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Abstract—We consider a wireless control architecture with static schedules suitable for control applications has lbéen
multiple control loops and a shared wireless medium. A scheduler addressed. Periodic sequences leading to stability [Blraie
observes the random channel conditions that each control sy lability and observability [6], or minimizing linear quaatic

experiences over the shared medium and opportunistically selects . . - h .
systems to transmit at a set of non-overlapping frequencies. The objectives [7] have been proposed. Deriving otherwisenoglti

transmit power of each system also adapts to channel conditions Scheduling sequences is recognized as a hard combinatorial
and determines the probability of successfully transmitting and problem [8], [9].

closing the loop. We formulate the problem of designing optimal  Dynamic schedulers on the other hand do not rely on a
channel-aware scheduling and power allocation mechanisms that predefined sequence but decide access to the communication

minimize the total power consumption while meeting control di i h st f le by d icall .
performance requirements for all systems. In particular it is medium at each step, 1or example by dynamically assigning

required that for each control system a given Lyapunov functim  Priorities to the competing tasks. Priorities commonly efegp
decreases at a specified rate in expectation over the randomon the current plant/control system states, i.e., infolynal

channel conditions. We develop an offline algorithm to find the speaking, the subsystem with the largest state discrepancy

optimal communication design, as well as an online protocol s gcpeduled to communicate. Examples of such dynamic
which selects scheduling and power variables based on a random

observed channel sequence and converges almost surely to théChedmerS can be found in [3], [10]-[12]. Another approach

optimal operating point. We illustrate in simulations the power Motivated by the problem of scheduling control tasks shar-
savings of our approach compared to other non-channel-aware ing a computation (CPU) rather than a communication re-

schemes. source, is to abstract control performance requirements in

the time/frequency domain. Knowing for example how often

a task needs access to the resource, to communicate and

close the loop in our case, static/offline and dynamic/enlin
Wireless control systems in e.g., smart buildings or induschedules meeting the desired requirements can be obtained

trial automation applications, are characterized by sensoysing algorithms from real-time scheduling theory — see,

actuators, and controllers communicating informatiomieen e g., [13], [14] for more details on this approach.

different physical locations using wireless tranceivéss.the However, in the case of multiple control tasks sharing

number of independent wireless control systems that cbexisa wireless communication medium the existing scheduling

such environments increases, the need for efficiently sparimechanisms in the control literature do not explicitly miaate

the available wireless medium becomes apparent. Scheduliitcount for the wireless physical layer aspects of the probl
access to the shared medium helps eliminate interferereses g particular, time-varying channel conditions cause darg

tween transmissions of different systems, but the rate attwhynpredictable variations in wireless channel transfezsnc

a control system accesses the medium affects closed Iggferred to as fading [15, Ch. 3,4]. The problem of designing
performance. This necessitates the development of wirelgfreless communication networks to counteract such cHanne
communication and resource management mechanisms {itability and maximize the utility to the users has reediv
are control-aware. Moreover, since wireless devices ih sugonsiderable attention [16]-[18]. The general approacto is
applications are often battery-operated, these mecharasen gjiocate the available communication resources, e.g.jumed
desired to be energy-efficient. access, power resources, channel capacity, by oppoitatiist

Scheduling in wired or wireless networked control systemgjapting to the randomly varying channel conditions.
has received a lot of attention in the past. Scheduling mechain this paper we propose a channel-aware approach for
nisms usually examined are either static or dynamic. Typicgcheduling independent control tasks sharing a wireless co
examples of the first type are periodically protocols whef@unication medium. The channel conditions on the medium
the wireless devices transmit in a predefined repeatingrordgot only change randomly over time, but also differ among
e.g., round-robin. Stability conditions under such scliedu the control systems at a given time step. A channel-aware
protocols can be examined by converting the system in so&heduling mechanism can opportunistically exploit clenn
form of a switching system, usually including other networiqformation to, e.g., grant channel access to control loops
phenomena such as delays, uncertain communication timggperiencing favorable channel conditions, or equivafent
or packet drops — see, e.g., [2]-[4]. The problem of des@nimvoid control loops transmitting under adverse conditidie
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determines the probability of successful message deligéry jm == jm ==

the receiver. + : +
Furthermore, the wireless communication design of our Plant/Controll Plant/Control
setup, i.e., the opportunistic scheduling and power alioga System 1 : Systemm
|

|

|

|
needs to serve a set of predesigned control tasks. To &eilit :
composition of the control tasks over the shared wireless !
medium, the control system dynamics and performance re- :
quirements need to be abstracted with an interface that is h1 hom [
suitable for the wireless communication design problem. In !
this paper each control system is abstracted by some given :
Lyapunov function and control performance is specified as a [ |
desired decrease rate for this Lyapunov function (Sectipn | :
Our goal is to design how scheduling and power allocation |
should adapt to the random channel conditions so #flat I
Lyapunov functions decrease at the specified ratesvaty . !
time step. These constraints are expressed in a stochaistie,s
in expectatiorover the channel conditions, since deterministiig 1. Architecture for opportunistic scheduling of cattasks over
cally at most one loop can close at a time step. Also, this wayshared wireless medium. Independent control systems clestodp by

the control performance requirements are expressed irtia stgansmitting over the shared wireless medium to a common retaeeess
point. For simplicity the case of a single transmission fregyeis shown,

Sin9|e'time'5t_ep framework Un“.ke,_ e.g., the timing/iueqcy _where each control systeinexperiences random channel conditidns A
abstractions in [13] or the periodic sequences in [6] whiatentralized scheduler located at the access point obsafivebannel states

would be hard, if not intractable, to employ under randoﬁﬁ‘d opportunistically decides which system is scheduld@tattsmit and close
wireless channel conditions. the loop.
We formulate the problem of optimal channel-aware

scheduling and power allocation that minimize the expectdf® &, by z;» € R" we denote the state of the system
total power consumption subject to the expected Lyapunéy= 1,2, ...;m). To keep the framework general we assume
decrease rate constraints (Section II-A). In Section 1l w@at different descriptions for the evolution of each syste
develop an offline algorithm to solve the problem in the dudfom i t0 i1 at timek are given depending on whether
domain and obtain a characterization of the optimal safutio? fransmission occurs at timeor not. Let us indicate with
The optimal power allocation is decentralized among useds &i. € {0, 1} the event that a successful transmission occurs at
frequencies, while the optimal scheduling follows a channdime  for the subsystem For simplicity then we describe the
dependent assignment problem where control systems are wtem evolution by a switched linear time invariant model,
portunistically assigned to frequencies. The offline atpon ‘  Acimigtwig, fyp=1 )
requires knowledge of the channel probability distribatio Tik+1 = Agizin +wig, ifvp=0

At a successful transmission the system dynamics are de-

Access Point/
Channel-aware Scheduler

which in most practical cases is not available, hence ini@ect
IV we develop an online algorithm that utilizes only a chadnne _ . . " X1

P alg . Y . Scribed by the matrix4,.; € R™*" where 'c’ stands for
sequence observed during execution. The online algomhc%sed-loo and otherwise byl,; € R™*%, where ‘0
bears an intuitive pricing interpretation (Section IV-Apd we P, 0 '

establish that if scheduling and power allocation are $etec stands f or open-loop_. we assume e, Is as_ymptotlcally
. ; . stable, implying that if systemwere to transmit at each slot
this way, the desired Lyapunov performance constraints

. S . Ef{s? respective state evolution is stable. The open loopiratr
met in the limit in a strong sense (almost surely). Finall

Yy -
simulations in Section V illustrate the opportunistic rmatof .A‘” could be unstable. The additive terms,; model an

&ndependent identically distributed (i.i.d.) noise pregavith
Fhe proposed chanr}el—aware apprqach as we_II as the relulucrhoean zero and covariand®; = 0. Note that the noise terms
in power consumption (at a magnitude &j% in examples) are modeled as independeLnt_across tirfer eachi but also
compared to non-channel-aware mechanisms. We Cond.ua%?oss plants. Furthermore, it is worth noting that closed-
with a discussion and future research directions in Sectl?n . . .
Vi oop dynamics for all of then controllers are fixed (meaning

Notation' We denote the reah-dimensional non-negative that adequate controllers have been already designed3.ihu

" : : his work we focus on designing the wireless communication

orthant Wlth RY, and t.he comparison Wlth. respect to. th(Ié‘\spects of the control systgem gThe above networked control
orthant (i.e., element-wise) witk, i.e., z > y if and only if :

z—y € R™. The cone of x n real symmetric positive semi- system description (1) can model various control archited,

definite matrices is denoted /!, and the comparison with as shown in the following examples.
respect to this cone with. The set ofn x n real symmetric Example 1. Suppose each closed loépconsists of a linear
positive definite matrices is denoted Y . plant of the form

Il. PROBLEM DESCRIPTION Ti g1 = AiTik + Big i + wik, (2)

