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Abstract—We consider a wireless control architecture with
multiple control loops and a shared wireless medium. A scheduler
observes the random channel conditions that each control system
experiences over the shared medium and opportunistically selects
systems to transmit at a set of non-overlapping frequencies. The
transmit power of each system also adapts to channel conditions
and determines the probability of successfully transmitting and
closing the loop. We formulate the problem of designing optimal
channel-aware scheduling and power allocation mechanisms that
minimize the total power consumption while meeting control
performance requirements for all systems. In particular it is
required that for each control system a given Lyapunov function
decreases at a specified rate in expectation over the random
channel conditions. We develop an offline algorithm to find the
optimal communication design, as well as an online protocol
which selects scheduling and power variables based on a random
observed channel sequence and converges almost surely to the
optimal operating point. We illustrate in simulations the power
savings of our approach compared to other non-channel-aware
schemes.

I. I NTRODUCTION

Wireless control systems in e.g., smart buildings or indus-
trial automation applications, are characterized by sensors,
actuators, and controllers communicating information between
different physical locations using wireless tranceivers.As the
number of independent wireless control systems that coexist in
such environments increases, the need for efficiently sharing
the available wireless medium becomes apparent. Scheduling
access to the shared medium helps eliminate interferences be-
tween transmissions of different systems, but the rate at which
a control system accesses the medium affects closed loop
performance. This necessitates the development of wireless
communication and resource management mechanisms that
are control-aware. Moreover, since wireless devices in such
applications are often battery-operated, these mechanisms are
desired to be energy-efficient.

Scheduling in wired or wireless networked control systems
has received a lot of attention in the past. Scheduling mecha-
nisms usually examined are either static or dynamic. Typical
examples of the first type are periodically protocols where
the wireless devices transmit in a predefined repeating order,
e.g., round-robin. Stability conditions under such scheduling
protocols can be examined by converting the system in some
form of a switching system, usually including other network
phenomena such as delays, uncertain communication times,
or packet drops – see, e.g., [2]–[4]. The problem of designing
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static schedules suitable for control applications has also been
addressed. Periodic sequences leading to stability [5], control-
lability and observability [6], or minimizing linear quadratic
objectives [7] have been proposed. Deriving otherwise optimal
scheduling sequences is recognized as a hard combinatorial
problem [8], [9].

Dynamic schedulers on the other hand do not rely on a
predefined sequence but decide access to the communication
medium at each step, for example by dynamically assigning
priorities to the competing tasks. Priorities commonly depend
on the current plant/control system states, i.e., informally
speaking, the subsystem with the largest state discrepancy
is scheduled to communicate. Examples of such dynamic
schedulers can be found in [3], [10]–[12]. Another approach,
motivated by the problem of scheduling control tasks shar-
ing a computation (CPU) rather than a communication re-
source, is to abstract control performance requirements in
the time/frequency domain. Knowing for example how often
a task needs access to the resource, to communicate and
close the loop in our case, static/offline and dynamic/online
schedules meeting the desired requirements can be obtained
using algorithms from real-time scheduling theory – see,
e.g., [13], [14] for more details on this approach.

However, in the case of multiple control tasks sharing
a wireless communication medium the existing scheduling
mechanisms in the control literature do not explicitly model or
account for the wireless physical layer aspects of the problem.
In particular, time-varying channel conditions cause large
unpredictable variations in wireless channel transferences,
referred to as fading [15, Ch. 3,4]. The problem of designing
wireless communication networks to counteract such channel
variability and maximize the utility to the users has received
considerable attention [16]–[18]. The general approach isto
allocate the available communication resources, e.g., medium
access, power resources, channel capacity, by opportunistically
adapting to the randomly varying channel conditions.

In this paper we propose a channel-aware approach for
scheduling independent control tasks sharing a wireless com-
munication medium. The channel conditions on the medium
not only change randomly over time, but also differ among
the control systems at a given time step. A channel-aware
scheduling mechanism can opportunistically exploit channel
information to, e.g., grant channel access to control loops
experiencing favorable channel conditions, or equivalently
avoid control loops transmitting under adverse conditions. The
particular wireless control architecture we consider is shown
in Fig. 1, where a scheduler selects at most one control system
to transmit over each of a number of available frequencies at
each time step. Moreover, following our previous work in [19],
[20], we allow for the allocation of transmit power when a
system is scheduled, which together with the channel fading



determines the probability of successful message deliveryat
the receiver.

Furthermore, the wireless communication design of our
setup, i.e., the opportunistic scheduling and power allocation,
needs to serve a set of predesigned control tasks. To facilitate
composition of the control tasks over the shared wireless
medium, the control system dynamics and performance re-
quirements need to be abstracted with an interface that is
suitable for the wireless communication design problem. In
this paper each control system is abstracted by some given
Lyapunov function and control performance is specified as a
desired decrease rate for this Lyapunov function (Section II).
Our goal is to design how scheduling and power allocation
should adapt to the random channel conditions so thatall
Lyapunov functions decrease at the specified rates atevery
time step. These constraints are expressed in a stochastic sense,
in expectationover the channel conditions, since deterministi-
cally at most one loop can close at a time step. Also, this way
the control performance requirements are expressed in a static
single-time-step framework unlike, e.g., the timing/frequency
abstractions in [13] or the periodic sequences in [6] which
would be hard, if not intractable, to employ under random
wireless channel conditions.

We formulate the problem of optimal channel-aware
scheduling and power allocation that minimize the expected
total power consumption subject to the expected Lyapunov
decrease rate constraints (Section II-A). In Section III we
develop an offline algorithm to solve the problem in the dual
domain and obtain a characterization of the optimal solution.
The optimal power allocation is decentralized among users and
frequencies, while the optimal scheduling follows a channel-
dependent assignment problem where control systems are op-
portunistically assigned to frequencies. The offline algorithm
requires knowledge of the channel probability distribution
which in most practical cases is not available, hence in Section
IV we develop an online algorithm that utilizes only a channel
sequence observed during execution. The online algorithm
bears an intuitive pricing interpretation (Section IV-A),and we
establish that if scheduling and power allocation are selected
this way, the desired Lyapunov performance constraints are
met in the limit in a strong sense (almost surely). Finally,
simulations in Section V illustrate the opportunistic nature of
the proposed channel-aware approach as well as the reduction
in power consumption (at a magnitude of80% in examples)
compared to non-channel-aware mechanisms. We conclude
with a discussion and future research directions in Section
VI.

