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Network Integrity in Mobile Robotic Networks
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Abstract—Most coordinated tasks performed by teams of mobile
robots require reliable communications between team members.
Therefore, task accomplishment requires that robots navigate
their environment with their collective movement restricted to
formations that guarantee integrity of the communication net-
work.Maintaining this communication capability induces physical
constraints on trajectories but also requires determination of
communication variables like routes and transmitted powers. This
problem is addressed here using a distributed hybrid approach.
Continuous distributedmotion controllers based on potential fields
interact with discrete distributed optimization of communication
variables to result in a muti-robot network ensuring communi-
cation integrity. The definition of network integrity differs from
existing approaches in that it is not based only on the topology of the
network but also on metrics that are of interest to the performance
of communication between robots and a fixed infrastructure.
Specifically, integrity is defined as the ability of the network to
support desired communication rates. The ability of the hybrid
controller to guarantee communication integritywhile robotsmove
to accomplish their task is studied theoretically and numerically.

Index Terms—Convex optimization, distributed algorithms, hy-
brid systems, network optimization, robotic teams.

I. INTRODUCTION

M OBILE robot networks have recently emerged as an
inexpensive and robust way to address a wide variety

of tasks ranging from exploration, surveillance and reconnais-
sance, to cooperative construction and manipulation. Efficient
information exchange and coordination between members of
the team are critical for successful completion of these tasks.
E.g., recent work on distributed consensus and state agreement
has strongly depended on multi-hop communication for conver-
gence and performance guarantees [1]–[3].
Multi-hop communication in multi-robot systems has typi-

cally relied on constructs from graph theory, with proximity
graphs gaining the most popularity. This is consistent with early
approaches to wireless networking that used disk models to ab-
stract the physical layer [4]–[9]. In this context, communication
becomes equivalent to topological connectivity, defined as the
property of a graph to transmit information between all pairs of
nodes.
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Preservation and control of topological connectivity was first
addressed in [10] in the context of connectivity preserving ren-
dezvous. Since then, it has gained increased popularity with ap-
proaches that strictly maintain communication links [11]–[14],
being followed by least restrictive ones that allow links to be lost
[15], [16]. In terms of solution techniques, approaches are both
centralized [11], [14] and distributed [12], [13], [15], [16], with
the former typically based on semidefinite programming [11],
[12], [17] or potential fields [14], and the latter on switched and
hybrid systems theory [13], [15], [16].
Although graphs provide a simple abstraction of inter-robot

communications, it has long being recognized that since links
in a wireless network do not entail tangible connections, asso-
ciating links with arcs on a graph can be somewhat arbitrary.
Indeed, topological definitions of connectivity start by setting
target signal strengths to draw the corresponding graph. Even
small differences in target strengths might result in dramatic dif-
ferences in network topology [18]. As a result, graph connec-
tivity is necessary but not nearly sufficient to guarantee com-
munication integrity, interpreted as the ability of a network to
support desired communication rates.
This paper employs a simple, yet effective, modification that

relies on weighted graph models with weights that capture the
packet error probability of each link [19]. When using reliabili-
ties as link metrics it is possible to model routing and scheduling
problems as optimization problems that accept link reliabilities
as inputs [20], [21]. The key idea proposed in this paper is to
define connectivity in terms of communication rates and to use
optimization formulations to describe optimal operating points
of wireless networks. The use of optimization as a mathemat-
ical tool to analyze network protocols dates back to [22] and has
been extensively used in wired [23], [24] and wireless networks
[25]–[27]. General optimal wireless networking problems are
defined to determine end-to-end user rates, routes, link capaci-
ties, and transmitted power, as well as frequency and power al-
locations [28]–[33]. Due to the lack of a duality gap, such prob-
lems can be simplified by working in the dual domain [28], [29],
[31]–[33].
The main contribution of this work is the use of optimal wire-

less network design to develop novel alternatives for mobility
control. In particular, we decompose control in the communica-
tion and physical domains, so that the communication variables
are updated in discrete time via a distributed gradient descent
algorithm on the dual function, while robot motion is regulated
in continuous time by means of appropriate distributed barrier
potentials that maintain desired communication rates. Composi-
tion of these techniques results in a distributed multi-robot hy-
brid system forwhichwe show that desired communication rates
are always guaranteed. The challenge we need to address is that
working in the dual domain ensures feasibility of the primal vari-
ables only asymptotically. In fact, as the robotsmove, the optimal
solution in the communications space drifts, which introduces an
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infeasibility gap in the primal variables. This precludes verbatim
use of those variables in barrier potentials in the physical domain.
We provide bounds for this gap in terms of problem specific pa-
rameters and proposemobility controllers that ensure stability of
the integrated system, in that desired bounds on the infeasibility
gap are always met and a local optimum in the joint communica-
tion and mobility space is reached. A related problem that con-
siders optimal communications based on T-slot time averages of
the primal variables for general mobility schemes was recently
addressed in [34]. The differencewith our work, is that [34] does
not explicitly control robot motion.
The rest of this paper is organized as follows. Section II de-

fines network integrity in terms of communication rates and de-
velops a dual decomposition for distributed optimal communi-
cation. Section III integrates distributed motion control with op-
timization of the communication variables in a distributed hy-
brid multi-robot system. Section IV discusses performance of
the proposed algorithm. Section V presents simulations to illus-
trate the performance of the proposed approach.

II. OPTIMAL WIRELESS NETWORKING

Consider a mobile network composed of robots and a fixed
infrastructure with access points (APs). The robots move
throughout an area of interest to accomplish an assigned task
for which it is necessary to maintain reliable communications
with the infrastructure. Due to, e.g., power constraints or an ad-
verse propagation environment, robots collaborate to maintain
a multihop network with the APs.
Let for denote the positions of the robots

and for the positions of the APs. The
set of all positions is referred to as the
spatial configuration of the network. We model communication
by a link reliability metric denoting the probability
that a packet transmitted from a terminal located at position
is correctly decoded by a terminal at position . This func-
tion determines the probability with which a
packet transmitted by node is correctly decoded by node .
Node is a robot if or an AP otherwise. Using to de-
note the transmission rate of the terminals’ radios, the effective
transmission rate from to is the rate at which
information is successfully conveyed in this link. To simplify
notation we work with normalized rates by making .
This means that rates are measured as (dimensionless) fractions
of the transmission rate . To recover rates measured in infor-
mation units per second it suffices to multiply by . Here, we
assume all robots use the same transmission rate . This as-
sumption is easy to lift.
We further denote as the normalized average rate

at which robot delivers information to the APs. If robot
can reach some of the APs, which is possible if the probability

is reasonably large for some
, packets are directly conveyed to the corresponding AP.