Consider the wireless control architecture of Fig. 1 corand a wireless sensor transmitting the plant state measuatem
sisting ofm independent networked control systems. At each ;, to a controller/actuator which provides inputy. Let then



the controller apply a linear feedbaelg,k = Kixug when Probability of successful decoding for practical FEC codes
a measurement is received; ( = 1), otherwise apply for
simplicity u; », = 0 when no measurement is received { =
0). The resulting closed loop system can be written as
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. _J A+ BiK)zig +wig, i yp=1 3) = R A S [ T
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which is of the form (1) withA. ; = A,+B;K; andA,;, = A;. - re e R
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Example 2. As a more general example consider again the

plant in (2) and a wireless sensor measuring a system outpidt 2. complementary error function for practical FEC codé probability
of the form of successful decodingfor a FEC code is a sigmoid function of the received

Yik = Cizi g + Vi g, (4) SNR~Ip.

wherew;  is some i.i.d. measurement noise with zero mean
and finite covariance. A dynamic control law based on this If system< transmits at timek over frequency; it selects
plant output and adapted to the packet drops updates a Igzdransmit power levep;; ;. taking values inf0, pyax]. Then

controller state according to channel fading and transmit power affect the probability of
_F 7 G 5 successful decoding of the transmitted packet at the receiv
Zik1 = Fizig + vk (Fei zik + Giik), ) 1n particular given the forward error-correcting code (FEC

i.e., corrects appropriately the local state whenever a-metse, the probability; that a packet is successfully decoded
surement is received. For examplg, may represent a local is a function of the received signal-to-noise ratio (SNR)eT
estimate of the plant state [2]. The control input applied b§NR is proportional to the received power level expressed by
the controller can similarly be modeled as the producth - p of channel fading and the allocated transmit
power. Overall we express the probability of success by ergiv
Ui = K zi 4 vk (Kei 2k + Livik), ©)  relationship of the formy(hi; - pi; ) — for more details on
The overall closed loop system is obtained by joining plaitihis model, the reader is referred to [19]. An illustratidrsoch

and controller states into a function is shown in Fig. 2. The following assumption on the
Tiht1 A; BiK; Tik I form of the functionq(izp) will be helpful in the subsequent
2 =l 0 F . T o | Wikt sections but as we will explicitly note it is not required dt
i,k+1 i Zik

of the results in this paper to hold.

Assumption 2. The functiong(.) as a function of the product
(7) r=hpforr >0 satisfies:

which is again of the form (1). 0 (@ q(0)=0,

Let us now describe the wireless communication system ati@} ¢(r) is continuous, and strictly increasing whefr) > 0,
model how it determines the packet transmission successes,i.e., for’ > r it holds thatg(r’) > ¢(r) > 0,
i.e., the indicatorsy; 5. Suppose there arg different frequen- (c) for any x> 0 and for almost all values € H the set
cies that each system may use to communicate and let the argming,«, p— ug(hp) is a singleton.
wireless channel conditions for a systenand frequency;
at time k£ be denoted a#,;; . Channel conditiong:;; , can
be described as the channel fading coefficient that syst
1 experiences if it transmits at timé over frequencyj.
Due to propagation effects the channel gaing, change
unpredictably [15, Ch. 3] and take values in a suliset R
of the positive reals. We adopt a block fading model where
channel stategh;;r, 1 < i < m,1 < j < f} are modeled

. B;L;,C; B;K.; Tik o B;L;C; |
ik G;C; Fc,i Zik i,k G; Vi,k»

Parts (a) and (b) of this assumption state that the probabili
of successful decoding(h p) is zero when the received power
el hp is small, and it becomes positivghp) > 0 and
strictly increasing for larger values éfp. There properties are
verified for cases of practical interest as shown in Fig. 2t Pa
tgc) is a more stringent requirement on the shape of function
@(hp) to facilitate the technical development of this paper,
. . ; . but is not restrictive in practice. The sigmoid shape in Eg.
e S i o . GUAaNIee (e UG NTZS () 50 o tht e

minimizer set in (c) exists by the continuity assumptionbi (

¢ on ). They are also independent of the pl'c_mt processApart from packet drops due to low received SNR, packet
noisew; . We assume the channel states are available beforc?. . . '

S ; . caollisions may occur if more than one of the control systems
transmission — see Remark 1 for a discussion about pr‘%c

. . . i M fransmit at a given time slot on the same frequency over the
tical implementation. We also make the following technical g d Y

assumption on their joint distribution to exclude the poiity Shared wireless medium. For this reason we are interested in
P J ) P designing a mechanism to select which system accesses each
of channel states becoming degenerate random variables.

of the available frequencies at the channel, i.e., whiclesys
Assumption 1. The joint distribution ¢ of channel states is scheduledo transmit. We denote with;; ;, = 1 the decision
{hijr, 1 <1 < m,1 < j < f} has a probability density to schedule systernon frequency; at timek, andc; , =0
function onH™*/f. otherwise. To avoid packet collisions we let at most oneesyst



transmit on each frequency, that is Y ", a;;x < 1. We Our primary goal in designing the communication variables
allow each system to transmit on at most one frequencypf the system is to guarantee a level of closed loop perfor-
that is Z;;l oy < 1. Mathematically we may denote thenmance for each subsystem. To formalize the problem descrip-
the setA,, ; of all feasible scheduling decisions; ;, at each tion we consider Lyapunov-like performance requiremeats f
time k as the control systems. In particular suppose quadratic Lyapu

Zﬁlaij <1,1<j<f, } functions of the form

App=1<ae {01} ,
o {a {0,1} Z]f':1 a;; <1, 1<i<m Vi(z) = 2T Pz, x € R™, (12)
For compactness we group channel states, scheduling défh Fi € S’ being positive definite matrices, are given for

sions, and power allocations of the overall communicatiGtch system. A Lyapunov-like requirement then states that
system at timek into matricesh, € H™*f, ay € A, these functions should decrease at given rates 1 during
and p € [0, pmax]™*’ respectively. We can then modél thdhe execution of each subsysteiThis evolution however

transmission event; ;, of systemi at timek given scheduling 'S random because of the stochastic nature of the overall
variables, power allocation, and channel state, as a B#imol}iréless communication/control system, i.e., due to pssce

random variable with success probability noise, random channel states, randomized channel acmbs,_a
packet drops. To take these effects into account we require
s that at any valuer; , € R™ of system state at time k
Phyig =1 ’ hi, a, p] = Zaij,k q(hijk,pik) - (9 the Lyapunov functions at the next time step decrease at the
J=1 desired ratep; < 1 in expectationthat is

This expression states that the probability of a message for

systemi being successfully received equals the probability E [Vi(inr) [2ik] < piVilwin) + Tr(BWo). (13)

that the message is correctly decoded if systesischeduled The expectation over the next system staig,; on the left

to transmit on any of th¢ available frequencies. Note that, byhand side accounts via (1) for the randomness introduced by

design of the scheduling variables, systemses at most one the process noise; ;. as well as the transmission success.

frequency and we have made an implicit assumption that mbe effect of process noise appears on the right hand side as

interferences arise from other systems transmitting derdifit the constant term¥'r(P,WW;), while the transmission success

frequencies. is expressed in (11) and depends on the observed channel
Our goal is to design the communication variables of theateh; as well as the communication decisiomg, pr.. The

wireless control system, which are the scheduling and powstuition behind requirement (13) is that if it holds on each

allocation variables. Since the randomly varying chanriel a&ime k it follows that

fects the communication process, we are interested intseec 1—pN

appropriate scheduling and power variables that adaptan-ch E [Vi(zin) | zi0] < p} Vi(zi0) + T, Ir(BWi) (14)

nel stateshy, in order to counteract these effects. Overall we ) !

express the scheduling and power decisiops;, respectively Meaning that system states have second moments that de-

as mappings of the form cay exponentially and in the limit remain bounded by
Tr(PW;)/(1 = p;).
A={a: 1™ A, g}, On the other hand, apart from control performance re-
P ={p: H™F 5 [0, puax] ™}, (10) quirements an efficient communication design should make an

efficient use of the available power resources at the devices
so thatay, = a(hi), pr = p(hk). Since channel states, are The induced overall expected power consumption on each slot
independent over time these mappings do not need to change is given by
over time. Substituting the scheduling and power allocatio mf
mappingsx(.), p(.) in our communication model described by E iy o 1 (h 15
(9) the probability of successful transmission for eachesys e 2 2 sk (hi)pig () (19)

. . i=1 j=1
1 at any given slo& becomes

summing up the transmit power of each systérand fre-

P(yie = 1) = En, {PMik = 1| he, a(hi), p(he)]} quency; if the system is scheduled to transmit. The expec-
f tation here is with respect to the joint channel distributio
= EhZaij(h)q(hij7pij(h)), (11) hx ~ ¢. The approach we take in designing scheduling and
j=1 power allocation (cf. (10)) that are control-performanoeige

(cf. (13)) and also energy-efficient (cf. (15)) is through a

Here the expectation is with respect to the joint distribut stochastic optimization framework that we present next.

