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Abstract—A repeated network game where agents have
quadratic utilities that depend on information externalities—an
unknown underlying state—as well as payoff externalities—the
actions of all other agents in the network—is considered. Agents
play Bayesian Nash Equilibrium strategies with respect to their
beliefs on the state of the world and the actions of all other
nodes in the network. These beliefs are refined over subsequent
stages based on the observed actions of neighboring peers. This
paper introduces the Quadratic Network Game (QNG) filter that
agents can run locally to update their beliefs, select corresponding
optimal actions, and eventually learn a sufficient statistic of the
network’s state. The QNG filter is demonstrated on a Cournot
market competition game and a coordination game to implement
navigation of an autonomous team.

Index Terms—Repeated Bayesian games, learning in networks,
linear quadratic Gaussian games.

I. INTRODUCTION

G AMES with information and payoff externalities are
common models of networked economic behavior. In,

e.g., trade decisions in a stock market, the payoff that a player
receives depends not only on the fundamental (unknown) price
of the stock but on the buy decisions of other market partici-
pants. Thus, players must respond to both, their belief on the
price of the stock and their belief on the actions of other players
[3]. Similar games can also be used to model the coordination
of members of an autonomous team whereby agents want to
select an action that is jointly optimal but only have partial
knowledge about what the action of other members of the team
will be. Consequently, agents select actions that they deem
optimal given what they know about the task they want to
accomplish and the actions they expect other agents to take.
In both of the examples in the previous paragraph we have a

network of autonomous agents intent on selecting actions that
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maximize local utilities that depend on an unknown state of the
world—information externalities—and also the unknown ac-
tions of all other agents—payoff externalities. In a Bayesian set-
ting—or a rational setting, to use the nomenclature common in
the economics literature [4]—nodes form a belief on the actions
of their peers and select an action that maximizes the expected
payoff with respect to those beliefs. In turn, forming these be-
liefs requires that each network element make a model of how
other members will respond to their local beliefs. The natural
assumption is that they exhibit the same behavior, namely that
they are also maximizing their expected payoffs with respect
to a model of other nodes’ responses. But that means the first
network element needs a model of other agents’ models which
shall include their models of his model of their model and so on.
The fixed point of this iterative chain of reasoning is a Bayesian
Nash Equilibrium (BNE).
In this paper we consider repeated versions of this game in

which agents observe the actions taken by neighboring agents at
a given time. In observing neighboring actions agents have the
opportunity to learn about the private information that neigh-
bors are, perhaps unwillingly, revealing. Acquiring this infor-
mation alters agents’ beliefs leading to the selection of new ac-
tions which become known at the next play prompting further
reevaluation of beliefs and corresponding actions. In this con-
text we talk of Bayesian learning because the agents’ goal can
be reinterpreted as the eventual learning of peers’ actions so that
expected payoffs coincide with actual payoffs. This paper con-
siders Gaussian prior distributions and quadratic utilities. For
this type of problem we introduce the Quadratic Network Game
(QNG) filter that agents can run locally to update their beliefs,
select corresponding actions that maximize expected payoffs,
and eventually learn a sufficient statistic of the network’s state.
The burden of computing a BNE in repeated games is, in gen-

eral, overwhelming even for small sized networks [5]. This in-
tractability has led to the study of simplified models in which
agents are non-Bayesian and update their beliefs according to
some heuristic rule [6]–[10]. A different simplification is ob-
tained in models with pure information externalities where pay-
offs depend on the self action and an underlying state but not
on the actions of others. This is reminiscent of distributed esti-
mation [11]–[19] since agents deduce the state of the world by
observing neighboring actions without strategic considerations
on the actions of peers. Computations are still intractable in the
case of pure information externalities and for the most part only
asymptotic analyses of learning dynamics with rational agents
are possible [20]–[22]. Explicit methods to maximize expected
payoffs given all past observations of neighboring actions are
available only when signals are Gaussian [5] or when the net-
work structure is a tree [23]. For the network games considered
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here in which there are information as well as payoff externali-
ties, not much is known besides asymptotic analyses of learning
dynamics [24].
The specific setting considered in this paper is introduced in

Section II. Agents repeatedly play a game whose payoffs are
represented by a utility function that is quadratic in the actions
of all agents and an unknown real-valued parameter. At the start
of the game each agent makes a private observation of the un-
known parameter corrupted by additive Gaussian noise. At each
play stage agents observe actions of adjacent peers from the pre-
vious stage that they incorporate into a local observation his-
tory which they use to update their inference of the unknown
parameter, and synchronously take actions that maximize their
expected payoffs. Actions that maximize expected payoffs with
respect to local observations histories are defined as best re-
sponses to the expected actions taken by other agents. When
the expected actions of other agents are also modeled as best
responses with respect to their respective observation histories,
we say that the network settles into a BNE (Section II-A).
In Section III we determine a mechanism to calculate BNE

actions from the perspective of an outside clairvoyant observer
that knows all private observations. For this clairvoyant ob-
server the trajectory of the game is completely determined but
individual agents operate by forming a belief on the private sig-
nals of other agents. We start from the assumption that this prob-
ability distribution is normal with an expectation that, from the
perspective of the outside observer, can be written as a linear
combination of the actual private signals. If such is the case,
we prove that there exists a set of linear equations that can be
solved to obtain actions that are linear combinations of estimates
of private signals (Lemma 1). This is then used to show that
after observing the actions of their respective adjacent peers the
probability distributions on private signals of all agents remain
Gaussian with expectations that are still linear combinations of
the actual private signals (Lemma 2). We proceed to close a
complete induction loop to derive a recursive expression that
the outside clairvoyant observer can use to compute BNE ac-
tions for all game stages (Theorem 1).
In Section IV we leverage the recursion derived in Section III

to derive the QNG filter that agents can run locally, i.e., without
access to all private signals, to compute their BNE action. Re-
sults in Sections III and IV are generalized to the case of vector
states and observations (Section V). We apply the QNG filter
to a Cournot competition model (Section VI) and to the coordi-
nated movement of a team of mobile agents (Section VII).
Notation: Vectors are written in boldface and ma-

trices in uppercase. We use to denote all-zero
matrices or vectors of proper dimension. If the dimension is not
clear from context, we specify .We use to denote all-one
matrices or vectors of proper dimension and to clarify di-
mensions. We use to denote the th element of the standard
orthonormal basis of and to write an all-one
vector with the th component nulled.