Notation: We denote the realm-dimensional non-negative
orthant with R

m
+ , and the comparison with respect to the

orthant (i.e., element-wise) with≥, i.e., x ≥ y if and only if
x−y ∈ R

m
+ . The cone ofn×n real symmetric positive semi-

definite matrices is denoted bySn
+, and the comparison with

respect to this cone with�. The set ofn× n real symmetric
positive definite matrices is denoted bySn

++.

II. PROBLEM DESCRIPTION

Consider the wireless control architecture of Fig. 1 con-
sisting ofm independent networked control systems. At each

Plant/Control
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Access Point/
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h1 hm
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Fig. 1. Architecture for opportunistic scheduling of control tasks over
a shared wireless medium. Independent control systems close the loop by
transmitting over the shared wireless medium to a common receiver/access
point. For simplicity the case of a single transmission frequency is shown,
where each control systemi experiences random channel conditionshi. A
centralized scheduler located at the access point observesall channel states
and opportunistically decides which system is scheduled totransmit and close
the loop.

time k, by xi,k ∈ R
ni we denote the state of the systemi

(i = 1, 2, ...,m). To keep the framework general we assume
that different descriptions for the evolution of each system i
from xi,k to xi,k+1 at timek are given depending on whether
a transmission occurs at timek or not. Let us indicate with
γi,k ∈ {0, 1} the event that a successful transmission occurs at
timek for the subsystemi. For simplicity then we describe the
system evolution by a switched linear time invariant model,

xi,k+1 =

{

Ac,i xi,k + wi,k, if γi,k = 1
Ao,i xi,k + wi,k, if γi,k = 0

. (1)

At a successful transmission the system dynamics are de-
scribed by the matrixAc,i ∈ R

ni×ni , where ’c’ stands for
closed-loop, and otherwise byAo,i ∈ R

ni×ni , where ’o’
stands for open-loop. We assume thatAc,i is asymptotically
stable, implying that if systemi were to transmit at each slot
its respective state evolution is stable. The open loop matrix
Ao,i could be unstable. The additive termswi,k model an
independent identically distributed (i.i.d.) noise process with
mean zero and covarianceWi � 0. Note that the noise terms
are modeled as independent across timek for eachi but also
across plantsi. Furthermore, it is worth noting that closed-
loop dynamics for all of them controllers are fixed (meaning
that adequate controllers have been already designed). Thus in
this work we focus on designing the wireless communication
aspects of the control system. The above networked control
system description (1) can model various control architectures,
as shown in the following examples.

Example 1. Suppose each closed loopi consists of a linear
plant of the form

xi,k+1 = Aixi,k +Biui,k + wi,k, (2)

and a wireless sensor transmitting the plant state measurement
xi,k to a controller/actuator which provides inputui,k. Let then



the controller apply a linear feedbackui,k = Kixi,k when
a measurement is received (γi,k = 1), otherwise apply for
simplicity ui,k = 0 when no measurement is received (γi,k =
0). The resulting closed loop system can be written as

xi,k+1 =

{

(Ai +BiKi)xi,k + wi,k, if γi,k = 1
Ai xi,k + wi,k, if γi,k = 0

. (3)

which is of the form (1) withAc,i = Ai+BiKi andAo,i = Ai.

Example 2. As a more general example consider again the
plant in (2) and a wireless sensor measuring a system output
of the form

yi,k = Cixi,k + vi,k, (4)

wherevi,k is some i.i.d. measurement noise with zero mean
and finite covariance. A dynamic control law based on this
plant output and adapted to the packet drops updates a local
controller state according to

zi,k+1 = Fi zi,k + γi,k (Fc,i zi,k +Gi yi,k), (5)

i.e., corrects appropriately the local state whenever a mea-
surement is received. For examplezi,k may represent a local
estimate of the plant state [2]. The control input applied by
the controller can similarly be modeled as

ui,k = Ki zi,k + γi,k (Kc,i zi,k + Li yi,k), (6)

The overall closed loop system is obtained by joining plant
and controller states into
[

xi,k+1

zi,k+1

]

=

[

Ai BiKi

0 Fi

] [

xi,k

zi,k

]

+

[

I
0

]

wi,k+

γi,k

[

BiLiCi BiKc,i

GiCi Fc,i

] [

xi,k

zi,k

]

+ γi,k

[

BiLiCi

Gi

]

vi,k,

(7)

which is again of the form (1).
Let us now describe the wireless communication system and

model how it determines the packet transmission successes,
i.e., the indicatorsγi,k. Suppose there aref different frequen-
cies that each system may use to communicate and let the
wireless channel conditions for a systemi and frequencyj
at time k be denoted ashij,k. Channel conditionshij,k can
be described as the channel fading coefficient that system
i experiences if it transmits at timek over frequencyj.
Due to propagation effects the channel gainshij,k change
unpredictably [15, Ch. 3] and take values in a subsetH ⊆ R+

of the positive reals. We adopt a block fading model whereby
channel states{hij,k, 1 ≤ i ≤ m, 1 ≤ j ≤ f} are modeled
as random variables independent across different time slots k
and identically distributed according to some joint distribution
φ on Hm×f . They are also independent of the plant process
noisewi,k. We assume the channel states are available before
transmission – see Remark 1 for a discussion about prac-
tical implementation. We also make the following technical
assumption on their joint distribution to exclude the possibility
of channel states becoming degenerate random variables.

Assumption 1. The joint distributionφ of channel states
{hij,k, 1 ≤ i ≤ m, 1 ≤ j ≤ f} has a probability density
function onHm×f .
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Fig. 2. Complementary error function for practical FEC codes.The probability
of successful decodingq for a FEC code is a sigmoid function of the received
SNR∼ h p.

If system i transmits at timek over frequencyj it selects
a transmit power levelpij,k taking values in[0, pmax]. Then
channel fading and transmit power affect the probability of
successful decoding of the transmitted packet at the receiver.
In particular given the forward error-correcting code (FEC) in
use, the probabilityq that a packet is successfully decoded
is a function of the received signal-to-noise ratio (SNR). The
SNR is proportional to the received power level expressed by
the producth · p of channel fading and the allocated transmit
power. Overall we express the probability of success by a given
relationship of the formq(hij,k · pij,k) – for more details on
this model, the reader is referred to [19]. An illustration of such
a function is shown in Fig. 2. The following assumption on the
form of the functionq(hp) will be helpful in the subsequent
sections but as we will explicitly note it is not required forall
of the results in this paper to hold.

Assumption 2. The functionq(.) as a function of the product
r = h p for r ≥ 0 satisfies:

(a) q(0) = 0,
(b) q(r) is continuous, and strictly increasing whenq(r) > 0,

i.e., for r′ > r it holds thatq(r′) > q(r) > 0,
(c) for any µ ≥ 0 and for almost all valuesh ∈ H the set

argmin0≤p≤pmax
p− µq(h p) is a singleton.