Otherwise, packets are routed to another robot for subsequent
transmission. We model this process through the introduction
of routing probabilities denoting the probability with which
robot selects node , either a robot or an AP, as a destination
of its transmitted packets; see Fig. 1.
Between their generation or arrival from another robot and

their transmission, packets are stored in a queue; see Fig. 2.

Fig. 1. Robot network consisting of two access points (APs) and three robots
(Rs). Robots generate data packets related to their assigned task at a rate

. They collaborate to convey this information to the APs by relaying
data for each other. The position function is the reliability of the
channel between robots and , whereas denotes the probability that robot
routes packets to robot . The product is the average rate at
which packets are successfully conveyed from robot to terminal .

Fig. 2. Queue at robot .

Packets leave the queue at robot upon transmittion to any other
node and successful decoding by this intended next-hop. Since
these two events are independent, the normalized rate at which
packets are sent from to is . The aggregate rate
at which packets leave the -th queue is then

(1)

Similarly, a packet arrives at robot coming from robot , when
robot selects as the next hop and correctly decodes the
packet. This happens with probability . Consid-
ering that packets are also locally generated at a rate , the rate
at which packets arrive at the -th queue is

(2)

Note that the sum in (1) is up to because packets can be
sent to another robot or an AP, whereas the sum in (2) is up to
because packets are received from peer robots only.
If the average rate at which packets arrive at the -th queue is

smaller than the average rate at which packets leave this queue,
i.e., if , then the queue empties infinitely often with
probability one. This provides an almost sure guarantee that
packets are eventually delivered to the AP as long as .
Thus, our interest is to determine routing probabilities and
rates that satisfy the flow inequality

(3)

Any set of variables and that satisfy (3) en-
sures information delivery. A basic requirement is that all robots
communicate with the infrastructure APs at least at a basal rate
of packets per time unit. When this happens we say that we
have network integrity as we formally define next.
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Definition 1 (Network Integrity): Given positions and
basal rates , network integrity implies the availability of
rates and routing variables for which the
inequalities in (3) hold and , for all .
We remark that network integrity refers not only to existence

but availability of variables satisfying the stated constraints. For
a given spatial configuration there might be various sets of
variables that ensure network integrity. To select an element of
this set we introduce strictly concave optimality criteria
and measuring the value associated with variables
and respectively. The operating point is then selected as the
solution of the optimization problem

(4)

where the flow inequality constraint [cf. (3)], the basal rate con-
straint , and the probability constraint
are required for all . To ensure network in-

tegrity for given robot positions , we need to find optimal
routing probabilities and rates that solve the optimiza-
tion problem in (4). This implies rates that exceed desired
basal rates for all terminals, while assigning the remaining
resources in a manner that is optimal in terms of the utilities

and . Observe that the optimal utility yield
depends on the spatial configuration , as so do the sets of op-
timal routing and rate variables and . For fixed spa-
tial configuration , the reliabilities are fixed and the
problem in (4) attains a simple convex form.
Remark 1 (Utility Functions): Utilities in (4) are met-

rics that compare different network operating points. Thinking
of nodes as economic agents and of utilities as the value
of rate , the network’s objective is to maximize the social value

. Example utilities are linear and log-
arithmic . Linear utilities yield larger rates,
while logarithmic utilities yield fairer operating points because
they penalize small rates . In most network optimization prob-
lems utilities associated with routing variables are
not used, i.e., they are set to . In the problems con-
sidered here may be useful. E.g., making

encourages packet splitting through different paths.
Packet splitting improves robustness to link and robot failures
and increases the ability of the algorithm to discover neigh-
boring robots. The required strict concavity of pre-
cludes the use of in (4).

A. Distributed Optimal Communication

Solving (4) necessitates discovery of the network’s topology
by a designated terminal, followed by dissemination of the
optimal operating variables. This process not only entails a large
communication cost but it also incurs significant delays and is
vulnerable to failures. Alternatively, it is possible to devise a dis-
tributed solution by exploiting the separability of the Lagrangian
dual of (4). To do so, consider the optimal communication

problem in (4), associate Lagrange multipliers with each of
the routing constraints in (3), and define the Lagrangian as

(5)

where , are column vectors of Lagrange multipliers
and rates , respectively, and is a matrix

of routing probabilities . The dual function is then defined
as the maximum of the Lagrangian with respect to primal vari-
ables that satisfy the constraints that were not included in the
Lagrangian, i.e.,

(6)

where the constraints and are required
for all . The dual problem is finally defined as the minimiza-
tion of the dual function, , with the cor-
responding set of optimal dual variables denoted as . Notice
that the Lagrangian , the dual function , and
the optimal dual value are all defined parametrically with
respect to spatial configuration . Since for given positions ,
the problem in (4) is convex it holds that implying
that we can work with the dual problem in lieu of the primal
problem in (4). In particular, a distributed algorithm can be ob-
tained by implementing gradient descent in the dual domain.
To implement gradient descent we need to compute a gradient

of the dual function, which can be obtained from the primal
Lagrangian maximizers, see e.g., [35]. For given and spatial
configuration define the primal Lagrangian maximizers as

(7)
The components of the dual function’s gradient are then
given by the constraint slack associated with and

, i.e.,

(8)

A key observation here is that the Lagrangian in (5) can be
written as a sum of local Lagrangians that depend only on vari-
ables and . Indeed, it suffices to reorder terms in (5)
to realize that upon defining local Lagrangians

(9)
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it is possible to write

(10)

The local Lagrangian is defined so that all sum-
mands of the global Lagrangian that involve
primal variables and for given appear in, and
only in, [cf. (5) and (9)]. Therefore, to find the
variables and that maximize the global
Lagrangian as per (7) it suffices to find the arguments that
maximize the local Lagrangians in (9),