II. GAUSSIAN QUADRATIC GAMES

We consider games with incomplete information in which
identical agents in a network repeatedly choose actions and re-
ceive payoffs that depend on their own actions, an unknown

scalar parameter , and actions of all other agents. The
network is represented by an undirected connected graph

with node set and edge set . The net-
work structure restricts the information available to agent who
is assumed to observe actions of agents in his neighborhood

composed of agents that share an edge
with him. The degree of node is given by the cardinality of the
set and denoted as . The neighbors of are
denoted . We assume the network graph
is known to all agents.
At time agent observes a private signal

which we model as being given by the unknown parameter
contaminated with zero mean additive Gaussian noise ,

(1)

The noise variances are denoted as and grouped
in the vector which is assumed known to
all agents. The noise terms are further assumed independent
across agents. For future reference define the vector of pri-
vate signals grouping all local
observations.
Consider a discrete time variable to index sub-

sequent stages of the game. At each stage agent takes scalar
action . The selection of agent , along with the con-
current selections of all the other agents re-
sults in a payoff that agent wants to
make as large as possible. In this paper we restrict attention to
quadratic payoffs which for simplicity we assume to be time in-
variant. Specifically, selection of actions when
the state of the world is results in agent experiencing a reward

(2)

where for all , and are real
valued constants. Notice that since , the
payoff function in (2) is strictly concave with respect to the self
action of agent . Quadratic utility functions are ubiquitous
in stochastic optimal control [25]–[28] and distributed estima-
tion [11], [15]. Furthermore, the problem setup in this paper is
closely related to the literature on team theory [29]–[32] and po-
tential games [33]–[35].
Although the goal of agent is to select the action

that maximizes the payoff in (2), this is not possible be-
cause neither the state nor the actions are
known to him. Rather, agent needs to reason about state
and actions based on its available information.
At time only the private signal is known. Define
then the initial information as . The informa-
tion is used to reason about and the initial actions

that other agents are to take in the initial stage
of the game. At the playing of this stage, agent observes
the actions
of all agents in his neighborhood. These observed neigh-
boring actions become part of the observation history

which allows agent
to improve on his estimate of and the actions
that other agents will play on the first stage of the game,
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thereby also affecting the selection of its own action .
In general, at any point in time the history of observations

is augmented to incorporate the actions of neighbors in
the previous stage,

(3)

The observed action history is then used to update the
estimates of the world state and the upcoming actions

of all other agents leading to the selection of the
action in the current stage of the game.
The final components of the game that we introduce are the

strategies that are used to map histories to actions. In this
paper we focus on pure strategies that can bewritten as functions
that map history realizations to actions

(4)

We emphasize the difference between strategy and action. An
action is the play of agent at time , whereas strategies

refer to the map of histories to actions. We can think of
the action as the value of the strategy func-
tion associated with the given observed history . Fur-
ther define the strategy of agent as the concatenation

of strategies that agent plays at all times. Use
to refer to the strategies of all players at time

, to represent the strategies played by
all players between times 0 and , and

to denote the strategy profile for all agents and
times . As in the case of the network topology, the strategy
is also assumed to be known to all agents. This is not a strong
assumption. In Sections III and IV, we show that agents can lo-
cally compute the strategy profile given that they know the net-
work topology and that everybody is rational in the sense that
we make precise in the following section.

A. Bayesian Nash Equilibria

Given that agent wants to maximize the utility in (2) but
has access to the partial information available in the observed
history in (3), a reasonable strategy is to select the ac-
tion that maximizes the expected utility with respect to the
history . To write this formally note that this expected utility
depends on strategies played in the past by all agents and
on strategies that all other agents are to play in the
upcoming turn. Fix then the past strategies and the up-
coming strategies of other players and define the
corresponding best response of player at time as

(5)

The strategies in (5) played at previous times mapped re-
spective histories to actions for .
Therefore, the past strategies determine the manner in
which agent updates his beliefs on the state of the world and
on the histories observed by other agents. As per
(4) the strategy profiles of other players in the cur-
rent stage permit transformation of history beliefs

into a probability distribution over respective upcoming actions
. The resulting joint distribution on

and permits evaluation and maximization of the expectation
in (5).
One can think of the profiles played by other

agents in the upcoming stage as the model agent makes of
the behavior of other agents. In that sense the sensible assump-
tion is that other agents are also playing best response to a best
response model of other agents. I.e., agent assumes agent
is playing the best response to his respective model of the be-
havior of other agents and that the model agent makes of these
responses is that these agents also play best response to a best
response model. This modeling assumption leads to the defini-
tion of Bayesian Nash equilibrium (BNE) as the solution to the
fixed point equation

(6)
where we have also added the restriction that an equilibrium
strategy has been played for all times . We empha-
size that (6) needs to be satisfied for all possible histories
and not just for the history realized in a particular game realiza-
tion. This is necessary because agent does not know the history
observed by agent but rather a probability distribution on his-
tories. Thus, to evaluate the expectation in (5) agent needs a
representation of the equilibrium strategy for all possible histo-
ries .
If all agents play their BNE strategies as defined in (6),

becomes optimal in the usual game theoretic sense. There is no
strategy that agent could unilaterally deviate to that provides
a higher expected payoff than [cf. (5)]. In that sense the
BNE strategy is the best that agent can do given other agents’
strategies and his locally available information . In the rest
of the paper we consider agents playing with respect to the BNE
strategy at all times. To simplify future notation define the
expectation operator