¢ of the channel realizatiork, which we assumed to be
identical for any timek, hence we drop the indek. Note Remark 1. The centralized channel-aware scheduler can be
also that the communication process modeled by the sequeimsplemented in a multiple access channel architecture as
{Vik, 1 <i <m, k> 0} depends only on variables related tshown in Fig. 1, where each control system transmits to a
the wireless communication counterpart of the overalleayst common access point. For example, the access point can be
and is in particular independent of the system evolutiomsllocated with a centralized controller which receivessse
{zik,1 <i<m, k>0}. measurements from the independent plants and is respensibl



for providing inputs to each plant. The channel conditioms f Intuitively, large value ot; implies that systemrequires more
each system can be measured at the access point at the begsources, i.e., more frequent channel access and possibly
ning of each time slot by pilot signals sent from the sensohégher power expenditures.

to the access point. Depending on the measured channd stat&Summarizing, the Lyapunov constraints in optimization)(16
the access point decides which plant is scheduled to cl@se tlan be simplified by solving the auxiliary problems (19) for

loop. O each control loopi, so that the optimization (16) can be
equivalently written as
A. Scheduling and power allocation as stochastic optirfopat m f
We formulate the problem of designing scheduling andﬂiginf”‘li%? En > > aij(h)pij(h) (20)
power allocation in an optimization framework as follows. **<“* i=1j=1
f

Problem 1 (Optimal Scheduling and Power Allocation De- subject to ¢; < Ehzaij(h)Q(hijypij(h)); i=1,....m

sign). Consider a shared wireless control architecture with
f frequencies andn systems of the form (1), quadratic
Lyapunov performance requirements by (13), channel statdgre we have dropped the time indicedrom the variables
hy € H™*f iid. with distribution ¢, and communication 7 Since they are identically distributed over time. We also
modeled by (9). The design of optimal scheduling and powg]ake.a.fina_l constraint. qualification_assumpt_ion that isdgbi
allocationay, = a(hs), px = p(hy) is posed as in optimization theory, i.e., that a strictly feasible pofor this
optimization problem exists.

j=1

m f
minimize By, Y > aijn(hi)pij (hi) (16) Assumption 3. There exist variables’ € A andp’ € P that
pe(AP) i=1 j=1 satisfy the constraints of the optimization problem (20yhwi
subject to E [Vi(zi11) | wik] < piVilwin) + Tr(P;W;)  strict inequality, i.e.,
forall z; , e R", i=1,...,m.

f
i <Bp Y af;(h)q(hij,pi;(h), i=1,....,m (21)
j=1

In other words, at each time step we seek to minimize the ]
total expected power consumption (15) of the design while By the equivalence between problems (16) and (20), con-
satisfying the Lyapunov requirements (13). To make extplidi“t'on (21) can be interpreted as a feasibility/schedlilsbi
how the functionsa(.),p(.) appear in the constraints of the@ssumption fqr the shared wireless control system. It requi
problem, i.e., the Lyapunov requirements, observe thatLpy (that there exist some channel-aware scheduling and power

we have that allocation such that the control performance requiremgi8s
of all control systems are met. This assumption however does
E [Vi(zig1) |win] = Plyik = 1) 2] AL PiAcii g not provide any information on how to find such a solution.
+ P(vi = 0) @] L AL PiAoiwi i + Tr(PW;), 17) In the rest of the paper we examine problem (20), which

is equivalent to the optimal scheduling and power allocatio

yvhere we used the fact that the _random variablg, is design for the shared wireless control architecture in IBrob
independent of the system statgy. as it depends only onthe ; -~ gjnce this problem is feasible by Assumption 3 let us

communication variables (cf. (9)-(11)). Plugging (17) Bét joste the optimal value by and an optimal solution pair

left hand side of the constraints in (16) we geton. 0y \«() ,#(). In the following section we characterize the

zg:k(AZ,iniAo,i — AL P A )ik 19) form and properties_of_ an optimal solution and describe a
’Ig:k(AZiPiAo,i ~piPain methodology to obtain it.

P(yix =1) >

The decision variable in this constraintfi¢y; = 1) at the left Remark 2. Sincec; is a required lower bound on the probabil-

hand side which depends ar(.), p(.) by (11). Note then that ity of sucpe_ssful transmis_sion for systg‘m’t must b_e that the

according to problem 1 condition (18) needs to hold at arffue satisfies; < 1. Equivalently the right hand side of (19)

value of z; , € R™. We can rewrite all these constraints byi€eds to be less than one for all valueg/ofvhich in turn is

intersecting them to get, < P(y; = 1) where equivalent to the condltlomZiPiAc,i =< p;P;. This condition '

. T_ . states that the closed-loop part of system (1).sh0uld gatisf

6= sup y' (A, Pidoi — AL i PiAci)y (19) the required decrease raigfor the given quadratic Lyapunov

LT eRm g0 yT(AL P A, — piPr)y function V;, or in other words that if systemtransmit all the
time the Lyapunov requirement is met. Sindg; is stable by

C(_)mputlng ¢ IS a S|_mple semldeflmte programming O.pt"?ssumption, we may also assume that the given matdtes
mization problem which can be easily solved using available

convex optimization software. The valug represents the are selected appropriately for this to hold. =
minimum probability of transmission for each systenthat

guarantees the desired Lyapunov decay rate- see also [1l. OPTIMAL SCHEDULING AND POWER ALLOCATION
Remark 2. It can alternatively be thought of as a minimum In this section we examine how the optimal scheduling
required utilization factor of the shared wireless channeind power allocation for the wireless control system can be
analogously to a utilization of a shared CPU in, e.g., [14lecovered by considering the optimization problem in thaldu




domain. This allows us to develop an offline algorithm to eolvthe right hand side of (26), by the definition of the Lagrangia
the problem and provides an explicit characterization ef that (22), equals
form of the optimal solution. v x  x
First let us derive the Lagrange dual problem of (20). L™, p",p7) = P
Consider non-negative dual variablgsc R’ corresponding m f
to each one of then constraints of (20). The Lagrangian then ~ + Y 17 [¢i —Bn Y aj;(h) q(hijpi;(h) |, (27)
is defined as i=1 J=1
m f because the objective of (20) at the optimal solutjon, p*)
L(o,p, ) =Ey Z Z o (h)pi;(h) equals the optimal valu®. These expressions for the left and
i=1j=1 right hand sides of the inequality in (26) therefore give

m / m /
+ D mi | ei —En Y aii(h) qlhajpiy(h) | P<P+> u |:ci —Ep Y aj(h) q(hij,p;‘j(h))] . (28)
i=1 j=1 j=1

=1
22
(22) This implies that the sum on the right hand side is non-
while the dual function is defined as negative. However all summands are non-positive, because
. u* > 0 since it is feasible for the dual problem (25), and
9(p) = o i L(a, p, ). (23)  also the term in the brackets in (28) are non-positive bexaus

~ (a*,p*) are feasible for the primal problem (20). The only
For future reference we also denote the set of functioggssibility then is that all summands in (28) are identicall
a(.),p(.) that minimize the Lagrangian at by zero, which proves statement (b).
_ . We have established that (28) holds with equality, so by
(AP)n) = j;egal;) Ll p, ), (24) tracing back our steps, we have that (26) holds with equality

o ] ] . _ too, which, by the definition of the dual function on (23)
whenever the minimizers exist. This set might contain igansiates to

general multiple solutions and we denote witfy:), p(x) an '
arbitrary element of the set. min _ L(a,p,p*) = L(a®, p*, pu*). (29)

a, A, P
The Lagrange dual problem is defined as follows. ) N PE(AP)
This verifies statement (c). [ ]

D = max g(p). (25) It is worth noting that this proposition states that strong
+ duality holds even though the original problem is not convex

Lagrange duality theory informs us that the dual functioffgardless also of the form of the functigft, p) (Assumption
g(p) is a lower bound on the optimal cogt of problem 2 was not imposed). More importantly, part (c) suggests the
(20) for any y, so that the optimal dual value also satisfieBOssibility of recovering the optimal primal variables, p*
D < P (weak duality). The following proposition howeverby solving first the dual problem for the optimal pojat. In
establishes a strong duality resulb (= P) for the problem other words, the design of scheduling and power allocation

under consideration and provides a relationship between that meet the control performance specifications in Problem
optimal primal and dual variables. 1 is reduced to the problem of determining the optimal dual

- ) variables. A method to find the latter is presented next.
Proposition 1. Let Assumptions 1 and 3 hold. L&t be the

optimal value of the optimization problem (20) ata*, p*)
be an optimal solution, and l&D be the optimal value of the o _
dual problem (25) and.* be an optimal solution. Then To maximize the dual functiog(y) for the dual problem
(@) P = D (strong duality) (25) we employ a dual projected subgradient algorithm [21,

