
Accelerated Dual Descent for Network Flow Optimization

Michael Zargham†, Alejandro Ribeiro†, Asuman Ozdaglar‡, Ali Jadbabaie†

Abstract—We present a fast distributed solution to the convex network
flow optimization problem. Our approach uses a family of dual descent
algorithms that approximate the Newton direction to achieve faster
convergence rates than existing distributed methods. The approximate
Newton directions are obtained through matrix splitting techniques and
sparse Taylor approximations of the inverse Hessian. We couple this
descent direction with a distributed line search algorithm which requires
the same information as our descent direction to compute. We show
that, similarly to conventional Newton methods, the proposed algorithm
exhibits superlinear convergence within a neighborhood of the optimal
value. Numerical experiments corroborate that convergence times are
between one to two orders of magnitude faster than existing distributed
optimization methods. A connection with recent developments that use
consensus to compute approximate Newton directions is also presented.

I. INTRODUCTION

This paper develops accelerated dual descent (ADD) algorithms

for solving the minimum convex cost network flow problem using a

limited number of local information exchanges while guaranteeing

superlinear convergence to a neighborhood of the optimum. The

convex min cost network flow problem and the study of its dual

problem are key building blocks in the study of network optimization

because they are close to combinatorial problems such as the shortest

path problem, [1, Chapter 1], [2]. Solutions to min cost network

flow problems have long been used in operations research and

transportation networks [3], [4]. In particular, see the uncapacitated

transshipment problem in [5]. Network flow problems and their

duals are also relevant to computer vision [6] and the robust routing

problem [7] where the objective is to choose a routing strategy with

minimal variance when the edges are noisy communication channels.

This research is supported by NSF CAREER CCF-0952867 and ONR BRC

N00014-12-1-0997.
†Zargham, Ribeiro and Jadbabaie are with the Department of Electri-

cal and Systems Engineering, University of Pennsylvania. Address: 200

South 33rd Street, Philadelphia, PA, 19104. Email: {zargham, aribeiro,

jadbabai}@seas.upenn.edu.
‡ Asuman Ozdaglar is with the Department of Electrical Engineering

and Computer Science, Massachusetts Institute of Technology. Address: 77

Massachusetts Avenue, Cambridge , MA 02139. Email: asuman@mit.edu.

Furthermore, the network flow problem is a key subproblem in

wireless routing and resource allocation [8]. Our formulation is also

a stepping stone for the queue stabilization problem in a capacitated

network with multiple commodity types and stochastic arrival rates,

[9], [10]. In [11], we build on [12] to characterize the effects of

incorporating capacity constraints in the minimum cost network

flow problem. In [13], we construct an accelerated backpressure

algorithm (ABP), which applies the ADD framework to solve queue

stabilization problem. ABP follows the from of backpressure but

rather than routing based on differentials in queue lengths, we route

based on differentials in queue priorities which are dual variables

computed according to ADD.

Minimum convex cost network flow problems can be solved in

a distributed manner via dual subgradient descent, [1]. Nodes keep

track of variables associated with their outgoing edges and undertake

updates based on their local variables and variables available at adja-

cent nodes. Analysis of subgradient methods for distributed convex

optimization can be found in [14] and [15] with the latter taking

into account uncertainty int he network structure. However, practical

applicability of the resulting algorithms is limited by exceedingly

slow convergence rates, [16]. An alternative distributed algorithm

based on the Gauss Seidel method is present in [17]. Like gradient

descent, Gauss Seidel is a first order method.

The natural alternative to accelerate convergence is to use sec-

ond order Newton methods [18, Algorithm 9.2], but they cannot

be implemented in a distributed manner because matrix inversion

is a global operation. Early works on Newton type methods for

network optimization are found in [19], [20]. Both of these methods,

however, are not fully distributed because they require some level

of global coordination. Efforts to overcome this shortcoming include

approximating the Hessian inverse with the inverse of its diagonals

[21] and the use of consensus iterations to approximate the Newton

step [22]. Improvements over subgradient methods can be achieved

through Nesterov type accelerated methods summarized in [23].

These methods work well when the proximal operator has a simple

closed form. To be distributed we require that the proximal operator

2

be computable using local information, which limits the convergence

rates that can be achieved. Krylov subspace methods, in particular

conjugate gradient descent can achieve second order convergence

when computed centrally, see chapter 6 of [24]. Unfortunately,

conjugate gradient and other second order Krylov subspace methods

rely heavily on inner products for an orthogonalization procedure

which leads to improved convergence rates, see chapter 9 of [25].

Even in the best case, these inner products violate the communication

limitations for this problem, for example [20].

The dual Hessian is a weighted Laplacian of the graph representing

our communication network. Using this structure we can approximate

the dual Hessian inverse using local information. Our particular

insight is to consider a Taylor’s expansion of the inverse Hessian

[26, Section 5.8], which, being a polynomial with the Hessian

matrix as variable, can be implemented through local information

exchanges. More precisely, considering only the zeroth order term

in the Taylor’s expansion yields an approximation to the Hessian

inverse based immediately available information. The first order

approximation requires information available at neighboring nodes

and in general, the N th order approximation necessitates information

from nodes located N hops away. The resultant family of ADD

algorithms permits a tradeoff between the accuracy of the Hessian

approximation and communication cost. We use ADD-N to represent

the N th member of the ADD family which uses information from

terminals N hops away. To guarantee global convergence of the

ADD-N algorithm we further introduce an approximate backtracking

line search based on the work in [27].

In Section II we introduce the convex network flow optimization

problem formally and state our assumptions. Basic results in Section

III demonstrate the effect of our assumptions on the dual formulation.

We also review dual gradient descent and dual Newtons method

before proposing the ADD algorithm in Section IV. In Section IV-B

we introduce our distributed backtracking line search algorithm. The

main result of the paper is our proof that the ADD family follows

three distinct convergence phases, found in Section V. The first two

phases are akin to the linear and quadratic phases of Newtons method

but in the terminal phase the Newton error begins to accumulate.

In Section VI, we show that ADD can be implemented using a

consensus scheme. We conduct numerical experiments in Section

VII, demonstrating that ADD-N leads to a significant reduction

in communication overhead as compared to gradient descent and

the consensus based method. We evaluate the effect of using our

distributed line search by comparing against solutions generated using

a centralized line search. Finally, in Section VII-C we implement

ADD-1 for the robust routing problem from [7] demonstrating

practical convergence times where gradient descent is considered

impractically slow.

II. PRELIMINARIES

Consider a network represented by a directed graph G = (N , E)

with node set N = {1, . . . , n}, and edge set E = {1, . . . , E}. The

network is deployed to support a single information flow specified

by incoming rates b
i

> 0 at source nodes and outgoing rates b
i

< 0

at sink nodes. Rate requirements are collected in a vector b, which

to ensure problem feasibility has to satisfy
P

n

i=1 bi = 1T b = 0. Our

goal is to determine a flow vector x = [x
e

]

e2E , with x
e

denoting the

amount of flow on edge e = (i, j). Flow conservation is enforced as

Ax = b, where A the n⇥ E node-edge incidence matrix defined

[A]

ie

=

8
>>><

>>>:

1 if edge e leaves node i,

�1 if edge e enters node i,

0 otherwise.

The Algebraic connectivity of G is the second smallest eigenvalue of

the graph Laplacian AA0. We define the penalty as a convex scalar

cost function �
e

(x
e

) denoting the cost of x
e

units of flow traversing

edge e. The convex min-cost flow network optimization problem is

then defined as

minimize f(x) =
EX

e=1

�
e

(x
e

), subject to: Ax = b. (1)

Assumption 1. The Network G has the following properties:

(a) Connected with algebraic connectivity lower bounded by a

constant !

(b) Non-bipartite

In Assumption 1(a), we quantify the ability of the network to

spread information via an algebraic connectivity bound. Assumption

1(b) that G is non-bipartite guarantees that the normalized Lapla-

cian on the G has largest eigenvalue strictly upper bounded by 2.

Due to our use of � for dual variables, we use µ(X) to denote

eigenvalues of a symmetric matrix X 2 Sn and we order them

|µ1|  |µ2|  · · ·  |µ
n

|.

Assumption 2. The objective functions �
e

(·) have the following

properties for all e:

(a) Twice continuously differentiable, strongly convex and satisfies

�  �00
e

(·)  �

September 9, 2013 DRAFT

3

(b) Lipschitz Hessian Inverse |1/�00
e

(y)� 1/�00
e

(ȳ)|  ⇠|y � ȳ|

Assumption 2 restricts the objectives the primal to those which will

yield a dual problem meeting the standard criteria for application of

Newton’s method, [18][Chapter 9.5]. These assumptions are sufficient

for convergence but are not necessary. Restricting to this case allows

us to focus on the core mechanisms of a Newton type method. For

analysis of relaxations on these conditions, the reader is directed to

[28] and [29].

III. NETWORK OPTIMIZATION

In this work we focus our attention on solutions in the dual domain.

Computing the Lagrange dual of a convex minimization with equality

constraints yields maximization of a concave function. In the case of

(1) the Lagrange dual is given by

max

�

f(x(�))� �0
(Ax(�)� b) (2)

where the primal optimizers of the Lagrangian are defined

x(�) = argmin

x

f(x)� �0
(Ax� b). (3)

Due to the separability of the objective f(x) =

P
e

�
e

(x
e

) and

Assumption 2 we can compute the flow on edge e = (i, j) directly

from the dual variables at node i and j according to

x
e

(�) = (�0
e

)

�1
(�i � �j

). (4)

Superscript notation, �i is used for elements of the vector � 2 Rn.

The subscript is reserved for the time index k, introduced in the

next subsection. For notational convenience we cast the dual as

minimization

min

�

q(�) = �0
(Ax(�)� b)� f(x(�)) (5)

by minimizing the negation of the objective in (2). From this point

on we will consider solutions to the dual problem (5) and use (4) to

compute the associated primal optimal variables. To further proceed

we outline the consequences of Assumptions 1 and 2 with regards to

the dual problem, (5).

Lemma 1. The dual objective q(�) = �0
(Ax(�)�b)�f(x(�)) has

the following properties.

(a) The dual Hessian is the weighted Laplacian

r2q(�) = A[r2f(x(�))]�1A0,

(b) is strongly convex on the subspace 1? and satisfies

1

M
v0v  v0r2q(�)v  1

m
v0v 8v 2 1?,

(c) and is a Lipschitz function of �, i.e.,

||r2q(�)�r2q(¯�)||  L||�� ¯�||.