(11)

where the constraints and in (11) are
for the node under consideration. Contrast (7) and (11) to ob-
serve that in (7) we maximize the global Lagrangian subject to
global constraints, while in (11) we maximize local Lagrangians
with respect to local constraints.
Introduce now an index and consider time instants

at which variables are updated. We can use the observation in
(11) to write the following distributed gradient descent algo-
rithm for the dual function:
1) Primal Iteration: For given Lagrange multipliers

and spatial configuration compute Lagrangian maxi-
mizers and ,
where and are as defined in (7)
for and . According to (11), and

can be computed as

(12)
2) Dual Iteration: Use the primal variables and

in (12) to update the dual variables as

(13)

where denotes the projection on the nonnegative orthant.
Letting variables , , and be asso-

ciated with terminal , the algorithm in (12)–(13) can be imple-
mented in a distributed manner. The maximization in (12) re-
quires access to local multipliers and multipliers
from neighboring terminals for which .
Since these terminals can communicate with , these multipliers
can be conveyed to let compute its primal variables of in-
terest. Likewise, the dual update in (13) requires access to local
primal variables and as well as neigh-
boring primal variables from terminals that can
communicate directly with .
In (13), the Lagrange multiplier is updated as deter-

mined by the -th component of the gradient
of the dual function corresponding to the spatial configuration

at the time of the update [cf. (8) and (13)]. On aggre-
gate, the updates in (13) define a projected—recall that
—gradient descent step on the dual function . If
spatial configurations are fixed, i.e., if for all , we
expect that as time progresses multiplier iterates approach
the optimal multiplier . Provided some technical conditions
that we discuss in Section IV, convergence of the primal vari-
ables and to the optimal network operating point

, follows as a consequence. The effect of time varying
spatial configurations on the performance of (12)–(13) is ana-
lyzed in Section IV.

III. DISTRIBUTED MOTION & COMMUNICATION CONTROL

In Section II, we showed that for fixed robot positions , the
reliabilities are fixed and the problem in (4) attains
a simple convex form. However, this is not the case for mobile
robots that are required to move to accomplish their assigned
task. To address this challenge, we decompose control in the
motion and communication domains so that the communication
variables are updated at discrete time instances via the
distributed primal-dual iteration (12)–(13) while robot positions

for are updated in continuous time. Between
times and positions are updated according to the
first order differential equations

(14)

where the function denotes the control signal
of robot and denotes a switching signal defined as

(15)

The switching signal contains all the routing vari-
ables for traffic out of and all the variables

for traffic incoming to . Routing variables
are locally available at robot whereas routing

variables are received through communica-
tion with neighboring terminals, i.e., terminals for which

. The collection of all hybrid robots,
gives rise to a distributed multi-robot hybrid system, where
every robot makes local mobility decisions based on informa-
tion received from neighboring peers.
The definition of is such that it contains all the infor-

mation that allows us to compute the offered rate at time which
we define as

(16)

The offered rate is the maximum rate that en-
sures information delivery for robot when the spatial con-
figuration is and robots route their packets according to

.
Observe the distinction between basal rates , rates
, and offered rates . Basal rate is

a minimum system requirement. Rates denote the
solution to (11) which is chosen as a function of dual vari-
ables and exceeds for all . Offered rate
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is an upper limit on achievable rates at time using avail-
able routing variables . In a static setting we are
guaranteed that for large enough time index , it holds

. In a dynamic setting this is
not necessarily true because routing variables are com-
puted for configuration , not . In this case we want to
monitor the offered rates to ensure that they do
exceed the basal requirements . In the language of Definition
1 we want to satisfy network integrity at time using routing
variables and rates . The
rate is just an auxiliary variable. It plays no role on how
packets are moved through the network except for its effect on
the multiplier according to the dual update in (12).
Offering the network integrity guarantee
is the design specification for the controller as
we summarize in the following problem statement.
Problem 1: Given a sequence of switching signals

as defined in (15) with routing variables
determined by the primal-dual iteration

(12)–(13), determine a set of distributed motion controllers
so that for all times and robots

(17)

with as defined in (16). The condition in (17)
guarantees network integrity in that offered communication
rates exceed basal rate requirements along
the trajectories of the closed loop system (14) at all times.
Problem 1 requires determination of routing variables

and robot trajectories satisfying network in-
tegrity constraints for all times .
However, the distributed primal-dual iteration (12)–(13) only
ensures feasibility of primal variables in the limit of a static
system. Assuming fixed positions and iterative appli-
cation of (12)–(13) ensures feasibility of primal iterates
and , which in turns guarantees network integrity at
time ; i.e., . However,
given time , primal iterates and are close to
feasible but not necessarily so; i.e., there exists a small error
term for which .
As the system moves from to this error may get
larger because routes were computed for configuration

, not for the current positions . This observation mo-
tivates a reformulation of Problem 1, where network integrity
constraints are uniformly satisfied with
some bounded error as stated next.
Problem 2: Given a sequence of switching signals

as defined in (15) with routing variables
determined by the primal-dual iteration

(12)–(13), determine a set of distributed motion controllers
so that for all times and robots

(18)

with as defined in (16) and a prescribed tol-
erance. The condition in (18) guarantees approximate network
integrity. Offered communication rates achieve
or exceed basal rates discounted by tolerance along trajec-
tories of the closed loop system (14) at all times.

In Section IV we characterize the uniform error in
terms of system-specific parameters and show that it can be
made arbitrarily small by reducing the elapsed time
between communication variables updates or the robots speed;
see Theorem 2.
Since is a uniform error in the network integrity

constraints, it is sufficient to design distributed controllers
for Problem 2 that ensure satisfaction of the

constraints (18) for all time . For this, we rely on
artificial potential functions that treat violation of the approxi-
mate network integrity constraints in (18) as an obstacle in the
free configuration space. These are selected as barrier poten-
tials that grow unbounded when the constraints tend to become
violated. Then, defining the controllers to be
the negative gradient of these potentials ensures that (18) are
satisfied for all times .
To do so, introduce the local potential function
that robot strives to minimize; see Section V for specific

examples. If a robot has no specific task and its sole purpose is
to provide communication support we say that it is a relay robot
and adopt the convention for all such . Otherwise,
we say that the robot is a leader. Further introduce the potential

defined as

(19)

The value of measures satisfaction of the ap-
proximate network integrity constraint in (18) for the commu-
nication rate offered to robot . The potential can be computed
locally because it involves variables that are either local to
robot or are communicated from neighboring agents defined
as those robots for which .
The task potential and the network integrity potential

may conflict. We balance this differing purposes with an artifi-
cial potential function that we define as

where is a positive constant. In the proposed construction,
serves as a goal potential to generate a force attracting robots

to their tasks and serves as an obstacle barrier potential to
generate a force to repel the robots from the space of obstacles,
defined as the set of positions that violate the approximate
network integrity constraints (18). In particular, we can define
the obstacle-free space for the team of robots as the set

