nodes for time . We use
and to denote
the th sensor observation pdf and the state transition pdf,
respectively. Observe that this probabilistic description of the
discrete time model is obtained from the continuous time model
introduced above. In estimation of time-varying processes the
goal is to compute estimates of all observed signals
given all collected observations . To avoid excessive
memory growth we introduce a time window of length and
focus instead on computing estimates during
the window length using the observations col-
lected during the same window. To clarify notation let denote
the current time index so that the window of interest includes
observations and signals between times and .
Denote as the vector containing
all observations during the window for given sensor , recall
the definition of the vector grouping
observations of all sensors during given time ,
and further define grouping ob-
servations for all sensors and all times during the window. In a
symbol of the form , the argument denotes the current time
, the superscript a time during the window
of interest, and the subscript a given sensor. If a symbol
does not have a subscript, it is supposed to group homologous
variables for all sensors. If it misses a superscript, it groups all
times between and , and if it misses both it groups all
sensors and all window times. With this notational convention
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define the vector of
all MAP estimates between times and as

(2)

where Bayes’ rule is used in the second equality. Recalling the
conditional independence of the observations at different sen-
sors, the conditional probability in (2) can be rewritten as

(3)

Similarly, using the Markov property of the continuous model
according to which only depends on but not on previous
data we can write the prior distribution in (2) as

(4)

Substituting (3) and (4) for the corresponding terms in (2) leads
to

(5)
Notice that the estimator is obtained through the max-
imization of a time-varying objective because observations
shift to the left as time progresses. Since the logarithm is a mo-
notonously increasing function we can alternatively write the
MAP estimate in (5) as

(6)

where we defined the function to denote the cen-
tralized log-likelihood function at time whose maximization
yields MAP estimates . Throughout the text we omit
summation borders to simplify notation. We use to stand
for , for and for the

joint sum .
Since we assume that the probability distributions

and are log-concave, the likelihood function
is concave. Thus, the computational complexity

of solving (6) is approximately cubic in the window size and
the dimension of the signal vector . This means that com-
putation of MAP estimates at a centralized location can be
carried at manageable computational complexity even for large
window sizes. Concavity of also permits devising
a distributed implementation as we discuss in the next section.

A. Distributed Maximum a Posteriori Probability Estimators

Formulated as in (6), the MAP estimator cannot be imple-
mented in a distributed manner because the MAP estimate

is a variable global to the network. In order to propose

a distributed algorithm, we rely on dual reformulations that are
standard in convex optimization. Start by introducing local esti-
mates for all sensors and times within
the current window and reformulate (6) as the time-varying
constrained optimization problem

(7)

where we introduced the vector stacking local estimates
for all sensors and times. Formulating an equivalent con-

strained problem with additional variables is common practice
in distributed optimization. For a connected network the con-
straints reduce the feasible space of (7) to configu-
rations that have the same values at all sensors, i.e., they re-
quire for all pairs of sensors , and times . Then, if
the centralized problem in (6) has a solution , the solu-
tion to the constrained optimization problem (7) is the same. In
other words, (7) and (6) are equivalent because every element

of the estimator in (7) is equal to the MAP estimator, i.e.,
.

If we denote the edge incidence matrix of the directed net-
work as , we can define a replicated version as where
each 1, -1 and 0 in the matrix are replaced by the identity ma-
trix and the zero matrix of size respectively. Then the
equality constraints in (7) can be written in the more compact
notation . Further defining local objectives

and global D-MAP
objectives we can rewrite (7) as

(8)

Since the equality constraints are linear and the maximand
is concave in the variables , the optimization problem in
(7)—and its equivalent form in (8)—is convex. Thus we can
equivalently work with the Lagrangian dual problem of (7). To
do so, associate the Lagrange multiplier with the constraint

for the optimization problem at time and define the
Lagrangian as

(9)

where stacks the Lagrange multipliers for all links ,
and times . Recall that stands for the sum

as already convened.
Observe that the Lagrangian in (9) is time-varying because it

depends on the observations collected during the current
window. The dual function, which is also time-varying, is de-
fined as the maximum of the Lagrangian with respect to primal
variables, i.e.,

(10)
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and the dual problem is defined as the minimization of the dual
function . More important than the min-
imum value of the dual function is the optimal dual argument
that achieves this minimum. The structure of the primal problem
in (7) is such that this minimizing argument is not unique. De-
fine then the set of optimal Lagrange multipliers as

(11)

and denote as the elements of this set. The set
is a subspace whose dimension is determined by the rank

of the replicated edge incidence matrix ; see (36)–(38).
Because the dual function is convex, we can use gradient de-

scent to update multipliers so that they approach the optimal
multiplier set . Since we want to handle communications
in the same timeline as the samples of the signal, we consider
dual iterates which we want to update according to the gra-
dient descent algorithm

(12)

with some given stepsize . Notice that in (12), is up-
dated according to the gradient of the dual function at
time , but we are interested in its optimality with respect to the
dual function at time . We analyze this mismatch
in Section III.
To compute the gradient of the dual function consider the

Lagrangian primal maximizers that maximize
the Lagrangian for given dual iterate

(13)

The gradient of the dual function is then given by
the constraint slack associated with these Lagrangian maxi-
mizers

(14)

According to the definition of the edge incidence matrix the
gradient component associated with link and time is given
by the constraint slack corresponding to this link

(15)

Because of the symmetry of the network the last sum in (9) can
be rearranged so that it is expressed as a sum of primal variables
instead of as a sum of dual variables . If we do so, the

Lagrangian can be separated into a sum of local Lagrangians,
i.e., we can write with

(16)

Since separate maximization of the local Lagrangians in (16)
results in the maximization of their sum, it follows that the La-
grangian maximizers necessary to compute the dual gra-
dient components in (15) can be determined in a distributed
manner. This permits the definition of the D-MAP algorithm

which we formulate as iterative application of the following
steps.

Primal iteration. Given dual iterate at time , deter-
mine primal Lagrangian maximizers as

(17)

Dual iteration. Given primal iterates update dual it-
erates as

(18)

To implement the primal iteration, sensor needs access to local
multipliers and multipliers for neighboring sensors

. Likewise, to implement the dual iteration, only local
and neighboring primal variables are needed.

Remark 1: In (17) the signal estimate computed
at time for the signal value at time is not used.
Nevertheless, contains information about the signal
values in the current window of interest. To ex-

ploit this information the term
can be added to the local La-

grangian in (17). This is equivalent to assuming that
given is normal with covariance and mean

. This term is not considered here to keep the
analysis in Section III tractable but it should be added to prac-
tical implementations. We consider the effect of this term in the
numerical simulations performed in Section IV.