Proof: See Appendix A for the proof of Lemma 1.

Lemma 1 recovers the key assumptions of Newton’s Method

defined in [18, Section 9.5], for the problem defined in (5). These

results are direct consequences of Assumptions 1 and 2.

A. Gradient Descent

The benchmark distributed solution to (1) is the dual subgradient

method. In our problem q(�) is differentiable so we have access to the

gradient g(�) = rq(�). Consider an iteration index k, an arbitrary

initial vector �0 and define iterates �
k

generated by the following

recursion

�
k+1 = �

k

� ↵
k

g
k

for all k � 0, (6)

where g
k

= g(�
k

) = rq(�
k

) denotes the gradient of the dual

function q(�) at � = �
k

. A first important observation here is that we

can compute the gradient as g
k

= Ax(�
k

)�b with the vector x(�
k

)

having components x
e

(�
k

) as determined by (4) with � = �
k

, [30,

Section 6.4]. A second important observation is that because of the

sparsity pattern of the node-edge incidence matrix A the ith element

[g
k

]

i

of the gradient g
k

can be computed as

[g
k

]

i

=

X

e=(i,j)

x
e

(�
k

)�
X

e=(j,i)

x
e

(�
k

)� b
i

(7)

The algorithm in (6)-(7) lends itself to distributed implementation.

Each node i maintains information about its dual iterates [�
k

]

i

and primal iterates x
e

(�
k

) of outgoing edges e = (i, j). Gradient

components [g
k

]

i

are evaluated as per (7) using local primal iterates

x
e

(�
k

) for e = (i, j) and primal iterates of neighboring nodes

x
e

(�
k

) for e = (j, i). Dual variables are then updated as per (6). We

proceed to update primal variables as per (4). This update necessitates

local multipliers [�
k

]

i

and neighboring multipliers [�
k

]

j

.

Distributed implementation is appealing because it avoids the cost

and fragility of collecting all information at a centralized location.

However, practical applicability of gradient descent algorithms is

hindered by slow convergence rates; see e.g., [31], [32].

B. Newton’s Method

The Newton method is a scaled version of gradient descent. In lieu

of (6) iterates are given by

�
k+1 = �

k

+ ↵
k

d
k

for all k � 0, (8)

September 9, 2013 DRAFT

4

where d
k

is the Newton direction at iteration k and ↵
k

is a properly

selected step size. The Newton direction,

H
k

d
k

= �g
k

, (9)

where H
k

= H(�
k

) = r2q(�
k

) is the Hessian of the dual function.

From Lemma 1(a) we have

H
k

= A[r2f(x(�
k

))]

�1A0. (10)

From the definition of f(x) in (1) it follows that the primal Hessian

r2f(x
k

) is a diagonal matrix. From Assumption 1(a) we know

[r2f(x
k

)]

�1 exists and can be computed locally because it is di-

agonal. From Lemma 1(a) we know that H
k

is a weighted Laplacian

of the connected graph G and thus has rank n�1 and zero eigenvalue

associate with the eigenvector 1. Since g
k

2 1?, the pseudo inverse

can be used to exactly compute the Newton direction

d
k

= �H†
k

g
k

. (11)

However, the pseudoinverse H†
k

is a dense matrix and computing d
k

requires global information. We are therefore interested in approxi-

mations of the Newton direction requiring local information only.

IV. ACCELERATED DUAL DESCENT

To define an approximate Newton direction, i.e., one for which

(9) is approximately true, we consider a finite number of terms of a

suitable Taylor’s expansion representation of the Newton direction. In

order to proceed with this approach we first define a matrix splitting.

Definition 1. Define the Matrix Splitting H
k

= D
k

� B
k

, where

diagonal matrix D
k

is constructed

[D
k

]

ii

= 2[H
k

]

ii

8i 2 V (12)

and the matrix B
k

is

[B
k

]

ii

= [H
k

]

ii

8i and [B
k

]

ij

= �[H
k

]

ij

8i, j. (13)

This splitting is motivated by the fact that the product

D
�1/2
k

B
k

D
�1/2
k

= 1/2(I + P) closely similar to a lazy random

walk on G, [33, Chapter 1] because 2D
�1/2
k

PD
1/2
k

is a random

walk matrix with no self-loops. Using the lazy random walk which

consists of adding self loops and rescaling the weights, removes

any periodicity that would arise on the random walk. An important

consequence is that B
k

is nonnegative and has eigenvalues in [0, 1].

These properties come from the fact that H
k

is a weighted graph

Laplacian as shown in Lemma 1(a). The Laplacian structure and

connectedness of G also guarantee that D
k

is positive definite because

the diagonals of H
k

must be positive. With our splitting, we can

rewrite the Hessian as

H
k

= D
1
2
k

✓
I �D

� 1
2

k

B
k

D
� 1

2
k

◆
D

1
2
k

. (14)

The Hessian pseudo-inverse is given by H†
k

=

D
� 1

2
k

✓
I �D

� 1
2

k

B
k

D
� 1

2
k

◆†

D
� 1

2
k

. For the central term of

this product we can use the Taylor’s expansion identity

(I � X)

†v =

�P1
i=0 X

i

�
v, which is valid for any vector v

orthogonal to the unstable eigenvectors of X , [26, Chapter 5].

In our case the Laplacian structure of H and Assumption 1(b)

guarantee that �1 < µ(D
� 1

2
k

B
k

D
� 1

2
k

)  1, [33, Chapter 1] so we

are restricted to the n � 1 dimensional subspace orthogonal to 1.

Fortunately g
k

is orthogonal to 1 so we define the approximate

Newton direction as a truncated Taylor expansion.

Definition 2. We define the Approximate Newton Direction

d
(N)
k

= �
NX

r=0

D
� 1

2
k

✓
D

� 1
2

k

B
k

D
� 1

2
k

◆
r

D
� 1

2
k

g
k

(15)

and the Approximate Hessian Inverse on 1?

¯H
(N)
k

=

NX

r=0

D
� 1

2
k

✓
D

� 1
2

k

B
k

D
� 1

2
k

◆
r

D
� 1

2
k

(16)

which naturally arises from the form of our approximate Newton

direction.

The approximate Newton algorithm is obtained by replacing the

Newton step d
k

in (8) by its approximations d
(N)
k

= � ¯H
(N)
k

g
k

. The

resultant algorithm is characterized by the iteration

�
k+1 = �

k

� ↵
k

¯H
(N)
k

g
k

. (17)

The choice of N in (15) dictates how much information node i needs

from the network to compute the ith element of the approximate

Newton direction d
(N)
k

– recall that node i is associated with dual

variable [�
k

]

i

.

For the zeroth order approximation d
(0)
k

only the first term of

the sum in (15) is considered and it therefore suffices to have

access to the information in D
k

to compute the approximate New-

ton step. Notice that the approximation in this case reduces to

d
(0)
k

= D�1
k

g
k

implying that we approximate H�1
k

by the inverse

diagonals which coincides with the method in [21]. The first order

approximation d
(1)
k

uses the first two terms of the sum in (15) yielding

d
(1)
k

=

�
D�1

k

+D�1
k

B
k

D�1
k

�
g
k

. The key observation here is that

the sparsity pattern of B
k

; it is a weighted adjacency matrix. As

a consequence, to compute the ith element of d
(1)
k

node i needs

September 9, 2013 DRAFT

5

to collect information that is either locally available or available at

nodes that share an edge with i. For the second order approximation

d
(2)
k

we add the term
�
D�1

k

B
k

�2
D�1

k

to the approximation d
(1)
k

.

The sparsity pattern of
�
D�1

k

B
k

�2
D�1

k

is that of B2
k

, which has

nonzero entries matching the 2-hop neighborhoods of each node.

Therefore, to compute the ith element of d(2)
k

node i requires access

to information from neighboring nodes and from neighbors of these

neighbors. In general, the N th order approximation adds a term of

the form
�
D�1

k

B
k

�
N

D�1
k

to the N � 1st order approximation. The

sparsity pattern of this term is that of BN

k

, which coincides with the

N -hop neighborhood, and computation of the local elements of the

Newton step necessitates information from N hops away. We thus

interpret (15) as a family of approximations indexed by N that yields

Hessian approximations requiring information from N -hop neighbors

in the network. This family of methods offers an explicit trade off

between communication cost and precision of the Newton direction.

We analyze convergence properties of these methods in the coming

sections.

A. Basic properties

A basic guarantee for any iterative optimization algorithm is to

show that it eventually approaches a neighborhood of the optimal

solution. This is not immediate for ADD as defined by (17) because

the errors in the ¯H
(N)
k

approximations to H†
k

may be significant.

Notwithstanding, it is possible to prove that the ¯H
(N)
k

approximations

are positive definite for all N and from there to conclude that the �
k

iterates in (17) eventually approach a neighborhood of the optimal

�⇤. This claim is summarized in the following theorem, for proof

see [30, Proposition A.24].

Theorem 1. Let �⇤ denote the optimal argument of the dual function

q(�) of the optimization problem in (1) and consider the ADD-

N algorithm characterized by iteration (17) with ¯H
(N)
k

as in (15).

Assume ↵
k

= ↵ for all k and that the network graph is not bipartite.

Then, for all sufficiently small ↵,

lim

k!1
�
k

= �⇤. (18)

By continuity of (4), convergence of the dual variable to an error

neighborhood implies convergence of the primal variables to an

error neighborhood. Theorem 1 is the weakest convergence proof

we present but it is included because it serves as a benchmark for

algorithm performance. Also, Theorem 1 uses a fixed step size which

in many applications of interest is more practical than implementing

a line search method.

Definition 3. We define the Newton Error to be

✏
k

= H
k

d
(N)
k

+ g
k

. (19)

This is a measure of the deviation from true Newton direction

because H
k

d
k

= �g
k

[cf. (9)] where d
k

is the true Newton

direction, which is equivalent to having ✏
k

= 0 in (19). Therefore, the

Newton step approximation error ✏
k

quantifies the deviation of the

approximate Newton steps d
(N)
k

with respect to the actual Newton

step d
k

. An important property of ADD-N is that the deviation ✏
k

can be bounded for an arbitrary network and a given N . This fact is

proven in the following lemma.