Parts (a) and (b) of this assumption state that the probability
of successful decodingq(h p) is zero when the received power
level h p is small, and it becomes positiveq(h p) > 0 and
strictly increasing for larger values ofh p. There properties are
verified for cases of practical interest as shown in Fig. 2. Part
(c) is a more stringent requirement on the shape of function
q(h p) to facilitate the technical development of this paper,
but is not restrictive in practice. The sigmoid shape in Fig.2
guarantees the unique minimizer in (c). We also note that the
minimizer set in (c) exists by the continuity assumption in (b).

Apart from packet drops due to low received SNR, packet
collisions may occur if more than one of the control systems
transmit at a given time slot on the same frequency over the
shared wireless medium. For this reason we are interested in
designing a mechanism to select which system accesses each
of the available frequencies at the channel, i.e., which system
is scheduledto transmit. We denote withαij,k = 1 the decision
to schedule systemi on frequencyj at timek, andαij,k = 0
otherwise. To avoid packet collisions we let at most one system



transmit on each frequencyj, that is
∑m

i=1 αij,k ≤ 1. We
allow each systemi to transmit on at most one frequency,
that is

∑f
j=1 αij,k ≤ 1. Mathematically we may denote then

the set∆m,f of all feasible scheduling decisionsαij,k at each
time k as

∆m,f =

{

α ∈ {0, 1}m×f :

∑m
i=1 αij ≤ 1, 1 ≤ j ≤ f,

∑f
j=1 αij ≤ 1, 1 ≤ i ≤ m

}

.

(8)
For compactness we group channel states, scheduling deci-
sions, and power allocations of the overall communication
system at timek into matriceshk ∈ H

m×f , αk ∈ ∆m,f ,
and pk ∈ [0, pmax]

m×f respectively. We can then model the
transmission eventγi,k of systemi at timek given scheduling
variables, power allocation, and channel state, as a Bernoulli
random variable with success probability

P[γi,k = 1
∣

∣hk, αk, pk] =

f
∑

j=1

αij,k q(hij,k, pij,k) (9)

This expression states that the probability of a message for
system i being successfully received equals the probability
that the message is correctly decoded if systemi is scheduled
to transmit on any of thef available frequencies. Note that, by
design of the scheduling variables, systemi uses at most one
frequency and we have made an implicit assumption that no
interferences arise from other systems transmitting on different
frequencies.

Our goal is to design the communication variables of the
wireless control system, which are the scheduling and power
allocation variables. Since the randomly varying channel af-
fects the communication process, we are interested in selecting
appropriate scheduling and power variables that adapt to chan-
nel stateshk in order to counteract these effects. Overall we
express the scheduling and power decisionsαk, pk respectively
as mappings of the form

A = {α : Hm×f 7→ ∆m,f},

P = {p : Hm×f 7→ [0, pmax]
m×f}, (10)

so thatαk = α(hk), pk = p(hk). Since channel stateshk are
independent over timek these mappings do not need to change
over time. Substituting the scheduling and power allocation
mappingsα(.), p(.) in our communication model described by
(9) the probability of successful transmission for each system
i at any given slotk becomes

P(γi,k = 1) = Ehk

{

P[γi,k = 1
∣

∣hk, α(hk), p(hk)]
}

= Eh

f
∑

j=1

αij(h) q(hij , pij(h)). (11)

Here the expectation is with respect to the joint distribution
φ of the channel realizationhk which we assumed to be
identical for any timek, hence we drop the indexk. Note
also that the communication process modeled by the sequence
{γi,k, 1 ≤ i ≤ m, k ≥ 0} depends only on variables related to
the wireless communication counterpart of the overall system,
and is in particular independent of the system evolutions
{xi,k, 1 ≤ i ≤ m, k ≥ 0}.

Our primary goal in designing the communication variables
of the system is to guarantee a level of closed loop perfor-
mance for each subsystem. To formalize the problem descrip-
tion we consider Lyapunov-like performance requirements for
the control systems. In particular suppose quadratic Lyapunov
functions of the form

Vi(x) = xTPix, x ∈ R
ni , (12)

with Pi ∈ Sni

++ being positive definite matrices, are given for
each systemi. A Lyapunov-like requirement then states that
these functions should decrease at given ratesρi < 1 during
the execution of each subsystemi. This evolution however
is random because of the stochastic nature of the overall
wireless communication/control system, i.e., due to process
noise, random channel states, randomized channel access, and
packet drops. To take these effects into account we require
that at any valuexi,k ∈ R

ni of system statei at time k
the Lyapunov functions at the next time step decrease at the
desired rateρi < 1 in expectation, that is

E
[

Vi(xi,k+1)
∣

∣xi,k

]

≤ ρiVi(xi,k) + Tr(PiWi). (13)

The expectation over the next system statexi,k+1 on the left
hand side accounts via (1) for the randomness introduced by
the process noisewi,k as well as the transmission successγi,k.
The effect of process noise appears on the right hand side as
the constant termTr(PiWi), while the transmission success
is expressed in (11) and depends on the observed channel
statehk as well as the communication decisionsαk, pk. The
intuition behind requirement (13) is that if it holds on each
time k it follows that

E
[

Vi(xi,N )
∣

∣xi,0

]

≤ ρNi Vi(xi,0) +
1− ρNi
1− ρi

Tr(PiWi) (14)

meaning that system states have second moments that de-
cay exponentially and in the limit remain bounded by
Tr(PiWi)/(1− ρi).

On the other hand, apart from control performance re-
quirements an efficient communication design should make an
efficient use of the available power resources at the devices.
The induced overall expected power consumption on each slot
k is given by

Ehk

m
∑

i=1

f
∑

j=1

αij,k(hk)pij,k(hk), (15)

summing up the transmit power of each systemi and fre-
quencyj if the system is scheduled to transmit. The expec-
tation here is with respect to the joint channel distribution
hk ∼ φ. The approach we take in designing scheduling and
power allocation (cf. (10)) that are control-performance aware
(cf. (13)) and also energy-efficient (cf. (15)) is through a
stochastic optimization framework that we present next.

Remark 1. The centralized channel-aware scheduler can be
implemented in a multiple access channel architecture as
shown in Fig. 1, where each control system transmits to a
common access point. For example, the access point can be
collocated with a centralized controller which receives sensor
measurements from the independent plants and is responsible



for providing inputs to each plant. The channel conditions for
each system can be measured at the access point at the begin-
ning of each time slot by pilot signals sent from the sensors
to the access point. Depending on the measured channel states
the access point decides which plant is scheduled to close the
loop.