B. Linear Gaussian Autoregressive Model

To illustrate the D-MAP algorithm in (17) and (18) consider
its application to a linear time invariant Gaussian AR model.
In this case the evolution of the state follows a linear
differential equation and the observation is a noisy linear
transformation of the state,

(19)

(20)

The driving noise in (19) is drawn from a zero-mean
Wiener process with covariance matrix , and the observation
noise is drawn from a zero-meanWiener process with co-
variance matrix .
An equivalent discrete-time model tracks the state

at times using sampled observations
[27, Chapter 4.9]. Solving the differential (19)

between times and with initial condition
we can relate subsequent state observations and as

(21)
Upon defining the noise vector

as well as matrices and
we can write the equivalent discrete time AR process as

(22)
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(23)

It follows from its definition that the driving input noise is
white Gaussian with covariance matrix

(24)

This observation combined with (22) implies that the transition
probability distribution is normal with mean
and covariance . To sample observations with period we
need to pass through a low pass filter with bandwidth
. Assuming this filter is perfect, the discrete time noise is

white Gaussian with covariance matrix

(25)

This fact combined with (23) implies that is also
normal with mean and covariance . Given that both

and are normal the log-likelihoods in
(6) are quadratic and the centralized MAP estimator
in (6) reduces to the maximization of the quadratic form

(26)

For the D-MAP algorithm we need to specify the primal and
dual iterations in (17) and (18). For the primal iteration just ob-
serve that the log-likelihoods are quadratic forms as in (26) to
conclude that (17) takes the specific form

(27)

The dual iteration is given by (18) since its form does not depend
on the specific signal model. Since the maximand in (27) is a
quadratic form, the distributed estimate can be computed
in closed form by determining the estimate that sets the gradient
of the quadratic form to zero.

C. Quantized Observations

Consider a modification of the linear model in (22)–(23) in
which sensors are attached to a single-level quantizer that pro-
duces binary observations with elements

. To model the quantization process introduce the
threshold level used to quantize the th component of
the vector observation in (23). The binary variable indi-
cates whether the analog observation exceeds the threshold

,

(28)

where denotes the indicator function. For simplicity of
exposition assume the observation noise is uncorrelated so
that the covariance matrix takes on the diagonal form

. This assumption makes the
observations , and as consequence the binary variables
, independent of each other. It follows that to determine

the log-likelihood we just need to determine the
probabilities so as to compute

(29)

To determine , let denote the -th row of the
observation matrix . According to (28), is equiva-
lent to . Since the pdf of is normal with mean

and variance we can write this probability as

(30)

We remark that since the integrand in (30) is a log-concave
function of , the resulting integral is also a
log-concave function of [28, p. 106]. This implies that the
log-likelihood in (29) is a concave function of
and thus consistent with the assumptions in Section II.
To write the primal iteration for D-MAP we also need to de-

termine the transition probability distribution . But
since we have not changed the signal model, is
normal with mean and covariance as commented after
(24). The primal iteration in (17) then takes the form

(31)

with as given in (29). The dual iteration is again
given by (18) as in the case of the linear Gaussian AR model
of Section II-B because its form is the same irrespective of the
particular signal model. In this case it is not possible to get a
closed form expression for the primal iteration. However, since

is a concave function of , the maximand in (31)
is a concave function of . The maximum arguments
can then be numerically determined using Newton’s method as
shown in Appendix A. We emphasize that Newton descent for
(31) is implemented locally at each sensor. There is no coordi-
nation between neighboring sensors other than the exchange of
Lagrange multipliers and primal iterates .
The model in this section can be generalized to multilevel

quantizers. Colored observation noise can be handled with the
use of a whitening filter. See [29] for further details.

III. CONVERGENCE PROPERTIES

To determine the optimality of (17)–(18), we want to assess
how the D-MAP algorithm compares to the centralized MAP.
Therefore we want to compare the distance
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between the primal iterate computed by sensor at time
with the corresponding centralized MAP estimator .
Given the equivalence of (6) and (7) we know that

from where it follows that the distance of interest satisfies

(32)

where the inequality is due to the fact that the vectors and
are components of the vectors and . The right-

most term in (32) is the distance between the current primal it-
erate and the optimal primal arguments of (7). As such
it can be related to the distance between the current dual iterate

and the set of optimal dual variables . This section is
devoted to the characterization of the distance
between and a specific sequence of optimal dual variables

. The optimality gap in (32) is
then bounded by the distance . The derivation of
these results requires making the following assumptions on the
edge incidence matrix , the log-likelihood functions
and the initial Lagrange multipliers .
(A1) The sensor network is connected. Equivalently, the edge

incidence matrix has nonzero singular values
. For future reference define

and .
(A2) The eigenvalues of the Hessians of the

distributed log-likelihood functions are upper
bounded by the Lipschitz constant so that for
arbitrary vectors and and all times we can write

(33)
(A3) The eigenvalues of the Hessians of the

distributed log-likelihood functions are lower
bounded by the strong convexity constant so that
for arbitrary vectors and and all times it holds

(34)
(A4) The Lagrange multipliers are initialized at some value

in the image of the transposed repli-
cated edge incidence matrix .

(A5) Consider the gradients and
of the log-likelihood functions and
at subsequent times and evaluated

at corresponding optimal points and .
The expected value of the norm of this difference given
past observations up to time is bounded by a vanishing
constant . Denoting by the
past observations, it holds

(35)

for some function with .
Assumption (A1) is typical in distributed algorithms. Observe

that the squares of the singular values of are eigenvalues of
the replicated Laplacian matrix . In particular is the
spectral gap of the network graph which is known to control

the diffusion of information in distributed algorithms. Assump-
tions (A2) and (A3) are customary in the analysis of descent
algorithms except that we require them of the primal objec-
tives while we descend on the dual functions .
Assumptions (A2) and (A3) can be translated into similar state-
ments of the dual Hessian using the extremal singular values
and —see Lemma 1. We remark that the strong convexity As-
sumption (A3) requires, in particular, that the dimensionality of
the observations be equal or larger than the dimensionality of
the signals . Assumption (A4) is a restriction in the initial mul-
tipliers which is easy to ensure as it suffices to make .
Selecting guarantees that for
all times . This is true because as it
follows from its expression in (14).
Assumption (A5) limits the variability of the log-likelihood

function . This is a reasonable requirement because de-
scending along the gradient of the dual function

corresponding to time is sensible only if this function is
close to the dual function corresponding to time .
Having close dual functions can be satisfied if the primal func-
tions and are close. Observe however that
(35) limits variability of the log-likelihood gradients ,
which is a stronger requirement than limiting the variability of

