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Demand Response Management in Smart Grids with
Heterogeneous Consumer Preferences

Ceyhun Eksin, Hakan Deliç and Alejandro Ribeiro

Abstract—Consumer demand profiles and fluctuating renewable
power generation are two main sources of uncertainty in matching
demand and supply. This paper proposes a model of the electricity
market that captures the uncertainties on both, the operator and the
user side. The system operator (SO) implements a temporal linear
pricing strategy that depends on real-time demand and renewable
generation in the considered period combining Real-Time Pricing
with Time-of-Use Pricing. The announced pricing strategy sets
up a noncooperative game of incomplete information among the
users with heterogeneous but correlated consumption preferences.
An explicit characterization of the optimal user behavior using
the Bayesian Nash equilibrium solution concept is derived. This
explicit characterization allows the SO to derive pricing policies that
influence demand to serve practical objectives such as minimizing
peak-to-average ratio or attaining a desired rate of return while at
the same time hedging renewable generation uncertainty.

I. INTRODUCTION

Matching power production to power consumption is a com-
plex problem in conventional energy grids, exacerbated by the
introduction of renewable sources, which, by their very nature,
exhibit significant output fluctuations. This problem can be mit-
igated with a system of smart meters that control the power
consumption of customers by managing the energy cycles of var-
ious devices while also enabling information exchange between
customers and the system operator (SO) [1], [2]. The flow of
information between meters and the SO can be combined with
sophisticated pricing strategies so as to encourage a better match
between power production and consumption [3]–[5]. The effort of
operators to guides the consumption of end users through suitable
pricing policies is referred to as demand response management
(DR) [6].

To implement DR we can consider pricing mechanisms that
combine Real-Time Pricing (RTP) with Time-of-Use Pricing
(TOU). That is, the price depends on total consumption at
each time slot (RTP) and, in addition, the SO divides the
operation cycle into periods (TOU). The use of TOU allows
the SO to apply temporal policies based on its anticipation of
consumption and renewable source generation in each period.
The use of RTP transfers part of the risks and benefits to
consumers and encourages their adaptation to power production.
When producers use RTP customers agree to a pricing function
but actual prices are unknown a priori because they depend in
the realized aggregate demand. In this context, customers must
reason strategically about the consumption of others that will
ultimately determine the realized price. Game-theoretic models
of user behavior then arise naturally and various mechanisms
and analyses have been proposed [3], [4], [6]–[9] – see also [10],
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[11] for more comprehensive expositions. A common feature of
these schemes is that the SO and its customers run an iterative
algorithm to solve a distributed optimization problem prior to
the start of an operating cycle. The outcome of this optimization
results in individual power targets that the customers agree to
consume once the operating cycle starts.

This paper proposes a RTP mechanism for DR in which
customers agree to a linear price function that depends on
the total consumption and a parameter to incentivize the use
of energy produced from renewable sources. Both, total con-
sumption and the amount of energy produced by renewable
sources are unknown a priori and customers must decide their
consumption based on uncertain estimates made public by the
SO. Instead of running an iterative optimization problem prior
to the start of the operating cycle, we assume that this is all
the information exchange that occurs between customers and the
SO. To determine their consumption levels customers use this
information to anticipate the behavior of others, be aware of
their influence on price, and mind renewable resource generation
forecasts. We provide an analysis of this pricing policy in which
customers’ anticipatory behavior is formally modeled as the
actions of rational consumers with heterogeneous preferences
repeatedly taking actions in a game with incomplete information.
We provide explicit expressions for the Bayesian Nash equilibria
(BNE) of these games and use the resulting characterizations to
show desirable properties of the proposed RTP mechanism – e.g.,
we can adapt pricing policies to achieve a desired rate of return or
to minimize the power peak-to-average ratio (PAR) without using
any further information exchange with customers other than the
unidirectional broadcasting of the pricing policy parameters.

We begin with an introduction of the mathematical model for
operator and consumer behavior (Sections II-A and II-B). The
SO hedges its uncertainty in renewable sources on the price
where predicted abundance of renewables creates consumption
incentives through fixed discounts and the predicted scarcity
discourages consumption at each period. The pricing policy and
renewable generation prediction is broadcasted to the consumers
at the beginning of the period. We model consumption behavior
by designing payoffs for each customer that depends on self-
preferences and price. The self-preference is private to the cus-
tomer itself and is not known by the SO and other customers. The
consumers act to maximize their myopic expected payoffs with
respect to their belief on others’ preferences and renewable power
generation estimate (Section II-B). We explicitly characterize
consumption behavior at each time with respect to self-preference
by using BNE as the solution concept when the preferences come
from a jointly normal distribution (Section III). We compare
the selfish behavior to the case when customers are altruistic;
that is, they care for each other and act to maximize aggregate
utility given the uncertainties. Our results show selfish users
overweigh their self-preferences compared to the aggregate utility
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maximizing user making demand less predictable for the operator.
We provide numerical experiments exploring the behavior of
aggregate utility, consumption, price, and operator’s realized
profit with respect to the population’s preference distribution,
renewable prediction errors and price policy parameters (Sec-
tion IV). Finally, we show that the explicit characterization of
consumer behavior allows the SO to execute pricing policies
that attain desired rate of return or minimize PAR consumption
without having access to users’ preferences (Section V).