A. Scheduling and power allocation as stochastic optimization

We formulate the problem of designing scheduling and
power allocation in an optimization framework as follows.

Problem 1 (Optimal Scheduling and Power Allocation De-
sign). Consider a shared wireless control architecture with
f frequencies andm systems of the form (1), quadratic
Lyapunov performance requirements by (13), channel states
hk ∈ H

m×f i.i.d. with distribution φ, and communication
modeled by (9). The design of optimal scheduling and power
allocationαk = α(hk), pk = p(hk) is posed as

minimize
α,p∈(A,P)

Ehk

m
∑

i=1

f
∑

j=1

αij,k(hk)pij,k(hk) (16)

subject to E
[

Vi(xi,k+1)
∣

∣xi,k

]

≤ ρiVi(xi,k) + Tr(PiWi)

for all xi,k ∈ R
ni , i = 1, . . . ,m.

In other words, at each time step we seek to minimize the
total expected power consumption (15) of the design while
satisfying the Lyapunov requirements (13). To make explicit
how the functionsα(.), p(.) appear in the constraints of the
problem, i.e., the Lyapunov requirements, observe that by (1)
we have that

E
[

Vi(xi,k+1)
∣

∣xi,k

]

= P(γi,k = 1) xT
i,kA

T
c,iPiAc,ixi,k

+ P(γi,k = 0) xT
i,kA

T
o,iPiAo,ixi,k + Tr(PiWi), (17)

where we used the fact that the random variableγi,k is
independent of the system statexi,k as it depends only on the
communication variables (cf. (9)-(11)). Plugging (17) at the
left hand side of the constraints in (16) we get forxi,k 6= 0

P(γi,k = 1) ≥
xT
i,k(A

T
o,iPiAo,i −AT

c,iPiAc,i)xi,k

xT
i,k(A

T
o,iPiAo,i − ρiPi)xi,k

. (18)

The decision variable in this constraint isP(γi = 1) at the left
hand side which depends onα(.), p(.) by (11). Note then that
according to problem 1 condition (18) needs to hold at any
value ofxi,k ∈ R

ni . We can rewrite all these constraints by
intersecting them to getci ≤ P(γi = 1) where

ci = sup
y∈Rni ,y 6=0

yT (AT
o,iPiAo,i −AT

c,iPiAc,i)y

yT (AT
o,iPiAo,i − ρiPi)y

. (19)

Computing ci is a simple semidefinite programming opti-
mization problem which can be easily solved using available
convex optimization software. The valueci represents the
minimum probability of transmission for each systemi that
guarantees the desired Lyapunov decay rateρi – see also
Remark 2. It can alternatively be thought of as a minimum
required utilization factor of the shared wireless channel,
analogously to a utilization of a shared CPU in, e.g., [14].

Intuitively, large value ofci implies that systemi requires more
resources, i.e., more frequent channel access and possibly
higher power expenditures.

Summarizing, the Lyapunov constraints in optimization (16)
can be simplified by solving the auxiliary problems (19) for
each control loopi, so that the optimization (16) can be
equivalently written as

minimize
α,p∈(A,P)

Eh

m
∑

i=1

f
∑

j=1

αij(h)pij(h) (20)

subject to ci ≤ Eh

f
∑

j=1

αij(h) q(hij , pij(h)), i = 1, . . . ,m

Here we have dropped the time indicesk from the variables
hk since they are identically distributed over time. We also
make a final constraint qualification assumption that is typical
in optimization theory, i.e., that a strictly feasible point for this
optimization problem exists.

Assumption 3. There exist variablesα′ ∈ A andp′ ∈ P that
satisfy the constraints of the optimization problem (20) with
strict inequality, i.e.,

ci < Eh

f
∑

j=1

α′
ij(h) q(hij , p

′
ij(h)), i = 1, . . . ,m (21)

By the equivalence between problems (16) and (20), con-
dition (21) can be interpreted as a feasibility/schedulability
assumption for the shared wireless control system. It requires
that there exist some channel-aware scheduling and power
allocation such that the control performance requirements(13)
of all control systems are met. This assumption however does
not provide any information on how to find such a solution.

In the rest of the paper we examine problem (20), which
is equivalent to the optimal scheduling and power allocation
design for the shared wireless control architecture in Problem
1. Since this problem is feasible by Assumption 3 let us
denote the optimal value byP and an optimal solution pair
by α∗(.), p∗(.). In the following section we characterize the
form and properties of an optimal solution and describe a
methodology to obtain it.

Remark 2. Sinceci is a required lower bound on the probabil-
ity of successful transmission for systemi, it must be that the
value satisfiesci < 1. Equivalently the right hand side of (19)
needs to be less than one for all values ofy, which in turn is
equivalent to the conditionAT

c,iPiAc,i � ρiPi. This condition
states that the closed-loop part of system (1) should satisfy
the required decrease rateρi for the given quadratic Lyapunov
functionVi, or in other words that if systemi transmit all the
time the Lyapunov requirement is met. SinceAc,i is stable by
assumption, we may also assume that the given matricesPi

are selected appropriately for this to hold.

III. O PTIMAL SCHEDULING AND POWER ALLOCATION

In this section we examine how the optimal scheduling
and power allocation for the wireless control system can be
recovered by considering the optimization problem in the dual



domain. This allows us to develop an offline algorithm to solve
the problem and provides an explicit characterization of the
form of the optimal solution.

First let us derive the Lagrange dual problem of (20).
Consider non-negative dual variablesµ ∈ R

m
+ corresponding

to each one of them constraints of (20). The Lagrangian then
is defined as

L(α, p, µ) = Eh

m
∑

i=1

f
∑

j=1

αij(h)pij(h)

+

m
∑

i=1

µi



ci − Eh

f
∑

j=1

αij(h) q(hij , pij(h))



 ,

(22)

while the dual function is defined as

g(µ) = min
α,p∈(A,P)

L(α, p, µ). (23)

For future reference we also denote the set of functions
α(.), p(.) that minimize the Lagrangian atµ by

(A,P)(µ) = argmin
α,p∈(A,P)

L(α, p, µ), (24)

whenever the minimizers exist. This set might contain in
general multiple solutions and we denote withα(µ), p(µ) an
arbitrary element of the set.

The Lagrange dual problem is defined as follows.

D = max
µ∈R

m
+

g(µ). (25)

Lagrange duality theory informs us that the dual function
g(µ) is a lower bound on the optimal costP of problem
(20) for anyµ, so that the optimal dual value also satisfies
D ≤ P (weak duality). The following proposition however
establishes a strong duality result (D = P ) for the problem
under consideration and provides a relationship between the
optimal primal and dual variables.