(20)

where denotes the collection of
switching signals for all robots.
Since can grow unbounded as the approximate network

integrity constraints tend to become violated, i.e., as ,
resulting in unbounded robot speeds, we further introduce a dif-
feomorphism with that
squashes the image of from to . Moreover, define
the function to restrict the effect of the obstacles
close to the boundary of the free space

(21)
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Composition of , and results in the artificial potential
for every robot with

(22)

The construction of the potential (22) is inspired by the concept
of a navigation function [36], [37]. It is shown in [36], [37] that
since and are diffeomorphisms, and have the same crit-
ical points. It is also shown in [36], [37] that for sufficiently large

Algorithm 1 Integrated control loop at robot

Require: Initial positions . Initial multipliers ;

1: for to do {repeat for the life of the system}

2: Determine reliabilities and
;

3: Update transmission rates and routing variables as

and transmit to neighbors;

4: Compute the local gradient of dual function by

5: Update Lagrange multiplier by

and transmit to neighbors;

6: Continuously update robot position until time by

and transmit to neighbors;

7: end for

constant , the effect of the obstacles becomes localized to
the boundary of the free space defined in (21). This facilitates
robots to achieve their assigned tasks, assuming these tasks are
strictly contained in the free space defined in (20).
The control law for every robot , whether a leader or a relay,

can be defined by the negative gradient of the potential in
(22), i.e.,

(23)

for all , where is a positive gain to regulate
the robot speed. From (14) and (23) we obtain the distributed
closed loop system

(24)

for all robots and all .
Integration of the distributed closed loop system (24) for mo-

tion control with the distributed primal-dual iterations (12)–(13)

for optimal communication gives rise to the distributed motion
and communication control algorithm shown in Algorithm 1. In
Algorithm 1, lines 3 to 5 correspond to the primal-dual iteration
(12)–(13) that updates the communication variables, and line 6
corresponds to an update in the robot positions via the closed
loop system (24). At the time instances communica-
tion between neighbors also takes place to provide the robots
with those variables that are necessary in their updates. Correct-
ness of Algorithm 1 relies on showing that a bound on the error

exists, as claimed earlier in this section, and that with this
bound, the closed loop system (24) ensures satisfaction of (18)
for all time. This analysis is the goal of Section IV.
Remark 2 (Initialization): Our controllers implicitly assume

that at time variables and are almost primal fea-
sible in the sense that they satisfy (18). This can be achieved by,
e.g., starting with an initialization phase in which the primal-
dual iterations in (12)–(13) are run until the flow constraint is
satisfied within uniform tolerance. Alternatively, it is possible
to initialize the team in a simple spatial configuration with all
robots close to each other so that at time optimal communica-
tion variables are easy to find and we can start with ,

, and .
Remark 3 (Task Completion): In the proposed approach, task

completion is a secondary objective, subsidiary to communica-
tion integrity. While this implies that robots may not be able to
complete their assigned tasks, it is consistent with the idea that
basal rates are critical for task completion. Global conver-
gence to the tasks will require a thorough characterization of the
critical points of in (22), or even different mobility schemes,
possibly optimization-based such as Model Predictive Control,
as well as novel integration techniques with the communication
variables.

IV. ALGORITHM ANALYSIS

This section shows that Algorithm 1 ensures approximate net-
work integrity in the sense of Problem 2 for all times . We start
in Section IV-A by analyzing the dual gradient descent portion
of Algorithm 1 as summarized in steps 3 through 5. We derive
an explicit bound on the suboptimality of dual iterates in
terms of problem constants [cf. Theorem 1], which we leverage
to bound the infeasibility and suboptimality of primal iterates

and [cf. corollaries 1 and 2]. In Section IV-B we
analyze the mobility part of Algorithm 1 as given by Step 6 to
show approximate network integrity within the tolerance in
(19). We characterize explicitly in terms of system constants
[cf. Theorem 2].

A. Feasibility and Optimality of Communication Variables

To simplify presentation introduce a vector stacking the
rows of the transmission probability matrix and a matrix
with dimensions so as to write the constraints in
(3) as . It is not difficult to see that for this to be
true it must be for all and

, whereas for
all and with . The specific
form of this mapping is not important, however, as we are just
using as shorthand notation for the constraints in
(3). Using this definition we can rewrite (4) as

(25)
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where the constraints and were left
implicit. Likewise, we use this shorthand notation to write the
optimal distributed communication algorithm in (12)–(13) as

(26a)

(26b)

In a static setting, i.e., when the robot positions are fixed,
e.g., at , for all time , it is known that the dual vari-
ables approach the optimal multipliers . As we al-
ready observed, convergence of the primal variables and

to the optimal network operating point fol-
lows provided some technical conditions hold. In the dynamic
setting considered here, the primal and dual variable updates
in (26) bring the network closer to its optimal operating point.
However when terminals move as per (24), the optimal op-
erating point drifts away towards . Our goal
in this section is to determine the optimality of the operating
point with respect to the optimal operating point

for the current team configuration .
Characterizing the optimality of operating point

concerns determination of feasibility and optimality. For the
operating point , to be feasible for configuration

we must have . This cannot
be guaranteed, but we will see that the norm of the negative
components of , i.e., the norm of the
projection can be made small. To
determine optimality we will bound the difference between the
optimal objective for the current configuration, and the
yield associated with the operating
point , .
Throughout the subsequent analysis we make the following

assumptions on the dual functions :
(A1) The dual functions are strongly convex for all with
common strong convexity parameter ,

(27)

(A2) The gradients of the dual functions are Lipschitz
continuous with common Lipschitz constant

(28)

(A3) The 2-norm of the dual gradients are uniformly
bounded for all and all ,

(29)

(A4) The 1-norm of the optimal Lagrange multipliers are
uniformly bounded for all

(30)