II. SMART GRID MODEL

A system operator oversees a DR model with N customers.
Customers, each equipped with a power consumption scheduler,
are characterized by their individual load consumption lih defined
as the power consumed by customer i ∈ N at time slot h ∈ H :=
{1, . . . ,H}. Accordingly, we represent the total consumption of
the population at time slot h with Lh :=

∑
i∈N lih. In order to

be able to respond to changing conditions in the environment,
e.g. resource prices or consumption preferences, the SO divides
the day into K time zones t1, t2, . . . , tK . The time zone k is a
batch of time slots starting at hsk ∈ H and ending at hek ∈ H,
i.e., tk := [hsk, h

e
k). The time zones do not overlap and span the

operation cycle H, that is, hek−1 = hsk for k ∈ {2, . . . ,K} and
hs1 = 1 and heK = H .

A. Power provider model

For a time slot h ∈ tk the total power consumption Lh results
in the SO incurring a production cost of Ck(Lh) units. Observe
that the production cost function Ck(Lh) depends on the time
zone k and the total power produced Lh. When the generation
cost per unit is constant, Ck(Lh) is a linear function of Lh. More
often, increasing the load Lh results in increasing unit costs as
more expensive energy sources are brought online. This results in
superlinear cost functions Ck(Lh) with a customary model being
the quadratic form1

Ck(Lh) =
1

2
κkL

2
h, (1)

for given constants κk > 0 that depend on the day’s time zone
k. The cost in (1) has been experimentally validated for thermal
generators [12] and is otherwise widely accepted as a reasonable
approximation [4], [6], [7].

The SO utilizes an adaptive pricing strategy whereby customers
are charged a slot-dependent price ph that varies linearly with the
total power consumption Lh. The SO owns renewable source
plants such as wind farms and solar arrays, and incorporates
renewable source generation into the pricing strategy by intro-
ducing a random variable ωk ∈ R that depends on the amount
of renewable power produced. The per-unit power price at time
slot h ∈ tk is set as

pk(Lh;ωk) = γk(Lh + ωk), (2)

where γk > 0 is a policy parameter to be determined by
the SO based on its objectives. We present how the operator
can pick its policy parameter γk > 0 to minimize PAR or
achieve a desired rate of return in Section V after modeling and
analyzing consumption behavior. The random variable ωk is such

1It is possible to add linear and constant cost terms to Ck(Lh) and have all
the results in this paper still hold. We exclude these terms to simplify notation.

that ωk = 0 when renewable sources operate at their nominal
benchmark capacity W̄k; that is, the generation at time zone k Wk

equals W̄k. If the realized production exceeds this benchmark,
Wk > W̄k, the SO agrees to set ωk < 0 to discount the energy
price and share the windfall brought about by favorable weather
conditions. If the realized production is below benchmark, i.e.,
Wk < W̄k, the SO sets ωk > 0 to reflect the additional charge on
the customers. The specific dependence of ωk with the realized
energy production and the policy parameter γk, are part of the
supply contract between the SO and its customers.

The operator’s price function maps the amount of energy
demanded to the market price. This is a standard model in pricing
– see [13] for a similar formulation. A fundamental observation
here is that the prices pk(Lh;ωk) in (2) become known after the
end of the time zone tk. This is because prices depend on the
total demand Lh and the value of ωk, which is determined by
the amount of renewable power produced in time zone tk. Both
of these quantities are unknown a priori as shown in Fig. 1.

We assume that the SO uses a model on the renewable power
generation – see, e.g., [3] for the prediction of wind generation –
to estimate the value of ωk at the beginning of the time zone k.
The corresponding probability distribution Pωk

is made available
to all customers at the beginning of the time zone. Henceforth,
we use Eωk

to denote expectation with respect to the belief Pωk

and ω̄k := Eωk
[ωk] to denote the mean of the distribution Pωk

.
By including a term that depends on renewable generation in the
price function, the SO aims to use the flexibility of consumption
behavior to compensate for the uncertainties in renewables in
real-time [3], [14].

Remark 1 The time zone-based adjustability of the pricing
function in (2) allows the SO to be responsive to not only
changes in predictions of renewable power but also to changes in
predicted consumption behavior. Recent studies have shown that
consumption behavior is constant majority of the time with few
significant changes [15]. Hence, few time zones suffice in order
to be responsive to changes in consumption preferences within
the operation cycle. In this paper, we assume that the SO is able
to correctly predict changes in consumption preferences within
the operation cycle-based on past consumer data and determines
time zones t1, . . . , tK accordingly. This pricing scheme is in line
with the argument that pricing schemes that consider hour-by-
hour consumption behavior are fairer compared to the ones that
consider the total load across the horizon as they enable charging
customers according to their load profile [16].