Lemma 2. Define ⇢̄ 2 (0, 1) such that ⇢̄ > |µ
n�1

�
B

k

D�1
k

�
| is

a uniform upper bound on the second largest eigenvalue modulus

of B
k

D�1
k

. Then, the norms of the Newton approximation errors ✏
k

defined in (19) satisfy

k✏
k

k  ⇢̄N+1kg
k

k. (20)

Proof: We begin eliminating the summation from our expression

of the Newton error by observing that a telescopic property emerges.

H
k

d
(N)
k

+ g
k

= H
k

�

NX

i=0

�
D�1

k

B
k

�
i

D�1
k

g
k

!
+ g

k

=

I � (D

k

�B
k

)

NX

i=0

�
D�1

k

B
k

�
i

D�1
k

!
g
k

=

I �

NX

i=0

(B
k

D�1
k

)

i � (B
k

D�1
k

)

i+1

!
g
k

= (B
k

D�1
k

)

N+1g
k

We introduce the matrix V 2 Rn⇥n�1, made up of n� 1 orthonor-

mal columns spanning 1?. We observe that V V 0
= I

n

� 110

n

,

and since g 2 1? we have g = V V 0g. Our descent occurs

in 1? so we restrict our analysis to this subspace. Recall that

|µ
n�1(X)| is the second largest eigenvalue modulus of the matrix

X . We have kV 0
(B

k

D�1
k

)

N+1g
k

k = kV 0
(B

k

D�1
k

)

N+1V V 0g
k

k 

kV 0
(B

k

D�1
k

)

N+1V kkV 0g
k

k  |µ
n�1

�
B

k

D�1
k

�
|N+1 kg

k

k from

the triangle inequality. Lemma 1[b] tells us that H
ii

 1/m = n/�

by choosing v such that v
i

= 1 and v
j

= 0 for all j 6= i. Using

the fact that
P

j

B
ij

= H
ii

and the eigenvalue bound from [34] we

have

|µ
n�1

�
B

k

D�1
k

�
|  1� �

n2
(1 + diam(G)) (21)

where diam(G) is the diameter of the graph G. and we Equation (21)

shows by construction that there exists one such bound ⇢̄ 2 (0, 1),

September 9, 2013 DRAFT

6

completing the proof.

Lemma 2 establishes the eigenvalue bound ⇢̄ as a key coefficient

capturing the ability of information to spread through the network.

Its appearance is natural because the accuracy of our local approx-

imations to the Newton step depend on the network’s ability to

percolate information. Another key observation about Lemma 2 is

that the Newton step approximation error is proportional to the norm

of the dual gradient. Another way to interpret Lemma 2 is to observe

that the relative Newton error ||✏
k

||/||g
k

|| is at worst a constant.

Since the dual gradient norm kg
k

k tends to zero as we approach

the dual optimum argument, the approximation error norm k✏
k

k also

approaches zero as iterations progress towards the optimum.

Analysis of the Newton’s method takes advantage of the condition-

ing assumption in Assumption 1(a) by using the inverse eigenvalue

bounds

mv0v  v0H(�)†v  Mv0v 8v 2 1?. (22)

Since we do not use the exact pseudo inverse we need to prove that

these bounds hold for our approximate Hessian inverse.

Lemma 3. The approximate inverse Hessian remains well condi-

tioned in the subspace 1?. I.e., for given ADD family index N and

dual variable � it holds that for all vectors v 2 1?

m

2

v0v  v0 ¯H(N)
(�)v  Mv0v (23)

for any � where m and M are defined in Lemma 1(b).

Proof: Consider the definition of ¯H
(N)
k

in equation (16) along

with the Taylor expansion of the pseudoinverse with v in the

invertible subspace 1?

v0H†
k

v = v0

¯H
(N)
k

+

1X

r=N+1

D
� 1

2
k

✓
D

� 1
2

k

B
k

D
� 1

2
k

◆
r

D
� 1

2
k

!
v.

(24)

Since each term D
� 1

2
k

✓
D

� 1
2

k

B
k

D
� 1

2
k

◆
r

D
� 1

2
k

is positive semidefi-

nite due to our splitting choice in Definition 1 we have

v0H†
k

v � v0 ¯H
(N)
k

v (25)

and from (3) we achieve the desired upper bound. Again consider

the definition of ¯H
(N)
k

in equation (16), this time removing the first

term from the sum

v0 ¯H
(N)
k

v = v0D�1
k

v + v

NX

r=1

D
� 1

2
k

✓
D

� 1
2

k

B
k

D
� 1

2
k

◆
r

D
� 1

2
k

!
v.

(26)

Since each turn in the sum is positive semidefinite from our splitting

choice in Definition 1 we have

v0 ¯H
(N)
k

v � v0D�1
k

v. (27)

Recall that [D
k

]

ii

= 2[H
k

]

ii

. From Assumption 1(b) tells us

[H
k

]

ii

= I(i)0H
k

I(i)  1/m where I(i) is the indicator vector

for node i. Inverting [D
k

]

�1
ii

= 1/2[H
k

]

�1
ii

� m/2 and subbing into

(27), we recover the desired lower bound.

Lemma 3 guarantees uniform conditioning and strong convexity

of our approximate Hessian inverse on the subspace in which we are

descending. In fact, this property holds for vectors in the span of 1

as well but since we restrict our descent to the subspace 1?, we only

need it to hold within that subspace. This result guarantees that the

conditioning of the approximate Hessian inverse is at most a factor

of 2 worse than the conditioning of the Hessian itself.

B. Distributed backtracking line search

Algorithms ADD-N for different N differ in their information de-

pendence. Our goal is to develop a family of distributed backtracking

line searches parameterized by the same N and having the same

information dependence. The idea is that the N th member of the

family of line searches is used in conjunction with the N th member

of the ADD family to determine the step and descent direction in

(17). As with the ADD-N algorithm, implementing the distributed

backtracking line search requires each node to get information from

its N -hop neighbors.

Centralized backtracking line searches are typically intended as a

method to find a stepsize ↵ that satisfies Armijo’s rule. This rule

requires the stepsize ↵ to satisfy the inequality

q(�+ ↵d)  q(�) + �↵d0g, (28)

for given descent direction d and search parameter � 2 (0, 1/2). The

backtracking line search algorithm is then defined as follows.

Algorithm 1. Consider the objective function q(�) and given

variable value �
k

and a descent direction d
k

and dual gradient

g
k

= rq(�
k

). The backtracking line search algorithm is:

Initialize ↵ = 1

while q(�
k

+ ↵d
k

) > q(�
k

) + �↵d0
k

g
k

↵ = ↵�

end

The scalars � 2 (0, 1) and � 2 (0, 1/2) are given parameters.

This line search algorithm is commonly used with Newton’s

method because it guarantees a strict decrease in the objective and

September 9, 2013 DRAFT

7

once in an error neighborhood it always selects ↵ = 1 allowing for

quadratic convergence, [18, Section 9.5].

In order to create a distributed version of the backtracking line

search we need a local version of the Armijo rule. We start by

decomposing the dual objective q(�) =
P

n

i=1 qi(�) where the local

objectives q
i

(�) are defined as

q
i

(�) =
X

e=(j,i)

��
e

(x
e

(�)) + �
i

(a0
i

x(�)� b
i

), (29)

where the vector a0
i

denotes the ith row of the incidence matrix A.

Observe that according to (29) and the sparsity pattern of A the local

objective q
i

(�) depends only on the local dual variable �
i

and flow

variables x
e

for links adjacent to i.

Leveraging the definition in (29), we define an N -parameterized

local Armijo rule.

Definition 4. Define the Local Armijo Rule to be the condition that

step size ↵
i

must satisfy

q
i

(�+ ↵
i

d)  q
i

(�) + �↵
i

X

j2N (N)
i

d
j

g
j

, (30)

for all i where N (N)
j

is the set of N -hop neighbors of node j, the

scalar � 2 (0, 1/2) is the same as in (28), g = rq(�) and d is a

descent direction.

Each node is able to compute its own step size ↵
i

satisfying

(30) using information from its N -hop neighborhood. we define

a distributed backtracking line search according to the following

algorithm.

Algorithm 2. Given local objectives q
i

(�
k

) satisfying
P

i

q
i

(�
k

) =

q(�
k

), descent direction d
k

and dual gradient g
k

= rq(�
k

).

for i = 1 : n

Initialize ↵
i

= 1

while q
i

(�+ ↵
i

d) > q
i

(�) + �↵
i

P
j2N (N)

i
[d

k

]

j

[g
k

]

j

↵
i

= ↵
i

�

end

end

The scalars � 2 (0, 1), � 2 (0, 1/2) and N 2 Z+ are given

parameters.

The distributed backtracking line search described in Algorithm 2

works by allowing each node to execute its own modified version of

Algorithm 1 using only information from N -hop neighbors. The ↵
i

’s

generated by Algorithm 2 are not a traditional step size because in

general it does not preserve the descent direction. To use Algorithm

2 with the ADD method we need to restate the ADD-N iteration as

�
k+1 = �

k

�A
k

¯H
(N)
k

g
k

(31)

where A
k

is a diagonal matrix containing the steps ↵
i

at time k. This

would appear to undo the benefit of using an approximate Newton

descent direction but in fact we are guaranteed to to make progress

toward the optimal as long as we are outside a neighborhood of the

optimal. Once inside that neighborhood A
k

= I which recovers the

update in (17) with a step size equal to ↵
k

= 1. These analytical

results will be proven in the following section.

V. CONVERGENCE RATE

The basic guarantee in Theorem 1 is not stronger than convergence

results for gradient descent. Our goal is to show that the approximate

Newton method in (17) combined with the distributed line search

in Algorithm 2 exhibits global convergence and local quadratic

convergence once sufficiently close to the optimum. These properties

are akin to corresponding properties of centralized (exact) Newton

algorithms and are presented in the following theorem.