These assumptions are mild, technical, and commonly re-
quired in the analysis of gradient descent algorithms. If the dual
function is twice differentiable, assumptions (A1) and (A2) im-
pose a lower bound and an upper bound on the eigenvalues
of the dual Hessian. For the Lipschitz constant in (A2) to exist it

suffices to require the objective function to be strongly
convex. If the objective function has Lipschitz gradi-
ents and the matrix is full row rank, the dual function
is strongly convex as required by (A1). Since dual gradients are
given by the constraint violations, and the primal variables are
finite, the bound exists. The bound (30) on the optimal
dual variables assumed in (A4) exists as long as the existence
of strictly feasible operating points is guaranteed.
Since the iteration in (26) implements gradient descent in the

dual domain. The main result derived in this section describes
the distance between the current Lagrange multiplier and
the current optimal Lagrange multiplier . The results of
interest for the primal variables follow as corollaries of this re-
sult that we state in the following theorem.
Theorem 1: Let denote the team configuration at it-

eration , the corresponding optimal dual variable and
the dual iterate obtained through iterative application of

(26). Assume the step size in (26) is bounded as and
that the difference between reliabilities at subsequent configu-
rations is absolutely bounded by , i.e.,

(31)

If assumptions (A1), (A2), and (A4) hold, the distance between
the dual iterate and the optimal multiplier satisfies

(32)
where the constant is defined as .

Proof: See Appendix A.
Theorem 1 dictates that dual iterates converge linearly

to a neighborhood of the optimal multiplier . The volume
of this neighborhood is determined by problem-specific con-
stants and can be made arbitrarily small by reducing , which
can be controlled by modulating the velocity of the robots.
Before elaborating on the implications of the bound in (32)
let us translate the result in Theorem 1 into results regarding
primal variables. The feasibility gap of , is bounded
in Corollary 1 and a similar bound for the optimality gap is
shown in Corollary 2.
Corollary 1: With the same hypotheses and definitions of

Theorem 1, the norm of the constraint violation can be bounded
as

(33)

Proof: In this proof we consider the single configuration
. Thus, to simplify notation we drop the configuration sub-

scripts in the matrix , the dual function
and the optimal multiplier .

From the assumption that gradients are Lipschitz continuous
it follows that the norm of the difference between the gradient at

and the gradient at the optimal multiplier is bounded
as

(34)
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Consider now the projections and
of the gradients on the nonnegative orthant. Observe that be-
cause the components of the optimal dual gradient are either
null or positive it holds . Further notice that
since the nonnegative orthant is a convex set the distance be-
tween the projections is smaller than the distance between the
vectors. Combining these two observations we can write

(35)

But the gradient of the dual function is the constraint violation,
i.e., . Substituting this equality
in (35) and combining with the bound in (34) yields

(36)

The result in (33) follows from substituting bound (32) of The-
orem 1 for the right hand side of (36).
Corollary 2: Let denote the primal

objective corresponding to the communication variables at time
. With the same hypotheses and definitions of Theorem 1, the

optimality gap can be bounded as

(37)

Proof: As in the proof of Corollary 1 simplify notation to
, and . We further

adopt the convention . Since variables and
are Lagrangian maximizers for multiplier , the dual

function evaluated at can be written as

(38)

Likewise, the dual function evaluated at is given by

(39)

Subtract (38) from (39), use the fact that ,
recall that constraint violations are dual function gradients, i.e.,

and , and
substitute the definition to obtain the
bound

(40)

Add and subtract from the right hand side of
(40) and reorder terms to write

(41)

Using the assumption that the norm of dual gradients is bounded
by , the first summand in the right hand side of (41) can
be bounded as

(42)

Recall now the assumption that the norm of optimal dual gra-
dients are bounded by (the 2-norm of a vector is smaller
than its 1-norm). Further use the assumption that dual gradients
are Lipschitz to write

(43)

Substitute now the bounds in (42) and (43) into the inequality
in (41) to obtain

(44)

The result in (37) follows from substituting bound (32) of The-
orem 1 for the right hand side of (44).
The results in Theorem 1 and Corollaries 1 and 2 are con-

ceptually similar. Both of them include a term characterizing
the vanishment of the initial optimality gap
and the steady state gap of the achieved operating point ,

, . This steady state gap defines a neighborhood of
the (time-varying) optimal operating point to which the iterates
defined by (26) converge.
Convergence towards this neighborhood is determined by the

constant , which is the same constant that would characterize
convergence in a static setting. The stepsize can range in the in-
terval resulting in constants ranging in the interval

. Naturally, smaller stepsizes result in con-
stants closer to 1, thereby decreasing the convergence rate.
Smaller stepsizes also decrease the steady state gap between the
optimal and achieved network operating points. The most con-
venient stepsize selection is therefore to make . In such
case the constant is as small as it can be and is determined
by the ratio . This ratio is the condition number of an
optimization problem and describes how close to a hypersphere
the level sets of the dual function are. The most favorable case
is when , corresponding to a dual function having hy-
perspheres as level sets, and yielding . For problems
with smaller condition numbers the convergence rate decreases
and the steady state performance gap increases. This condition
number is determined by the selection of the primal objective.
The steady state performance gap also increases with the size

of the network and the bound on the norm of the optimal
gradients. This latter dependence is interesting because the norm
of the optimal multiplier is related to the difficulty in satisfying
problem constraints. Constraints that are difficult to satisfy are
characterized by a large sensitivity to parameter perturbations.
This sensitivity is determined by the value of the corresponding
optimal Lagrange multiplier.

B. Network Integrity

Theorem 1 and corollaries 1 and 2 guarantee that the
communication variables are close to optimality and feasi-
bility at all sampling times . This proximity depends on
the magnitude of the disturbance

that is introduced in (4) due to
robot mobility between consecutive communication updates
at times and . In this section we extend the feasibility
guarantees of Theorem 1 to all times . For this, assume
that the channel reliabilities are purely func-
tions of the inter-robot distances and let

(45)
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where , denote an upper bound on their absolute
maximum slope. Let also

(46)

denote an upper bound on the maximum robot speed; see
(24). It is not difficult to show that such a bound
for the proposed potential exists; see, e.g., [36], [37]. Fi-
nally, define the piecewise constant functions of time

, and for
all times and all indices and , and recall
that with denotes the set
of robot configurations that ensure communication rates

that exceed desired basal rates with some
error , i.e., [cf. (20)]. Then, we
have the result:
Theorem 2: Define and let

be the bound on the norm of the gradient of in (45)
and the bound on robots’ velocities in (46). Assume the hy-
potheses in Theorem 1 hold and that for time the communi-
cation variables are initialized at the optimal configuration, i.e.,