B. Power consumer model

The consumption preferences of users are determined by
random variables gik > 0 that are possibly different across
customers and time zones. When user i consumes lih units of
power at time slot h we assume that it receives the linear marginal
utility giklih. The user has a diminishing marginal utility from
consumption which is captured by the introduction of a quadratic
penalty αkl2ih. This quadratic penalty implies that even when the
price charged by the SO is zero, e.g., when γk = 0, it is not
in users’ interest to consume infinite amounts of energy. Note
that the constant αk may change across time zones k but is the
same for all consumers. For each unit of power consumed, the
SO charges the price pk(Lh;ωk), which results in user i incurring
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Fig. 1. Illustration of information flow between the power provider and the
consumers. The provider determines the pricing policy (2) and broadcasts it to
the users along with its prediction of renewable energy term Pωk . Selfish (4) or
altruistic (6) users respond optimally to realize demand L∗h =

∑
i∈N l∗ih. The

realized total demand L∗h together with realized renewable generation term ωk

determines the price of time zone k.

the total cost lihpk(Lh;ωk). The utility of user i is then given by
the difference between the consumption return giklih, the power
cost lihpk(Lh;ωk) and the overconsumption penalty αkl2ih,

uik(lih, Lh; gik, ωk) = −lihpk(Lh;ωk) + giklih − αkl2ih. (3)

Using the expressions for prices in (2) and Lh we express (3) as

uik(lih, l−ih; gik, ωk) (4)

= −lih
[
γk

(∑
j∈N

ljh + ωk

)]
+ giklih − αkl2ih,

where we have also rewritten the utility of user i as
uik(lih, Lh; gik, ωk) = uik(lih, l−ih; gik, ωk) to emphasize the
fact that it depends on the consumption l−ih := {ljh}j 6=i of
other users. Note that if the provider’s policy parameter is set to
γk = 0, the utility of user i is maximized by lih = gik/2αk –
see [7] for a similar formulation.

The utility of user i depends on the powers l−ih that are
consumed by other users in the current slot. These l−ih power
consumptions depend partly on their respective preferences, i.e.,
marginal utilities g−ik := {gjk}j 6=i, which are, in general,
unknown to user i. We assume, however, that there is a prob-
ability distribution Pgk

(gk) on the vector of marginal utilities
gk := [g1k, . . . , gNk]T from where these marginal utilities are
drawn and this probability distribution is known to all users. We
further assume that Pgk

is normal with mean ḡk1 where ḡk > 0
and 1 is an N×1 vector with one in every element, and covariance
matrix Σk,

Pgk
(gk) = N

(
gk; ḡk1,Σk

)
. (5)

We use the operator Egk
to signify expectation with respect to the

distribution Pgk
and σkij := ((Σk))ij to denote the (i, j)th entry

of the covariance matrix Σk. Having mean ḡk1 implies that all
customers have equal average preferences in that Egk

(gik) = ḡk
for all i. If σkij = 0 for some pair i 6= j, it means that the marginal
utilities of these customers are uncorrelated. In general, σkij 6= 0 to
account for correlated preferences due to, e.g., common weather.
It is assumed that marginal utilities gk and gl for different time
zones k 6= l are independent, e.g., the jump in consumption
preference from off-peak to peak zone is independent.

The probability distributions Pωk
and Pgk

and the parameters

αk and γk are common knowledge among the operator and its
customers. That is, the probability distribution Pgk

in (5) is
correctly predicted by the SO based on past data by assumption
and is announced to the customers. The pricing parameter γk and
the operator’s belief on the renewable energy parameter ωk, Pωk

is also announced. In addition, customer i knows its private value
of consumption preference gik.

A selfish customers’ goal is to maximize the utility
uik(lih, l−ih; gik, ωk) in (4) given its partial knowledge of the
others’ consumptions l−ih. An altruistic customers’ goal is to
maximize the aggregate utility defined as the sum of consumers’
utility functions,

Uk({ljh}j∈N ; gk, ωk) :=
∑
i∈N

uik(lih, l−ih; gik, ωk). (6)

Both of these maximizations require a model of behavior for other
users that comes in the form of a BNE that we introduce next.

III. CUSTOMERS’ BAYESIAN GAME

User i’s load consumption at time h ∈ tk is determined by
its belief qih and strategy sih. The belief of i is a conditional
probability distribution on gk given gik, qih(·) := Pgk

(·|gik). We
use Eih[·] := Egk

[·|gik] to indicate conditional expectation with
respect to belief of user i at time h. In order to second-guess
the consumption of other customers, user i forms beliefs on their
preferences given the common prior Pgk

and self-preferences up
to time zone k {gim}m=1,...,k. Observe that self-preferences of
previous time zones {gim}m<k are not relevant to belief at time
zone k as they are independent from the preferences at time zone
k. Note further that user i’s belief is static over the time horizon
as it receives no other information about the preferences of others.
User i’s load consumption at time h ∈ tk is determined by its
strategy which is a complete contingency plan that maps any
possible local observation that it may have to its consumption,
that is, sih : gik 7→ R for any gik. In particular, for user i,
its best response strategy is to maximize expected utility with
respect to its belief qih given the strategies of other customers
s−ih := {sjh}j 6=i,

BR(gik; s−ih) = arg max
lih

Eωk

[
Eih
[
uik(lih, s−ih; gik, ωk)

]]
.

(7)

A BNE strategy profile s∗ := {sih}i∈N ,h∈H at time h ∈ tk is a
strategy in which each customer maximizes expected utility with
respect to its own belief given that other customers play with
respect to BNE strategy.