. Further recall that functions are random as they
depend on the observations . The bound in (35) is weak
in a stochastic sense as it only constrains the expected value of
the difference between subsequent gradients. It is also important
to note that in most cases of practical interest, the constant
vanishes as the sampling time . For the linear Gaussian
AR model of Section II-B vanishes as ;
see Appendix A. Note that in general be-
cause solves a constrained optimization problem [cf. (7)].
To specify the sequence of given optimal dual variables

let us characterize the optimal dual subspace
. According to the Karush-Kuhn-Tucker (KKT) con-

ditions, any pair , of primal and dual optimum
variables satisfies

(36)

The optimal argument is unique because the log-likeli-
hood is assumed strongly convex as per assumption
(A3). However, solving (36) for results in multiple pos-
sible solutions because the rank of the matrix
is . Then, if there is a solution to (36)
we can describe the subspace by specifying a unique
vector in the image of from which all op-
timal multipliers are obtained by adding a vector

in the null space of . I.e., for any
there exist such that

(37)

where is the unique vector in the image of
that satisfies (36). The vector can be written
in terms of the Moore-Penrose pseudoinverse of as

(38)
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Since the definition of includes the property
we can write for some

vector , but this is not relevant to subsequent derivations.
Observe that and are both random because the ob-

servations are random. We therefore derive two asymp-
totic stochastic bounds on the distance . The first
is a mean bound that holds across ensemble averages, and the
second bound holds almost surely for individual realizations.
Both of these bounds are parametric on the variation bound

as we state in the following theorem.
Theorem 1: Let denote the vector with current dual iter-

ates obtained at time from (18) and denote
the unique optimal argument of the dual function that
lies in the image of the transposed replicated edge incidence
matrix . Assume the step size . If assumptions
(A1)–(A5) hold, the expected value of the distance between the
dual multipliers and the optimal multipliers at time
satisfies

(39)

Furthermore, for almost all realizations of the observation
process it holds

(40)

Proof: See Section III-A.
The first result in (39) states that the mean across different

realizations of the process becomes small. The
second result states that all processes eventually reach the same
small value although they may deviate from this value with
some probability. Further notice that for smooth log-likelihood
functions having continuous gradients, the gradient difference
(35) vanishes with decreasing sampling time. It is therefore
possible to approximate arbitrarily by reducing the sampling
time. We can then interpret Theorem 1 as a means for selecting
to achieve a prescribed error tolerance in the difference

.
The bounds in (39) and (40) become large as the step size

becomes small. This is not unreasonable because the optimiza-
tion problem in (7) changes with each time step. Hence, while

becomes closer to , the optimal argument
drifts away to . As we reduce , D-MAP loses its ability
to track these changes in . The optimal stepsize selection is

. This uncovers the dependence of (39) and (40)
on the condition number of the primal objective as is al-
ways the case in gradient descent algorithms. A final interesting
observation is the dependence of (39) and (40) on the spectral
radius which characterizes networks for which D-MAP per-
forms poorly. The eigenvalue is small for networks that are
sparsely connected and large for densely connected networks.
Coming back to the original goal we relate the suboptimality

of primal iterates to the distance whose
asymptotic behavior is characterized in Theorem 1. This is
a simple result that follows from the strong convexity of the
primal objective stated in Assumption (A3) as we show in the
following theorem.

Theorem 2: Let denote the current primal iterate at time
with components given as in (17) and let be the
optimal argument of (7) with components .
With the same definitions and assumptions of Theorem 1, the
distance between and can be bounded
as

(41)

Proof: Consider the KKT condition
which we explicitly write as

(42)

Furthermore, since is the primal variable that maximizes
the Lagrangian according to (13), it holds that

(43)

Subtracting (43) from (42), rearranging terms and taking the
norm of the resulting expressions yields

(44)

where the inequality follows from Cauchy-Schwarz’s in-
equality.
Consider now the strong convexity of the primal stated in

Assumption (A3) and evaluate (34) for vectors and
as well as for variables and .

Adding up the resulting expressions yields

(45)

after rearranging and canceling terms. Using Cauchy-Schwarz’s
inequality in (45) leads to

(46)

Substituting (44) into (46) the result in (41) follows after noting
that as per Assumption (A1).
According to Theorem 2 the distance between D-MAP es-

timates and MAP estimates can be bounded by the
dual suboptimality distance . Combining this re-
sult with the bounds in Theorem 1 characterizes the steady state
behavior of D-MAP. D-MAP estimates are close to MAP esti-
mates on average [cf. (39)] and for almost all realizations of the
dynamic system of interest D-MAP estimates are close to MAP
estimates infinitely often [cf. (40)]. The bound depends on the
condition number of the primal objective, the spectral radius
of the edge incidence matrix, and the objective smoothness

parameter . Moreover, the bound can be made arbitrarily
small by reducing the sampling time so that .

Proof of Theorem 1

The proof of Theorem 1 builds on a relationship between the
distance of the current dual iterate to the
optimal Lagrange multipliers in the span of and the
expected value of the corresponding distance

in the subsequent time slot. This relationship is similar to a
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supermartingale contraction as stated in Theorem 3. We obtain
(39) of Theorem 1 by applying this contraction recursively. We
obtain (40) of Theorem 1 by modifying the sequence

to construct a proper supermartingale.
Before proceeding to the proof of Theorem 1 let us introduce

a preliminary result to translate assumptions (A2) and (A3) into
corresponding statements on the gradient Lipschitz continuity
and strong convexity of the dual functions .
Lemma 1: Consider the dual function as defined in

(10). Assume that the primal objective satisfies assump-
tions (A2) and (A3) and that the edge incidence matrix complies
with Assumption (A1). The dual function has Lipschitz
gradients with dual Lipschitz parameter ,

(47)

The dual function is strongly convex in the span of
with dual strong convexity constant . I.e., for any pair of
vectors it holds

(48)

Proof: Observe that both (33) and (34) combine the mean
value theorem with the corresponding eigenvalue bound for the
primal function. The mean value theorem for the dual function
states that for all dual variables , there exists a vector in
the segment for which

(49)