, , and . Then, for any
tolerance satisfying

(47)

we have for all times .
Proof: The proof of this result consists of two parts. We

commence bounding the disturbance
in terms of the problem specific

constants and . This allows us to explicitly characterize
the approximation trade-offs that arise due to robot mobility.We
then show that these bounded feasibility errors can be guaran-
teed for all time . I.e., we show that the set is an
invariant of motion for the closed loop system.
Let us begin by deriving a bound for the disturbance in

terms of the problem specific parameters and . Observe
that for all times we have

and substituting from (24), we get

(48)

Taking the absolute value of both sides of (48) and applying
concecutively the Cauchy-Schwarz inequality and the triangle
inequality, we obtain

(49)

where the last step follows from (45) and (46). Expressing the
disturbance as a
definite integral, we have that

(50)

with the second inequality due to (49). Observe now that since
, (50) we an write

(51)
from which we obtain that the bound in The-
orem 1. This concludes the first part of the proof.
For the second part of the proof, we decompose time into

the sampling times and the collection of motion in-
tervals . Based on Corollary 1 and (51), we
first determine a bound on the error that ensures that

for all . Then, given this bound and
the fact that for all , we show that

for all . Combining the
two results, we get that for all time ,
which proves our claim.
Let us begin by assuming that and recall the

hypothesis that for time the communication variables are ini-
tialized at the optimal configuration, i.e., ,

, and . This means that the first term on
the right-hand-side of (32) vanishes for all . Then, (33) in
Corollary 1 can be equivalently written

(52)

where is defined in (16) and ,
and is the projection on the non-negative orthant. A suffi-
cient condition for (52) to hold is that

(53)
for all . Taking the square root of both sides
of (53) and using the fact that

we get

(54)

Clearly, if is upper bounded as in (54),
then it is also upper bounded by any that satisfies (47).
The above argument also shows that for all

. To see this, note that for defined as in (47),
the bound in (54) implies that
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for all . Since and
by (19), we obtain that

for all . Therefore, for all
, as desired.

We next show that for all
. For this to be true, every time interval

should be initialized with the robot positions in the
free space, i.e., with for all . As
shown above, this initialization can be guaranteed if the error

is chosen as in (47). Assume now that is
such that for any and
any . Then, for leader robot we have

which means that at for , the poten-
tial achieves its maximum. Since the set of initial conditions

is open for any , and no open set of initial
conditions canbeattracted to themaximaof along thenegative
gradientmotion defined by the closed loop system (24),
we also conclude that for .
Therefore, for all time . The same argu-
ment holds for relay robots, by setting .
The error lower bound in Theorem 2 can be made arbi-

trarily small by either reducing the robot speed gain
or decreasing the maximum interval be-
tween updates of routing variables. Reducing this error bound
reduces the violation of the network integrity constraints,
thereby bringing achieved communication rates closer to their
minimum requirements . Equivalently, for a given error
tolerance and frequency of communication variable
updates, the speed gain needs to be sufficiently small to
realize the desired bounds in (47). In that situation the choice
of the lower bound in Theorem 2 introduces a tradeoff between
optimal communication and robot speed. Theorem 2 expresses
this tradeoff in terms of problem parameters.

V. NUMERICAL SIMULATIONS

We illustrate the proposed distributed controller as summa-
rized in Algorithm 1 with computer simulations where commu-
nication integrity of the robot network needs to be preserved.
We employ channel reliabilities that are deterministic
functions of the distances between robots and satisfy

if ,

(55)

if and if , where
. The constants are lower and upper

bounds on the robot distances and the constants , , , and
are chosen to make a twice differentiable function
ranging from 0 to 1; see Fig. 3. This function is a polynomial
fitting of experimental curves found in the literature, e.g., [38].
Consider a scenario where reliable communications is to be

established between a single AP located at the origin
and a service point (SP) located at . This task is
performed by a team of point robots, randomly initialized
according to a uniform distribution in a square of side 0.04 units,
centered 0.06 units to the right of the AP; see Fig. 5(a). This
makes the initial position of the robots close enough to the AP to

Fig. 3. Channel reliability function used in the simulations in
Section V. Reliabilities are assumed deterministic functions of distances
between robots as in (55). Here and .

ensure the communication network is initially connected. Robot
2 is designated as the leader and tasked with serving the SP. All
robots relay information back to the AP. The AP is
indexed as . Robot motion is according to the closed loop
dynamics in (24). The task potential in (22) for the leader
robot is defined as with
corresponding to the coordinates of the SP. The switching signal

in (15) is updated through the primal-dual iteration in
(12)–(13). This is equivalent to the summary in Algorithm 1.
The utility functions of problem (4) are taken to be

and , so that the resulting sum utility

is strictly concave, as required
by Assumption (A1) in Section IV.
The remaining simulation parameters are defined as follows:

(a) The minimum rates are identically zero for all robots
except for the leader for which . This choice is con-
sistent with the classification of robots into relays and leaders.
Leaders collect measurements and generate data, while relay
robots convey this information back to the APs. (b) The error
tolerance in (18) is set to . Note that estimating
directly from (47) is not easy, since explicit values for many
problem specific parameters are difficult to obtain. Moreover,
the provided lower bound on is rather conservative and its
value should be interpreted in an existential way. (c) The con-
stant in (22) is set to . This value is large enough
so that the effect of the obstacle potentials is
restricted to a small area around the boundary of the
free space , as defined in (21); see also [36], [37]. This
allows the leader robot to move freely towards its assigned SP
unless communication constraints are close to being violated.
(d) The integration step size in Theorem 2 is and
the controller gain in (23) is set to .
We further add potentials to avoid collisions between nearby

robots. Collision potentials are defined as

(56)

with ; see Fig. 4. The effect of the collision potentials
is more localized for smaller . We use for sub-
sequent simulations. Incorporating the collision potentials, the
overall artificial potential in (22) for motion control becomes

if is a leader,

if is a relay,
(57)
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Fig. 4. Collision potential used for simulations in Section V. The
potential is given in (56). Notice how the effect of the collision
potential is negligible when the robot distance becomes larger than

as the gradient becomes .