Definition 1 A Bayesian Nash equilibrium (BNE) strategy s∗

is such that for all i ∈ N , k = 1, . . . ,K, h ∈ tk, and
{qih}i∈N ,h∈H,

Eωk

[
Eih
[
uik(s∗ih, s

∗
−ih; gik, ωk)

]]
≥

Eωk

[
Eih
[
uik(sih, s

∗
−ih; gik, ωk)

]]
. (8)

A BNE strategy (8) is computed using beliefs formed according
to Bayes’ rule. Note that the BNE strategy profile is defined for
all time slots, that is, no user at any given point in time has
a profitable deviation to another strategy. Equivalently, a BNE
strategy is one in which users play best response strategy given
their individual beliefs as per (7) to best response strategies of
other users – see [13], [17], [18] for a detailed explanation. As a
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result, the BNE strategy is defined with the following fixed point
equations

s∗ih(gik) = BR(gik; s∗−ih) (9)

for all i ∈ N , h ∈ tk, and gik. Using the definition in (9), the
following result characterizes the unique linear BNE strategy.

Proposition 1 Consider the game defined by the payoff in (4)
at time h ∈ tk for k = 1, . . . ,K. Let the information given to
customer i be its preference gik, the common normal prior on
preferences Pgk

as per (5) and the prior on renewable generation
Pωk

. Then, the unique BNE strategy of customer i is linear in
ω̄k, ḡk, gik for all k = 1, . . . ,K such that

s∗ih(gik) = aih(ḡk − ω̄kγk) + bih(gik − ḡk) (10)

where the constants aih and bih are entries of the vectors ah =
[a1h, . . . , aNh]T and bh = [b1h, . . . , bNh]T which are given by

ah = ((N + 1)γk + 2αk)−11, bh = ρkd(Σk), (11)

with constant ρk = (2(γk + αk))−1 and inference vector

d(Σk) = (I + ρkγkS(Σk))−11. (12)

obtained from the pairwise inference matrix S(Σk) defined as

[[S(Σk)]]ii = 0, [[S(Σk)]]ij = σkij/σ
k
ii ∀i ∈ N , j ∈ N \ i.

(13)

Proof: See Appendix.
Proposition 1 shows that there exists a unique BNE strategy

that is linear in self-preference gik at each time slot. This is a
direct consequence of the fact that the utility in (4) has quadratic
form and the prior on preferences is normal (5). From the linear
strategy in (10), we observe that increase in mean preference ḡk
causes an increase in consumption when aih > bih. From the
first set of strategy coefficients in (11), ah, we observe that the
estimated effect of renewable power ω̄k has a decreasing effect
on individual consumption. This is expected since increasing
ω̄k implies an expected increase in the price which lowers the
incentive to consume. Observe that the BNE strategy (10) does
not contain any time slot h dependent parameter hence the
consumption level of an individual is fixed for all h ∈ tk.
This is due to the fact that users do not receive any new
information within a time zone. This is supported by the finding
that significant changes to consumption behavior are few within
an operation cycle [15].

Further observe that the strategy coefficients aih and bih do
not depend on information specific to customer i. A consequence
of this observation is that the SO knows the strategy functions
of all the users via the action coefficient equations in (11). On
the other hand, the realized load consumption lih is a function
of realized preference gik, i.e., l∗ih = s∗ih(gik), which is private.
Hence, knowing the strategy function does not imply that the
SO knows the consumption level of the users. Nevertheless, the
SO can use the BNE strategies of users to estimate the expected
total consumption in order to achieve its policy design objectives
defined in Section V.

The strategy coefficients ah and bh in (11) depend on the infer-
ence vector d(Σk) which is driven by the covariance matrix Σk.
In order to identify the effect of correlation among preferences on
user behavior, we define the notion of σ-correlated preferences.

Definition 2 The preferences of users are σ-correlated at time
zone k if σkij = σ for all i ∈ N and j ∈ N \ i and σkii = 1 for
all i ∈ N where 0 ≤ σ ≤ 1.

In σ-correlated preferences, the correlation among all users
vary according to the parameter σ. Hence, the definition does
not allow heterogeneous correlation among pairs. When the
parameter σ is varied, the preference correlation change is
ubiquitous. The inference vector d(Σk) is well-defined for σ-
correlated preferences where 0 ≤ σ ≤ 1. We interpret the effect
of correlation on the BNE strategies of users with respect to
varying σ in the next result.

Proposition 2 Denote the BNE strategy weights by aσh, bσh when
preferences are σ-correlated at time zone k. Then, when σ′′ > σ′,
we have the following relationship in time zone k,

aσ
′

ih = aσ
′′

ih and bσ
′

ih > bσ
′′

ih ∀i ∈ N . (14)

Proof: When the preferences are σ-correlated, the off-
diagonal elements of the inference matrix S(Σk) is equal to
σ. As a result, it can be expressed as S(Σk) = σ(11T − I)
which allows us to express the inference vector as d(Σk) =
(I+ρkγkσ(11T −I))−11. Use the relationship that (I+c(11T −
I))−11 = ((N−1)c+1)−1 for a constant c to obtain the following
weights for aσh and bσh in (11),

aσh = ((N + 1)γk + 2αk)−11,

bσh = ρk((N − 1)γkρkσ + 1)
−1

1. (15)

The result is obtained by comparing individual entries of (15).
Proposition 2 shows that user i’s strategy is to place less weight
on self-preference gik when the correlation between the users
increases. If the user i’s preference is higher than the mean, gik >
ḡk, then increasing correlation coefficient decreases consumption
of user i. When gik < ḡk, user i’s consumption increases as σ
is increased. The intuition is as follows. Consider the case where
gik > ḡk. As the correlation coefficient increases, it is more likely
that others’ preferences are also above the mean. For instance,
others’ preferences are certainly above the mean when σ = 1,
given gik > ḡk. This implies that consumption willingness of
others is similar to i, which then means the price will be higher
than what is expected when the population’s preference is at the
mean. As a result, user i decreases its consumption. An identical
reasoning follows when gik < ḡk.