Recall that Hessians of dual functions can be
computed by producing a second order Taylor approximation of
(7) and considering the quadratic dual of the resulting quadratic
program. This procedure leads to

(50)

where is the primal Lagrangian maximizer as defined in
(13)—see, e.g., [30, Eqs. (8)–(10)]. Using this fact we can bound
the largest eigenvalue of by due to the strong
convexity assumption in (34) and the edge incidence matrix
largest eigenvalue bound. This latter observation substituted in
(49) yields the Lipschitz gradient statement in (47). Observe that
strong convexity of the primal translates into Lipschitz gradient
continuity because the dual Hessian is a linear transformation
of the inverse of the Hessian of the primal
objective.
In the same way in which the primal strong convexity as-

sumption in (34) is translated into the dual Lipschitz gradient
property in (47), the primal Lipschitz gradient assumption in
(33) can be translated into the dual strong convexity property in
(48). For that matter consider the mean value theorem statement
in (49), the dual Hessian expression in (50), and the primal Hes-
sian eigenvalue bound in Assumption (A2) to conclude that for
any pair of vectors , it holds

(51)

If we restrict our attention to vectors in the
image of the transposed replicated edge incidence matrix
we can bound . Substituting
this bound in (51) yields the dual strong convexity statement in
(48).
Lemma 1 produces Lipschitz gradient and strong convexity

statements for the dual functions that are needed to
study gradient descent on these functions. Observe that (48) is
a statement of strong convexity of the dual function restricted
to vectors in the image of . The dual function is not strongly
convex in general. This weaker statement is sufficient for the
convergence analysis that we perform in the remainder of this
section—see Lemma 2.
The following theorem relates the distances

between the current dual iterate and the unique current op-
timal multiplier in the image of at subsequent times.
Theorem 3: Let denote a sequence of dual variables ob-

tained through recursive application of (17)–(18) and
denote the unique optimal argument of the dual func-

tion that lies in the image of the tranposed replicated
edge incidence matrix . Assume the stepsize in (18) satisfies

and that assumptions (A1)–(A5) hold. Then, subse-
quent distances satisfy

(52)

Proof: Consider a triangle with vertices , , and
. The triangle inequality for

yields

(53)

The first term in the right hand side of (53) is the distance
between the optimal multiplier and the

subsequent dual iterate . Since we are descending along
the gradient of the dual function at time we expect
this distance to be smaller than the distance be-
tween and the current dual iterate . This is proved true
in Lemma 2. The second term in the right hand side of (53) is the
distance between subsequent optimal mul-
tipliers and . We expect this distance to depend
on the variation between log-likelihood functions and

at subsequent time slots as bounded in assumption
(A5). The relationship between these quantities is established in
Lemma 3.
Lemma 2: Assume the same hypotheses and definitions of

Theorem 3. The distances and
of subsequent iterates and to the optimal dual
variable satisfies

(54)

Proof: Since the optimal dual variable is the same on
both sides, (54) is just a statement on the optimality improve-
ment of subsequent gradient descent iterates. The proof is there-
fore analog to the convergence analysis for gradient descent al-
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gorithms—see e.g., [28, p. 466]—modified to use the milder
strong convexity assumption in (48) of Lemma 1. The proof is
also adapted to relate subsequent distances
and between iterates and the optimal set instead
of the corresponding suboptimalities
and .
Begin the proof by writing the dual Lipschitz gradient state-

ment in (47) of Lemma 1 for and

(55)

Further recall that as per the dual update in (18) we have
because according to (15) the con-

straint slacks are components of the dual function
gradient. Substituting this equality in (55) yields

(56)

The second term in the right hand side of (56) simplifies to
. Making this

substitution in (56) and pulling common factors yields

(57)
The hypotheses include the stepsize bound which
is equivalent to . Using this fact and
subtracting the optimal value from both sides of (57)
yields

(58)

We are now interested in rewriting the right-hand side of (58).
To do so, expand the squared distance between multipliers
at time and optimal multipliers to write

(59)

Due to the fact that the dual function is (strictly) convex we can
use the bound

(60)

whose right hand side contains the term in the middle of the
right hand side of (59). Using this observation to combine (59)
and (60) gives, after rearranging terms,

(61)

After substituting the bound in (61) for the term
of (58) the terms of (58) and

(61) cancel out each other leading to

(62)

Having found an upper bound on we
set to find a lower bound in the same quantity. Given Assump-
tion (A4) and the fact that gradients for
all times [cf. (14)] it follows that for all .
Since it is also true that , we can write the re-
stricted dual strong convexity statement in (48) of Lemma 1 for

and to obtain the bound

(63)

Because the dual function is convex it holds that
for arbitrary dual variable .

Hence, we can drop the term in the middle of the right-hand
side of (63) and rearrange terms to get

(64)

Combining the bounds in (62) and (64) to eliminate the terms
yields the result in (54) after re-

ordering terms.
Lemma 3: Assume the same hypotheses and definitions of

Theorem 3 and consider the set of all past observations
given. On average, the optimal multiplier at the next
time step deviates from the current optimal dual variable
by no more than ,

(65)

Proof: With given the log-likelihood function
is also given. As a consequence so is the dual function
and the optimal dual variable . The optimal variable
depends on the random observation . The expectation

in (65) is with respect to the distribution of given .
Recall that and are the unique optimal dual argu-
ments that lie in the image of the transpose of the replicated edge
incidence matrix . Thus, using their explicit expressions in
(38) we can write

(66)

Applying Cauchy-Schwarz’s inequality we can extract the norm
of the pseudoinverse matrix to obtain

(67)
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The norm of is its largest singular value. According to
the properties of Moore-Penrose pseudoinverses, it is also the
inverse of the smallest nonzero singular value of . Combining
this observation with the definition of in assumption (A1) (67)
simplifies to

(68)

Taking expectations on both sides of (68) conditional on the past
observations yields

(69)

The result in (65) follows from substituting the bound (35) of
assumption (A5) for the right hand side of (69).
To complete the proof of (52) consider the expectation of the

inequality in (53) with given. Since is uniquely
determined by taking this expectation yields

(70)

Substituting the result (54) of Lemma 2 and the result (65) of
Lemma 3 into (70) yields the bound in (52).
Returning to the proof of Theorem 1 it leaves to be shown that

the result from Theorem 3 can be used to characterize the con-
vergence of the sequence . For the mean conver-
gence result in (39) consider the expectation of the statement in
(52) of Theorem 3with respect to the past observations
up to a certain time

(71)

We use (71) to show that the expectation
eventually ap-

proaches the near optimality region in which
.