(7)

to represent expectations with respect to the local history
when agents have played the equilibrium strategy in all
earlier stages of the game. Similarly, we define the conditional
probability distribution of agent at time given past strategies

and his information as .
Since is a strictly concave quadratic

function of as per (2), the same is true of the expected utility
that we maximize to obtain the

best response in (5). We can then rewrite (5) by nulling the
derivative of the expected utility with respect to . It follows
that the fixed point equation in (6) can be rewritten as the set of
equations

(8)

that need to be satisfied for all possible histories and agents
. Our goal is to develop a filter that agents can use to com-
pute their equilibrium actions given their
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observed history . We pursue this in the following section
after some remarks.
Remark 1: It may be of interest to modify the utility in (2) to

include more additive terms that are functions of other actions
and the state of the world but not of the self actions

. This may change the utility and the expected utility in (5)
but does not change the equilibrium strategy in (6). Since these
terms do not contain the self action , their derivatives are null
and do not alter the fixed point equation in (8).
Remark 2: The equilibrium notion in (6) is based on the

premise of myopic agents that choose actions that optimize pay-
offs at the present game stage. A more general model is to con-
sider non-myopic agents that consider discounted payoffs of fu-
ture stages. Non-myopic behavior introduces another layer of
strategic reasoning. Forward looking agents would need to take
into account the effect of their decisions at each stage of the
game on the future path of play knowing that other agents base
their future decisions on what they have previously observed.
E.g., non-myopic agents might reduce their immediate payoff
to harvest information that may result in future gains. Exten-
sions to games with non-myopic agents is beyond the scope of
this paper.

III. PROPAGATION OF PROBABILITY DISTRIBUTIONS

According to the model in (8), at each stage of the game
agents use the observed history to estimate the unknown
parameter as well as the histories observed by
other agents. They use the latter and the known BNE strategy

to form a belief on
the actions of other agents which they use to

compute their equilibrium action at time . Observe
that if the vector of private signals is given—not to the
agents but to an outside observer—the trajectory of the game
is completely determined as there are no random decisions.
Thus, agent can form beliefs on the histories and
actions of other agents if it keeps a local belief

on the vector of private signals . A method to track
this probability distribution is derived in this section using a
complete induction argument.
Start by assuming that at given time , the posterior distri-

bution is normal. Recalling the definition of the expec-
tation operator in (7), the mean of this normal distribu-
tion is . Define the corresponding error covariance matrix

as

(9)

Although agent ’s probability distribution for is sufficient to
describe its belief on the state of the system, subsequent deriva-
tions are simpler if we keep an explicit belief on the state of the
world . Therefore, we also assume that agent ’s beliefs on
and are jointly Gaussian given history . The mean of is

and the corresponding variance is

(10)

The cross covariance between the world state
and the private signals is

(11)

We further make the stronger assumption that the means of
this joint Gaussian distribution can be written as linear combi-
nations of the private signals. In particular, we assume that for
some known matrix and vector we
can write

(12)

Observe that the assumption in (12) is not that the estimates
and are computed as linear combinations of the

private signals —indeed, is not known by agent in gen-
eral. The assumption is that from the perspective of an external
observer the actual computations that agents do are equivalent
to the linear transformations in (12). We note that the Gaussian
beliefs and linear mean estimates as in (12) are only used as
assumptions to prove the intermediate results, that is, Lemmas
1 and 2. They will be true by induction in the main result,
Theorem 1.
Under the complete induction hypothesis of Gaussian pos-

terior beliefs at time with expectations as in (12), we show
that agents play according to linear equilibrium strategies of the
form

(13)

for some action coefficients that vary across agents
but are independent of the observed history . These can be
found by solving a system of linear equations. We do this in the
following lemma.
Lemma 1: Consider a Bayesian game with quadratic utility

as in (2). Suppose that for all agents , the joint posterior be-
liefs on the state of the world and the private
signals given the local history at time are Gaussian with
means expressed as the linear combinations of private signals
in (12) for some known vectors and matrices . Define
the aggregate vector stacking
the state estimation weights of all agents and the block matrix

with diagonal blocks and
off diagonal blocks ,

...
. . .

...

(14)

If there exists a linear equilibrium strategy as in (13), the action
coefficients can be obtained by
solving the system of linear equations

(15)



2254 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 9, MAY 1, 2014

Proof: We hypothesize that agents play according to a
linear equilibrium strategy as in (13). Substituting this candi-
date strategy into the equilibrium equations in (8) yields

(16)

The summation in (16) includes the expectations
of agent on the private signals’ estimate of agent . As per the
induction hypothesis in (12), we have that the inner expectations
can be written as . Using this fact, agent ’s
expectation of agent ’s estimate of private signals becomes

(17)

Substituting (17) and the estimate induction hypotheses in (12)
for the corresponding terms in (16) and (17), and reordering
terms yield the set of equations

(18)

At this point we recall that the equilibrium equations in (8) are
true for all possible histories . Therefore, the equilibrium
equations in (18), which are derived from (8), have to hold ir-
respectively of the history’s realization. This in turn means that
they will be true for all possible values of . This can be ensured
by equating the coefficients that multiply each component of
in (18) thereby yielding the relationships

(19)

that need to hold true for all agents . The result in (15) is just
a restatement of (19) with the latter corresponding to the -th
block of the relationship in (15).
Lemma 1 provides a mechanism to determine the strategy

profiles of all agents through the computation of the ac-
tion vectors as a block of the vector that solves (15).
We emphasize that the value of the weight vector in (15)
does not depend on the realization of private signals . This
is as it should because the postulated equilibrium strategy in
(13) assumes the action weights are independent of the ob-
served history. A consequence of this fact is that the action coef-
ficients of all agents can be determined locally by all
agents as long as the matrices and vector
are common knowledge. The equilibrium actions , how-
ever, do depend on the observed history because to determine
the action we multiply by
the expectation associated with the actual observed his-
tory . See Section IV for details.
At time agent computes its action vector which it uses

to select the equilibrium action as per (13).
Since we have also hypothesized that , as per
(12) the action of agent at time is given by

(20)

We emphasize that as in (12) the expression in (20) is not the
computation made by agent but an equivalent computation
from the perspective of an external omniscient observer.