The increase in correlation coefficient enhances the ability of
individuals to predict each others’ preferences. Alternatively, this
increase in prediction ability can be achieved via communication
among individuals. Hence, Proposition 2 states that if commu-
nication is such that the predictive ability of all the individuals
increase, then users place less weight on self-preferences and
more on the mean estimate ḡk. In [18], a similar result is shown
to hold for the beauty contest game where in contrast to the game
considered here, individuals have the incentive to increase their
action when others increase theirs.

We note that the strategy coefficients of all users are the same
when the preferences are σ-correlated; that is, aσih = aσjh and
bσih = bσjh for all i ∈ N and j ∈ N \ i. Furthermore, the
effect of γk on strategy coefficients is readily identified from
(15). BNE strategy coefficients aσh and bσh decrease with respect
to increasing γk – see equations in (15). The downward trend on
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consumption is conceivable since increasing γk means increasing
the elasticity of price with respect to total consumption.

We remark that similar analysis as in Proposition 2 follows
when σii is equal to some constant c > σ for all i ∈ N , that is,
it suffices that the diagonals of Σk are equal.

Finally, we compare the strategies of altruistic users to the
strategies of selfish users. Next result characterizes user behavior
when users regard aggregate utility in (6).

Proposition 3 Consider the game where each customer maxi-
mizes the aggregate utility in (6) given self-preference gik and
priors on gk and ωk. Then the unique optimal strategy of
customer i for h ∈ tk is given by

sUih(gik) = aUih(ḡk − ω̄kγk) + bUih(gik − ḡk) (16)

where aUh = [aU1h, . . . , a
U
Nh]T and bUh = [bU1h, . . . , b

U
Nh]T are

aUh = (2(Nγk + αk))−11,bUh = ρk(I + 2ρkγkS(Σk))−11,
(17)

with constant ρk and inference matrix S(Σk) as defined in
Proposition 1.

Proof: See Appendix.
We observe that the users place less weight on self-

preferences compared to when they are selfish. Note that
[[(I + 2ρkγkS(Σk))−11]]i ≤ [[(I + ρkγkS(Σk))−11]]i for
i = 1, . . . , N . Consequently, when the individuals are selfish,
they overweigh their preferences, that is, bih > bUih. The first
coefficient of selfish user i is larger than altruistic user, that is,
aih > aUih. Consequently, when ḡk − γkωk > 0 and gik > ḡk,
selfish user i consumes more than that of an altruistic user i, that
is, s∗ih(gik) > sUih(gik). When preferences are σ-correlated, the
strategy coefficients of the altruistic user i is given by

aUσih = (2(Nγk + α))−1, bUσih = ρk(2(N − 1)γkρkσ + 1)−1.
(18)

The effects of the correlation coefficient σ and the policy param-
eter γk on the consumption of altruistic users are identical to the
discussion following Proposition 2.

IV. NUMERICAL EXAMPLES

We numerically evaluate the effects of the preference distribu-
tion Pgk

(Section IV-A), policy parameter γk (Section IV-B) and
prediction errors of renewable power term ωk (Section IV-C) on
aggregate utility (6), total consumption Lh, price (2), operators’
costs, Ck(Lh), realized rate of return defined as revenue divided
by the cost. In our simulations, there are three time zones K = 3
in a H = 24 hour day where each time slot is an hour. The
start and end times of the time zones are given by t1 = [1, 8],
t2 = [9, 17] and t3 = [18, 24]. While the first and last time zones
are off-peak time zones with mean marginal utilities equal to
ḡ1 = 30 and ḡ3 = 35, the second time zone is the peak zone
with mean preference ḡ2 = 50. We choose the variance of the
preferences to be identical for all time zones, that is, σii = 4. The
covariances σij are set to 2 for all agents at all time zones unless
otherwise stated. That is, we consider σ-correlated preferences
but use the variable σij to refer to off-diagonal elements of Σk

for k = 1, 2, 3. There are N = 10 users. We consider selfish
users (4) with the decay parameter chosen as αk = 1.5. The cost
function of the SO is as given in (1) with the parameter values
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Fig. 2. Effect of preference distribution on performance metrics Aggregate Utility
Uh (a), total consumption Lh (b), price ph(Lh;βk, ωk) (c), and realized profit
Rk(Lh)/Ck(Lh) (d). Each line represents the value of the performance metric
with respect to three values of σij ∈ {0, 2, 4} as color coded in the legend of
(d). Solid lines represent the average value over 20 instantiations. Dashed lines
indicate the maximum and minimum values of 20 instantiations. Changes in user
preferences do not affect realized profit rate of the operator.
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Fig. 3. Effect of policy parameter on performance metrics total consumption
Lh (a), and realized profit Rk(Lh)/Ck(Lh) (b). Each solid line represents the
average value (over 20 realizations) of the performance metric with respect to
three values of γ ∈ {1, 1.2, 1.4} where γk = γ for k = 1, 2, 3 as color coded
in the legend of (d). Dashed lines mark minimum and maximum values over all
scenarios. Total consumption decreases with increasing γ.