Theorem 2. Consider an ADD-N algorithm with iterates �
k

as

defined by (31) with approximate Newton step H
(N)
k

g
k

as in (15) for

given N . The step size A
k

is selected according to the approximate

backtracking line search defined in Algorithm 2 with parameters

� 2
✓
0,

1 + 2⇢̄N+1

6

◆
(32)

and � 2 (0, 1). Define the constant ⇢̄ > ⇢
�
B

k

D�1
k

�
2 (0, 1) as

a uniform upper bound on the largest eigenvalue modulus of the

product of splitting matrices D
k

�B
k

= H
k

. With the conditioning

constants m and M and the Lipschitz constant L as defined in Lemma

1:

(i) Strict Decrease Phase. For gradient at iteration k satisfying

kg
k

k > ⌘ :=

3 (1� 2�)

LM2
(33)

the dual objective is reduced by at least 1
2�↵̂mN⌘2, i.e.,

q(�
k+1)  q(�

k

)� 1

2

�↵̂mN⌘2. (34)

(ii) Quadratic Phase. For gradient at iteration k satisfying

2

�
1� ⇢̄N+1

�

LM2
< kg

k

k  3 (1� 2�)

LM2
(35)

the gradient norm the ADD-N algorithm converges quadratically, i.e.,

kg
k+1k <

LM2

2 (1� ⇢̄N+1
)

kg
k

k2. (36)

September 9, 2013 DRAFT

8

(iii) Terminal Phase. For gradient at iteration k satisfying

kg
k

k 
2

�
1� ⇢̄N+1

�

LM2
(37)

the ADD-N algorithm satisfies kg
k+1k  kg

k

k and thus remains in

within the neighborhood. Further progress may be made but is not

guaranteed.

According to Theorem 2, ADD-N algorithms exhibit three conver-

gence phases with boundaries between them occurring over ranges

of the norm of the dual gradient kg
k

k. The first phase occurs when

the gradient norm is greater than 3 (1� 2�)/LM2, during which

there is a strict decrease in the dual objective. This strict decrease

guarantees that the second phase is reached. The second and third

phases are characterized by a step size selection A
k

= I [c.f.

(31)] or equivalently ↵
k

= 1 [c.f. (17)]. Our restriction that the

� 2 (1, (1 + 2⇢̄N+1
)/6) is used to guarantee we do not skip the

second phase and go straight to the third phase. During the second

phase the residual, ||g
k

|| decreases quadratically implying that the

accuracy of �
k

as an approximation of �⇤ improves rapidly. The

quadratic decrease in the residual during the second phase implies

that the third and terminal phase is eventually reached. When the

gradient norm reaches 2

�
1� ⇢̄N+1

�
/LM2 convergence of ADD-N

slows down to a linear rate or can in rare cases stop. The first two

phases parallel corresponding phases for the canonical centralized

Newton Method, [18, Chapter 9]. The third phase is unique to

ADD-N. It corresponds to a situation in which the errors in the

approximation H
(N)
k

g
k

of the Newton step H
k

g
k

become comparable

to the value of the step itself. Notice that while the errors in the

Newton step slow down the convergence rate, they generally do not

halt the progress of ADD-N towards null residual.

The complete proof of Theorem 2 is presented in sections V-A and

V-B. Section V-A starts with a generalization of the descent lemma

[30, Section A.5] and analyzes the distributed backtracking line

search of Section IV-B to prove the existence of the strict decrease

phase of Part (i). In Section V-B we characterize the conditions for

quadratic convergence, which we leverage to prove parts (ii) and (iii).

These results do not require the distributed line search as they simply

require a fixed stepize ↵ = 1 which in the case of the distributed

line search is guaranteed.

Remark 1. Theorem 2 tells us that network structure affects the

performance of ADD-N algorithms through the eigenvalue bound

⇢̄ > ⇢
�
B

k

D�1
k

�
because the residual range during which ADD-

N experiences quadratic convergence is lower bounded by kg
k

k <

⇢̄N+1. For small ⇢̄ this range is significant. As ⇢̄ approaches 1,

however, this range shrinks thereby slowing the overall convergence

rate. Thus, it is fair to say that ADD-N works well in networks with

small ⇢̄ while networks with large ⇢̄ are difficult in that they require

larger N to experience the same rate of convergence. From the bound

in (21) we can infer topological conditions for this to happen. This

bound approaches 1 if some of the following situations happen: (i)

The number of nodes n is large. (ii) The graph diameter diam(G) is

large. (iii) While not directly obvious from (21), its derivation from

[34] indicates that ⇢̄ tends toward 1 when then network has large

maximum degree, �(G).

Poor performance for large n and large diam(G) matches the

intuition that convergence towards �⇤ necessitates propagation of

information through the network. Poor performance for large �(G)

is counterintuitive but not incongruous with results on consensus on

scale free networks, [35]. For a graph of fixed size n the network

structure for which the bound in (21) is smallest is the one with the

minimum product �(G)diam(G) of maximum degree and diameter.

Small world networks [36] have small degree and small diameter

by design. It has already being observed that networks which have

simultaneously low diameter and low maximum degree have desirable

properties in engineered systems, such as fault tolerance and algebraic

connectivity, [37].

A. Strict Decrease Phase – Proof of Theorem 2, part (i)

Traditional analysis of the centralized backtracking line search of

Algorithm 1 leverages a lower bound on the stepsize ↵ to prove

strict decrease. We take a similar approach here and begin by finding

a global lower bound on the stepsize ↵̂  ↵
i

that holds for all nodes

i. Before proceeding with the Lemma, we define some additional

notation. The locally observable gradient vector at node i is given by

[g̃
(i)
k

]

j

=

8
<

:
[g

k

]

j

if j 2 N (N)
i

0 else
(38)

where N (N)
i

is the extended neighborhood of node i including all

N hop neighbors. Further define the local update vector

˜d
(i)
k

= � ¯H
(N)
k

g̃
(i)
k

(39)

and finally define a reduced Hessian r2q
i

(�) = ˜H(i)
(�) by setting

to zero the rows and columns corresponding to nodes outside of the

September 9, 2013 DRAFT

9

neighborhood N (N)
i

,

h
˜H(i)

(�)
i

sj

=

8
<

:
[H(�)]

sj

if s, j 2 N (N)
i

0 else
. (40)

Since the elements of H already satisfy H
ij

= 0 for all i, j 62 E the

resulting ˜H(i) has the structure of a principal submatrix of H with

the deleted rows left as zeros.

Lemma 4. Consider the distributed line search in Algorithm 2 with

parameter N , starting point � = �
k

, and descent direction d =

d
(N)
k

= � ¯H
(N)
k

g
k

computed by the ADD-N algorithm [cf. (15)].

The stepsize

↵̂ = (1� �)
m2

M2

satisfies the local Armijo rule in (30), i.e.,

q
i

(�
k+1)  q

i

(�
k

) + �↵̂
X

j2N (N)
i

[d
k

]

j

[g
k

]

j

for all network nodes i and all k.

Proof: See Appendix B.

According to Lemma 4 we have

q
i

(�
k+1)� q

i

(�
k

)  ↵̂�g̃
(i)
k

0
˜d(i)

because ↵̂ is a lower bound on ↵
i

. Therefore, Algorithm 2 exits with

↵ 2 (�↵̂, ↵̂) and any ↵  ↵̂ satisfies the exit condition in (30)

therefore

q
i

(�
k+1)� q

i

(�
k

)  �↵̂�g̃
(i)
k

0
˜d(i).

Applying Lemma 3 with the definition of ˜d(i) we get

q
i

(�
k+1)� q

i

(�
k

)  ��↵̂�m

2

kg̃(i)
k

k2. (41)

Summing over all i and applying
P

n

i=1 qi(�) = q(�), we have

q(�
k+1)� q(�

k

)  ��↵̂�m

2

nX

i=1

kg̃(i)
k

k2. (42)

Using the definition of the 2-norm we can write
P

n

i=1 kg̃
(i)k2 =

P
i=1

P
j2N (N)

i
[g

k

]

2
j

. Counting the appearance of each [g
k

]

2
j

term

in this sum we have that
P

i=1

P
j2N (N)

i
[g

k

]

2
j

=

P
i=1 |N

(N)
i

|[g
k

]

2
i

.

Since the network is connected it must be |n(N)
i

| � N , from which

it follows
P

i=1

P
j2n

(N)
i

[g
k

]

2
j

� N
P

n

i=1[gk]
2
i

. Substituting this

expression into (42) yields

q(�
k+1)� q(�

k

)  ��↵̂�mN

2

nX

i=1

[g
k

]

2
i

Observe now that
P

n

i=1[gk]
2
i

= kg
k

k2 and substitute the lower

bound ⌘ < kg
k

k to obtain the desired relation. This completes the

proof of Theorem 2 part (i).

B. Quadratic and Terminal Convergence Phases – Proof of Theorem

2, parts (ii) and (iii)

The result in Theorem 2 part (i) guarantees global convergence

into any error neighborhood kg
k

k  ⌘ around the optimal value

because the dual objective is strictly decreasing by, at least, the

noninfinitesimal quantity �↵̂�mN⌘2/2 while we remain outside of

this neighborhood. In particular, we are guaranteed to reach a point

inside the neighborhood kg
k

k  ⌘ = 3 (1� 2�) /(LM2
). Once this

condition is met, we show that convergence towards the optimum is

quadratic. The first step in proving that result is to show that step

size A
k

= I is always selected as claimed in the following lemma.

Lemma 5. Consider the distributed line search in Algorithm 2 with

parameter N , starting point � = �
k

, and descent direction d =

d
(N)
k

= � ¯H
(N)
k

g
k

. If the search parameter � is chosen such that

� 2
✓
0,

1

2

◆

and the norm of the dual gradient satisfies

kg
k

k  3

LM2
(1� 2�) ,

then Algorithm 2 selects stepsize ↵
i

= 1 for all i.

Proof: See Appendix C.

To complete the proof we return to the ADD-N update in (17)

and set A
k

= 1. With this restriction we derive a generalization

of the descent lemma that allows us to capture the impact of the

approximation of the Newton direction on the convergence rate.

Lemma 6. Consider an ADD-N algorithm with iterates �
k

as defined

by (17), approximate Newton step H
(N)
k

g
k

as in (31), and stepsize

A
k

= I . The norm of the dual gradient kg
k

k is reduced at each

iteration according to the relation

kg
k+1k  LM2

2

kg
k

k2 + ⇢̄N+1kg
k

k (43)

where the Lipshitz constant, L and strict convexity coefficient, M

are defined in Lemma 1 and ⇢̄ is a uniform bound eigenvalue bound

defined in (21).

Proof: Consider the gradient norm kg
k+1k at iteration k+1 and

the definition of the Newton step approximation error ✏
k

= H
k

d
(N)
k

+

g
k

at iteration k as given in (19). We can then write

kg
k+1k = kg

k+1 + ✏
k

�H
k

d
(N)
k

� g
k

k,

because the last three terms in the right hand side cancel each other

September 9, 2013 DRAFT

10

out. Apply now the triangle inequality to write

kg
k+1k  kg

k+1 � g
k

�H
k

d
(N)
k

k+ k✏
k

k.