The actions
of neighboring agents become part of the observed
history of agent at time [cf. (3)]. The important
consequence of (20) is that these observations are a linear com-
bination of private signals . In particular, by defining the ma-
trix we
can write

... (21)

Agent ’s belief of at time is normally distributed; more-
over, when we go from time to time , agent observes a
linear combination, , of private signals. Thus,
the propagation of the probability distribution when the history

incorporates the actions is a simple sequential
LMMSE estimation problem [36, Ch. 12]. In particular, the joint
posterior distribution of and given remains Gaussian
and the expectations and remain linear com-
binations of private signals as in (12) for some matrix
and vector which we compute explicitly in the following
lemma.
Lemma 2: Consider a Bayesian game with quadratic

utility as in (2) and the same assumptions and defini-
tions of Lemma 1. Further define the observation matrix

as in
(21) and the LMMSE gains

(22)

(23)

and assume that agents play the linear equilibrium strategy in
(13). Then, the beliefs after observing neigh-
boring actions at time are Gaussian with means that can be
expressed as the linear combination of private signals

(24)

where the matrix and vector are given by

(25)

(26)

The posterior covariance matrix for the private sig-
nals the variance of the state and the cross co-
variance are further given by

(27)

(28)

(29)

Proof: Since observations of , , are linear com-
binations of private signals which are normally distributed,
observations of are also normally distributed from the per-
spective of . Furthermore, by assumption (12), the prior dis-
tribution is Gaussian. Hence, the posterior distribution,
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Fig. 1. Quadratic Network Game (QNG) filter at agent . There are two types of blocks, circle and rectangle. Arrows coming into the circle block are summed.
The arrow that goes into a rectangle block is multiplied by the coefficient written inside the block. Inside the dashed box agent ’s mean estimate updates on and
are illustrated (cf. (36)) and (37)). The gain coefficients for the mean updates are fed from LMMSE block in Fig. 2. The observation matrix is fed from the

game block in Fig. 2. Agent multiplies his mean estimate on at time with action coefficient , which is fed from game block in Fig. 2, to obtain . The
mean estimates and can only be calculated by agent .

, is also Gaussian. Specifically, the mean of the poste-
rior distribution corresponds to the LMMSE estimator with gain
matrix ; that is,

(30)
Because and are jointly Gaussian at time , and

are also jointly Gaussian. Therefore, the posterior distribution
is also Gaussian. Consequently, the Bayesian esti-

mate of is given by a sequential LMMSE estimator with gain
matrix ,

(31)
Given the linear observation model in (21), agent ’s estimate
of his observations at time is given by

. Substituting (12) for the mean estimates at time
in (30) and (31), we obtain

(32)

(33)

Grouping the terms that multiply on the right hand side of
the two equations, we observe that and

where and are as defined in
(25) and (26). Similarly, the updates for error covariance ma-
trices are as given in (27)–(29) following standard LMMSE up-
dates [36, Ch. 12].
In the repeated game we are considering, agents determine

optimal actions given available information and determine the
information that is revealed by neighboring actions. These ques-
tions are respectively answered by Lemmas 1 and 2 under the
inductive hypotheses of Gaussian beliefs and linear estimates
as per (12). The answer provided by Lemma 2 also shows that
the inductive hypotheses hold true at time and provides
an explicit recursion to propagate the mean and variance of the
beliefs posterior to the observation of neighboring actions. This

permits closing the inductive loop to establish the following the-
orem for recursive computation of BNE of repeated games with
quadratic payoffs.
Theorem 1: Consider a repeated Bayesian game with the

quadratic utility function in (2) and assume that linear strate-
gies as in (13) exist for all times .
Then, the action coefficients can be computed by solving the
system of linear equations in (15) with ,

and as in (14). The matrices and
the vectors are computed by recursive application of (22),
(23) and (25)–(29) with initial values

(34)

The initial covariance matrix , initial variance ,
and initial cross covariance are given by

(35)

Proof: See Appendix A.
According to Theorem 1, the beliefs on and remain

Gaussian for all agents and all times when agents play ac-
cording to a linear equilibrium strategy as in (13) at each
stage. Theorem 1 also provides a recursive mechanism to
compute the coefficients of the linear BNE strategies

and the coefficients and
that determine the LMMSE estimates as per (12). However,
these latter expressions cannot be used by agent to calculate
estimates and unless the private signals are
exactly known, which will absolve agent from responsi-
bility of the estimation process entirely. Since the BNE action

depends on having the ob-
served private signal estimate available, Theorem 1
does not provide a way of computing the optimal action either.
This mismatch can be solved by writing the LMMSE updates
in a different form as we show in the next section after the
following remark.



2256 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 9, MAY 1, 2014

Fig. 2. Propagation of gains required to implement the Quadratic Network Game (QNG) filter of Fig. 1. Gains are separated into interacting LMMSE and game
blocks. All agents perform a full network simulation in which they compute the gains of all other agents. This is necessary because when we compute the play
coefficients in the game block, agent builds the matrix that is formed by the blocks of all agents [cf. (14)]. This full network simulation is possible
because the network topology and private signal models are common knowledge.

Remark 3: Results in this paper assume the system of linear
equations in (15) has a unique solution. If the solution is not
unique, a prior agreement is necessary for agents to play con-
sistent strategies. E.g., agents could agree beforehand to select
the vector with minimum Euclidean norm. If (15) does not
have a solution, it means that the equilibrium strategies of the
form in (20) do not exist. A sufficient condition for this not to
happen is to have a strictly diagonally dominant utility function
which in explicit terms we write . In this
case Gershgorin’s Theorem implies that is full rank because
it has no null eigenvalues. Laxer conditions to guarantee exis-
tence of linear equilibria as in (20) can be found in, e.g., [29],
[34]. In all of our numerical experiments, solutions to (15) exist
and are unique.