κk = 1. For the baseline results, the policy parameter is set to
γk = 1.2 for k = 1, 2, 3. Unless stated otherwise, we let the
renewable power term ωk come from normal distribution with
mean ω̄k = 0 and variance σωk

= 2 for k = 1, 2, 3.

Our findings can be summarized as follows. The mean of
marginal utility ḡk is a significant factor shaping consumption
behavior while the adaptive pricing scheme protects the real-
ized profit to be affected by the changes in ḡk. Furthermore,
increased correlation among users decreases the uncertainty in
total consumption. Based on the decreasing effect of increasing
price policy parameter γk on total consumption, we observe
that increasing γk during peak time zones can reduce PAR.
Prediction error of renewable generation ωk − ω̄k is beneficial
to the SO if it is positive; otherwise, it is beneficial to the
customer. Furthermore, we observe that given the same amount
of prediction error in renewable generation a predicted discount
ω̄k < 0 is always preferable by the consumers.
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Fig. 4. Effect of prediction error of renewable power uncertainty ωk on aggregate
utility (a) and net revenue (b). For both figures horizontal axis shows the prediction
error for the renewable term in price, that is, ωk = ω and ω̄k = ω̄ and it shows
ω − ω̄. Each point in (a) or (b) corresponds to the value of the aggregate utility
or the difference between net revenue and estimated net revenue at a single run.
When the realized renewable term ω is larger, net revenue is increases while the
aggregate utility decreases.

A. Effect of marginal utility distribution

In Figs. 2(a)-(d), we plot aggregate utility, total consumption,
price and realized profit ratio at each hour of the day, respectively.
Each solid line is the mean value from 20 realizations of the gk
and ωk. Each dashed plot refers to the maximum and minimum
values among the scenarios considered. Plots with different
covariance values are color coded in Fig. 2(d).

Mean marginal utility ḡk has a significant effect on all of the
performance metrics except realized profit. We observe that in
the peak time zone total consumption and price is higher in
Fig. 2(b) and Fig. 2(c), respectively. The increase in price is
expected in peak hours with a jump in total consumption – see (2).
Increase in price does not automatically translate to an increase
in realized profit ratio in Fig. 2(d) since the cost also grows
quadratically with total consumption. The correlation value σij
affects the band that total consumption moves in as shown by
Fig. 2(b). Specifically, the uncertainty in consumption is higher
when individuals are less correlated. This indicates that the SO
can predict consumption behavior with higher accuracy when the
preferences are highly correlated.

B. Effect of policy parameter

Figs. 3(a)-(b) illustrate the effect of policy parameter γk on
total consumption and realized profit, respectively. We fix the
policy parameter across time zones k = 1, 2, 3, that is, γk = γ ∈
{1, 1.2, 1.4} for all k = 1, 2, 3. As before, solid lines indicate
average value over 20 instantiations and dashed lines indicate
minimum and maximum values over the 20 runs. The legend in
Fig. 3(b) color codes each line according to the policy parameter.

Total consumption decreases as γ increases in Fig. 3(a) as
noted in the discussion following Proposition 2. We observe that
the mean realized profit ratio overlap with the policy parameter γ
in Fig. 3(b). Furthermore, PAR in total consumption is not altered
when γ is fixed over the time horizon in Fig. 3(b). As a policy
to reduce PAR, the SO might choose high γ in the peak time
zone and low γ when demand is low. Based on this we propose
a formal PAR minimizing policy in Section V and compare it
with other commonly used pricing schemes.

C. Effect of uncertainty in renewable power

From the BNE strategy of customers in (10), we observe that
the announced expectation of ωk = ω for k = 1, 2, 3, ω̄k = ω̄

affects the load of the customers linearly. Hence, the SO can use
the response of its customers to mitigate the effects of fluctuations
in renewable source generation. However, the contract between
the operator and the customers is such that the latter are charged
based on the realization of the random variable ω. We analyze
the effect of prediction errors of ω on aggregate utility and the
operator’s net revenue in Figs. 4(a)-(b) where we plot the two
metrics with respect to prediction error ω − ω̄. Fig. 4(a) shows
that aggregate utility decreases as the realized value grows. Fig.
4(b) shows that the realized net revenue is most likely larger than
the estimated net revenue when the realized value of ω − ω̄ is
positive. Furthermore, observe that a decrease in the announced
estimate, ω̄ is always beneficial to the aggregate utility of users
when the amount of prediction error is fixed. On the other hand,
an expected discount decreases the net revenue of the SO.

V. COMPARISON AMONG PRICING POLICY MECHANISMS

We propose desired rate of return and PAR minimization as
the two objectives that the provider may determine the pricing
policy parameter with respect to. Below we first explain these
two objectives and then compare them with flat and TOU pricing
schemes in numerical experiments.

Desired Rate of Return RTP. The rate of return is defined as the
revenue divided by the cost. The SO’s revenue at time slot h ∈ tk
is obtained by multiplying the total consumption Lh by the price
in (2), Rk(Lh) := Lhpk(Lh;ωk). The operator’s rate of return
for the time slot is given by the ratio Rk(Lh)/Ck(Lh). Given its
uncertainties in user marginal utilities gk, the SO relies on the
consumer behavior determined by the BNE (10) to obtain a target
expected rate of return r∗k = E[Rk(Lh(γk))/Ck(Lh(γk)] at time
zone k by adjusting its policy parameter γk. The term Lh(γk)
makes the operator’s possible influence on consumption behavior
through the adjustment of γk explicit. In a budget balancing
scheme, the SO would set desired rate of return to r∗k = 1.
Otherwise, it is customary that the desired profit rate is larger
than r∗k > 1 – see [6], [8] for similar pricing policies. Solving
the desired rate of return r∗k = E[Rk(Lh(γk))/Ck(Lh(γk))]
with respect to price yields that the policy parameter is equal
to γk = r∗kκk when we neglect the renewable generation term
ωk = 0. This explains the overlap between γk and mean rate of
return observed in Fig. 3(b). In our comparisons, we choose the
desired rate of return to be r∗k = 1.2 which yields γk = 1.2.