A. Dual subgradient method

) Ch. 8]. A subgradient direction for the (concave) functigp)

* Foox * _ —

(b) 1] {Ci —En2lin O‘ij(h')Q(h'U’pij(h))} = 0for i = \ith respect tou € R is a vector, denoted here agu) €
1,...,m (complementary slackness) R™, that satisfies

(© (a*,p*) € (A, P)(n") ) — g < (- )Ts(u) forall 4 € R, (30)
g — g ~ — S .
Proof: Statement (a) under assumptions 1 and 3 follows a _ a S a : *
immediately from [18, Theorem 1] where a similar optimiza- If we pick a(u), p(u) € (A,P)(u) by (24) then a subgra-
tion setup is examined. The proof is omitted due to spaééents(x) can be found as the constraint slack of the primal

limitations. problem (20) evaluated at these points, i.e.,
To show (b) observe that, by definition of the dual function f
in (23), at the poinf.* we have that si(p) = ¢; — Ep, Z%'(“% h) q(hiz, pij (15 h)). (31)
* * * * J=1
g(p*) < L(a®,p", 1") (26)

To show this observe that for any’ in general we have
Sincep* is optimal for (25) and using part (a) we have for thg(p') < L(a(p),p(p),n’) by the definition of the dual
left hand side of (26) thaj(n*) = D = P. On the other hand, function in (23). Subtracting/(u) = L(a(u),p(u), 1) from



both sides of this inequality and expanding the terms of the forany:i=1,...,mandj=1,...,f, and
Lagrangian as in (22) we get

mf
a(u; h) = argmin Z Z aij &(hij, i) (38)

g(u') = g(p) < aeRT*f i=1j=1
m f m f
D (i — ) | e —Bn Y gy (ps h) qlhigs pig (s b)) | - subjectto Y oy <1, Y oy <1
i=1 j=1 i=1 j=1
(32) where
Comparing this with the property of the subgradient in (30), E(hijopi) = min  p— piq(hij, p). (39)
we verify that (31) indeed gives a subgradient direction. We 0SPSPmax

also note for future reference that for apythe subgradients (b) If Assumptions 1 and 2 hold, then for any solution
are bounded because at the right hand side of (31) thedgem  a(u),p(p) € (A, P)(n) the vectors(u) defined in (31)
bounded (cf.(19)) and the term in the expectation corregpon  has a unique value.

to a probability (cf.(11)). __ Proof: See Appendix A m
A projected dual subgradient ascent method to maximizeéthe first part of the proposition provides through equations
the (concave) dual functiog(x:) then consists of the following (37) and (38) a method to obtain primal Lagrange optimizers

steps: that can be used in step (31) of the subgradient algorithm.
1) At iteration ¢t given p(t) find primal optimizers of the Interestingly a separability result for the optimal powédr a
Lagrangian af(t) according to (24), location across systemsand frequencieg is revealed — see
Remark 3 for more details. The second part of the proposition
p(p(t)), a(u(t)) € (A, P)(u(t)) (33)  which relies on Assumption 2, enables us to characterize the

form of the optimal scheduling and power allocation vargbl

2) Evaluate the subgradient vectefu(t)) by (31) and ;. e following Theorem.

update the dual variables by an ascent step
Theorem 1 (Optimal Scheduling and Power Allocation)

w(t+1) = [p) +e(t)s(u®))]+ (34) Consider the design of channel-aware scheduling and power
o _allocation variables in Problem 1 for the shared wireless
where[ ], denotes the projection on the non-negativgontrol architecture of Fig. 1, and let Assumptions 1, 2, 3

orthant anck(¢) > 0 is the stepsize. hold. Then optimal scheduling* and power allocationp*
The stepsizes are selected to be square summable butasetobtained by (37)-(39) at a point* € R, which is an
summable, i.e., optimal solution of the dual problem (25). A point can be
- - obtained by iterating (33)-(34), i.eu(t) — p*, for stepsizes
Zg(t)Q < o0, Zg(t) — 0. (35) satisfying (35).
t=1 t=1 Proof: We first argue that all pairsx(p*), p(p*) that

Before stating the convergence properties of the algorithfjinimize the Lagrangian at the poipt are optimal solutions
we note that in order to implement it we need an efficief the primal problem (20) (equivalently (16)). By Propesit

way to compute primal Lagrange optimizers in (33) that solv&P), at the poin™ we have that the vectos(u”) in (31),
(24). This problem also relates to our capability of finding t Which is also the constraint slack in the primal problem (20)
optimal primal variables of interest*, p* as we have shown Of @ny Lagrange optimizera(y.*), p(1*), is unique. But by

in Proposition 1(c). Hence we turn our focus to problem (245’_rop05|t|on 1(c) we have tha_t t_he optimal prlm_al variables
A more convenient expression for the Lagrangian defined §h-P~ @ré also Lagrange optimizers at, and since they

(22) can be obtained by rearranging terms to get are primal feasible, then all other optimizergu*), p(1*)
are primal feasible with the same constraint slack. More-

Lo, p) = pFe+ over all optimizersa(p*), p(p*) yield the same (minimum)
mf Il:agrang@an _va(l;%(_af(ul;‘),p(u;),ujl). By t_he fz)rn; oI th)e
E, aii(R) [pii(h) — pwig(hiz,pii(h)]. (36 agrangian in it follows that all optimizes(u*), p(u*
] Z Z 31 [pis(h) = piathay, pis ()] (36) also give the same primal objective in (20) as the paihtp*,
_ _ _ . ~i.e., the minimumP. Hence any optimizer paif(;.*), p(p*)
This form provides a useful separation of the primal vagabl is primal optimal. The first statement of the theorem follows
across channel realizatiohs We exploit this structure in the pecause an optimal scheduling and power allocation pair can
following proposition to obtain primal Lagrangian optirei. be obtained by Prop. 2(a) at.
The convergence of iterations (33)-(34) to the optimal
) dual variablep* for stepsizes (35) follows from a standard
(a) Solutionsav(y), p(u) € (A, P)(u) of problem (24) can be gypgradient method argument — for a proof see, e.g., [2p. Pro
obtained at eacth € H™ as 8.2.6]. n
The theorem provides a characterization of the optimal

pij (s h) = pij(pis hij) = Oil;gﬂh_l p—piq(hij, p) (37) scheduling and power allocation variables that meet th&rabon

i=1 j=1

Proposition 2. For any i € R’ the following hold true:



performance specifications in the shared wireless contchi-a dual step in (34) one needs to compute the subgradient direc-
tecture we examine. More details about the form of the ogtimigon s(u) in (31) by integrating over the channel distribution
communication policy is given in the following remarks. ¢t i ¢. A practical implementation would require drawing a large
worth noting that the optimal policy need not be unique. Momneumber of samples fromd and solving for primal variables at
precisely, there might be many optimal dual solutiqis these samples to obtain an estimate of the actual subgtadien
each one corresponding to a different scheduling and powveirection. This is computationally intensive, does notedar
allocation policy according to the theorem. However alllsuca large number of systems and frequencieg, while also in
policies will have the same objective value in (16). most cases of practical interest the channel distributonoit

The theorem also establishes a methodology to find theailable.
optimal communication policy by iterating (33)-(34). Tlian These drawbacks motivate us to developalinealgorithm
be viewed as an offline algorithm which requires knowledge solve the optimal scheduling and power allocation pnoble
of the channel distribution. In the next section we develop ahe algorithm is a stochastic version of the primal/duapste
online algorithm that solves for the optimal communicatio(B33), (34) of the offline subgradient method and does not
policy based instead only on a random sequence of chanray on availability of the channel distribution. In padilar,
realizations observed during system execution. suppose that at timé a channel realizationh,;, is observed,
and the current power and scheduling decision are selested a

Remark 3. According to Theorem 1, the optimal schedulin He ones solving (37)-(38) at the givén, i.e.,

and power allocation variables can be obtained for eacteva
of char_mel statesh b)_/ solving (37)-(39)_ at the poing*. Pijk = Dij (i hije), i=1,....m, j=1,...,f,