Proposition 1. Let Assumptions 1 and 3 hold. LetP be the
optimal value of the optimization problem (20) and(α∗, p∗)
be an optimal solution, and letD be the optimal value of the
dual problem (25) andµ∗ be an optimal solution. Then

(a) P = D (strong duality)

(b) µ∗
i

[

ci − Eh

∑f
j=1 α

∗
ij(h) q(hij , p

∗
ij(h))

]

= 0 for i =

1, . . . ,m (complementary slackness)
(c) (α∗, p∗) ∈ (A,P)(µ∗)

Proof: Statement (a) under assumptions 1 and 3 follows
immediately from [18, Theorem 1] where a similar optimiza-
tion setup is examined. The proof is omitted due to space
limitations.

To show (b) observe that, by definition of the dual function
in (23), at the pointµ∗ we have that

g(µ∗) ≤ L(α∗, p∗, µ∗) (26)

Sinceµ∗ is optimal for (25) and using part (a) we have for the
left hand side of (26) thatg(µ∗) = D = P . On the other hand,

the right hand side of (26), by the definition of the Lagrangian
at (22), equals

L(α∗, p∗, µ∗) = P

+
m
∑

i=1

µ∗
i



ci − Eh

f
∑

j=1

α∗
ij(h) q(hij , p

∗
ij(h))



 , (27)

because the objective of (20) at the optimal solution(α∗, p∗)
equals the optimal valueP . These expressions for the left and
right hand sides of the inequality in (26) therefore give

P ≤ P +

m
∑

i=1

µ∗
i



ci − Eh

f
∑

j=1

α∗
ij(h) q(hij , p

∗
ij(h))



 . (28)

This implies that the sum on the right hand side is non-
negative. However all summands are non-positive, because
µ∗ ≥ 0 since it is feasible for the dual problem (25), and
also the term in the brackets in (28) are non-positive because
(α∗, p∗) are feasible for the primal problem (20). The only
possibility then is that all summands in (28) are identically
zero, which proves statement (b).

We have established that (28) holds with equality, so by
tracing back our steps, we have that (26) holds with equality
too, which, by the definition of the dual function on (23)
translates to

min
α,p∈(A,P)

L(α, p, µ∗) = L(α∗, p∗, µ∗). (29)

This verifies statement (c).
It is worth noting that this proposition states that strong

duality holds even though the original problem is not convex,
regardless also of the form of the functionq(h, p) (Assumption
2 was not imposed). More importantly, part (c) suggests the
possibility of recovering the optimal primal variablesα∗, p∗

by solving first the dual problem for the optimal pointµ∗. In
other words, the design of scheduling and power allocation
that meet the control performance specifications in Problem
1 is reduced to the problem of determining the optimal dual
variables. A method to find the latter is presented next.

A. Dual subgradient method

To maximize the dual functiong(µ) for the dual problem
(25) we employ a dual projected subgradient algorithm [21,
Ch. 8]. A subgradient direction for the (concave) functiong(µ)
with respect toµ ∈ R

m
+ is a vector, denoted here ass(µ) ∈

R
m, that satisfies

g(µ′)− g(µ) ≤ (µ′ − µ)T s(µ) for all µ′ ∈ R
m
+ . (30)

If we pick α(µ), p(µ) ∈ (A,P)(µ) by (24) then a subgra-
dient s(µ) can be found as the constraint slack of the primal
problem (20) evaluated at these points, i.e.,

si(µ) = ci − Eh

f
∑

j=1

αij(µ;h) q(hij , pij(µ;h)). (31)

To show this observe that for anyµ′ in general we have
g(µ′) ≤ L(α(µ), p(µ), µ′) by the definition of the dual
function in (23). Subtractingg(µ) = L(α(µ), p(µ), µ) from



both sides of this inequality and expanding the terms of the
Lagrangian as in (22) we get

g(µ′)− g(µ) ≤

m
∑

i=1

(µ′
i − µi)



ci − Eh

f
∑

j=1

αij(µ;h) q(hij , pij(µ;h))



 .

(32)

Comparing this with the property of the subgradient in (30),
we verify that (31) indeed gives a subgradient direction. We
also note for future reference that for anyµ the subgradients
are bounded because at the right hand side of (31) the termci is
bounded (cf.(19)) and the term in the expectation corresponds
to a probability (cf.(11)).

A projected dual subgradient ascent method to maximize
the (concave) dual functiong(µ) then consists of the following
steps:

1) At iteration t given µ(t) find primal optimizers of the
Lagrangian atµ(t) according to (24),

p(µ(t)), α(µ(t)) ∈ (A,P)(µ(t)) (33)

2) Evaluate the subgradient vectors(µ(t)) by (31) and
update the dual variables by an ascent step

µ(t+ 1) = [µ(t) + ε(t)s(µ(t))]+ (34)

where [ ]+ denotes the projection on the non-negative
orthant andε(t) > 0 is the stepsize.

The stepsizes are selected to be square summable but not
summable, i.e.,

∞
∑

t=1

ε(t)2 <∞,

∞
∑

t=1

ε(t) =∞. (35)

Before stating the convergence properties of the algorithm,
we note that in order to implement it we need an efficient
way to compute primal Lagrange optimizers in (33) that solve
(24). This problem also relates to our capability of finding the
optimal primal variables of interestα∗, p∗ as we have shown
in Proposition 1(c). Hence we turn our focus to problem (24).
A more convenient expression for the Lagrangian defined in
(22) can be obtained by rearranging terms to get

L(α, p,µ) = µT c+

Eh

m
∑

i=1

f
∑

j=1

αij(h) [pij(h)− µiq(hij , pij(h))] . (36)

This form provides a useful separation of the primal variables
across channel realizationsh. We exploit this structure in the
following proposition to obtain primal Lagrangian optimizers.

Proposition 2. For any µ ∈ R
m
+ the following hold true:

(a) Solutionsα(µ), p(µ) ∈ (A,P)(µ) of problem (24) can be
obtained at eachh ∈ Hm as

pij(µ;h) = pij(µi;hij) = argmin
0≤p≤pmax

p−µiq(hij , p) (37)

for any i = 1, . . . ,m and j = 1, . . . , f , and

α(µ;h) = argmin
α∈R

m×f
+

m
∑

i=1

f
∑

j=1

αij ξ(hij , µi) (38)

subject to
m
∑

i=1

αij ≤ 1,

f
∑

j=1

αij ≤ 1

where

ξ(hij , µi) = min
0≤p≤pmax

p− µiq(hij , p). (39)

(b) If Assumptions 1 and 2 hold, then for any solution
α(µ), p(µ) ∈ (A,P)(µ) the vectors(µ) defined in (31)
has a unique value.