IV. QUADRATIC NETWORK GAME FILTER

To compute and play BNE strategies each node runs the
quadratic network game (QNG) filter that we derive in this
section and summarize by Figs. 1 and 2. Fig. 1 provides a
diagram outline of the QNG filter whereas Fig. 2 details game
solution and coefficient updates given in Lemmas 1 and 2.
Since agent cannot use (12), we need an alternativemeans of

computing estimates and . To do this refer to the
(30) and (31) in the proof of Lemma 2. In these equations we
substitute the expectation of the observed neighboring actions

with using their model in (21). As a
result we can rewrite (30) and (31) as

(36)

(37)

The updates in (36) and (37) can be implemented locally by
agent since they depend on the previous values and

of the LMMSE estimates, and the observed neighboring
actions . The signal updates in (36), (37) are illustrated
inside the dashed box in Fig. 1. At time , the inputs to the filter
are the observed actions of agent ’s neighbors. The
prediction of this vector is sub-
tracted from the observed value and the resultant error is fed into
two parallel blocks respectively tasked with updating the belief

on the state of the world , and the belief on the
private signals of other agents. The error
is multiplied by the gain and the resultant innovation is
added to the previous mean estimate to correct the estimate of
[cf. (36)]. Similarly, the error is multiplied by the gain

and the resultant innovation is added to the previous mean es-
timate to correct the estimate of at [cf. (37)]. The output of
the dashed box in Fig. 1, agent ’s mean estimate of private sig-
nals is multiplied by the vector to determine
the equilibrium play at time as per (13).
The mean estimate updates in (36) and (37), and equilib-

rium action coefficients outlined in Fig. 1 require recursive com-
putation of the observation matrix , gain matrices
and , and action coefficient vector . These coeffi-
cient recursions can be divided into a block of LMMSE up-
dates for computation of gains and , and a block
of game updates for computation of and as we show
in Fig. 2. While these updates are divided into blocks, they are
interconnected in that computation of coefficients in one block
demand information from the other. Given the observation ma-
trix from the game block, the gain matrices and

in the LMMSE block follow from (22) and (23), respec-
tively. Inside the LMMSE block, , and

follow from (27)–(29) by using the observation ma-
trix and previously calculated gains and . In
the game block, mean estimate coefficient matrix and the
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vector follow from (25) and (26) using the gain matrices
fed from the LMMSE block.
The next step in the game block is to compute action co-

efficients by formulating and solving the system of equa-
tions in (15). For formulation of the equations, the mean esti-
mate matrices , and vectors are needed as
they are building blocks of the matrix and the vector in
(15). As a result, agent performs a full network simulation in
which he maintains mean estimate coefficients of all the agents
in the QNG filter—see Remark 4. He can do this because given

, the LMMSE block and mean estimate coefficients
and of agent can be computed without any informa-

tion local to agent in Fig. 2. Consequently, the matrices
are used as building blocks of the matrix and the vec-

tors are stacked in the vector and used to formulate the
systems of equations in (15). Solving this system of equations,
using when it is full rank or its pseudo inverse when it is
not, yields the coefficients . All of these computations
are local given observation matrices of all agents,
but providing observation matrices of all the agents to is in-
feasible in a decentralized setting. Nevertheless, we remark that
network is common knowledge that is all of the agents know
the neighborhood set of each other. This is critical as given

and the network structure, agent can compute
the observation matrix in (21) for all . As mentioned
before, the game block then feeds the matrices to the filter
block since they are used in the LMMSE gains and covariance
updates which are fed into the game block to update mean esti-
mate coefficients and .
This completes one step of the loop in which agent keeps

track of the game and LMMSE coefficients in Fig. 2 for all the
agents via internal computations. We remark that this is pos-
sible due to common knowledge of network and signal model.
Above we have mentioned that network knowledge is necessary
in computing observation matrix of other agents. Signal model
knowledge is necessary in computing initial estimation weights
and covariance matrices in (34), (35). Consequently, all of these
computations for the coefficients of other agents are internal to
agent and independent of the game realization. Furthermore,
the gains can be computed offline prior to running the game. On
the other hand, the computation of the equilibrium actions
in (13) and mean estimate updates in (36), (37) summarized in
Fig. 1 depend on observed history hence they are performed
for agent ’s own index only.
Remark 4: There are two reasons for a full network sim-

ulation. First, agent ’s utility is coupled with others’ actions
hence computing equilibrium play involves solving the system
of equations in (15) for which, agent needs to build the ma-
trix and vector that are formed by the blocks and
of all the agents. Second, agent refines his estimates from ob-
serving neighbors’ actions which involves constructing his ob-
servation matrix . The building blocks of in (21) are

which implies keeping track of action and es-
timation coefficients of neighbors including tracking neighbors’
observation matrices which in turn would imply
tracking action and estimation coefficients of his neighbors’
neighbors. Consequently, propagating beliefs require keeping
track of coefficients of all the agents in the network.

Remark 5: In the QNG filter, we do not use the fact that es-
timates and as well as actions can be written
as linear combinations of the private signals [cf. (12) and (20)].
While the expressions in (12) and (20) are certainly correct, they
cannot be used for implementation because is only partially
unknown to agent . The role of (12) and (20) is to allow deriva-
tion of recursions that we use to keep track of the gains used in
the QNG filter.
Remark 6: TheQNG filter can also be used in repeated games

with purely informational externalities. In this case each agent’s
payoff is given by , and the problem is
thus equivalent to the distributed estimation of the world state
[5]. Our model subsumes the games with purely informational
externalities as a special case. Given this payoff function, the
best response of agent at time is the action .
Hence, it is not necessary to solve (15) for the optimal strategy
coefficients . Other than this the QNG filter remains un-
changed. Since in the case of purely informational externali-
ties the end goal is the estimation of , the QNG filter is tanta-
mount to an optimal distributed implementation of a sequential
LMMSE filter.