Fig. 5. A mobile robot network consisting of 6 robots (dots) that establish re-
liable communications between one service point (SP) and one access point
(AP). Red lines represent routing of information , between pairs
of robots. The thickness of each line represents the magnitude of these quan-
tities. The network is randomly initialized close to the AP (Fig. 5(a)) and in-
volves one leader (star), labeled as 2, that moves towards the SP (a) Time
(b) Time (c) Time (d) Time .

with . With this addition, the free space be-
comes the set of state variables and such that
for all robots . Note that incorporating collision avoidance

does not affect the proof of Theorem 2. To see why this is true
observe that becomes uniformly max-
imal (equal to 1) whenever either or for some
robot . Therefore, the same argument used in Theorem 2
to show communication integrity, i.e., , can be applied
here to show collision avoidance, i.e., .
The evolution of the robot network reacting to the proposed

control law summarized in Algorithm 1 is shown in the snap-
shots in Fig. 5 for selected time instances. Fig. 6 through 9 il-
lustrate several metrics that evaluate its performance that we
discuss in detail in Section V-A through V-D.

A. Task Completion

Even though task completion is a secondary objective, in that
we provide guarantees on network integrity but not on task com-
pletion, the leader robot is still able to reach the service point

Fig. 6. Distance between the leader robot and its assigned SP
as a function of time , for the scenario considered in Fig. 5.

Fig. 7. Difference between the offered and basal rates for all
robots involved in the scenario in Fig. 5.

Fig. 8. Lagrange multipliers associated with the rate constraints in (3) for
all robots involved in the scenario in Fig. 5.

(SP); see Fig. 5. A communication path is established and main-
tained throughout the process. Task completion can also be ver-
ified from Fig. 6 that plots the distance between the
leader robot and its assigned SP at as a func-
tion of time . For the scenario under consideration, the leader
reaches its destination at time . After this time the relay
robots keep reconfiguring to improve the communication rate.

B. Performance of Communications

The performance of Algorithm 1 in terms of its ability to
maintain reliable communications is illustrated in Figs. 7 and 8.
Fig. 7 plots the difference between the offered rates

in (16) and the
basal rates , for all robots . The horizontal dashed line corre-
sponds to the threshold for the allowable error . Notice
that the design requirement to have at all times is
satisfied. The Lagrange multipliers associated with the rate
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Fig. 9. Velocities as a function of time , for the scenario in Fig. 5.

constraints in
(3) are shown in Fig. 8. Comparing with Fig. 7, one observes
that as the constraints tend to be violated, i.e., as ,
the associated Lagrange multipliers increase. This is more ap-
parent for the leader for which initially . When
the leader has reached its destination at , its Lagrange
multiplier begins to decrease and the associated rate
increases, eventually approaching zero.

C. Effect of Robot Motion

In this section, we discuss how mobility affects communica-
tions. Equivalently, we study how much the robots can move
while satisfying the communication constraints with a bounded
error. Mathematically, this is captured in Theorem 1 via the
upper bound on the rate of change of the reliabilities

. However, since
the explicit bound derived in Theorem 2
is only a conservative estimate, we instead monitor the robot
velocities as a measure of robot motion. These velocities
are plotted in Fig. 9 for all robots as a function of time. Note
that the closed loop system in (24) implies
that and, therefore, by (46).
This means that the robot velocities are proportional to the
bound and, hence, they can be used as a proxy for . From
Fig. 9 one observes an initial peak of the leader velocity at until
about that is due to: (i) Its initially large distance
from the SP. (ii) The absence of significant attractive forces
from the network integrity constraints, which are easily satis-
fied during that time; see Figs. 7 and 8. (iii) The presence of
repulsive forces from other robots in its proximity. The leader’s
velocity becomes 0 at about when it reaches its des-
tination, as also seen in Fig. 6. However, the remaining robots
continue to move slowly to increase the offered rates away
from , see Fig. 7, and decrease the associated Lagrange mul-
tipliers, see Fig. 8. The average robot velocity throughout the
exercise is between 0.1 and 0.5. With this robot speed, Algo-
rithm 1 maintains ; see Fig. 7.
An additional observation from Fig. 9 is the rapid decrease

in the leader’s velocity once it reaches its destination; see also
the nonsmooth change in the distance to the SP at in
Fig. 6. This is the result of and simultaneously
for the leader robot, as it can be also verified from Fig. 7. No-
tice that the simultaneous vanishing of and is not allowed
in the proposed construction, see, e.g., [36], [37], therefore, the
network integrity guarantees in Theorem 2 do not apply at this

Fig. 10. Max inter-robot distance .

Fig. 11. Min inter-robot distance .

point. If one wishes to avoid this scenario, simple modifications
are possible. One way to avoid and simultane-
ously is to decrease the leader’s speed by, e.g., decreasing the
controller gain in (23). This would give Algorithm 1 enough
time to reposition the robots and reroute information to ensure
that at all times. This approach can be impractical, how-
ever, because it may lead to very slow network evolution. An-
other solution to this problem is to redefine the task potential as

for some small positive constant .
This would prevent and simultaneously but
would also prevent the leader from exactly reaching the SP.

D. Geometric Considerations

Fig. 10 shows the maximum length of active links in the net-
work. Formally, active links are ordered pairs of robots
for which . The maximum length of all active
links in the network is then defined by

Similarly, the minimum length of an active link is defined as

This minimum distance is shown in Fig. 11.
The plots in Figs. 10 and 11 can be used to extract infor-

mation regarding the performance of Algorithm 1 in terms of
both communication and motion control. In particular, notice
that in Fig. 10 the maximum inter-robot distance converges at
about , where . Com-
paring with Fig. 5(d), we see that the second order neighbors,
namely those neighbors two hops away as plotted in Fig. 5(d),
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are still in communication range. However, the thickness of the
lines with the first order neighbors indicates that all information
is routed to them. This result is also observed in Fig. 11. No-
tice that the minimum inter-robot distance converges at about

, where . In fact,
since for the leader and this information needs to be
routed to the AP via the path shown in Fig. 5(d), we conclude
that at equilibrium for all robots. This also ex-
plains the value of the plots in Fig. 7 as the time approaches

. Also notice that the minimum inter-robot distance ob-
served at the early stages of the simulation in Fig. 11, i.e., up
until time , is about . Comparing
with the plot of the collision potentials in Fig. 4, we see that this
distance is small enough to justify the local nature of these po-
tentials [cf. (56)].