Proof: See Appendix A
The first part of the proposition provides through equations

(37) and (38) a method to obtain primal Lagrange optimizers
that can be used in step (31) of the subgradient algorithm.
Interestingly a separability result for the optimal power al-
location across systemsi and frequenciesj is revealed – see
Remark 3 for more details. The second part of the proposition,
which relies on Assumption 2, enables us to characterize the
form of the optimal scheduling and power allocation variables
in the following Theorem.

Theorem 1 (Optimal Scheduling and Power Allocation).
Consider the design of channel-aware scheduling and power
allocation variables in Problem 1 for the shared wireless
control architecture of Fig. 1, and let Assumptions 1, 2, 3
hold. Then optimal schedulingα∗ and power allocationp∗

are obtained by (37)-(39) at a pointµ∗ ∈ R
m
+ , which is an

optimal solution of the dual problem (25). A pointµ∗ can be
obtained by iterating (33)-(34), i.e.,µ(t) → µ∗, for stepsizes
satisfying (35).

Proof: We first argue that all pairsα(µ∗), p(µ∗) that
minimize the Lagrangian at the pointµ∗ are optimal solutions
of the primal problem (20) (equivalently (16)). By Proposition
2(b), at the pointµ∗ we have that the vectors(µ∗) in (31),
which is also the constraint slack in the primal problem (20)
of any Lagrange optimizersα(µ∗), p(µ∗), is unique. But by
Proposition 1(c) we have that the optimal primal variables
α∗, p∗ are also Lagrange optimizers atµ∗, and since they
are primal feasible, then all other optimizersα(µ∗), p(µ∗)
are primal feasible with the same constraint slack. More-
over all optimizersα(µ∗), p(µ∗) yield the same (minimum)
Lagrangian valueL(α(µ∗), p(µ∗), µ∗). By the form of the
Lagrangian in (22) it follows that all optimizersα(µ∗), p(µ∗)
also give the same primal objective in (20) as the pointα∗, p∗,
i.e., the minimumP . Hence any optimizer pairα(µ∗), p(µ∗)
is primal optimal. The first statement of the theorem follows
because an optimal scheduling and power allocation pair can
be obtained by Prop. 2(a) atµ∗.

The convergence of iterations (33)-(34) to the optimal
dual variableµ∗ for stepsizes (35) follows from a standard
subgradient method argument – for a proof see, e.g., [21, Prop.
8.2.6].

The theorem provides a characterization of the optimal
scheduling and power allocation variables that meet the control



performance specifications in the shared wireless control archi-
tecture we examine. More details about the form of the optimal
communication policy is given in the following remarks. It is
worth noting that the optimal policy need not be unique. More
precisely, there might be many optimal dual solutionsµ∗,
each one corresponding to a different scheduling and power
allocation policy according to the theorem. However all such
policies will have the same objective value in (16).

The theorem also establishes a methodology to find the
optimal communication policy by iterating (33)-(34). Thiscan
be viewed as an offline algorithm which requires knowledge
of the channel distribution. In the next section we develop an
online algorithm that solves for the optimal communication
policy based instead only on a random sequence of channel
realizations observed during system execution.

Remark 3. According to Theorem 1, the optimal scheduling
and power allocation variables can be obtained for each value
of channel statesh by solving (37)-(39) at the pointµ∗.
In particular, the optimal power allocationp∗ij(h) by (37)
depends only on the variablesµ∗

i , hij pertinent to systemi and
frequencyj and not on the whole vectorsµ∗ or h. This implies
a decentralized power allocation rule among systemsi and
frequenciesj, which is made explicit in (37) by the notation
pij(µi;hij). Similar separability results are also known in
the context of resource allocation for wireless communication
networks [18]. Moreover, this optimal power allocation canbe
easily implemented in practice. Each control systemi can be
given the valueµ∗

i and then adapt transmit power, whenever
scheduled, based on the channel conditions it currently expe-
riences. On the other hand, the optimal schedulingα∗(h) in
(38) is centralized since it depends on the whole vectorµ∗

and all channel statesh.

Remark 4. The problem of finding the optimal scheduling
in (38) is posed as a linear program by relaxing the integer
constraints of∆m,f in (8). As mentioned in the proof of
the proposition there is no loss in doing so, as the optimal
solution to the linear program is integer. It is worth notingthat
(38) solves a standard assignment problem1. Besides the linear
program method presented here, combinatorial algorithms with
complexity polynomial in the number of systemsm and
frequenciesf exist for such integer programming problems –
see, e.g., [22, Ch. 7]. In the special case of a single frequency
(f = 1) the complexity of the decision in (38) is linear in the
number of systems (O(m)), since the scheduler needs to find
and schedule the systemi with the minimum valueξ(hi, µi).

IV. ONLINE SCHEDULING AND POWER ALLOCATION

The algorithm presented in the previous section to obtain
optimal scheduling and power allocation for the shared wire-
less control system is hard to implement in practice. In the
primal step (33) one needs to obtain a solution pairα(h), p(h)
for a continuum of channel variablesh ∈ Hm×f , while for the

1Technically the standard assignment problem requires equalnumber of
systems and frequencies. This can be accomplished by introducing dummy
systems or frequencies with zero valuesξ(hij , µi).

dual step in (34) one needs to compute the subgradient direc-
tion s(µ) in (31) by integrating over the channel distribution
φ. A practical implementation would require drawing a large
number of samples fromφ and solving for primal variables at
these samples to obtain an estimate of the actual subgradient
direction. This is computationally intensive, does not scale for
a large number of systemsm and frequenciesf , while also in
most cases of practical interest the channel distribution is not
available.

These drawbacks motivate us to develop anonlinealgorithm
to solve the optimal scheduling and power allocation problem.
The algorithm is a stochastic version of the primal/dual steps
(33), (34) of the offline subgradient method and does not
rely on availability of the channel distribution. In particular,
suppose that at timek a channel realizationhk is observed,
and the current power and scheduling decision are selected as
the ones solving (37)-(38) at the givenhk, i.e.,

pij,k = pij(µi,k;hij,k), i = 1, . . . ,m, j = 1, . . . , f,

αk = α(µk;hk). (40)

Then in contrast to updating the dual variablesµk by (34)
after computing the vector (31), suppose only the current
channel measurement and power/scheduling choices are used.
In particular, suppose we compute

si,k = ci −

f
∑

j=1

αij,k q(hij,k, pij,k), i = 1, . . . ,m, (41)

and update the variablesµk by

µk+1 = [µk + εksk]+ (42)

where[ ]+ is the projection on the non-negative orthant and
εk > 0 is the stepsize.