In particular, the optlm_al power allogat|0@j(h) by.(37) o = o ). (40)
depends only on the variabl@$, h;; pertinent to systemand _ _ _

frequency; and not on the whole vectoys or k. This implies ~ Then in contrast to updating the dual variablgsby (34)

a decentralized power allocation rule among systénasd after computing the vector (31), suppose only the current
frequencies;j, which is made explicit in (37) by the notationchann(_al measurement and power/scheduling choices are used
pi;(pi; hij). Similar separability results are also known irln particular, suppose we compute

the context of resource allocation for wireless commuincat ¥
networks [18]. Moreover, this optimal power allocation dan Sik=C;— Zo‘ij kq(hijrspijr), i=1,...,m, (41)
easily implemented in practice. Each control systecan be = ' '

given the valueu! and then adapt transmit power, Whenevea(noI update the variablgs, by
scheduled, based on the channel conditions it currentlg-exp
riences. On the other hand, the optimal schedutifigh) in Pet1 = ([ + RSk + (42)
(38) is centralized since it depends on the whole vegtor

and all channel statess. where[ ], is the projection on the non-negative orthant and

ex > 0 is the stepsize.
Remark 4. The problem of finding the optimal scheduling To emphasize that this is an online algorithm we have
in (38) is posed as a linear program by relaxing the integexplicitly indexed the variables witk corresponding to real
constraints ofA,, r in (8). As mentioned in the proof of time slots. This procedure, summarized in Algorithm 1, give
the proposition there is no loss in doing so, as the optimetheduling and power variablgsy, px, k& > 0} as well as
solution to the linear program is integer. It is worth notthgt  (dual) variables{y,, & > 0} which are random because they
(38) solves a standard assignment proBleBesides the linear depend on the random observed channel sequéhgek >
program method presented here, combinatorial algorithiths wo}. The main difference compared to the subgradient algorithm
complexity polynomial in the number of systems and of the previous section is that it follows random directicns
frequenciesf exist for such integer programming problems in (41) instead of the exact subgradient directioiig;) by
see, e.g., [22, Ch. 7]. In the special case of a single frequer(31). Comparing these two expressions it is immediate that
(f = 1) the complexity of the decision in (38) is linear in thehe expected value af, coincides with the subgradierty.s,),
number of systems({(1m)), since the scheduler needs to findo it is reasonable to conjecture that the online algoritem i
and schedule the systeiwith the minimum valuet(h;, 1;).  expected to move towards the maximum of the dual function,

I as the subgradient method does. The following proposition
indeed establishes convergence in a strong sense.

IV. ONLINE SCHEDULING AND POWER ALLOCATION Proposition 3. Consider the optimization problem (20) and its
The algorithm presented in the previous section to obtadhial derived in (25) and let Assumption 3 hold. Let a sequence
optimal scheduling and power allocation for the shared wirgx, k¥ > 0 be obtained by steps (40)-(42) based on a sequence
less control system is hard to implement in practice. In thguw, & > 0} of i.i.d. random variables with distributiop, and
primal step (33) one needs to obtain a solution péir), p(h) Stepsizes; satisfying (35). Then almost surely we have that
for a continuum of channel variablése H™*f, while for the khm = 1%, and khm g(uw) = D (47)
— 00 — 00

1Technically the standard assignment problem requires emummber of . . .
systems and frequencies. This can be accomplished by infrajdammy Whereu* is an optimal solution of the dual problem arid

systems or frequencies with zero valug;;, u;). is the optimal value of the dual problem.



Algorlthm 1 Online SChedU"ng and Power Allocation Consumption almost Sure|y satisfies
Input: m, f, c € [0,1]™, ¢ : H X [0, pmax] = [0,1], ek €

m f
Ry, k=20 lim sup E aijipij|hos - hi—1| <P (49
1: Initialize po € R, k0 P ;; KPR |0 o L = (49)
2: loo
3 F,)At time % observe channel stafe, whereP is the optimal value of the optimization problem (16).
4: Compute power allocation for all systemsand fre- Proof: See Appendix C. u
guenciesj by According to the theorem after a sufficiently large time
. horizon the scheduling and power allocation variablesinbth
Pije < argmin p — p; kq(hij, p) (43)

online by the proposed stochastic algorithm perform aahiyr

0<p<Pmax
Eip min  p— uwg(hijp) (44) close to the optimal ones obtained by the optimization gnwbl
T 0<p<pmax LR (20). In particular the Lyapunov requirements of all cohtro
5: Decide scheduling by solving systems are satisfied in the limit and the optimal power

expenditure is reached. Before proceeding to simulatidns o
- ! the stochastic online algorithm, we present an intuitiverin
Ok iigAmH: Z Za” $ii (45) " pretation of the algorithm from a resource allocation paift
st view.
6: Compute for ali =1,...,m
f A. Pricing interpretation of online scheduling and power

Si i — Zamk a(hisk Pijk) (46) allocation algorithm
i=1 In this section we provide an interpretation of the problem
variables as well at the online Algorithm 1 in economic terms
In particular we may view each transmitter in the wireless
control architecture as an agent that utilizes some scarce
resource, nhamely transmit power, to produce some ’'good’,
namely the probability of successfully transmitting anoksahg
Proof: See Appendix B B  the corresponding control loop. Our development in Sec-
The proposition states that the stochastic online algarithion 11-A shows that each closed loop has a Lyapunov control
yields a random sequence of dual variablgsthat converge performance requirement (cf. (13) that can be translated as
to the optimal dual variableg.” in a strong sense, i.e.,requiring¢; units of good (cf. (19). Under this view, the dual
almost surely for any sequence of channel realizationsishatariables;; can be interpreted as the 'unit price’ at which
observed. However the real problem of interest is the primach agent can ’sell’ the produced good. In this context the
problem (20), or equivalently Problem 1. This is the problefible of Algorithm 1 is to determine unit prices such that all
of optimal design of scheduling and power allocation pebci demand levels; are met and in the most profitable manner
that satisfy the given Lyapunov performance requiremerfi®m the agents’ perspective.
(13) for each control system, while also minimizing the  More specifically, consider a time stépwhere prices are
expected power expenditures of the communication processt to 1, and the current channel conditions are described
Hence it is important to characterize how the control systergy 4. If agenti gets access to the channel at frequegcy
would actually perform if the communication variables arghe agent can spend an amopnt; to produceg(hi; i, pij k)
selected according to the proposed online algorithm. Thigits of good, which can be sold at a price jaf;, per unit.
characterization is provided in the following theorem. In this case the total profit for the agent can be expressed as

7: Update dual variables by.1 < [tk + €xsk]+
8: end loop

Theorem 2 (Online Scheduling and Power Allocationgon- Hik @(hij k> Pij.k) — Dij ks (50)
sider a shared wireless control architecture composednof

: _— " i.e., the difference between the total revem@ ¢(h;; &, pij k)
systems of the form (1))? frequencies, and communication, \+ the total cosp,, .. The optimal resource allocatign;
modeled by (9) depending on channel statgse H™*/ ' ;

. i L ) is the one maximizing the profit (50), matching exactly the
which are ""d.' with distributiony, and scheduling and POWET 5 htimization over power provided in (43). The optimal profit
allocation variablesay € Ay, f, pr € [0, Pmax]™/. Also

) . . ) if agenti gets access to the channel at frequericynder
consider given quadratic Lyapunov performance requirelien, nditionsh;; » equals—¢;; x given in (44)
ij,k ij,k :

(13) for each system and let Assumptions 1, 2, 3 hold. lfTne role of the scheduler is to opportunistically assign

Ok, Pk, A€ chosen according to (40)-(42), then almost Sure%(gents to the available frequencies in a way that maximizes
with respect to the channel sequene,, k > 0} the control e tota) aggregated profit. In particular the scheduleentes

performances for all systemis=1,..., m satisfy current conditionsh,; ;. for all agentsi and frequencieg,
. o R computes the possible profitéij, k of all agent/frequency
hgfip E[Vi(@i k1) [ @ik = @i o, hiea] pairs, and searches for the scheduliag: A,, ; defined by

< piVi(z:) + Tr(B;W;), (48) (8) that maximizes the total profit
D ai(=€ij. k) (51)
i!j

for any state valuesr; € R™. In addition, the power



aggregated over all agents. This optimal scheduling matche Optimal Channel-aware Scheduling
the one implemented by Algorithm 1 — see line (45). , , , : : : :

After the current schedulingy, and powerp, decisions 35
have been made, optimal in the sense of maximizing the
overall system profit, the unit prices for the next siep,;
are adjusted depending on the current production levels. In
particular, if the production for systeinexceeds the required
level ¢;, meaning thas, ;, < 0 in (41), then the unit price for
system; is reduced tQu; ,+<55; 1 — See line 7 in Algorithm 1.

If on the other hand the production for systemioes not meet
¢i, 1.8, 8.1 > 0, then the unit price increases tQu; i +¢cgs; k-

The goal of the online algorithm is to find the optimal prices
1*, under which the expected production meets demand, where
expectation is with respect to the channel conditions. &bp 0 . 15 2 25 5 a5
tion 3 establishes that the online algorithm converges siimo Channel state h
surely to the optimal prices in the limit. Moreover Theorem !