PAR Minimizing Price (PAR). The PAR of load profile
{Lh}h=1,...,H is defined as the ratio of the maximum load
over the operation cycle to the average load profile. The SO
can pick the policy parameter {γk}k=1,...,K to minimize the
expected PAR of consumption behavior which is formulated as
follows

min
{γk}k=1,...,K

E
[H maxh=1,...,H Lh(γk)∑H

h=1 Lh(γk)

]
. (19)

In computing its expected PAR, the SO relies on the model of
user optimal behavior as defined by the BNE in (10). The closed
form solution to the above optimization problem does not exist.
For this reason, we use an evolutionary algorithm to determine
the minimizing set of policy parameters {γ∗k}k=1,...,K within the
range [1, 1.5] and compute the expected PAR using Monte Carlo
sampling. The optimal policy parameters are at the boundaries
of the parameter range [1, 1.5], that is, γ∗1 = 1, γ∗2 = 1.5, and
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Fig. 5. Comparison of different pricing schemes with respect to Aggregate
Utility

∑
h Uh (a), PAR of Total Consumption (b), Price (c) and Net Revenue∑

h∈H pLh−Ck(Lh) (d). In (c), mean Price over 20 runs is depicted for each
hour with solid lines and dashed lines mark minimum and maximum values over
20 scenarios. In (a), (b) and (d), each point corresponds to the value of the metric
for that scenario and dashed lines correspond to the average value of these points
over all scenarios. The PAR-minimizing policy performs better than others in
minimizing PAR of consumption while at the same time being comparable to the
best pricing mechanism in other performance metrics.

γ∗3 = 1. The PAR minimizing choices of high policy parameter
in the peak time zone k = 2 and low γk during off-peak k = 1, 3
supports the intuition developed from Fig. 3(b).

We compare the above pricing schemes with commonly used
flat and TOU pricing schemes which we explain below.

Flat Price (FLAT). Customers are charged with a flat price p
across the horizon that is determined as the average of realized
RTP prices in (2), that is, p =

∑
h∈H pk(L∗h, ωk)/H . Customers

respond by optimizing their utility in (3) with price replaced by
flat price p, that is, they are price-takers. The user response is ob-
tained by solving the first order conditions l∗ih = (−p+gik)/2αk.

TOU Price. Customers are charged with hourly prices ph that
are determined by maximizing hourly expected net revenue, that
is, ph = maxpE[pLh − Ck(Lh)]. Customers optimally respond
to hourly prices by l∗ih = (−ph + gik)/2αk.

Figs. 5(a)-(d) compare the aforementioned pricing schemes
with respect to their influence on customer utility, load behavior,
price and the operator’s net revenue, respectively. We observe
that flat pricing scheme results in high PAR in consumption
Fig. 5(b), negative revenue Fig. 5(d) and high variation in all
performance metrics across scenarios. We note that while it is
possible to increase the net revenue by raising the flat price, this
lowers aggregate utility below the levels observed in RTP and
PAR pricing causing customer dissatisfaction. The TOU scheme
performs comparable to RTP in terms of net revenue and also has
a comparable mean PAR of total consumption. However, in TOU,
the aggregate utility is considerably lower than other pricing
schemes and there is higher variation in PAR of total consumption
when compared with RTP scheme. The RTP and PAR schemes
achieve identical net revenues as shown in Fig. 5(d). This is due
to the fact that the policy parameter in RTP γ∗k = 1.2 is equal

to the time weighted average of the policy parameters in PAR
pricing. The dashed lines in Fig. 5(c) illustrating the minimum
and maximum prices observed in 20 runs of RTP show that the
variation in price for different scenarios is low. We note that some
of the variation observed in metrics for RTP and PAR are due
to the uncertainty introduced by the renewable energy term ωk
in (2). In comparison to RTP, the PAR scheme improves on total
consumption PAR. When we compare the total consumption over
the whole horizon for the two cases we observe no difference; that
is, the average aggregate consumption over 20 runs is equal to 576
kWh for both RTP and PAR. This implies that users are shifting
their consumption from peak time zone to off-peak time zones
based on the policy parameter in the PAR pricing. Furthermore,
the mean of aggregate utility of PAR is close to the mean in RTP
as observed from Fig. 5(a). This means customer satisfaction is
not significantly hurt by the PAR pricing.

VI. CONCLUSION

We considered a DR model where customers with unknown
and heterogeneous marginal utilities respond to RTP announced
by the SO ahead of each time zone in the operation cycle. The
pricing mechanism incorporated a renewable energy term that
allows the provider to incentivize consumption when there is
estimated abundance of renewable source within a time zone.
Given the pricing mechanism, we characterized selfish and altru-
istic customer behavior using the BNE and discuss the effects
of changes in preference distribution, and policy parameters on
the customer satisfaction, total consumption and net revenue
of the provider. Based on the characterized user behavior and
pricing strategy, we proposed a consumption PAR-minimizing
pricing scheme which can be implemented without any prior
communication with the users. Numerical comparisons proved
that the proposed PAR minimizing scheme is the most effective
in minimizing PAR while performing as good in comparison to
other pricing schemes in customer satisfaction and net revenue.