To emphasize that this is an online algorithm we have
explicitly indexed the variables withk corresponding to real
time slots. This procedure, summarized in Algorithm 1, gives
scheduling and power variables{αk, pk, k ≥ 0} as well as
(dual) variables{µk, k ≥ 0} which are random because they
depend on the random observed channel sequence{hk, k ≥
0}. The main difference compared to the subgradient algorithm
of the previous section is that it follows random directionssk
in (41) instead of the exact subgradient directionss(µk) by
(31). Comparing these two expressions it is immediate that
the expected value ofsk coincides with the subgradients(µk),
so it is reasonable to conjecture that the online algorithm is
expected to move towards the maximum of the dual function,
as the subgradient method does. The following proposition
indeed establishes convergence in a strong sense.

Proposition 3. Consider the optimization problem (20) and its
dual derived in (25) and let Assumption 3 hold. Let a sequence
µk, k ≥ 0 be obtained by steps (40)-(42) based on a sequence
{hk, k ≥ 0} of i.i.d. random variables with distributionφ, and
stepsizesεk satisfying (35). Then almost surely we have that

lim
k→∞

µk = µ∗, and lim
k→∞

g(µk) = D (47)

whereµ∗ is an optimal solution of the dual problem andD
is the optimal value of the dual problem.



Algorithm 1 Online Scheduling and Power Allocation

Input: m, f , c ∈ [0, 1]m, q : H × [0, pmax] 7→ [0, 1], εk ∈
R+, k ≥ 0

1: Initialize µ0 ∈ R
m
+ , k ← 0

2: loop
3: At time k observe channel statehk

4: Compute power allocation for all systemsi and fre-
quenciesj by

pij,k ← argmin
0≤p≤pmax

p− µi,kq(hij , p) (43)

ξij,k ← min
0≤p≤pmax

p− µi,kq(hij , p) (44)

5: Decide scheduling by solving

αk ← argmin
α∈∆m,f

m
∑

i=1

f
∑

j=1

αij ξij,k (45)

6: Compute for alli = 1, . . . ,m

si,k ← ci −

f
∑

j=1

αij,k q(hij,k, pij,k) (46)

7: Update dual variables byµk+1 ← [µk + εksk]+
8: end loop

Proof: See Appendix B
The proposition states that the stochastic online algorithm

yields a random sequence of dual variablesµk that converge
to the optimal dual variablesµ∗ in a strong sense, i.e.,
almost surely for any sequence of channel realizations thatis
observed. However the real problem of interest is the primal
problem (20), or equivalently Problem 1. This is the problem
of optimal design of scheduling and power allocation policies
that satisfy the given Lyapunov performance requirements
(13) for each control systemi, while also minimizing the
expected power expenditures of the communication process.
Hence it is important to characterize how the control systems
would actually perform if the communication variables are
selected according to the proposed online algorithm. This
characterization is provided in the following theorem.

Theorem 2 (Online Scheduling and Power Allocation). Con-
sider a shared wireless control architecture composed ofm
systems of the form (1),f frequencies, and communication
modeled by (9) depending on channel stateshk ∈ H

m×f

which are i.i.d. with distributionφ, and scheduling and power
allocation variablesαk ∈ ∆m,f , pk ∈ [0, pmax]

m×f . Also
consider given quadratic Lyapunov performance requirements
(13) for each system and let Assumptions 1, 2, 3 hold. If
αk, pk are chosen according to (40)-(42), then almost surely
with respect to the channel sequence{hk, k ≥ 0} the control
performances for all systemsi = 1, . . . ,m satisfy

lim sup
k→∞

E[Vi(xi,k+1)
∣

∣xi,k = xi, h0, . . . , hk−1]

≤ ρiVi(xi) + Tr(PiWi), (48)

for any state valuesxi ∈ R
ni . In addition, the power

consumption almost surely satisfies

lim sup
k→∞

E





m
∑

i=1

f
∑

j=1

αij,kpij,k

∣

∣

∣

∣

∣

∣

h0, . . . , hk−1



 ≤ P (49)

whereP is the optimal value of the optimization problem (16).

Proof: See Appendix C.
According to the theorem after a sufficiently large time

horizon the scheduling and power allocation variables obtained
online by the proposed stochastic algorithm perform arbitrarily
close to the optimal ones obtained by the optimization problem
(20). In particular the Lyapunov requirements of all control
systems are satisfied in the limit and the optimal power
expenditure is reached. Before proceeding to simulations of
the stochastic online algorithm, we present an intuitive inter-
pretation of the algorithm from a resource allocation pointof
view.

A. Pricing interpretation of online scheduling and power
allocation algorithm

In this section we provide an interpretation of the problem
variables as well at the online Algorithm 1 in economic terms.
In particular we may view each transmitter in the wireless
control architecture as an agent that utilizes some scarce
resource, namely transmit power, to produce some ’good’,
namely the probability of successfully transmitting and closing
the corresponding control loop. Our development in Sec-
tion II-A shows that each closed loop has a Lyapunov control
performance requirement (cf. (13) that can be translated as
requiringci units of good (cf. (19). Under this view, the dual
variablesµi can be interpreted as the ’unit price’ at which
each agent can ’sell’ the produced good. In this context the
role of Algorithm 1 is to determine unit prices such that all
demand levelsci are met and in the most profitable manner
from the agents’ perspective.

More specifically, consider a time stepk where prices are
set to µk and the current channel conditions are described
by hk. If agent i gets access to the channel at frequencyj,
the agent can spend an amountpij,k to produceq(hij,k, pij,k)
units of good, which can be sold at a price ofµi,k per unit.
In this case the total profit for the agent can be expressed as

µi,k q(hij,k, pij,k)− pij,k, (50)

i.e., the difference between the total revenueµi,k q(hij,k, pij,k)
and the total costpij,k. The optimal resource allocationpij,k
is the one maximizing the profit (50), matching exactly the
optimization over power provided in (43). The optimal profit
if agent i gets access to the channel at frequencyj under
conditionshij,k equals−ξij,k given in (44).

The role of the scheduler is to opportunistically assign
agents to the available frequencies in a way that maximizes
the total aggregated profit. In particular the scheduler observes
current conditionshij,k for all agentsi and frequenciesj,
computes the possible profit−ξij, k of all agent/frequency
pairs, and searches for the schedulingα ∈ ∆m,f defined by
(8) that maximizes the total profit

∑

i,j

αij(−ξij, k) (51)



aggregated over all agents. This optimal scheduling matches
the one implemented by Algorithm 1 – see line (45).