The expression kg
k+1 � g

k

� H
k

d
(N)
k

k can be rewritten as the

integral k
R 1

0

⇣
H(�

k

+ td
(N)
k

)�H(�
k

)

⌘
d
(N)
k

k using the definitions

of g
k

and H
k

as the gradient and Hessian of the dual object q(�
k

)

defined in (51). By Lipschitz continuity as required in Lemma 1, this

expression is less than L/2kd(N)
k

k2, yielding

kg
k+1k  L/2kd(N)

k

k2 + k✏
k

k.

To bound the first term in the expression above consider the definition

of the approximate Newton step d
(N)
k

= �H
(N)
k

g
k

in (19) combined

with (22) to get kd
k

k < Mkg
k

k. We conclude that

kg
k+1k  LM2

2

kg
k

k2 + k✏
k

k.

To complete the proof just observe that according to Lemma 2 the

error norm k✏
k

k is bounded above by ⇢̄N+1kg
k

k.

Lemma 6 shows that the reduction in the dual gradient at each iter-

ation, (62) has a linear term and a quadratic term. The first (quadratic)

term is the same term that appears in the analysis of Newton’s

method, [18, Chapter 9]. The second (linear) term corresponds to

the error in the step approximation due to the truncation of the series

in (15). Since ⇢̄ < 1 the coefficient of the linear term can be made

small with respect to that of the quadratic term for suitably selected

N .

Parts (ii) and (iii) of Theorem 2 are simple characterizations of the

values of the dual gradient kg
k

k for which the quadratic and linear

terms dominate (62), respectively. Let us begin by characterizing the

quadratic phase. Applying Lemma 6 we observe that when 2(1 �

⇢̄N+1
)/LM2 < kg

k

k, we can rewrite the relation from Lemma 6 as

kg
k+1k <

LM2

2

kg
k

k2 + LM2

2

⇢̄N+1

1� ⇢̄N+1
kg

k

k2, (44)

Simplifying algebraically we have

kg
k+1k <

LM2

2(1� ⇢̄N+1
)

kg
k

k2, (45)

which coincides with the relationship in (36) that corresponds to the

claim in Part (ii) of Theorem 2. We claim quadratic convergence be-

cause substituting 2(1� ⇢̄N+1
)/LM2 < kg

k

k into (45)we guarantee

that that ||g
k+1|| < ||g

k

||. Finally in order guarantee the quadratic

phase is realized we require that

2(1� ⇢̄N+1
)

LM2
<

3(1� 2�)

LM2

which is achieved by limiting the line search parameter to � 2

(0, 1/6 + ⇢̄N+1/3).

For the terminal phase we consider kg
k

k  2(1 � ⇢̄N+1
)/LM2

and subbing into (43) and simplifying we have

||g
k+1|| 

LM2

2

2(1� ⇢̄N+1
)

LM2
kg

k

k+ ⇢̄N+1kg
k

k = kg
k

k (46)

which coincides with the relationship in Part (iii) of Theorem 2. We

observe that the terminal phase does not guarantee further progress

towards the optimal. It does guarantee that we stay within the

neighborhood kg
k

k  2(1 � ⇢̄N+1
)/LM2 but in practice we do

not observe any cessation of progress in our numerical experiments;

see Section VII.

VI. CONSENSUS IMPLEMENTATION

We formulate ADD-N as a finite step analogue to the Consensus-

Based Newton in [22] where we use the lazy random walk splitting

in place of the splitting presented in that work. Defining a consensus

scheme to solve the Newton equation, (9) we have the following

update

d
(r+1)
k

= D�1
k

B
k

d
(r)
k

�D�1
k

g
k

(47)

where the splitting H
k

= D
k

� B
k

is the splitting from Definition

1. In this case we can limit communication costs by iteratively

sharing information with 1-hop neighbors, rather than needing to

send information to entire N -hop neighborhoods directly. Choosing

the initial value to be d
(0)
k

= �D�1
k

g
k

results in a sequence of

approximations of the Newton direction as follows

d
(0)
k

= �D�1
k

g
k

= � ¯H
(0)
k

g
k

d
(1)
k

= D�1
k

B
k

(�D�1
k

g
k

)�D�1
k

g
k

= � ¯H
(1)
k

g
k

...

d
(R)
k

= �
RX

r=0

D
� 1

2
k

(D
� 1

2
k

B
k

D
� 1

2
k

)

rD
� 1

2
k

g
k

= � ¯H
(R)
k

g
k

We observe that after R consensus iterations our approximation d
(R)
k

is the same approximation arrived at by using ADD-N with N = R.

VII. NUMERICAL RESULTS

We use numerical experiments to verify the practicality of the

ADD-N algorithm. Our first key result is that the ADD-N algorithm

requires significantly fewer iterations to converge than the gradient

algorithm, [14] and can be executed with much smaller communi-

cation overhead than the consensus based Newton algorithm, [22].

The second is that the distributed line search method outlined in

Algorithm 2 can be substituted for Algorithm 1 without loss of

September 9, 2013 DRAFT

11

100 101 102 103 104 105102

103

104

local information exchanges

f(x
)

Algorithm Progress with respect to Inter−node Communication

100 101 102 103 104 10510−20

10−10

100

1010

local information exchanges

||A
x−

b|
|

Gradient
Consensus
ADD−0
ADD−1
ADD−2
ADD−3

Fig. 1. Primal objective (top), f(x
k

) and primal feasibility (bottom),

kAx

k

� bk with respect to number of local information exchanges for a

sample network optimization problem with 25 nodes and 75 edges. ADD

converges an order of magnitude faster than consensus-based Newton and

two orders of magnitude faster than gradient descent.

performance when using the ADD-N algorithm to select a descent

direction. Finally, we consider the robust routing problem proposed in

[7] and demonstrate that our framework not only solves this problem

but that ADD-1 outperforms gradient descent by upwards of 2 orders

of magnitude.

A. Parameter Selection and Communication Overhead

Figure 1 shows convergence metrics for a randomly generated net-

work with 25 nodes and 75 edges. Edges in the network are selected

uniformly at random. The flow vector b is chosen to place sources a

full diam(G) from the single sink. We use �
e

= exp(�x
e

)+exp(x
e

)

as our objective function. We show results for ADD-0 through ADD-

3, gradient descent, and consensus-based Newton. These algorithms

are implemented with the same fixed stepsize ↵ = 0.1 in Figures 1-4.

Different versions of ADD differ in the number of communication

instances required per iteration. These numbers differ for consensus-

based Newton and gradient descent as well. Fig. 1 demonstrates

the algorithms’ progress with respect to the number of times nodes

exchange information with their 1-hop neighbors. We define one

”information exchange” as a transmit/receive event where each node

i updates any subset of its local copies of variables belonging

to its neighbors j 2 N
i

. All versions of ADD are about an

order of magnitude faster than consensus-based Newton and two

orders orders of magnitude faster than gradient descent. As shown

in Fig. 2, ADD-N has a fixed communication cost per iteration

while consensus can require arbitrarily many communications. The

number of communications per iteration is very large for the first

100 101 102 103 104100

101

102

103
Communication Required per Dual Iteration

dual descent iteration

co
m

m
un

ic
at

io
n

co
st

 o
f i

te
ra

tio
n

Gradient
Consensus
ADD−2

Fig. 2. The number of local information exchanges required per dual descent

iteration is shown for sample network optimization problem with 25 nodes and

75 edges. ADD-N has a fixed local communication requirement per iteration

equal to N + 2 which yields more consistent convergence rates with respect

to communication requirements.

few iterations of consensus-based Newton. It is clear that a major

benefit of the ADD family is that unlike the consensus based

Newton algorithm, precious communication resources are not wasted

computing an extremely accurate Newton direction in early iterations

when the return on this investment is minimal. Fig. 2 also shows

that once the consensus Newton algorithm reaches its local phase

it requires a very small number of dual iterations to remain below

the error threshold. Intuitively, we expect the ADD-N algorithm to

do as well as consensus Newton even with small N , once in the

quadratic phase is reached. Another important conclusion of Fig.

1 is that even though increasing N in ADD decreases the number

of iterations required, there is not a strict decrease in the number

of communications. Indeed, as can be seen from Fig. 1, ADD-2

requires fewer communications than ADD-3. This fact demonstrates

an inherent trade off between spending communication instances to

refine the Newton step d
(N)
k

versus using them to take a step. We

further examine this phenomenon in Fig. 3(b). These experiments are

on random graphs with 25 nodes and 75 edges chosen uniformly at

random. The flow vector b is selected by placing a source and a sink

at diam(G) away from each other. We consider an algorithm to have

converged when its residual kg
k

k  10

�10.

Fig. 3(a) summarizes the the comparison between the ADD family

and existing methods. Using ADD-N for any small N, is not only an

order of magnitude faster than the next fastest approach, consensus-

based Newton but it is significantly more consistent. This consistency

is due to the fixed number of dual iterations needed to approximate

September 9, 2013 DRAFT

12

(a)
2 2.5 3 3.5 4 4.5 5

0

10

20

30

40

50

60

log10 number of local information exchanges

fre
qu

en
cy

Gradient
Consensus
ADD−2

(b)
160 180 200 220 240 260 280 300 320 340 360
0

5

10

15

20

25

number of local information exchanges

fre
qu

en
cy

ADD−0
ADD−1
ADD−2
ADD−3

Fig. 3. (a) Histogram shows the number of local communications required

to reach kg(�
k

)k  10�10 for gradient descent, consensus-based Newton

and ADD-2 for 50 trials of the network optimization problem on random

graphs with 25 nodes and 75 edges. ADD-2 converges faster and with

much more consistency than gradient descent or consensus-based Newton.

(b) Histogram of the number of local communications required to reach

kg(�
k

)k  10�10 for ADD-N with respect to parameter N, for 50 trials

of the network optimization problem on random graphs with 25 nodes and

75 edges. ADD-2 is shown to be the best on average by about 10 indicating

that with respect to communication cost, larger N is not necessarily better.

the Newton direction. It would be more correct to say the consensus-

based Newton is inconsistent due to the wasted communication

resources demonstrated by the dual iterations per primal iteration

peak shown in Fig. 2. This inconsistency comes primarily from

variations in the number of dual iterations required to approximate

the Newton direction. The behavior of ADD is also explored for

graphs of varying size and degree in Fig. 4. As the graph size

increases the performance gap between ADD and competing methods

increases. Consistency of ADD is also apparent since the maximum,

minimum, and average information exchanges required to solve (1)

for different network realizations are similar. This is not the case for

consensus-based Newton or for gradient descent. Further note that

ADD’s communication cost increases only slightly with network size.