V. VECTOR STATES AND VECTOR OBSERVATIONS

Consider the case when state of the world is a vector, that
is, for . Similar to the scalar case, each agent
receives initial private signal ,

(38)

where the additive noise term is multivariate Gaussian
with zero mean and variance-covariance matrix .
For future reference, define the vector obtained by stacking el-
ements at the th row and th column of variance-covariance
matrices of all agents, .We use

to denote the th private signal of agent where .
We assume that the noise terms are independent among
agents. We define the set of all private signals as

(39)

where . We use to
denote the vector of private signals of agents on the th state of
the world.
At each stage , agent takes action . Agent ’s

action at time is to maximize a payoff function which is rep-
resented by the following quadratic function

(40)
where constants and belong to . Similar to the
scalar case, other additive terms that depend on and
can exist without changing the results to follow.We obtain the
best response function for agent by taking the derivative of the
expected utility function with respect to , equating it to zero,
and solving for :

(41)
Note that .
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Similar to the case when the unknown parameter is a scalar,
it is sufficient for agents to keep track of estimates of in order
to achieve the best estimate of . Accordingly, the definitions
of estimates of private signals and the unknown parameters and
their corresponding covariance matrices (9)–(11) are the same
as in the scalar case.
In what follows, we show that the mean estimates are linear in

private signals and equilibrium actions are linear in expectations
of private signals in the similar fashion we did for the scalar state
of the world.
Lemma 3: Consider a Bayesian game with quadratic utility

as in (40). Suppose that for all agents , the joint posterior beliefs
on the state of the world and the private signals given the
local history at time , , are Gaussian with
means expressed as

(42)

where and are known es-
timation weights. If there exists an equilibrium strategy profile
that is linear in expectations of private signals,

(43)

then the action coefficients can be obtained by
solving the system of linear equations

(44)
Proof: The proof is analogous to the proof of Lemma 1. By

substituting the candidate strategies in (43) to the best response
function in (41) for all , we obtain the following equilib-
rium equations

(45)

for all . After using the fact that
with mean estimate assumptions in (42) for the

corresponding terms in (45), we obtain the following set of
equations

(46)

We ensure that the strategies in (43) satisfy the equilibrium
equations for any realization of history by equating coefficients
that multiply each component of in (46) which yields the set
of equations given by (44).
For a linear equilibrium strategy, the actions can be written

as a linear combination of the private signals using (42), that is,
the action of agent at time is given by

(47)

Being able to express actions as in (47) permits writing
observations of agents in linear form. From the per-
spective of an observer, the action is equivalent

to observing a linear combination of private signals. As
a result, we can represent observation vector of agent

in linear
form as

(48)
where

is the observation matrix of agent .
Agent ’s belief of at time is normal, and at time agent
observes a linear combination of . Hence, agent ’s belief at
time can be obtained by a sequential LMMSE update. As a
result, mean estimates remain weighted sums of private signals
as in (42). In the following lemma, we explicitly present the way
we compute the estimation weights, and , at time

when .
Lemma 4: Consider a Bayesian game with quadratic function

as in (40) and the same assumptions and definitions of Lemma
3. Further define the gain matrices as

(49)

(50)

If agents play according to a linear equilibrium strategy then
agent ’s posterior is Gaussian with means that
are linear combination of private signals,

(51)

where the estimation matrices are given by

(52)

(53)

and the covariance matrices are further given by

(54)

(55)

(56)

Proof: The proof is identical to the proof of Lemma 2 with
the action coefficients taking the place of .
Lemma 4 shows that when mean estimates are linear com-

binations of private signals at time , they remain that way at
time . In the next theorem, we show that the assumption
in (42) is indeed true for all time by an induction argument and
realizing that the estimates at time are linear combina-
tions of private signals. To simplify presentation of initial con-
ditions, we assume that agent ’s private signals are independent,

for all and .
Theorem 2: Given the quadratic utility function in (40), if

there exists a linear equilibrium strategy as in (43) for ,
then the action coefficients can be computed by solving the
system of linear equations in (44), and further, agents’ estimates
of and are linear combinations of private signals as in (42)
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with estimation matrices computed recursively using (49)–(50)
and (52)–(56) with initial values

...
. . .

...
(57)

(58)

where . The initial covariance matrix
is a diagonal block matrix with blocks

for , initial vari-
ance and initial cross covariance

are given by

(59)

(60)

...
. . .

...
(61)

Proof: See Appendix B.
Similar to the scalar case, when network structure and the

equilibrium strategy profile are common knowledge, agent can
calculate the weights for all and update his esti-
mates locally. In Algorithm 1, we provide a sequential local al-
gorithm for agent to calculate updates for and and to act ac-
cording to equilibrium strategy. The Bayesian rational learning
defined here in Algorithm 1 for the vector state case follows
the same steps for the scalar case defined in Section IV and by
Figs. 1 and 2.

Algorithm 1: QNG filter for

Initialization: Set posterior distribution on and

and according to (57) and (58).

For
1) Equilibrium strategy: Solve for using the set
of equations in (44).

2) Play and observe: Take action and
observe .

3) Observation matrix: Construct using (48).
4) Bayesian estimates: Update and using (30)
and (31), respectively. Update error covariance matrices
using (54)–(56).

5) Estimation weights: Update using (52),
(53).

VI. COURNOT COMPETITION

In a Cournot competition model firms produce a common
good that they sell in a market with limitless demand. The cost
per production unit is common for all firms and constant for

Fig. 3. Line, star and ring networks.

all times. The selling unit price, however, decreases as the total
amount of goods produced by all companies increases.We adopt
the specific linear model for the selling unit price,
where is the constant market price when no goods are pro-
duced. The profit of firm for production level is there-
fore given by the utility

(62)
The utility function in (62) is not of the quadratic form given
in (2) because there are two information externalities, the cost
and the clearing price . While it is possible to resort to the
vector form of the QNG filter covered in Section V, it is sim-
pler to write (62) in a form compatible with (2) by defining the
parameter as the effective unit profit at the market
price. Using this definition in (62) and reordering terms yields

(63)

Since this utility function is of the form in (2), we can use the
QNG filter of Section IV as summarized in Figs. 1 and 2 to
determine subsequent BNE production levels. The explicit form
of the equilibrium equation in (8) is

(64)

It is immediate from (64) that when it is best for firm
to shut down production. To avoid boundary conditions we
restrict attention to cases where private signals are such that

for all and . This can be guaranteed
if all private signals are nonnegative, i.e., . In a game
with complete information all private signals are known to all
agents. In this case the (regular) Nash equilibrium actions of all
agents coincide and are given by

(65)

The numerical simulations in the next section show that the
BNE strategies in (64) converge to the (regular) Nash equilib-
rium strategy (65) in a finite number of steps.