To prove that this is true suppose that it is false and that it
therefore holds

(72)

for some constant and all times . We use this
hypothetical conclusion to remove the term from (71)
and group and reorder terms to obtain

(73)

Since the bound in (73) is assumed to hold for all times we can
use it recursively between times and to write

(74)

But this implies that the expectation
as time

thereby contradicting (72). It follows that (72) is absurd and
that as consequence we must have

(75)

for at least some time and all constants . The
limit infimum statement in Theorem 1 follows because (75) is
true for arbitrary time and arbitrary constant .
For the almost sure convergence result in (40) we construct

a supermartingale based on the values of the distances
. To do so consider a given time and fix an arbitrary

constant to define the stopping time as the first
time at which the process enters the near
optimal region

(76)
Based on the stopping time in (76) define the process
with realizations

(77)

for all . The sequence follows the sequence of dis-
tances to optimality until this distance becomes
smaller than at time .
Thereafter, for all subsequent times .
The process is a supermartingale. Indeed, consider the

expected value of conditional on —recall that
all randomness in the system is measured if we are given
. There are two different cases and . When

, it must be that which implies
yielding according to (77). A particular conclusion
of this observation is that

(78)

When use the definition of in (77) and the fact
that to write

(79)

The right hand side on (79) is the expected distance bounded in
Theorem 3. Thus, we can combine (52) of Theorem 3 with (79)
to write

(80)

If it must be that
. Otherwise the stop-

ping time would satisfy [cf. (76)] and as
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a consequence [cf. (77)]. Using this inequality to eliminate
from (80) yields

(81)

When we must have which means
. Making this substitution in (79) yields

(82)
Combining the claims in (78) and (82) it follows that is
a non-negative supermartingale as we had claimed. It follows
from the supermartingale convergence theorem [31, p. 352] that

exists for almost all realizations of the process.
We will further show that all of these limits must be

. For doing so just notice that (78) and (82)
can be combined to write

(83)

Taking the expectation of both sides of (83) with respect to the
distribution of given and applying the resulting
inequality recursively between times and yields

(84)

Since the constant satisfies and the process
is nonnegative it follows from (84) that

(85)

Since we already observed that exists almost
surely in order for (85) to be true all of these limits must be null
because the sequence is nonnegative. Therefore

(86)

According to the definition of in (77) the result in (86)
implies that the stopping time is almost surely finite, which
means that for almost all processes there exists a time
such that

(87)

The limit infimum statement in Theorem 1 follows because (87)
is almost surely true for arbitrary time and arbitrary constant

.

IV. SIMULATION RESULTS

We implement the D-MAP algorithm in (17)–(18) for the
linear Gaussian AR model introduced in Section II-B and the
quantized observations model of Section II-C. In both cases we

compare performance of D-MAP estimates to the central-
ized MAP estimator in (6) which would be computed
if all observations were available at a common location.We also
compare D-MAP and local (L-) MAP estimates computed
using local observations only,

(88)

As mentioned in Remark 1, the term
is added to the distributed

log-likelihood in (6). To maintain fair comparison benchmarks
the term is added to the central-
ized log-likelihood in (6) and the term

is added to the local like-
lihood in (88).
In both subsequent numerical studies we consider a WSN

with sensors and edges between any two sensors and
present with probability .

A. Linear Gaussian AR Model

Consider a two-dimensional signal vector
containing temperature values at two points

in space. The dynamical model has state transition matrix
and driving input covari-

ance matrix . The
sensors observe the temperatures directly implying that the
observation matrices are identities for all sensors
. The noise covariance matrices are equal for all sensors
as well and given by . The
sampling time is and the system is simulated for
96 observation slots corresponding to a total elapsed time of

. The estimation window is set to . The signal is
initialized to . The Lagrange multipliers
promoting equality of local estimates for D-MAP are initialized
to for all links . With for all
pairs of links the initial D-MAP estimates and initial
L-MAP estimates coincide [cf. (17) and (88)]. Multiplier
updates follow (18) and subsequent D-MAP estimates are
computed according to (27). The stepsize for D-MAP for each
edge and signal varies across sensors and is chosen as
0.1 times the inverse of its respective diagonal entry in the dual
Hessian. These values can be computed locally at each sensor.
Simulation results are shown in Figs. 1 and 2. Fig. 1 shows

the signal trajectory for a sample run along withMAP estimates,
D-MAP estimates (left), and L-MAP estimates (right). D-MAP
estimates are closer to the centralized MAP which provides the
best possible MSE performance with the given observations.
D-MAP also exhibits a better transient behavior. Both of these
observations are clearer in Fig. 2 which compares the empirical
MSE of D-MAP (left) and L-MAP (right) with the MSE of cen-
tralized MAP for times averaged over simula-
tion runs. For the given parameters the steady state MSE of the
centralized MAP is . The steady state MSE of L-MAP
averaged over all sensors is whereas the average steady
state MSE of D-MAP is reduced to . Note also that it



JAKUBIEC AND RIBEIRO: D-MAP: DISTRIBUTED MAXIMUM A POSTERIORI PROBABILITY ESTIMATION OF DYNAMIC SYSTEMS 461

Fig. 1. Example run of D-MAP, L-MAP, and centralized MAP for a linear Gaussian autoregressive model. Signal values are shown along with centralized MAP
estimates, D-MAP estimates (left), and L-MAP estimates (right) for times . Steady state D-MAP estimates are closer than L-MAP estimates to the
centralized MAP. D-MAP also exhibits better transient behavior than L-MAP.

Fig. 2. Average and worst empirical mean squared error (MSE) attained by centralized MAP, D-MAP, and L-MAP for a linear Gaussian autoregressive model.
Empirical MSEs are obtained as an average over simulation runs and shown for times . The worst empirical MSE averages the largest squared error
across all sensors for each simulation realization. Empirical MSE of D-MAP is smaller than empirical MSE of L-MAP. The performance gain is more pronounced
if we compare worst empirical MSEs.

takes L-MAP about to reach its steady state MSE whereas
the D-MAP steady state MSE is reached after . The differ-
ences are more pronounced if we look at the worst squared error
across all sensors as a function of time. The empirical average of
this maximal squared error yields a measure of the worst MSE
across all sensors that we also depict in Fig. 2. The worst MSE
for D-MAP attains a steady-state value of whereas for
the L-MAP the worst empirical MSE approaches .