1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
min−mean−max

lo
g 10

 c
om

m
un

ci
at

io
n

ex
ch

an
ge

s

Network Size

Gradient
Consensus
ADD−0
ADD−1
ADD−2
ADD−3

Fig. 4. Min, mean and max number of local communications required to

reach kg(�
k

)k  10�10 for gradient descent, consensus-based Newton and

ADD, computed for 35 trials each on random graphs with 25 nodes and 75

edges(1), 50 nodes and 350 edges(2), and 100 nodes and 1000 edges (3). The

min and max are on the same order of magnitude for ADD, demonstrating

small variance.

100 101 102200

202

204

206
Primal Objective

iteration

Σ
 e

xp
(x

)+
ex

p(
−x

)

100 101 10210−20

10−10

100

1010 Primal Feasibility

iteration

||A
x−

b|
|

100 1010

0.5

1

1.5

2
Stepsize Selection

iteration

St
ep

siz
e
α

Centralized
Distributed

Fig. 5. The distributed line search results in solution trajectories nearly

equivalent to those of the centralized line search. Top: the Primal Objective

follows a similar trajectory in both cases. Middle: Primal Feasibility is

achieved asymptotically. Bottom: unit stepsize is achieved for all nodes in

the same number of steps it requires to achieve a global unit step size.

B. The distributed Line Search

We also use our numerical experiments to demonstrate that the

distributed version of the backtracking line search is functionally

equivalent to the centralized backtracking line search when the

descent direction is chosen by the ADD method. Figure 5 shows an

example of a network optimization problem with 25 nodes and 100

September 9, 2013 DRAFT

13

1 2 30

2

4

6

8

10

12
Steps Required to Reach Unit Step

Algorithm Parameter N

Av
er

ag
e

of

 s
te

ps

Centralized (s)
Distributed (s)
Centralized (m)
Distributed (m)
Centralized (l)
Distributed (l)

Fig. 6. The distributed line search reaches unit stepsize in 2 to 3 iterations.

Fifty simulations were done for each algorithm with N=1, N=2 and N=3 and

for Networks with 25 nodes and 100 edges (small), 50 nodes and 200 edges

(medium) and 100 nodes and 400 edges (large).

edges being solved using ADD-1 with the centralized and distributed

backtracking line searches. The top plot shows that the trajectory

of primal objective is not significantly affected by the choice line

search. The middle plot shows that primal feasibility is approached

asymptotically at the same rate for both algorithms. The bottom plot

shows that a unit stepsize is achieved in the same number of steps

despite the fact that in Algorithm 2 each node selects its own local

line search parameter ↵
i

. Thanks to Lemma 4 we are guaranteed

strict local improvement eventually leading to local selection of step

seize ↵
i

= 1 for all i which is equivalent to a global step size

of ↵ = 1. Thus our implementation is truly distributed. In Figure

6 we look closer at the number of steps required to reach a unit

stepsize. We compare the distributed backtracking line search to its

centralized counterpart on networks with 25 nodes and 100 edges,

50 nodes and 200 edges and 100 nodes and 400 edges. For each

network optimization problem generated we implemented distributed

optimization using ADD-1, ADD-2, and ADD-3. Most trials required

only 2 or 3 iterations to reach ↵ = 1 for both the centralized and

distributed line searches. The variation came from the few trials

which required significantly more iterations. As might be expected,

increasing N causes the distributed and centralized algorithms to

behave closer to each other. When we increase the size of the network

most trials still only require 2 to 3 iterations to reach ↵ = 1 but for

the cases which take more than 2 iterations we jump from around

10 iterations in the 25 nodes networks to around 40 iterations in 100

node networks.

100 101 102 103 104 1050

0.2

0.4

0.6

0.8

1

1.2

1.4

iteration

1/
2

xT R−
1 Σ

 R
−1

x

Primal Objective: Routing Variance

100 101 102 103 104 10510−15

10−10

10−5

100

iteration

||A
x−

b|
|

Feasibility of Expected routing

Gradient
FISTA
ADD−1

Fig. 7. The robust routing problem is solved efficiently by the ADD-1

algorithm, while the gradient descent method and FISTA method both require

10s of thousands of iterations. The top figure shows the total variance of the

routing selected at iteration t. The bottom figure shows whether the current

routing is feasible.

C. The Robust Routing Problem

The robust routing problem is a network optimization problem

focusing on selecting an optimal routing when links have uncertain-

ties in their channel capacity, [7]. Each edge has a known variance

�
e

and expected capacity r
e

. The objective is to select a the flow

variable T
e

2 [0, 1] that satisfies the conservation of constraint with

the minimum total variance, when the expected flow arrivals are given

by the vector b.

min

Te2[0,1]

X

e

�
e

T 2
e

s.t. ART = b (48)

We can recover the network flow problem by taking the local

coordinate transform x
e

= R
e

T
e

. Defining the diagonal matrices

⌃ = diag(�
e

) and R = diag(R
e

) we can state the robust routing

problem:

min

xe2[0,Re]
x0R�1

⌃R�1x s.t. Ax = b (49)

We solve (49) by applying the ADD-1 algorithm and projecting the

primal variables onto the interval [0, R
e

] during each primal update.

While the effect of this projection is not considered analytically in

this work, the effect of capacity constraints is discussed at length

in [11]. Figure 7 shows a sample solution to (49) on a proximity

network with 50 nodes, 224 edges. The matrix R is diagonal with

values selected uniformly random on [0,1]. Sigma is diagonal with

values are selected uniformly random on [0,10]. The vector b has a

single sink with all other nodes being sources. This example emulates

September 9, 2013 DRAFT

14

a wireless sensor network streaming data to a base station.

In our example, ADD-1 is compared to gradient descent and

the fast iterative shrinking threshold algorithm (FISTA) presented in

[38] and updated for distributed implementation in [39]. Distributed

FISTA represents the state of the art for fast distributed gradient

methods, when methods requiring network-wide message passing

are excluded, see section I. In figure 7, FISTA is a significant

improvement over gradient descent but it still requires an order of

magnitude more iterations to reach feasibility ||Ax � b||  10

�4

than ADD-1. Figure 8, the experiment is repeated 100 times and

the progress of each algorithm is examined as a histogram after

100 and 1000 iterations. After 100 iterations ADD-1 had reached

||Ax � b||  10

�4 for nearly 20% of the trials while neither

gradient nor FISTA had reached that threshold for any trials. After

1000 iterations ADD-1 had reached feasibility with 60% at machine

precision and over 95% smaller than 10

�4. Furthermore, relative error

in the objective also had over 60% at machine precision and over

95% smaller than 10

�4. As with the ADD-1 method the error in

the objective is on the same order as the feasibility, 10

�5. These

experiments demonstrate that while FISTA significantly accelerates

gradient descent, it is still fundamentally a first order method. The

ADD-1 algorithm solves the robust routing problem an order of

magnitude faster than FISTA.

VIII. CONCLUSION

A family of accelerated dual descent (ADD) algorithms to find op-

timal network flows in a distributed manner was introduced. Members

of this family are characterized by a single parameter N determining

the accuracy in the approximation of the dual Newton step. This same

parameter controls the communication cost of individual algorithm

iterations. We proved for any N there is a phase during which

convergence toward the optimal is quadratic. ADD-1 and ADD-2

outperform gradient descent by two orders of magnitude and a related

consensus-based Newton method by one order of magnitude.

This work has been extended into the stochastic case by [40] and

to the capacity constrained case in [11]. We have also used the ADD

as a foundation for Accelerated backpressure [13] which stabilizes

queues in capacitated multi commodity communication networks

with stochastic packet arrival rates. Finally, since the ADD algorithm

approximates Newton’s method without computing the inverse it

could be investigated as a computationally efficient alternative.

−20 −15 −10 −5 0
0

0.2

0.4

0.6

0.8

1

log10|(f(x)−f(x*))/f(x*)|

Fr
ac

tio
n

of
 T

ria
ls

Relative Error after 1000 iterations

−15 −10 −5 0
0

0.2

0.4

0.6

0.8

log10||Ax−b||

Fr
ac

tio
n

of
 T

ria
ls

Feasibility after 1000 iterations

−8 −6 −4 −2 0
0

0.2

0.4

0.6

0.8

1

log10|(f(x)−f(x*))/f(x*)|

Fr
ac

tio
n

of
 T

ria
ls

Relative Error after 100 iterations

−8 −6 −4 −2 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

log10||Ax−b||

Fr
ac

tio
n

of
 T

ria
ls

Feasibility after 100 iterations

Gradient
FISTA
ADD−1

Fig. 8. Given 100 hundred trials of the robust routing problem, we find

that after 100 iterations ADD-1 makes significantly more progress towards

the optimal point than FISTA and gradient descent which have high values of

infeasibility. After 1000 iterations ADD-1 was reached the optimal to machine

precision in more than 60% of the trials while gradient descent and FISTA

have at best a feasibility threshold of 10�5 and significant errors remaining

in the objective value.

APPENDIX A – PROOF OF LEMMA 1

(a) Consider given dual ¯� and primal x̄ = x(¯�) variables, and

consider the second order approximation of the primal objective

centered at the current primal iterates x̄,

ˆf(y) = f(x̄)+rf(x̄)0(y�x̄)+
1

2

(y�x̄)0r2f(x̄)(y�x̄). (50)

We consider the optimization problem max

y

� ˆf(y) subject to

Ay = b, which is a quadratic maximization approximating (1).

The dual of the approximate problem is also quadratic,

min

�2Rn
q̂(�) = min

�2Rn

1

2

�0Ar2f(x̄)�1A0�+ p0�+ r. (51)

The dual Hessian r2q̂(�) = A[r2f(x̄)]�1A0 is computed

by differentiating (51) twice with respect to �. Finally, we

observe that our approximation is exact the primal dual point

(x̄, ¯�). That is ˆf(x̄) = f(x̄) and q̂(¯�) = q(¯�). Since

our approximation is constructed for arbitrary ¯�, r2q(¯�) =

A[r2f(x(¯�))]�1A0recovers the desired relation. ⌅
(b) From part (a) we have r2q(�) = A[r2f(x(�))]�1A0. We can

get the lower bound by choosing y = A0v to correspond with the

eigenvector of r2f(x(�)) with the largest eigenvalue � defined

September 9, 2013 DRAFT

15

in Assumption 2(a). Then v0H(�)v = y0
[r2f(x(�))]�1y �

y0y 1
� . Since v 2 1?, y0y � !v0v thus M = �/! where

is ! is the algebraic connectivity defined in Assumption 1(a).