APPENDIX

Proof: Our plan is to propose a linear strategy as in (10)
and use the fixed point equations of BNE in (9) to solve for the
linear strategy coefficients. First, we obtain a general form for
the best response function that incorporates the best response for
both the selfish users with utility (4) and the altruistic users with
the utility (6). In order to compute the best response in (7) we
take the derivative of conditional expected utility with respect to
lih, equate the resultant to zero and solve for lih,

BR(gik; s−ih) =
gik − γk

(
ω̄k + λ

∑
j 6=iEωk

[Eih[sjh]]
)

2(γk + αk)
(20)

where λ = 1 if the users are selfish, i.e., maximize (4) or λ = 2
if they are altruistic, i.e., maximize (6).

Next, we use the best response expression in (20) in the BNE
definition (9) and substitute the proposed linear strategy in (10)
for the corresponding terms to get the following fixed point
equation,

aih(ḡk − ω̄kγk) + bih(gik − ḡk) =

ρk
(
gik − γk(ω̄k + λ

∑
j 6=i

Eih[ajh + bjhgjk])
)

(21)
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for all i ∈ N where we use the definition of ρk. Furthermore,
given gik and the normal prior on gk, we have Eih[gjk] =
(1 − σkij/σ

k
ii)ḡk + (σkij/σ

k
ii)gik. Substituting the term for the

expectation,

aih(ḡk − ω̄kγk) + bih(gik − ḡk) =

ρkgik − ρkγk
(
ω̄k+λ

∑
j 6=i

ajh+ bjh
(
(1−

σkij
σkii

)ḡk+
σkij
σkii

gik
))
.

(22)

Next, we add and subtract ρkḡk to the right hand side and group
the terms that multiply gik − ḡk and ḡk − ω̄kγk,

aih(ḡk − ω̄kγk) + bih(gik − ḡk) =

ρk
(
1− γkλ

∑
j 6=i

ajh
)(
ḡk − ω̄kγk

)
+ ρk

(
1− γkλ

∑
j 6=i

σkij
σkii

bjh
)(
gik − ḡk

)
(23)

Equating the terms that multiply (ḡk − ω̄kγk) and (gik − ḡk) for
all i ∈ N , we get the following set of equations for ah and bh,

aih = ρk
(
1− γkλ

∑
j 6=i

ajh
)

(24)

bih = ρk
(
1− γkλ

∑
j 6=i

σkij
σkii

bjh
)

(25)

for all i ∈ N . Next, we stack the equations above and write them
in vector form (

I + ρkγkλ(11T − I)
)
ah = ρk1 (26)

(I + ρkγkλS(Σk)) bh = ρk1. (27)

where in (27) we used the definition of the inference matrix (13).
Action coefficient aih is obtained from (26) by multiplying both
sides by (I+ρkγkλ(11T −I))−1 and using the following identity

(I + ρkγkλ(11T − I))−11 = ((N − 1)ρkγkλ+ 1)−11. (28)

The action coefficient bih is obtained from (27) by multiplying
both sides of the equation by (I + ρkγkλS(Σk))−1. Hence, we
have shown that there exists a BNE strategy that is of linear form
as given in Proposition 1 when users are selfish λ = 1 and as
given in Proposition 3 when they are altruistic λ = 2.

To prove uniqueness, we first show that the games defined
by payoffs in (4) and (6) are both Bayesian potential games with
Bayesian potential function v({lih}i∈N ; gk, ωk, λ) and then argue
that the potential function v({lih}i∈N ; gk, ωk, λ) is strictly con-
cave which implies unique solution for the original games with
payoffs in (4) or (6). Define the symmetric matrix Qk ∈ RN×N
where ((Qk))ii = 1 for all i = 1, . . . , N and ((Qk))ij = λρk
for all i ∈ N and j ∈ N \ i. Let lh := {lih}i∈N . For the stage
game h ∈ tk with quadratic payoffs ui in (4) and information on
gk and ωk, there exists a Bayesian potential function

v(lh; gk, ωk, λ) = −(γk + αk)lThQklh + lTh (gk − γkωk1T ).
(29)

Note that when λ = 1, ∂v(lh)/∂lih = ∂uik(lh)/∂lih and when
λ = 2, ∂v(lh)/∂lih = ∂Uk(lh)/∂lih for all i ∈ N . Hence,
both stage games h ∈ tk with selfish and altruistic users and
information on gk and ωk are Bayesian potential games with

potential functions as in (29) by Lemma 6 in [19].
This result implies that the equilibrium of the Bayesian po-

tential game with function v(lh; gk, ωk, λ) is the same as the
equilibrium of the stage game at time h ∈ tk with payoffs uik
in (4) when λ = 1 and with payoffs Uk in (6) when λ = 2. It
can be shown that Qk is positive definite for all k = 1, . . . ,K
by looking at the eigenvalues of the matrix Qk. This implies
that Bayesian potential function is strictly concave with a unique
maximizer. Hence, both games have unique equilibrium.
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