A. Learning in Cournot Competition

The underlying effective unit profit is chosen as
. Firms observe private signals with the additive

noise term coming from standard normal distribution, i.e.,
. In our simulations, we ignore the rare cases in



2260 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 9, MAY 1, 2014

Fig. 4. Agents’ actions over time for the Cournot competition game and networks shown in Fig. 3. Each line indicates the quantity produced for an individual at
each stage. Actions converge to the Nash equilibrium action of the complete information game in the number of steps equal to the diameter of the network.

Fig. 5. Normed error in estimates of privates signals, , for the Cournot competition game and networks shown in Fig. 3. Each line corresponds
to an agent’s normed error in mean estimates of private signals over the time horizon. While all of the agents learn the true values of all the private signals in line
and ring networks, in the star network only the central agent learns all of the private signals.

which for any . Given this setting, we consider
three benchmark networks: a line network with firms,
a star network with firms, and a ring network with

firms (see Fig. 3).
The quantities produced by firms over time are shown in

Fig. 4 for the line (a), star (b) and ring (c) networks. In all of
the cases, we observe consensus in the units produced. Further-
more, the consensus production is optimal; that is, firms con-
verge to the Bayes-Nash equilibrium under complete informa-
tion (65). This implies that all of the firms learn the best estimate
of by the convergence time , that is,
for all .
Figs. 5(a)–(c) show the error in estimation of private signals

for all and . In Figs. 5(a) and 5(c),
corresponding to line and ring networks, the mean square error
in private signal estimates goes to zero for all of the firms at
the end of the convergence time . On the other hand, in the
star network in Fig. 5(b), except for the center firm 5, none of
the other firms has zero mean square error in private signal es-
timates. This means that these firms do not learn at least one
of the private signals. As we know from Fig. 4(b), all of the
firms in the star network learn the best estimate of given all of
the private signals. Hence, in the star network, firms only learn
the sufficient statistic to estimate (which is the average of the
private signals) rather than learning each of the private signals
individually.
Figs. 4(a)–(c) suggest that convergence is achieved in

steps where is the diameter of the graph. In [5], it is argued
that for the distributed estimation problems when the individual
utility function is equal to , convergence

happens in steps for tree networks. Our results show that
the convergence rate is not only for tree networks such
as line and star networks but also for the ring network when the
utility function is quadratic and includes actions of others.

VII. COORDINATION GAME
A network of autonomous agents want to align themselves

so that they move toward a goal on 3-dimensional
space following a straight path, and at the same time maintain
their initial starting formation. When the goal is far
away, then there exists a common correct direction ofmovement
toward the goal characterized by the heading angle on the
plane and the take-off angle on the plane

. Hence, the target movement direction is given
by . Fig. 6 illustrates a set of autonomous agents
on a 3-dimensional plane and their initial heading and take-off
angle signals where the , , axes are depicted for agent 1.
Mobile agents have the goal of maintaining the starting for-

mation whilemoving at equal speed by coordinating their move-
ment direction with other agents. Agents need to coordinate
with the entire population while communication is restricted
to neighboring agents whose direction of movement they can
observe. In this context, agent ’s decision

represents the heading and take-off angles in the di-
rection of movement. The estimation and coordination goals of
agent can be represented with the following payoff

(66)
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Fig. 6. Mobile agents in a 3-dimensional coordination game. Agents observe
initial noisy private signals on heading and take-off angles. Red and black
lines (the two solid arrows originating from each node) are illustrative heading
and take-off angle signals, respectively. Agents revise their estimates on true
heading and take-off angles and coordinate their movement angles with each
other through local observations.

The first term is the estimation error in the true heading and
take-off angles. The second term is the coordination component
that measures the discrepancy between the direction of move-
ment and those of other agents. is a constant in (0,1) gauging
the importance of estimation term with respect to the coordina-
tion term.
The same payoff formulation can be motivated by looking at

learning in organizations [37]. In an organization, individuals
share a set of common tasks and have the incentive to coordi-
nate with other units. Each individual receives a private piece
of information about the task that needs to be performed while
only being able to share his information with whom he has a di-
rect contact in the organization.
Note that the utility function is of the quadratic form given

in (40) with vector states and vector actions. Hence, we can use
the QNG filter in Section V as summarized in Algorithm 1. As
postulated in (8), the explicit equilibrium equation for all
is

(67)
In a game with complete information, the Bayes-Nash equi-

librium actions of all agents coincide and are given by

(68)

In the next section, we show that the equilibrium actions in
(67) converge to the Bayes-Nash equilibrium with complete in-
formation as given by (68) in finite number of steps.

A. Learning in Coordination Games

The correct direction vector is chosen to be .
We let . The noise terms, are jointly Gaussian
with mean zero and covariance matrix equal to the identity
matrix. Having an identity covariance matrix implies that

.
We evaluate equilibrium behavior in geometric and random

networks with agents, Figs. 7(a) and (b), respectively.
Geometric random network is created by placing the agents ran-
domly on a 4 meter 4 meter square and connecting pairs with
distance less than 1 meter between them. In the random net-
work, there exists a link between any pair of agents with proba-
bility 0.1. The geometric network in Fig. 7(a) has a diameter of

Fig. 7. Geometric (a) and random (b) networks with agents. Agents
are randomly placed on a 4 meter 4 meter square. There exists an edge be-
tween any pair of agents with distance less than 1 meter apart in the geometric
network. In the random network, the connection probability between any pair
of agents is independent and equal to 0.1.