Likewise we construct the lower bound by selecting y = A0v

to correspond with the eigenvector � of r2f(x(�)) and get that

m = �/n because µ
n

(AA0
)  n holds from the fact that AA0

is the unweighted graph Laplacian of G. ⌅
(c) From part (a) we have r2q(�) = A[r2f(x(�))]�1A0. Con-

sidering a change of coordinates y = A0v and the definition

of the matrix norm as ||X|| = max

y 6=0 ||Xy||/||y|| we have

||r2q(�) � r2q(¯�)|| upper bounded by n||[r2f(x(�))]�1 �

[r2f(x(¯�))]�1|| because µ
n

(AA0
)  n holds from the fact

that AA0 is the unweighted graph Laplacian of G. Since

[r2f(x(�))]�1 is diagonal, the matrix norm ||[r2f(x(�))]�1�

r2f(x(¯�))]�1|| reduces to max

e

|1/�00
e

(x(�)) � 1/�00
e

(x(¯�))|.

which is finite and positive from Assumption 2(a). Applying

Assumption 2(b), we have

||r2q(�)�r2q(¯�)||  n⇠max

e

||x
e

(�)� x
e

(

¯�)||. (52)

We can differentiate equation (4) because �  �00
(·)  � which

also guarantees us positivity and the upper bound
����
@

@�
i

[�0
e

]

�1
(�)

���� =
1

�00
e

([�0
e

]

�1
(�))

 1

�
(53)

and in turn (53) guarantees that x
e

(�) is Lipschitz continuous

with constant 1/� for each e. Applying this to (52) we have

||r2q(�)�r2q(¯�)||  n⇠

�
||�� ¯�|| (54)

and we conclude that r2q(�) is Lipschitz with constant L =

n⇠/�. Thus completing the proof. ⌅

APPENDIX B – PROOF OF LEMMA 4

From the mean value theorem centered at �
k

we can write the

dual function’s value as

q
i

(�
k

+ ↵
i

˜d
(i)
k

) = q
i

(�
k

) + ↵
i

g̃
(i)
k

0
˜d
(i)
k

+

↵2
i

2

˜d
(i)
k

0
˜H(i)

(z) ˜d
(i)
k

where the vector z = �
k

+ t↵
i

˜d
(i)
k

for some t 2 (0, 1); see e.g., [18,

Section 9.1]. We use the relation 0 � ˜H(i) � H which follows from

taking principle sub matrices of a positive semi-definite matrix and

the bound kH†k > m which follows from (22), to transform this

equality into the bound

q
i

(�
k

+ ↵
i

˜d
(i)
k

)  q
i

(�
k

) + ↵
i

g̃
(i)
k

0
˜d
(i)
k

+

↵2
i

2m
k ˜d(i)

k

k2.

Introduce now a splitting of the term ↵
i

g̃
(i)
k

˜d
(i)
k

to generate conve-

nient structure for our upper bound on q
i

(�
k

+ ↵
i

˜d
(i)
k

),

q
i

(�
k

) + ↵
i

�g̃
(i)
k

0
˜d
(i)
k

+ ↵
i

(1� �)g̃
(i)
k

0
˜d
(i)
k

+

↵2
i

2m
k ˜d(i)

k

k2.

Further apply the definition of the local update vector ˜d
(i)
k

=

¯H
(N)
k

g̃
(i)
k

and use the well-conditioning of the approximate inverse

Hessian ¯H
(N)
k

as per Lemma 3 to claim that m/2  k ¯H
(N)
k

k  M

and define the upper bound on q
i

(�
k

+ ↵
i

˜d
(i)
k

) as

q
i

(�
k

) + ↵
i

�g̃
(i)
k

0
˜d
(i)
k

� ↵
i

(1� �)
m

2

kg̃(i)
k

k2 + ↵2
i

M2

2m
kg̃(i)

k

k2.

Factoring common terms in this upper bound yields

q
i

(�
k

) + ↵
i

�g̃
(i)
k

0
˜d
(i)
k

+

↵
i

m

2

kg̃(i)
k

k2

�(1� �) +

↵
i

M2

(m2
)

�
.

Substituting ↵̂ for ↵
i

where [�(1��)+↵̂M2/(m2
)] = 0, the second

term vanishes from this expression yielding the inequality

q
i

(�
k

+ ↵̂ ˜d
(i)
k

)  q
i

(�
k

) + ↵̂�g̃
(i)
k

0
˜d
(i)
k

.

Observing that g
(i)
k

0
˜d
(i)
k

=

P
j2N (N)

i
[d

k

]

j

[g
k

]

j

, the proof is com-

pleted. ⌅

APPENDIX C – PROOF OF LEMMA 5

Recall from (38), the local gradient g̃
(i)
k

is a sparse vector with

nonzero elements [g̃
(i)
k

]

j

= gj
k

for j 2 N (N)
i

. Due the fact that the

local objective q
i

(�) in (29) depends only on values in N (N)
i

, we

have q
i

(�
k

+ ↵d
k

) = q
i

(�
k

+ ↵ ˜d
(i)
k

) where ↵ is a dummy variable

for a
i

. Applying the Lipschitz dual Hessian assumption to the local

update vector ˜d
(i)
k

we get

kH(�
k

+ ↵ ˜d
(i)
k

)�H(�
k

)k  ↵Lk ˜d(i)
k

k. (55)

Also, recall the i-local version of the Hessian ˜H(i)
(�) defined in (40).

Since the elements of H already satisfy H
ij

= 0 for all i, j 62 E the

resulting ˜H(i) has the structure of a principal submatrix of H with

the deleted rows left as zeros. Since the norm kH(�
k

+ ↵ ˜d
(i)
k

) �

H(�
k

)k in (55) is the maximum eigenvalue modulus of the matrix

H(�
k

+ ↵ ˜d
(i)
k

) � H(�
k

), it is larger than the norm k ˜H(i)
(�

k

+

↵ ˜d
(i)
k

)� ˜H(i)
(�

k

)k because the latter is the maximum over a subset

of the eigenvalues of the former. Combining this observation with

(55) yields

k ˜H(i)
(�

k

+ ↵ ˜d
(i)
k

)� ˜H(i)
(�

k

)k  ↵Lk ˜d(i)
k

k. (56)

Interpret the dual update as a function of q̃
i

(↵) defined as

q̃
i

(↵) := q
i

(�
k

+ ↵ ˜d
(i)
k

). (57)

September 9, 2013 DRAFT

16

Differentiating with respect to ↵ and using the definition of the local

gradient g̃(i)
k

we get the derivative of q̃
i

(↵) as

q̃0
i

(↵) = rq
i

(�
k

+ ↵ ˜d
(i)
k

)

˜d
(i)
k

= g̃(i)(�
k

+ ↵ ˜d
(i)
k

)

˜d
(i)
k

. (58)

Differentiating with respect to ↵ a second time and using the

definition of ˜H(i) in (40) yields

q̃00
i

(↵) = ˜d
(i)
k

0
˜H(i)

(�
k

+ ↵ ˜d
(i)
k

)

˜d
(i)
k

. (59)

Return now to (56) and replace the matrix norm on the right hand

side with left and right multiplication by the unit vector ˜d
(i)
k

/k ˜d(i)
k

k.

This yields ˜d
(i)
k

0
h
˜H(i)

(�
k

+ ↵ ˜d
(i)
k

)� ˜H(i)
(�

k

)

i
˜d
(i)
k

 ↵Lk ˜d(i)
k

k3.

Applying the derivatives q̃00
i

(↵) in (59), we can simplify to q̃00
i

(↵)�

q̃00
i

(0)  ↵Lk ˜d(i)
k

k3. Integrating the above expression with respect

to ↵ results in

q̃0
i

(↵)� q̃0
i

(0)  ↵2

2

Lk ˜d(i)
k

k3 + ↵q̃00
i

(0),

which upon a second integration with respect to ↵ yields

q̃
i

(↵)� q̃
i

(0)  ↵3

6

Lk ˜d(i)
k

k3 + ↵2

2

q̃00
i

(0) + ↵q̃0
i

(0).

Substitute ↵ = 1 and the definitions of the derivatives q̃0
i

(0) and

q̃00
i

(0) given in (58) and (59) to get

q̃
i

(1)� q̃
i

(0)  L

6

k ˜d(i)
k

k3 + 1

2

˜d
(i)
k

0
˜H(i)

(�
k

)

˜d
(i)
k

+ g̃
(i)
k

0
˜d
(i)
k

.

According to (40) the reduced Hessian ˜H(i) has the structure of a

principal submatrix of the Hessian H and H ⌫ 0 it follows that

0 � ˜H(i) � H and that as a consequence

˜d
(i)
k

0
˜H(i)

(�
k

)

˜d
(i)
k

 ˜d
(i)
k

0H
k

˜d
(i)
k

.

Incorporating the local update ˜d
(i)
k

=

¯H
(N)
k

g̃
(i)
k

we obtain the upper

bound for local objective improvement q̃
i

(1)� q̃
i

(0) 

L

6

k ¯H
(N)
k

g̃
(i)
k

k3 + 1

2

⇣
¯H
(N)
k

g̃
(i)
k

⌘0
H

k

¯H
(N)
k

g̃
(i)
k

� g̃
(i)
k

0
¯H
(N)
k

g̃
(i)
k

.