VI. CONCLUSIONS

We considered the problem of ensuring communication in-
tegrity in networks ofmobile robots. Unlike existing approaches
that associate network and graph connectivity, network integrity
is defined as the ability of a network to support desired commu-
nication rates. Our approach relies on introducing weights on
the communication links to capture channel reliabilities, which
then allows us to model routing by means of optimization prob-
lems that accept link reliabilities as inputs. The key idea pro-
posed in this work was to join control of mobility and com-
munications in a hybrid scheme with the discrete-time routing
variables being the switching signal in the continuous-time mo-
tion controllers. We provided communication guarantees within
a bounded error of optimality, which we explicitly characterized
in terms of problem specific constants. This work focused on
local convergence guarantees in the joint communication and
mobility spaces and points to a new direction in systems and
control theory on the interface with wireless networking.

APPENDIX
PROOF OF THEOREM 1

The proof of Theorem 1 hinges on the use of the triangle
inequality on the triangle with vertices , and

to bound the distance as

(58)

The bound in (58) separates consideration into the term
and the term . The

term is the distance between the iterate
at time and the optimal multiplier at time

. This distance we expect to be smaller than the corresponding
distance at time , because the dual update
in (26) implements gradient descent in the dual function. This
is the factor that results in an exponential convergence towards
a neighborhood of the optimal. The term
captures the shift of the optimal multiplier as the team reconfig-
ures. This is the factor that results in a steady state performance
penalty. The proof of Theorem 1 relies in the bounding of the
two terms in the right hand side of (58) that we respectively
derive in lemmas 1 and 2.

Lemma 1: Consider team configurations and with cor-
responding reliabilities and and denote as
and the optimal dual variables associated with the re-

spective rate optimization problems in (25). Assume (A1) and
(A4) are true and that reliabilities and do
not differ by more than a given constant , i.e.,

(59)

Then, the 2-norm distance between optimal multipliers satisfies

(60)

Proof: As per hypothesis, the dual function associ-
ated with robot positions is strongly convex. Hence, write the
strong convexity inequality in (27) for and

(61)
Since is the optimal argument of the convex function
we know that for all feasible it must be

from where it follows that,

(62)

The function associated with configuration is also
strongly convex. An argument analogous to the one leading to
(62) can be used to yield the bound

(63)

Combine the inequalities in (62) and (63) and reorder terms to
obtain the bound

(64)

The bounds in (62)–(64) relate the distance to the
differences in the dual values and

corresponding to the same functions evaluated at dif-
ferent dual arguments. Rearranging (64) yields

(65)

We interpret (65) as a bound on based on the differ-
ences in dual values and ,
corresponding to different functions evaluated at the same dual
arguments. These latter differences can be bounded in terms of
problem constants.
To do so consider the optimal multiplier of the dual func-

tion associated with robot positions . Define and
be the primal Lagrangian maximizers associated with

robot positions and multipliers . We can then write the
value of the dual function corresponding to spatial con-
figuration and multipliers as

(66)
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For the same multiplier consider the value of the dual func-
tion associated with positions . This value satisfies

(67)

where the inequality follows because the Lagrangian maximiza-
tion yields a value that is, at least, equal to the Lagrangian eval-
uated at , .
Subtracting (67) from (66) yields

(68)

Likewise, consider the optimal multiplier of the dual func-
tion associated with robot positions and let
and be the primal Lagrangian maximizers associated
with robot positions and multipliers . Mimicking steps (66)
through (68) we can write the analogous bound

(69)

Substituting the bounds in (68) and (69) into the bound in (65)
followed by application of the triangle inequality leads to

(70)

To complete the proof we need to bound
and

in terms , , and . This requires some manipulation but
is conceptually straightforward. We first observe that for any
it must be , where is the column

vector of all entries equal to one and the absolute value is taken
on each element of the vector . Indeed, the -th
component of the product is, by definition, the right hand
side of the constraint in (3) evaluated at :

(71)

Since each of the differences are abso-
lutely bounded by it follows that

(72)

To obtain the second inequality in (72) observe that the first sum
contains all the transmission probabilities outgoing from
robot and it therefore satisfies . The second sum

involves the probabilities of transmission to . Since each
of them is smaller than 1, we have .
The bound in (72) can be written in vector form as

. Thus, for any it must be

(73)

were in the second equality we used the fact that because all
components of are nonnegative, as per
Assumption (A4). The bound in (73) can be substituted for the
terms and
of (70) to obtain (60).

Lemma 2: Let denote the team configuration at time
and the corresponding optimal dual variable. Consider

the multiplier at time and the update obtained
from through (13). Assume the step size is bounded as

and define . Then, the distances
between dual iterates and the optimal multiplier satisfy

(74)

Proof: The derivation of (74) follows along the lines of the
convergence proof of projected gradient descent algorithms; see
e.g., [39, Ch. 3]. Define
so that we can write the dual update as

. Commence the proof by recalling that as a conse-
quence of the mean value theorem if the convex function
has Lipschitz gradients as stated in (28) it must be

(75)

Use this expression for , , and
and reorder terms to bound as

(76)

where we used the definition of to write
.

We first work on bounding the term
. For doing so, consider

variable whose components are not necessarily positive
and recall that denotes the Euclidean projection of on
the convex set . An important property of Euclidean
projections in a convex set is that for any it holds

(77)

Use this property with and
. Notice that in this case

by (26), which we can also write as
using the definition of .

Thus, from where it
follows that (77) implies

(78)
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Expanding the inner product and rearranging terms in (78)
yields

(79)

Substituting the inequality in (79) into the one in (76) we obtain

(80)

Further using the fact that

we can write

(81)

As required by hypothesis , which allows us to bound
. Substituting this bound in (81) yields

(82)

Consider now the squared distance to the optimum
at iteration . Recall that we defined so

as to write and expand the square
to obtain

(83)

The last two summands of the right hand sides of (82) and (83)
coincide except for a factor. Solving (83) for these sum-
mands and substituting the result in (82) yields

(84)

Finally, note that because is a convex function it holds
for any . Using this property

in the strong convexity assumption in (27) for and
we obtain

(85)

Substituting (84) into (85), regrouping terms and using the def-
inition of the result in (74) follows.
To finalize the proof of Theorem 1 just notice that the second

term in the right hand side of (58) satisfies the bound in Lemma
1, while the square of the first term satisfies the bound in Lemma
2. Therefore

(86)
Applying the inequality in (86) recursively between times
and yields

(87)

Observing that the result
in (32) follows after shifting time indices from to .
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