2 establishes that in the limit the expected production ehearg 3. optimal channel-aware scheduling for the example eprest in
time step meets the demand, while also the expected tatattion V. System 1 has a harder Lyapunov decrease ratereewit and

roduction cost (cf. the objective of problem (20)) becomés scheduled to transmit for most observed channel statef,. System 2
b ( J P ( )) E%scheduled only if its channel conditiohs are much more favorable that

optimal in the limit. ] _those of system 1. When both channels are very adverse systtgus zero
Note however that Theorem 2 does not provide theoretigainsmit powers so scheduling is irrelevant.

guarantees on how fast the solution converges to the optimal

one. We discuss this issue along with other limitations of

the algorithm in Section VI. In the following section webe independent for each system, both having an exponential
present simulations verifying our theoretical resultsj atso distribution with mean1. The function g(h,p) is shown
indicating that the convergence of the algorithm is retdiv in Fig. 2. For these scalar systems it suffices to consider

fast so that online control performance is not severelyctdi ~ Lyapunov functiond/;(x) = z*. We require then that system 1
guarantees a high Lyapunov decrease= 0.75 rate according

to (13), while system 2 only requires, = 0.90. For these
choices we get a higher required success of transmission
A. Advantages of opportunistic scheduling and power alocg, ~ (.44 according to (19) for system 1, compared to a
tion lower ¢, ~ 0.30 of system 2.

We first illustrate through simulations the opportunisti&z n ~ After solving problem (20) offline according to the sub-
ture of the resource allocation mechanism for wirelessrobntgradient method of Section Ill, the optimal channel-aware
systems obtained in Section lll, in particular how scheduli scheduling and power allocation variables are depicted in
and power decisions adapt appropriately to channel comgiti Fig. 3 and Fig. 4 respectively. We observe in Fig. 3 that
to meet the control performance goals. Moreover we compdsgstem 1, which requires higher transmission sucegesss
the resulting performance with other simple non channedeheduled to transmit for most values of the channel states
adaptive allocation mechanisms. Recall that by solving tlhe, hs. System 2, which has a lower requirement, is scheduled
auxiliary problems (19), control systems with vector staee only if its channelh is sufficiently favorableand system 1
converted to scalar constraints in optimization proble®).(2 experiences an adverse chanhel This illustrates how the
Hence without loss of generality we present an example wisisheduler exploits opportunistically the channel condiito
scalar control systems. select which system will transmit to close the loop, in order

Consider a heating system application controlling the terte meet the Lyapunov constraints in a power efficient manner.
perature in two independent rooms of a building. Assumindfe also note that when both systems experience very adverse
the wireless control architecture of Fig. 1 with = 2, channels the scheduling decision becomes irrelevant becau
wireless sensors transmit the temperatures of each room tasawe will see in Fig. 4, the optimal transmit powers then are
central location (the access point in Fig. 1) responsible fgero (no transmission).
adjusting the heating in the rooms. For simplicity suppose The optimal power allocation is decentralized as we noted in
both systems have identical dynamics of the form (1) witRemark 3, i.e., the transmit powgy for system: depends only
statez; ,, denoting the difference between current and sonm® the channeh; that system experiences, and thus we plot
desired temperature for rooinin particular suppose that whenin Fig. 4 the power allocation for both systems on same axes.
system: transmits {; , = 1), heating is activated for systemFor both systems, when the channel conditions are adverse it
i and results in stable dynamick.; = 0.4 in (1). Otherwise is not worth to spend transmit power. System 1, which has a
if v;.x = 0 the system is open loop unstable witly ; = 1.1 more demanding control constraint, requires in generdidrig
in (1), e.g., because heating is deactivated. transmit power since, as we saw in Fig. 3, it is scheduled to

For simplicity we assume there is ong & 1) available transmit even under adverse channel conditions. This & als
frequency and for symmetry let channel stabgg, and hy,  captured in the expected power consumption of each system
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Control Mean Mean Transmit | Transmit

Optimal Channel-aware Power Allocation objective | Fading Fading Rate at| Rate at
* : : : : : — S)‘/stem 1 p hi1 hi2 Freg. 1 Freq. 2
Plant1 | 0.75 1 1 0.25 0.23
aor 1 Plant 2 0.9 1 1 0.18 0.15
Plant 3 0.9 1 2 0.07 0.25
sof TABLE |

SYSTEM PARAMETERS& ONLINE TRANSMISSION RATES

N
o
T

Transmit Power p (mW)
5

o

P system 1 is more demanding in communication resources. We
Channel state h assume channel statés; are independent across systeins
Fio. 4. Ontimal ch | location for the examk § and frequencieg, and have exponential distributions with
1g. 4. ptlma Channel-aware power a ocation for the ex sente . H .
in Section V. Under adverse channel conditions systems daramémit. The means Q'Ve“ in Table 1. In part'CUI?‘r WQ model that SySte,m
channel threshold for transmission for system 1 is lower thanof system 2 2 experiences better channel quality (higher channel gadin
because the former has a higher Lyapunov decrease rateen@guit. System gain) in frequency 2.
1 also requires higher transmit power. . . . .
a 9 P The evolution of the dual variableg,, during Algorith 1
is shown in Fig. 5. After a number of iterations (tirme

computed numerically ad, o (h)pi(hy) ~ 11mW and in this example corresponds to seconds) they remain in a
Enas(h)ps(hs) ~ 6.5mW. The minimum total power budgetsmall neighborhood around the optimaf, as anticipated
required to meet the control objectives then is approxitpat?y the theoretical a.s. convergence in Prop. 3. Consegient
17.5mW. the scheduling and power allocation decisions taken online

To demonstrate the power savings obtained by the opp@fe almost feasible for the constraints of problem (20)rafte
tunistic resource allocation we compare to a simple no@- humber of iterations. We observe that the dual variable
channel-aware communication mechanism. In particular su§Prresponding to system 1 is the largest, consistent wih th
pose that at each step a system is chosen randomly to @t that it has a harder control requirement to meet. Using
cess the channel/frequency. With a slight abuse of notatii €conomic interpretation of Section IV-A about the dual
suppose systems 1 and 2 are chosen with probabilities variables, the price at which agent 1 can sell its produced
and a; = 1 — oy respectively. When a system is selected]00d is higher, giving the incentive to schedule agent 1 to
we suppose it transmits with a constant power leygl Produce more often. On the other hand, systems 2 and 3 have
The control performance requirements (cf. (20)) in thisecaghe same control requirements but the dual variable foesyst
becomea; Ey, q(hip.) > ¢ for i = 1,2 and the total power 2 is larger. The reason is that system 2 experiences worse
costis(ay 4+a2) pe = pe. We briefly comment then on possib|echannel conditions than system 3 (cf. Table 1), which imply
designs fore; and p.. higher required transmit power, or in economic terms a highe

First, observe from the channel-aware design in Fig. 4 thHaoduction cost in (50). By setting a higher selling pricg
a system never transmits with power level larger thamW. System 2 becomes profitable enough so that it is scheduled to
Suppose then we select the power bugget 50mW . It turns Produce at a sufficient rate to meet the requirement.
out that the two control performance requirements cannot beln Table | we show the average transmission rates that
achieved in this case, because we compute the online algorithm selected during system execution. In

particular we evaluate the average number of time slots evher

Z i En,q(hipe) = En;q(hipe) = 0.65 < c1+ca =~ 0.74  gach systeni was selected to transmit (with a positive power
=12 (52) level) at each frequency as 1/N SN ikl (i > 0).
meaning that the constraints are infeasible. Searchingenu pystem 3 was schet_juled ’.“a'“'y at frequency 2, exploiting its

rT1{gtter channel quality. This forced systems 1 and 2 to use

ically for a valuep. where the random access scheme me<=Trequency 1 more often. Also system 1, which has higher

the control objectives, we fing. ~ 73m V. Contrasting this ontrol requirement, transmitted more often than the other
amount with the optimal power budget of the opportunist@ tems \?Ve note trllat this behavior resulted from the online
case above, in this example the channel-aware resourceal- '

location succeeded almost&% decrease in power budgeta gorithm using only an observed ch_ann(_al sequence, not any
compared to a not channel-aware random access scheme.p”O.r knowledge on Fhe channel qu.allty distribution. )
Finally, we examine the evolution of the three heating
. ) ) ) control systems when the online algorithm is employed for
B. Stochastic online scheduling and power allocation scheduling and power decisions. Suppose that for all system
Next we implement the stochastic online algorithm of the statesx;, which measure deviations from reference
Section IV in a setup with threen{ = 3) control loops room temperatures, are perturbed by disturbancgs as in
sharing two { = 2) frequencies. For example consider agaifl), which we model as independent Gaussian with mean
the room heating system of the previous section includirgro and variancé?; = 1 (at some normalized units of
three rooms/systems with identical dynamics,; = 1.1 temperature). We plot in Fig. 6 the evolution of the empir-
and A.; = 0.4 as before. We set the desired Lyapunoical quadratic averages/N ij:l a7, Recall that when the
decrease rates ag = 0.75, po = p3 = 0.9, implying that Lyapunov condition (13) is satisfied, we get from (14) that th

o



Online Evolution of Dual Variables theoretical characterization of the convergence rates ¢bild
potentially introduce a long transient control system béira
1) 1K) Ky before the desired performance is reached. Another drawbac
is that the online algorithm uses decreasing step sizeghwhi
limits the ability to adapt to an environment where the clenn
distributions are not stationary but vary with time. Thesmies
will be the focus of future work. The case of scheduling
interdependent control tasks is considered in [23]. A déffe
research direction is to include, apart from channel states
the measured plant system states when making the scheduling
Time (s) « 10" decisions, as in, e.g., [10]-[12], or in the power managdgmen
paradigm for a single closed loop in [19].