B. Quantized Model

Consider now the case in which sensors collect quantized
binary observations as dictated by the model in Section II-C.
The signal is a scalar temperature reading and the
parameters of the linear model serving as basis to the quan-
tized model correspond to the state transition matrix

, signal noise variance ,
observation noise covariances for every
sensor , and observation matrices for all sen-
sors . We set the sampling time to and the initial

temperature to . Quantization thresholds are set to
for all sensors . The system is simulated

for 180 observation slots corresponding to a total elapsed time of
30 s. The estimation window is again set to . For D-MAP
the Lagrange multipliers are initialized to for all
links . Multiplier updates follow (18) as in the simulations
in the linear model of Section IV-A. D-MAP estimates are com-
puted according to (31). The stepsize for D-MAP for each edge

and signal is chosen differently for each sensor and
set to 0.1 times the inverse of its respective diagonal entry in
the dual Hessian of the corresponding Gaussian linear model.
Figs. 3 and 4 show simulation results for the described setup.

Fig. 3 shows an example of a signal trajectory for a sample
run comparing D-MAP estimates (left) and L-MAP estimates
(right). Upon reaching steady state, D-MAP estimates are closer
to the centralized MAP than L-MAP estimates. Although an
overshooting effect can be noted for the D-MAP until time
, it still exhibits a better transient behavior than the L-MAP.

Fig. 4 quantifies these observations by looking at the corre-
sponding MSEs over simulation runs. The empirical MSE
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Fig. 3. Example run of D-MAP, L-MAP, and centralized MAP for a binary quantized model. Signal values are shown along with centralized MAP estimates,
D-MAP estimates (left), and L-MAP estimates (right) for times . The D-MAP displays steady-state behavior at time whereas the L-MAP
only reaches steady state at . Steady state D-MAP estimates are closer than L-MAP estimates to the centralized MAP.

Fig. 4. Empirical mean squared error (MSE) for centralized MAP, D-MAP, and L-MAP and worst empirical MSE for times , averaged over
simulation runs for a binary quantized model. The empirical MSE of D-MAP estimates is closer than that of L-MAP estimates to the empirical MSE of centralized
MAP estimates.

of the centralized MAP is shown along with the average em-
pirical MSEs of D-MAP (left) and L-MAP (right) as well as
the worst empirical MSE for D-MAP and L-MAP for times

. At steady state the MSE of the centralized MAP
is . The steady state MSE of D-MAP is on
average whereas it is for the L-MAP. The better tran-
sient behavior of the D-MAP can also be observed by the time it
takes to reach the steady state MSE which is 9 s for the D-MAP
and 12 s for the L-MAP. This improvement in performance is
stronger for the worst empirical MSE. While the worst empir-
ical MSE for D-MAP attains a steady-state value of
after time , the L-MAP takes to approach a
worst steady-state MSE of .

V. CONCLUSION

This paper developed the distributed (D-) maximum a poste-
riori probability (MAP) estimation algorithm for the estimation
of time-varying signals with a sensor network collecting noisy
observations of a distributed nature. The algorithm incorpo-
rates information from neighboring sensors by communicating

Lagrange multipliers which penalize the disagreement between
neighbors. Lagrange multipliers are updated based on the
differences between neighboring estimates as dictated by a
dual gradient descent algorithm. We assess the tracking ability
of D-MAP by studying the difference between distributed
estimates and centralized estimates that would be computed
if all the observations were available at a central location.
This difference can be related to the suboptimality of the
dual variables which is the main characterization presented
in this paper. In particular, we proved that: (i) The Lagrange
multipliers converge in mean to a close neighborhood around
the optimal multipliers. (ii) The Lagrange multipliers almost
surely visit a near optimality region infinitely often. The size of
the optimality neighborhood was characterized in terms of the
condition number of the log-likelihood function, the Laplacian
eigenvalue describing the connectedness of the sensor network,
and a parameter describing the smoothness of the log-likelihood
as a function of time. This latter parameter is a bound in the
difference between the log-likelihood gradients at subsequent
points in time. For linear models this parameter vanishes with
decreasing sampling time at a rate proportional to the square
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root of the sampling time. This smoothness condition is stronger
than setting such a condition on the log-likelihoods themselves.
Nevertheless, most log-likelihood functions are smooth in the
sense that the difference between subsequent log-likelihood
gradients vanishes with decreasing sampling time. It follows
from this observation that the difference between D-MAP and
centralized MAP estimates can be made arbitrarily small by
reducing the sampling time of the process of interest.
Numerical results for a linear Gaussian auto regressive model

and a nonlinear model with binary quantized observations cor-
roborate the performance gains of D-MAP.Mean squared errors
of D-MAP are lower than that of local MAP estimates in steady
state operation and also exhibit better transient behavior. The
advantage is most noticeable when comparing the worst mean
squared error across different sensors in a given realization.

APPENDIX A
ASSUMPTION 5 FOR LINEAR GAUSSIAN

AUTOREGRESSIVE MODEL

Assumption 5 refers to a smoothness characteristic of the
primal problem in (7). Specifically, it implies that the difference
between subsequent gradients of the objective of the optimiza-
tion problem in (7) evaluated at the optimal primal variables
vanish with sampling time . We show in this appendix
that the assumption holds for the linear Gaussian AR model
described in Section II-B. Consider the generic expression
for the D-MAP estimate in (8). To specify the generic objec-
tive

to the linear Gaussian AR model refer to the
expression for the primal iteration in (27) and compare it with
the generic primal iteration in (17) to conclude that

(89)

To simplify notation, we define the ma-
trices , and which are block-diagonal matrices
stacking the matrices , and for all times

, i.e., ,
and

. Furthermore, we de-
fine the matrix with blocks corresponding to
the transition matrix in (22)

...
...

. . .
...

...