Fig. 8. Agents’ actions over time for the coordination game and networks
shown in Fig. 7. Values of agents’ actions over time for heading angle
(top) and take-off angle in geometric (left) and random (right) networks
respectively. Action consensus happens in the order of the diameter of the
corresponding networks.

where the random network in Fig. 7(b) has a diameter
of .
The direction of movement of each agent over time is de-

picted in Figs. 8(a)–(d). Figs. 8(a) and 8(b) show the heading
angle of agents in geometric and random networks, respec-
tively. Figs. 8(c) and 8(d) show the take-off angle of agents
in geometric and random networks, respectively. Fig. 8 illus-
trates that agents’ movement directions converge to the best
estimates in heading and take-off angles in a finite number of
steps. As a result, at the end of the convergence time , we have

and for all
. Further, convergence time is in the order of the diameter

for both of the networks. This means that agents learn the suf-
ficient statistic to calculate best estimates in the amount of time
it takes for information to propagate through the network.

VIII. CONCLUSION

In this paper we introduced the QNG filter that agents can
run locally to update their beliefs and select equilibrium actions
in repeated quadratic games with both information and payoff
externalities. The QNG filter provides a mechanism to update
beliefs in a Bayes’ way when agents’ initial prior over the state
of the world is Gaussian. We began by showing that when the
prior estimates of private signals are Gaussian with means equal
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to a linear combination of private signals, and the equilibrium
strategies of agents are linear combination of mean estimates of
private signals, Bayesian updates of estimates of private signals
and the underlying state follow a sequential LMMSE estimator.
This meant that the estimates remain linear combinations of pri-
vate signals, and hence, Gaussian. By induction, estimates re-
main Gaussian for all times if equilibrium actions that are linear
in mean of the estimates exist at all the stages. Further, we de-
rived an explicit recursion for tracking of estimates of private
signals and calculating equilibrium actions which we leverage
to develop the QNG filter. We then extended the QNG filter to
the case when the state of the world is a vector. We exemplified
the QNG filter in Cournot competition game and coordination of
mobile agents on 3-dimensional space. In the former the state of
the world, effective profit, was a scalar, whereas in the latter the
state of the world was a vector including heading and take-off
angles. In both examples, the QNG filter converged to the BNE
of the game in number of steps that is equal to the order of the
diameter of the network. This meant that agents learnt the suf-
ficient statistic of the state while not necessarily learning all the
individual private signals.

APPENDIX A
PROOF OF THEOREM 1

At time beliefs are normal and have the form in (12).
Indeed, since the only information available to agent at time

is the private signal it follows from the linear observa-
tion model in (1) that this is the value assigned to the estimate
of all private signals as well as to the estimate of the state ,

(69)

The elements of the matrix are 1 in the th column
and 0 otherwise. Therefore, the first expression in (69) is equiv-
alent to the first expression in (34). Likewise, since the th ele-
ment of is one with remaining elements zero, the second ex-
pression in (69) is equivalent to the second expression in (34).
As for the variances in (35), note that the initial estimate of
has error covariance matrix defined as in (9) for . By sub-
stituting initial mean estimates inside (9) and then using the fact
that , the error covariance matrix can be rewritten as

(70)

From (70), we get the following by using the fact that
by (1),

(71)

When we expand the terms in (71), we obtain the following

(72)

(73)

(74)

Since private signals are independent among agents, that is
for all and , we have
, . Using these relations

and the definition of noise variance , (73) follows

from (72). When second and third terms are subtracted from
the fourth term in (73), we obtain the last two terms in (74).
Now, observe that , hence
(74) can be rewritten as in (35).
Consider the variance of defined in (10) at time .

Substituting inside (10), we have

(75)

By the signal structure (1) with additive zero mean Gaussian
term , we have . As a result,
which is in return equal to . Next consider the cross-covariance
between and defined in (11) at time ,

(76)

(77)

The second equality follows by substitution of initial mean esti-
mates and then using the definition of private signals (1). Next,
we multiply out the terms in (77) and use independence of pri-
vate signals between agents to get (35).
The inductive hypotheses is then true at time with the

explicit initializations in (34) and (35). Lemma 2 has already
shown that if the inductive hypothesis is true at time , it is also
true at time . It also provided the explicit recursions in
(22), (23) and (25)–(29). Lemma 1 further shows that the action
coefficients can be computed by solving the system of linear
equations in (15).

APPENDIX B
PROOF OF THEOREM 2

At time , agents beliefs are normal and have the form
in (42). Since the only information available to agent at time

is the private signal , it follows from the observation
model in (38) that agent assigns as his mean estimates of the
underlying parameter vector and the private signals as in (57),
(58). Next, consider the initial error covariance matrix ,

(78)

...
...

(79)

Substituting initial mean estimates (58) in (78) and
using the fact that , we get (79). Let

denote the noise values of
agents on the th state of the world, then we can write each

block of the matrix obtained in (79) as follows

(80)

Since initial private signals of agent are assumed to be in-
dependent of each other, that is, for all

and , (80) is zero when . When ,
(80) is equivalent to (71). As a result, for the blocks at
the diagonals of , we obtain (59) which is similar to its
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scalar counterpart given in (35). Consider the variance of at
time . Using (57), we obtain that is as given in
(60). The initial cross covariance can also be calculated using
initial mean estimates in (57) and (58) in a similar way.
Given the normal prior with mean estimates

given by (57), (58), the inductive hypothesis in Lemma 3 is sat-
isfied at time . Further, by our assumption there exists a
linear equilibrium action with weights that can be calcu-
lated by solving the set of equations in (44). Lemma 4 already
provides a way to propagate beliefs when agents play according
to linear equilibrium strategy. Furthermore, by Lemma 4, if the
inductive hypothesis is true at time then it is also true at time

.
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