Fig. 5. After a number of steps during the online algorithmdbal variables
1k remain in a neighborhood around the optinpél.

APPENDIX
A. Proof of Proposition 2

Reference & Average Online Quadratic Costs . . .
We first show part (a) of the proposition. Consider the

L6 ' v , 3
X< 4 - o ————— = = = = = = o -/ problem of minimizing the Lagrangian as given at the form
g 2 1 (36) over variablesy(.), p(.) for somey € R} Sincep”c is
0 05 1 s , constant the problem is equivalent to
Time (s) x 10* m f
o 157 ' ' ' min E a;j(h) [pij(h) — pig(hij, pij(R))] -
2 10k - e T _ o pe(AP) h;; i (1) [pij (h) — piq(hij, pij (h)]
g | (53)
0 0.5 Tim}e o 15 42 Without loss of generality we can exchange the expectation
x10 over h and the minimization over functions(.),p(.) in (53)
N? %é 1 to equivalently solve for each € H™*/
g 18 N e e e e e e e e 7 m f
o 05 1 s > . HémA Z Z aij(h) [pij (h) — piq(haj, iz (R))]
Time (s) % 10° a( ) m, f =1 j=1

pij(h) € [Oapmax}
Fig. 6. Average quadratic costs during the online scheduéind power (54)

allocation algorithm. The stochastic algorithm keeps theraye quadratic . . . . .
cost of each control system close to the upper bound of the émpected This step is valid because any pair of functionsp that

cost, shown with dashed lines, induced theoretically byrélogiired Lyapunov does not minimize the objective in (54) on a set of values
decrease rates. of variablesh with ¢-positive measure must yield a strictly
larger expected value in the objective of (53). In other w8ord

We observe from Fig. 6 that after some initial transient tH&4) at a set of values fa with ng}aasure zero.
online communication algorithm keeps the empirical averag Then note that at any € H™*/ and any choice for the

quadratic costs close to the theoretical required uppendmu Variablea(h) we have thatv;; (k) > 0. Hence the optimization
over p(h) in (54) can be rearranged to

V1. DISCUSSION AND CONCLUSIONS f

min a;qi(h
In this paper we presented a framework for designing oppora(h)€Am, ¢ ; Z i)
tunistic channel-aware schedulers for wireless contrslesys .
) . ) ; . ii(h) — pwiq(hyi, pis(h)). (B5
with multiple loops closing over a shared wireless medium. pij(h)lg[lg}pmax]pj( ) = pia(hijs pij(h). (55)
We showed that a stochastic optimization formulation is-suir optimization over power variables (1) in this expres-

able for this setup. In particular, we considered schegulir%ié)n corresponds exactly to (37). Using the notation intoedi

and transmit power designs that minimize the total expectﬁ1 (39), the minimization over scheduling variablegh) in
power expenditures while guaranteeing that given Lyapun '

functions for each of the control systems exhibit a desire 5) becomes

decrease rate for stability and performance. We developed a ) m S

offline optimization algorithm, as well as an online stodttas aiR Z Zaij(h) §(hij, pi), (56)
algorithm utilizing a random observed channel sequence to Toi=lg=l

solve the problem. The expression given in (38) is obtained by relaxing thegete

While the proposed online algorithm guarantees almost swenstrainty;; € {0, 1} of the setA,,, ¢ (cf.(8)) in problem (56)
convergence to the optimal solution, it does not provide with «;; > 0. The resulting problem (38) is a linear program,



but the optimal solution will be integer (see, e.g., [22, Th. Fact 2: If at someh;; the optimal value of problem (39) is

7.5]) and feasible with respect tfy,), ;. N &(hij, pi) <0, then forh;; > h;; we have that(h;;, p;) <
Now let us prove part (b) of the proposition. We need t6(h;;, ;).

show that any paire(u), p(1), which are functions oth, that Proof of Fact 2:First note that at the given;; it must

solves (53) gives a unique evaluation €f:) given in (31). be that the optimal solutiom;;(u;h) of problem (39) sat-

Sinces; (1) involves integrating the term isfies g(h;;, pij(11; h)) > 0. This is true because otherwise
f q(hij, pij(psh)) = 0 implies {(hij, pi) = pij(;h) > 0.
. ) Second by Assumption 2(b) wheq(.) > 0, it is strictly
i (s 1) q(hag, pig (s h 57) L
;a 3 ) a(hig, peg (s 1)) 57) increasing in its argument. Thus we have fgy > h;; that
with respect to the distribution of » € 1™/, it suffices o §(hijs 1a) = pij (s h) — piq(hig, pij (s )
show that (57) is unique-a.s. o _ > pij(ps h) = paq(hig, pig(ps h)) > E(hz, i)
By the argument presented already, minimizing (53) is a.s. (60)
equivalent to minimizing (54). The latter is again equivdle -

to the problem (55) since all;;(h) > 0. Note that the only Let us now fix somex’ # o € A, ; and consider the
case where the optimizers in (54) can differ from the oneSi ., Ppick indices: ; whereo/ o' differ. i.e.. without
obtained in (55) is ifai;(1i; h) = 0 for somes, j is optimal |,qq ofygeneralitya;_j =1,a!, = 0. Consider first the case of

at some valued € H™*/ and the power minimizep;;(i;h)  p'c g, where¢(h, uz)li 0. By Fact 1 above we know

in (54) can be chosen_ arbitrarily. But this does not affeet tr{hat this impliesp, ,(4; h) = 0 is almost surely the unique
computation ofs;(u) since (57? Wlll equal zero. Hgnce Weoptimizer of (37). But in that casg(h. ,, p.,(i; h)) = 0, and
only need to show that the minimizenigy; 1), p(u; 1) in (55) e choice ofa, ,(h) does not affect the value of (57), which
imply a.s. uniqueness of (57). is zero. ’

For values ofh where _the_minimi_zers)z(u; h),p(p; h) of . Second, we examine the et Eor o where(h,,, u,) <
problem (55) are unique it is immediate that (57) has a uniqye \we il show that this event happens withprobability
value, henc_e we only need to_consmen/here t.h(_e minimizers o | particular by Assumption % has a probability
are not unique. By Assumption 2(c) the minimizefi; 1),  gensity function orf{™*/, or more formally¢ is absolutely
which is given in (37), is unique for almost al, therefore qniinous with respect to the Lebesgue measuré(ori .
we only need to focus on the set of values fowhere the ence o show that the discussed eventdaseasure zero, it

minimizer a(y; h), described by (38), is not unique. suffices to show that it has Lebesgue measure zero. Note that
Let us denote by the set of interest, i.e., the set bfe |, 4 upper bound the set as follows

H™*f where a(u; k) in (38) is not unique. By considering
all possible pairs of multiple solutions’ # o’ in the finite ~ Eqs v ﬂ{h 2 &(hyy, 1) < 0}
setA,, r, we can rewriteE’ as a union
! C{h: Y (afy = aly) &lhig, i) =0, &(huy, ) < O}
E = U Eur or (58) i,
a'Fa €lm, g = {h : Z (O‘;/] - O‘;j) g(huvﬂz) = f(h”, ,LL,) < O} (61)

wheré #0379

The subset in the first step is justified from the fact that, in
}‘ contrary to the definition o, o~ in (59), we do not take

o', to be optimal for problem (38). We only require that
(59) they yield the same objective in the problem. The second step

In other words, the seE, . is the set of values where follows by the appropriately selected indices.
both o/, o are optimal for (38). The rest of the proof shows We Will now argue that the last set in (61) has Lebesgue
that on anyEa,ya,, the value of (57) is almost surely unique_measure zero. If we fix the values of all the vari-
The setE, .~ depends on the shape of the functign ables/coordinates:;;,i # 1,7 # j, there is at most one
defined in (39), so next we point out two properties gfalue for the variable/coordinate,, that belongs in the set.
E(hij, i) The reason is that for values of ths, coordingte V\_/here
Fact 1: For almost allh;; where the optimal value of &(hu, ) < 0, Fact 2 above states thath.,, () is strictly
problem (39) ist(hi;, ;) = 0, the optimal solution is unique Monotonic inh,,. Hence there can be at most one valyg
and equal;;(u; h) = 0. that equals _the sum within the_ last set of (61_). This mearts tha
Proof of Fact 1:First we note that for any,;, the choice the lastsetin (61) can be equivalently described by a mappin
p = 0 is feasible for problem (39) and by Assumption 2(affom anm - f —1 dimensional space to the spad&'*/, or in
it gives an objectivep — 1;g(hij, p) = 0. So whenever the Other words it is a lower-dimensional subset}of*/. Hence
optimal value of problem (39) i8, thenp = 0 is an optimal it has Lebesgue measure zero. This implies that the first set

solution. This optimal solution is unique for almost alj, in (61) has Lebesgue (ang measure zero as well.
because of Assumption 2(c). n The above procedure can be iterated for any pairy” in

(58) to conclude that on the sgétthe value of the subgradient
2Within this proof we denoté&_" Zle asy, ; for compactness.  vector is almost surely unique.