(90)

Then the sum over time in (89) can be
rewritten in matrix form as

(91)

to express the terms in the last sum in (26) in matrix
operations with the vector .
Due to the equivalence between the centralized MAP

problem in (6) and the reformulation (7), we can compute a
closed-form solution for for all using the
centralized MAP formulation. Using the same notation, we
can equivalently write the objective for the centralized MAP
estimator in (26) as

(92)

It is possible to find a closed-form solution for the centralized
MAP estimate corresponding to the centralized log-
likelihood in (92). To do so compute the gradient of
in (92) which can be written as

(93)

where the second equality is obtained by rearranging terms and
defining to simplify notation.
Setting the gradient in (93) to 0 yields the MAP estimate

(94)

Consider now the gradients of the distributed log-likelihood
in (91) for times and . Use the notation to rep-
resent a vector formed by the elements of associated with
sensor . To determine the bound in Assumption 5 we
use the triangle inequality to separate the norm difference

into its per sensor
components

(95)

Recalling the definition in (8) and the
equivalence , which follows from the equiva-
lence between (6) and (7), it follows that

(96)
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The gradients in the right hand side of (96) can be written ex-
plicitly using the expression in (91) to write

(97)

Substituting the expression in (94) for the MAP estimates
and in (97) and rearranging terms yields

(98)

Consider now the limit of the norm difference in (98) with van-
ishing sampling time . We will show that this limit is of
order . For that purpose notice that for some constant
we must have

(99)

Indeed, the second factor is the inverse of a per sensor sum of
terms having the same form as the first factor. It follows that
the rates at which these factors vanish are inverses of each other
implying that (99) must be true.
Use the triangle and Cauchy-Schwarz inequalities in the right

hand side of (98) and consider the limit of the expectation of
both sides of the resulting expression as . Further com-
bining the result with the limit in (99) yields

(100)

According to (111) the rate of

as is bounded by the rate of
. To bound the

rate of this latter term begin by noticing that due to the
Cauchy-Schwarz inequality we have

(101)

We determine the order of and of

separatedly. Starting
the analysis with the last term on the right-hand side of (101),
we first observe that the difference between and

can be rewritten using the realization of the true signals
and as well as the observation noise and

at times and as

(102)

(103)

Using the triangle and the Cauchy-Schwarz inequality yielding
(103), we want to find bounds for the two summands separately.
To find a bound for the first summand in (103), we define

in a similar way as , and , stacking
for all times in the time window, and introduce to write the
realization of the signal noise for times . Using
the system model for [cf. (22)] we get

(104)
Recall the definition , we note that for
small, tends to the identity matrix,

(105)

Combining (104) and (105) we find that the difference
tends to the norm of the signal noise for vanishing

sampling time. From the definition of the signal noise [cf. (24)]
we can bound its expected norm using the signal noise covari-
ance matrix,

(106)

From the same definition in (24), the norm of the signal noise
covariance matrix is of order , leading to the last
equality in (106).
To find a bound on the second term on the right-hand side of

(103) , note that and are
i.i.d. Then recall the definition of [cf. (25)] from which it
follows that the expected norm of the observation noise can be
bounded by the observation noise covariance matrix,

(107)

The last equality in (107) also follows from the definition of
[cf. (25)]. Plugging the results from (106) and (107) back into
(103), the order of the left-hand side of (102) is

(108)
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To find the order of the left-hand side of (101), it is left to show
the order of the first term on the right-hand side of (101). Since

is a constant with respect to , it holds that
for some positive constant for any . By the

definition of [cf. (25)], it holds that .
Since is a constant, it follows that the order of the first
term on the right-hand side of (101) is of order ,

(109)

Combining the results from (108) and (109), it follows that

(110)

Using the result in (110), we can now express the order of the
left-hand side of (111) as

(111)

The result of (111) finally leads to a bound on the original de-
sired expression in (35). Recall that the expression in the expec-
tation from (35) can be bounded using the triangle inequality
by a sum of per sensor terms [cf. (95)] whose order is
according to the result in (111). It follows that the original ex-
pected value from (35) is also of order , i.e.,

(112)

This is tantamount to Assumption 5 for

APPENDIX B
LOG-LIKELIHOOD GRADIENT AND HESSIAN FOR

QUANTIZED SIGNAL MODELS

The computation of the Lagrangian maximizers in (31) can
be performed through Newton’s method. For given sensor and
time let denote a Newton iteration index and the cor-
responding signal determined by the algorithm in that iteration.
Denote as and
the gradient and Hessian of the local Lagrangian
evaluated at . Newton’s descent algorithm is then
defined as the iteration

(113)

where is initialized as . To write (113) explic-
itly for the quantized model of Section II-C denote

. Using this notation and taking the gradient of
the maximand in (31) yields

(114)

where we used the definition of the matrix in (90). Similarly,
the Hessian is given by the following expression,

(115)

To complete the derivation we need to compute the derivatives
of . Denote by the gradient vector of ,
which can be found by deriving the expression in (30) to obtain

(116)

The Hessian can be found by taking derivatives in
the gradient expression in (116) and is given by

(117)

The gradients and Hessians in (116) and (117) can be substituted
into the local Lagrangian gradient and Hessian expressions in
(114) and (115). The results can then be substituted into (113)
to implement Newton’s descent algorithm.

REFERENCES
[1] F. Jakubiec and A. Ribeiro, “Distributed maximum a posteriori proba-

bility estimation of dynamic systems with wireless sensor networks,”
in Proc. Int. Conf. Acoust. Speech Signal Process., Kyoto, Japan, Mar.
25–30, 2012.

[2] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mo-
bile autonomous agents using nearest neighbor rules,” IEEE Trans.
Autom. Control, vol. 48, no. 6, pp. 988–1001, 2003.

[3] L. Xiao, S. Boyd, and S. J. Kim, “Distributed average consensus with
least-mean-square deviation,” J. Parallel Distrib. Comput., vol. 67, no.
1, pp. 33–46, 2007.

[4] T. C. Aysal, M. J. Coates, and M. G. Rabbat, “Distributed average con-
sensus with dithered quantization,” IEEE Trans. Signal Process., vol.
56, no. 10, pp. 4905–4918, 2008.

[5] S. Kar and J. M. F. Moura, “Distributed consensus algorithms in
sensor networks: Quantized data and random link failures,” IEEE
Trans. Signal Process., vol. 58, no. 3, pp. 1383–1400, 2010.



466 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 2, JANUARY 15, 2013

[6] U. A. Khan and J. M. F. Moura, “Distributing the Kalman filter for
large-scale systems,” IEEE Trans. Signal Process., vol. 56, no. 10, pp.
4919–4935, 2008.

[7] R. Olfati-Saber and J. S. Shamma, “Consensus filters for sensor
networks and distributed sensor fusion,” Proc. IEEE CDC, pp.
6698–6703, 2005.

[8] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and coop-
eration in networked multi-agent systems,” Proc. IEEE, vol. 95, no. 1,
pp. 215–233, 2007.

[9] P. Braca, S. Marano, V. Matta, and P. Willett, “Asymptotic optimality
of running consensus in testing binary hypotheses,” IEEE Trans. Signal
Process., vol. 58, no. 2, pp. 814–825, Feb. 2010.