Recall the sparsity pattern of the local gradient g̃(i)
k

to write

�g̃
(i)
k

¯H
(N)
k

g̃
(i)
k

=

X

j2N (N)
i

[g
k

]

j

[d
k

]

j

, (60)

and split the right hand side of (60) to generate

X

j2N (N)
i

[g
k

]

j

[d
k

]

j

=

X

j2N (N)
i

�[g
k

]

j

[d
k

]

j

+ (1� �)[g
k

]

j

[d
k

]

j

. (61)

Substitute now (61) into (60) and the result updates our up-

per bound q̃
i

(1) � q̃
i

(0)  L

6 k ¯H
(N)
k

g̃
(i)
k

k3 +

1
2
˜d
(i)
k

0H ˜d
(i)
k

+

�
P

j2N (N)
i

[g
k

]

j

[d
k

]

j

+ (1 � �)
P

j2N (N)
i

[g
k

]

j

[d
k

]

j

. Using the

expression for the quadratic form in (60) to substitute the last term

in the previous equation yields

q̃
i

(1)� q̃
i

(0)  L

6

k ¯H
(N)
k

g̃
(i)
k

k3 + 1

2

˜d
(i)
k

0H ˜d
(i)
k

(62)

+ �
X

j2N (N)
i

[g
k

]

j

[d
k

]

j

� (1� �)g̃
(i)
k

0
¯H
(N)
k

g̃
(i)
k

We consider the first term in (62) rewriting || ¯H(N)
k

g̃
(i)
k

||2 =

g̃
(i)
k

0
⇣
¯H
(N)
k

⌘2
g̃
(i)
k

since ¯H
(N)
k

is symmetric. A change of coordi-

nates y =

⇣
¯H
(N)
k

⌘1/2
g̃
(i)
k

combined with the upper bound from

Lemma 3 reveals that || ¯H(N)
k

g̃
(i)
k

||3  M2g̃
(i)
k

0
¯H
(N)
k

g̃
(i)
k

which

subbed into (62) gives us

q̃
i

(1)� q̃
i

(0)  LM2

6

g̃
(i)
k

0
¯H
(N)
k

g̃
(i)
k

+

1

2

˜d
(i)
k

0H ˜d
(i)
k

(63)

+ �
X

j2N (N)
i

[g
k

]

j

[d
k

]

j

� (1� �)g̃
(i)
k

0
¯H
(N)
k

g̃
(i)
k

.

We consider the second term in (63) and note that from the defi-

nition of ˜d(i) it follows that ˜d
(i)
k

0H
k

˜d
(i)
k

= g̃
(i)
k

0
¯H
(N)
k

H
k

¯H
(N)
k

g̃
(i)
k

.

Applying the telescoping sum trick that we applied in the proof of

Lemma 2 we have ¯H
(N)
k

H
k

¯H
(N)
k

=

¯H
(N)
k

�
I � (B

k

D�1
)

N+1
�
.

By positive semi definiteness of B
k

D�1
k

we can conclude that
˜d
(i)
k

0H
k

˜d
(i)
k

 g̃
(i)
k

0
¯H
(N)
k

g̃
(i)
k

and subbing into (63) we have

q̃
i

(1)� q̃
i

(0)  LM2

6

g̃
(i)
k

0
¯H
(N)
k

g̃
(i)
k

+

1

2

g̃
(i)
k

0Hg̃
(i)
k

(64)

+ �
X

j2N (N)
i

[g
k

]

j

[d
k

]

j

� (1� �)g̃
(i)
k

0
¯H
(N)
k

g̃
(i)
k

.

Reorganizing terms we have q̃
i

(1)� q̃
i

(0) 

�
X

j2N (N)
i

[g
k

]

j

[d
k

]

j

+g̃
(i)
k

0
¯H
(N)
k

g̃
(i)
k


�(1� �) +

LM2

6

kg̃(i)
k

k+ 1

2

�
.

Use kg̃(i)
k

k  kg
k

k  3(1� 2�)/(LM2
) to write q̃

i

(1)� q̃
i

(0) 

�
X

j2N (N)
i

[g
k

]

j

[d
k

]

j

+Mkg̃(i)
k

k2

�(1� �) +

1

2

� � +

1

2

�
.

The bracketed portion simply sums to zero. Thus we have q̃
i

(1) �

q̃
i

(0)  �
P

j2N (N)
i

[g
k

]

j

[d
k

]

j

. Substituting the definition of q̃
i

(�)

in (57) into this equation we arrive at q
i

⇣
�
k

+ d
(i)
k

⌘
 q

i

(�
k

) +

�
P

j2N (N)
i

[d
k

]

j

[g
k

]

j

which means that the exit condition (30) in

Algorithm 2 is met with ↵
i

= 1 for all nodes i. Therefore all nodes

exit Algorithm 2 with ↵
i

= 1 from which it follows that the selected

stepsize is A
k

= I . ⌅

REFERENCES

[1] D. P. Bertsekas. Network Optimization: Continuous and Discrete

Models. Athena Scientific, Belmont, MA, 1998.

[2] R. T. Rockafellar. Network Flows and Monotropic Programming. Wiley,

New York, NY, 1984.

September 9, 2013 DRAFT

17

[3] J. B. Orlin. Minimum convex cost dynamic network flows. MATHE-

MATICS OF OPERATIONS RESEARCH, May 1984.

[4] E. Miandoabchi R. Farahani. Graph Theory for Operations Research

and Management. IGI Global, 2012.

[5] A. V. Goldberg, E. Tardos, and R. E. Tarjan. Network Flow Algorithms.

Springer-Verlag, Berlin, 1990.

[6] V. Kolmogorov and A. Shioura. New algorithms for the dual of the

convex cost network flow problem with application to computer vision.

Mathematical Programming, 2007.

[7] Yuchen Wu, Alejandro Ribeiro, and Georgios B. Giannakis. Robust

routing in wireless multi-hop networks. Proc. Conf. on Info. Sciences

and Systems, 2007.

[8] Lin Xiao, M. Johansson, and S.P. Boyd. Simultaneous routing and

resource allocation via dual decomposition. IEEE Transactions on

Communications, 52(7):1136–1144, 2004.

[9] L. Tassiulas and A. Ephremides. Stability properties of constrained

queueing systems and scheduling policies for maximum throughput in

multihop radio networks. IEEE Transactions on Automatic Control,

37:1936–1948, 1992.

[10] M. J. Neely. Stochastic Network Optimization with Application to

Communication and Queueing Systems. Morgan and Claypool, 2010.

[11] M. Zargham, A. Ribeiro, and A. Jadbabaie. Accelerated dual descent

for constrained convex network flow optimization. Proceedings of IEEE

CDC, 2013.

[12] J. Sun and H. Kuo. Applying a newton method to strictly convex

separable network quadratic programs. SIAM Journal of Optimization,

8, 1998.

[13] M. Zargham, A. Ribeiro, and A. Jadbabaie. Accelerated backpressure al-

gorithm. Proceedings of the IEEE Global Communications Conference,

2013.

[14] A. Nedic and A. Ozdaglar. Distributed subgradient methods for multi-

agent optimization. IEEE Transactions on Automatic Control, 54, 2009.

[15] I. Lobel and A. Ozdaglar. Distributed subgradient methods for convex

optimization over random networks,. IEEE Transactions on Automatic

Control, 56, 2011.

[16] N. Z. Shor. Minimization Methods for Non-differentiable Functions.

Springer, 1985.

[17] Dimitri P. Bertsekas and Didier El Baz. Distributed asynchronous

relaxation methods for convex network flow problems. SIAM Journal

of Optimization and Control, 1987.

[18] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge

University Press, Cambridge, UK, 2004.

[19] Bertsekas and Gafni. Projected newton methods and optimization

of multi-commodity flow. IEEE Transactions on Automatic Control,

28:1090–1096, 1983.

[20] J. G. Klincewicz. A newton method for convex separable network flow

problems. Bell Laboratories, 1983.

[21] S. Authuraliya and S. Low. Optimization flow control with newton-like

algorithm. Telecommunications Systems, 15:345–358, 2000.

[22] A. Jadbabaie, A. Ozdaglar, and M. Zargham. A distributed newton

method for network optimization. In Proceedings of IEEE CDC, 2009.

[23] Paul Tseng. On accelerated proximal gradient methods for convex-

concave optimization. SIAM Journal on Optimization.

[24] Yousef Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2003.

[25] David Watkins. The Matrix Eigenvalue Problem. SIAM, 2007.

[26] R. Horn and C. R. Johnson. Matrix Analysis. Cambridge University

Press, New York, 1985.

[27] M. Zargham, A. Ribeiro, and A. Jadbabaie. A distributed line search

for network optimization. In Proceedings of IEEE ACC, 2012.

[28] C. T. Kelley. Solving nonlinear equations with newton’s method. SIAM

Fundamentals of Algorithms, 1, 2003.

[29] F. J. Bonnans, C.J. Gilbert, C. Lemarchal, and C. A. Sagastizbal.

Numerical optimization: Theoretical and practical aspects. Springer-

Verlag, Berlin, Germany, 2006.

[30] D.P. Bertsekas. Nonlinear Programming. Athena Scientific, Cambridge,

Massachusetts, 1999.

[31] A. Nedić and A. Ozdaglar. Approximate primal solutions and rate

analysis for dual subgradient methods. SIAM Journal on Optimization,

forthcoming, 2008.

[32] A. Nedić and A. Ozdaglar. Subgradient methods in network resource

allocation: Rate analysis. In Proc. of CISS, 2008.

[33] Fan Chung. Spectral Graph Theory. The American Mathematical

Society, 1997.

[34] H. Landau and A. Odlyzko. Bounds for eigenvalues of certain stochastic

matrices. Linear Algebra and its Applications, 38:5–15, 1981.

[35] M. E. Newman. The structure and function of complex networks. SIAM

Review, 45:167–256, 2003.

[36] D. J. Watts and S. H. Strogatz. Collective dynamics of ’small-world’

networks. Nature, 393:440–442, 1998.

[37] R. Olfati-Saber. Ultrafast consensus in small-world networks. In

Proceedings of IEEE ACC, 2005.

[38] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding

algorithm for linear inverse problems. SIAM Journal on Imaging

Sciences, 2(1):183–202, 2009.

[39] A.I. Chen and A. Ozdaglar. A fast distributed proximal-gradient

method. Proc. of Allerton Conference on Communication, Control, and

Computing, 2012.

[40] M. Zargham, A. Ribeiro, and A. Jadbabaie. Network optimization under

uncertainty. Proceedings of IEEE CDC, 2012.

September 9, 2013 DRAFT

	Introduction
	Preliminaries
	Network Optimization
	Gradient Descent
	Newton's Method

	Accelerated Dual Descent
	Basic properties
	Distributed backtracking line search

	Convergence Rate
	Strict Decrease Phase – Proof of Theorem 2, part (i)
	Quadratic and Terminal Convergence Phases – Proof of Theorem 2, parts (ii) and (iii)

	Consensus Implementation
	Numerical results
	Parameter Selection and Communication Overhead
	The distributed Line Search
	The Robust Routing Problem

	Conclusion
	References