Eo o = {h e Hm<T . O/,O// € argmin Zaij f(hljaﬂz)

a€ln,, 5 i,j



B. Proof of Proposition 3 Our goal is to use (64) to show thlfi 1 — u*||> — 0
We begin by noting that at every time the vectors; almost surely. To pursue this we will define a sequence that

computed by (41) is a stochastic subgradient for the dyghaves as a supermartingale stochastic process and use the
function g(y) at the pointyy, i.e. a.s. convergence results for such processes. In partisudar

will make use of the following result [24, Th. E7.4].
g1 —g(px) < (' —p) "Elsy | ] for all y/ € RT. (62)

Theorem 3. Suppose{ax,k > 0} and {by,k > 0} are
To show this fact compare equations (40)-(41) of the onlirietegrable non-negative stochastic processes adapted to a
algorithm with (31) to conclude thaE[sj |Mk] = s(ug) filtration Fy, i.e., ax, by measurable with respect t8;,, and
becausehy, is i.i.d for every k. Inequality (62) then follows they also satisfy
directly from (30).

Then note that by Assumption 3 there exists a strictly Elant | il < ax — by (67)
feasible primal solutiom’, p’. Call P’ the resulting objective Then ¢, converges almost surely an, is almost surely
value (20) at this point, and let a positive constaht> 0 symmable, .83 b < oo a.s.

denote the constraint slack of (21) at this point, i+ ¢’ <
E, >/ L o (h) q(haz, pl;(h)). Then we may bound the dual To make the connection between the above theorem and
L Jj= (RN ) .

function (23) at any point by (64) define
/ / o
g(p) < Lo/, p's ) a = [l — )2+ > €282 (68)
m f =k
=P+ ZM ci —Ep Z ;i (h) q(hiz, pi;(h)) b = 2ex(D — g(ur)), (69)
i=1 =1
m ! and let 7, = {uo,...,ur}. Note that the process is
<p - ZME’ (63) well defined because by assumption the stepsizes are square
i1 summable. Moreover,, > 0 and alsob, > 0 because by

definition D is the maximum valug(uy) can take (cf. (25)).

Also a;, andb; are bounded variables for evekybecausau

In particular we find that the optimal dual variables are énitgenera_ted by Algorithm .1.'3 bounded at ev@FyThUSak and
by are integrable, and trivially measurable with respecFto

ui < (P'—D)/e. " —
Since the optimal dual variables are finite, the distanéré). check that condition (67) holds use the definitiorupfto

||k — p*|| between any random, obtained by Algorithm 1 wnte
and the set of optimal dual variablg$ is a well-defined and w12 S
bounded random variable. The following lemma gives an up—E[‘”~c+1 | Fil = Ellr — (1% o] + D 7S
per bound on this distance. Here recall that as we commented =kl

after (31) the subgradients(;:) are always bounded in our  _ N2 42282 — 96 (D — - 262
roblem. <l = p*|1* + €25° = 2e4(D — g(r)) +Z:Zk;1€z

Rearranging the terms in the above inequality, and sinze0
it follows that for everyi, p; < >0, e < (P — g(p))/€'.

o0

Lemma 1. Let D be the optimal value of the dual problem (70)

(25), p* be an optimal solution, and' be the bound on the \yhere for the last inequality we used (64). It is immediatat th
subgradient[s(u)|| < S for any u € R". Then at each step the right hand side of (70) equats — by, by our appropriately
k of Algorithm 1 the update qfx, satisfies constructed processes. Hence all conditions of Theorenid3 ho
Elllwers — |12 < 122282 — 26, (D — true.
L O k Kl g(AZgzl)) The theorem states that, converges almost surely to
_ . ~~ some random variable. Observe that the second summand
Proof: First use the expressiom ;1 = [ur + exsk]+ I 377°, 252 of qy, in (68) is deterministic and converges to
Algorithm 1 to write 0 because of square summability of the stepsizes. Thus we
N “ . conclude that the random variablg:, — p*||> converges
_ — — < — .
letkr =47l = Mk tensele =l < llintense—pll, (69) oot surely to some random variable.
where the last inequality holds because when projectindgpent To arrive at a contradiction suppose the limit random
positive orthant the distance from a pojrit in the orthant can random variable is not identically zero, i.e., it takes posi
only decrease. Taking expectation on both sides giveand values with nonzero probability. Equivalently there exist 0
expanding the square norm of the right hand side, we get ande > 0 such that with probability we have]|, —p*|| > ¢
o2 ci2 90 for all sufficiently largek. This implies thatu; are bounded
Elll e = w7117 ] <llpw = 1717 + €3S away from the optimal, i.e., that for sufficiently largewe
+ 2ep(pr — p*) T E[sy, | ue]  (66) haveD — g(uy) > &’ for somee’ > 0. Hence with probability
0 we have
where we bounded|E[sy, | ][> < S2. The statement (64) . -
follows from (66) by applying inequality (62) with the subst Z by = Z 2e1(D — g(ux)) = +o0 (71)

H ! __ *
tution p’ = p*. | P =



But this contradicts with Theorem 3 which states thairimal variablesy, py are selected as Lagrange optimizers at

Y oreobr = oo can only happen at a set of probabilityuy.

Therefore to show that (49) holds a.s. it suffices to show

measure zero. Thereforgu, — p*|| must converge to zero that the expectation in (73) converges a.sPtavhich equals

with probability 1.
By continuity of the (concave) dual functiof(x) we also
have thaty(u) converge to the optimal valugy*) = D a.s.

D by strong duality.
Proposition 3 establishes that the left hand side of (73)
converges tg(u;) — D, and also thaty, — p* a.s. We have

also already argued tha{u,) — s(u*) a.s. Therefore also

C. Proof of Theorem 2

To show that (48) holds we first convert it into an equivale
one involving variables relating to the dual problem (25)C.
Imitating the steps leading from problem (16) to problem){20
the statement of (48) becomes equivalent to

f
limsup ¢; — Ky, Zaij,k q(Pij,ies Dijie) | e | < 0. (72)

k—o0

(1]
j=1

Here to suppress notation we have exploited the fact that
according to the online algorithm the variables, p, depend [2]
just on the value of the variablg; and not on the whole
observed channel history (but, does depend on the whole 3]
history).

Then by the expression ef. given in (41) condition (72) is
equivalent tolimsup;, _, ., En, [sk | ] < 0. Also we already [4
argued in the proof of Prop. 3 th&,, [sy, | ] = s(ui) where
s(ur) is given by (31) and expresses a subgradient of the dual
function g at ux. To sum up, we have shown so far that (48)[5
is equivalent tdim sup;,_, . s(ux) < 0.

Under Assumption 3 we have established in Proposition 3
that for the online algorithmu; — p* almost surely with
respect to the channel sequerég,, k¥ > 0}. Then we note a

convex analysis fact by [21, Prop. 4.2.3].glfis concave, and [7]
ur — p*, ands(uy) is selected as a subgradient pft iy,

then every limit point ofs(y) is a subgradient of at u*.  [4g]
Hence for the sequence pf obtained by the online algorithm
we have that almost surely the sequengey.) converges to a ]

subgradient of; at *.

Also, as follows from Danskin’s theorem [21, Prop. 4.5.1],
the subgradients of the dual functigrat any point: belong in  [10]
the convex hull of the vectors(y.) obtained in (31). But under
Assumptions 1, 2, and 3, Proposition 1(c) combined with1)
Proposition 2(b) shows that all subgradient vectefs*) at
w* satisfys(p*) < 0, as we argued in the proof of Theorem 1.
Hence for the sequence pf; obtained by the online algorithm [12]
we have that almost surelim sup,, s(u) < 0, which verifies
statement (48).

Finally let us prove (49). Recall that the dual functio
equalsg(u) = L(a(p), p(u), n) wherea(u), p(p) are chosen
as Lagrange optimizers at according to (24). Using the 14]
definition of the Lagrangian at (22) and the interpretatién ({)15]
the subgradient(u) at (31) as the constraint slack, we havgie]
that for any

L3

g(pr) = L), p(pe), pr:) [17]

m

= Bn Y ai(pr; P)pipns h) + il s ()
i=1

Now observe that the expectation in (49) equals the expélc%]
tation given in (73) because by design of Algorithm 1 the

(73) [18]

T
Ky s
r;IEhis shows that the expectation at the right hand side of (73)
onverges taD, which completes the proof.

() — wTs(p*) a.s. But by Prop. 1(b)*Ts(u*) = 0.
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