[10] D. Bajovic, D. Jakovetic, J. Xavier, B. Sinopoli, and J. M. F. Moura,
“Distributed detection via Gaussian running consensus: Large devia-
tions asymptotic analysis,” IEEE Trans. Signal Process., vol. 59, no. 9,
pp. 4381–4396, 2011.

[11] S. Boyd, A. Ghosh, and B. P. Shah, “Randomized gossip algorithms,”
IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2508–2530, 2006.

[12] A. G. Dimakis, S. Kar, J. M. F. Moura, M. G. Rabbat, and A. Scaglione,
“Gossip algorithms for distributed signal processing,” Proc. IEEE, vol.
98, no. 11, pp. 1847–1864, 2010.

[13] R. Carli, A. Chiuso, L. Schenato, and S. Zampieri, “Distributed Kalman
filtering based on consensus strategies,” IEEE J. Sel. Areas Commun.,
vol. 26, no. 4, pp. 622–633, 2008.

[14] S. Kar and J. M. F. Moura, “Gossip and distributed Kalman filtering:
Weak consensus under weak detectability,” IEEE Trans. Signal
Process., vol. 59, no. 4, pp. 1766–1784, 2011.

[15] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares over adap-
tive networks: Formulation and performance analysis,” IEEE Trans.
Signal Process., vol. 56, no. 7, pp. 3122–3136, 2008.

[16] F. S. Cattivelli and A. H. Sayed, “Diffusion strategies for distributed
Kalman filtering and smoothing,” IEEE Trans. Autom. Control, vol. 55,
no. 9, pp. 2069–2084, 2010.

[17] S. Y. Tu and A. H. Sayed, “Mobile adaptive networks,” IEEE J. Sel.
Topics Signal Process., vol. 5, no. 4, pp. 649–664, 2011.

[18] S. I. Roumeliotis and G. A. Bekey, “Distributed multirobot localiza-
tion,” IEEE Trans. Robot. Autom., vol. 18, no. 5, pp. 781–795, 2002.

[19] K. Zhou and S. I. Roumeliotis, “Multirobot active target tracking with
combinations of relative observations,” IEEE Trans. Robot., vol. 27,
no. 4, pp. 678–695, Aug. 2010.

[20] U. A. Khan, S. Kar, and J. M. F. Moura, “Diland: An algorithm for dis-
tributed sensor localization with noisy distance measurements,” IEEE
Trans. Signal Process., vol. 58, no. 3, pp. 1940–1947, 2010.

[21] M. G. Rabbat, R. D. Nowak, and J. A. Bucklew, “Generalized con-
sensus computation in networked systems with erasure links,” in Proc.
IEEE Workshop Signal Process. Adv. Wireless Commun. Process., Jun.
2005, pp. 1088–1092.

[22] I. D. Schizas, A. Ribeiro, and G. B. Giannakis, “Consensus in ad hoc
WSNS with noisy links—Part I: Distributed estimation of determin-
istic signals,” IEEE Trans. Signal Process., vol. 56, no. 1, pp. 350–364,
2008.

[23] I. D. Schizas, G. B. Giannakis, S. I. Roumeliotis, and A. Ribeiro, “Con-
sensus in ad hoc WSNs with noisy links—Part: Distributed estimation
and smoothing of random signals,” IEEE Trans. Signal Process., vol.
56, no. 4, pp. 1650–1666, 2008.

[24] E. J. Msechu, S. I. Roumeliotis, A. Ribeiro, and G. B. Giannakis, “De-
centralized quantized Kalman filtering with scalable communication
cost,” IEEE Trans. Signal Process., vol. 56, no. 8, pp. 3727–3741,
2008.

[25] A. Ribeiro, G. B. Giannakis, and S. I. Roumeliotis, “SOI-KF: Dis-
tributed Kalman filtering with low-cost communications using the
sign of innovations,” IEEE Trans. Signal Process., vol. 54, no. 12, pp.
4782–4795, 2006.

[26] A. Ribeiro, I. D. Schizas, S. I. Roumeliotis, and G. B. Giannakis,
“Kalman filtering in wireless sensor networks,” IEEE Control Syst.
Mag., vol. 30, no. 2, pp. 66–86, 2010.

[27] P. S. Maybeck, Stochastic Models, Estimation and Control, Volume
I. New York: Academic, 1979.

[28] S. Boyd and L. Vanderberghe, Convex Programming. New York:
Wiley, 2004.

[29] A. Ribeiro and G. B. Giannakis, “Bandwidth-constrained distributed
estimation for wireless sensor networks—Part I: Gaussian case,” IEEE
Trans. Signal Process., vol. 54, no. 3, pp. 1131–1143, 2006.

[30] M. Zargham, A. Ribeiro, A. Jadbabaie, and A. Ozdaglar, “Accelerated
dual descent for network optimization,” IEEE Trans. Autom. Control,
2011.

[31] K. L. Chung, A Course in Probability Theory, 3rd ed. New York:
Academic, 2001.

Felicia Y. Jakubiec received the Diploma degree
in electrical engineering and management from the
Technical University of Berlin, Berlin, Germany,
in 2009 and the Master’s degree in electrical and
computer engineering from the Georgia Institute of
Technology, Atlanta, in 2010.
She is currently working toward the University of

Pennsylvania, Philadelphia. Her research interests in-
clude statistical signal processing, signal estimation,
and stochastic optimization. Her current research fo-
cuses on the theory of distributed signal processing.

Alejandro Ribeiro received the B.Sc. degree in elec-
trical engineering from the Universidad de la Repub-
lica Oriental del Uruguay, Montevideo, in 1998 and
the M.Sc. and Ph.D. degree in electrical engineering
from the Department of Electrical and Computer En-
gineering, the University of Minnesota, Minneapolis,
in 2005 and 2007, respectively.
From 1998 to 2003, he was a member of the tech-

nical staff at Bellsouth Montevideo. After his M.Sc.
and Ph.D studies, in 2008 he joined the University of
Pennsylvania (Penn), Philadelphia, where he is cur-

rently an Assistant Professor at the Department of Electrical and Systems En-
gineering. His research interests lie in the areas of communication, signal pro-
cessing, and networking. His current research focuses on network and wireless
communication theory.
Dr. Ribeiro received the 2012 S. Reid Warren, Jr. Award presented by Penn’s

undergraduate student body for outstanding teaching and the NSF CAREER
Award in 2010. He is also a Fulbright scholar and the recipient of student paper
awards at ICASSP 2005 and ICASSP 2006.