After the current schedulingαk and powerpk decisions
have been made, optimal in the sense of maximizing the
overall system profit, the unit prices for the next stepµk+1

are adjusted depending on the current production levels. In
particular, if the production for systemi exceeds the required
level ci, meaning thatsi,k < 0 in (41), then the unit price for
systemi is reduced toµi,k+εksi,k – see line 7 in Algorithm 1.
If on the other hand the production for systemi does not meet
ci, i.e.,si,k > 0, then the unit pricei increases toµi,k+εksi,k.

The goal of the online algorithm is to find the optimal prices
µ∗, under which the expected production meets demand, where
expectation is with respect to the channel conditions. Proposi-
tion 3 establishes that the online algorithm converges almost
surely to the optimal prices in the limit. Moreover Theorem
2 establishes that in the limit the expected production at each
time step meets the demand, while also the expected total
production cost (cf. the objective of problem (20)) becomes
optimal in the limit.

Note however that Theorem 2 does not provide theoretical
guarantees on how fast the solution converges to the optimal
one. We discuss this issue along with other limitations of
the algorithm in Section VI. In the following section we
present simulations verifying our theoretical results, and also
indicating that the convergence of the algorithm is relatively
fast so that online control performance is not severely affected.

V. SIMULATIONS

A. Advantages of opportunistic scheduling and power alloca-
tion

We first illustrate through simulations the opportunistic na-
ture of the resource allocation mechanism for wireless control
systems obtained in Section III, in particular how scheduling
and power decisions adapt appropriately to channel conditions
to meet the control performance goals. Moreover we compare
the resulting performance with other simple non channel-
adaptive allocation mechanisms. Recall that by solving the
auxiliary problems (19), control systems with vector states are
converted to scalar constraints in optimization problem (20).
Hence without loss of generality we present an example with
scalar control systems.

Consider a heating system application controlling the tem-
perature in two independent rooms of a building. Assuming
the wireless control architecture of Fig. 1 withm = 2,
wireless sensors transmit the temperatures of each room to a
central location (the access point in Fig. 1) responsible for
adjusting the heating in the rooms. For simplicity suppose
both systems have identical dynamics of the form (1) with
statexi,k denoting the difference between current and some
desired temperature for roomi. In particular suppose that when
systemi transmits (γi,k = 1), heating is activated for system
i and results in stable dynamicsAc,i = 0.4 in (1). Otherwise
if γi,k = 0 the system is open loop unstable withAo,i = 1.1
in (1), e.g., because heating is deactivated.

For simplicity we assume there is one (f = 1) available
frequency and for symmetry let channel statesh1,k andh2,k
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Fig. 3. Optimal channel-aware scheduling for the example presented in
Section V. System 1 has a harder Lyapunov decrease rate requirement and
is scheduled to transmit for most observed channel statesh1, h2. System 2
is scheduled only if its channel conditionsh2 are much more favorable that
those of system 1. When both channels are very adverse systems select zero
transmit powers so scheduling is irrelevant.

be independent for each system, both having an exponential
distribution with mean1. The function q(h, p) is shown
in Fig. 2. For these scalar systems it suffices to consider
Lyapunov functionsVi(x) = x2. We require then that system 1
guarantees a high Lyapunov decreaseρ1 = 0.75 rate according
to (13), while system 2 only requiresρ2 = 0.90. For these
choices we get a higher required success of transmission
c1 ≈ 0.44 according to (19) for system 1, compared to a
lower c2 ≈ 0.30 of system 2.

After solving problem (20) offline according to the sub-
gradient method of Section III, the optimal channel-aware
scheduling and power allocation variables are depicted in
Fig. 3 and Fig. 4 respectively. We observe in Fig. 3 that
System 1, which requires higher transmission successc1, is
scheduled to transmit for most values of the channel states
h1, h2. System 2, which has a lower requirement, is scheduled
only if its channelh2 is sufficiently favorableand system 1
experiences an adverse channelh1. This illustrates how the
scheduler exploits opportunistically the channel conditions to
select which system will transmit to close the loop, in order
to meet the Lyapunov constraints in a power efficient manner.
We also note that when both systems experience very adverse
channels the scheduling decision becomes irrelevant because,
as we will see in Fig. 4, the optimal transmit powers then are
zero (no transmission).

The optimal power allocation is decentralized as we noted in
Remark 3, i.e., the transmit powerpi for systemi depends only
on the channelhi that systemi experiences, and thus we plot
in Fig. 4 the power allocation for both systems on same axes.
For both systems, when the channel conditions are adverse it
is not worth to spend transmit power. System 1, which has a
more demanding control constraint, requires in general higher
transmit power since, as we saw in Fig. 3, it is scheduled to
transmit even under adverse channel conditions. This is also
captured in the expected power consumption of each system
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Fig. 4. Optimal channel-aware power allocation for the example presented
in Section V. Under adverse channel conditions systems do nottransmit. The
channel threshold for transmission for system 1 is lower thanthat of system 2
because the former has a higher Lyapunov decrease rate requirement. System
1 also requires higher transmit power.

computed numerically asEhα
∗
1(h)p

∗
1(h1) ≈ 11mW and

Ehα
∗
2(h)p

∗
2(h2) ≈ 6.5mW . The minimum total power budget

required to meet the control objectives then is approximately
17.5mW .

To demonstrate the power savings obtained by the oppor-
tunistic resource allocation we compare to a simple non-
channel-aware communication mechanism. In particular sup-
pose that at each step a system is chosen randomly to ac-
cess the channel/frequency. With a slight abuse of notation
suppose systems 1 and 2 are chosen with probabilitiesα1

and α2 = 1 − α1 respectively. When a system is selected,
we suppose it transmits with a constant power levelpc.
The control performance requirements (cf. (20)) in this case
becomeαi Ehi

q(hi pc) ≥ ci for i = 1, 2 and the total power
cost is(α1+α2) pc = pc. We briefly comment then on possible
designs forα1 andpc.

First, observe from the channel-aware design in Fig. 4 that
a system never transmits with power level larger than50mW .
Suppose then we select the power budgetpc = 50mW . It turns
out that the two control performance requirements cannot be
achieved in this case, because we compute
∑

i=1,2

αi Ehi
q(hi pc) = Ehi

q(hi pc) ≈ 0.65 < c1 + c2 ≈ 0.74

(52)
meaning that the constraints are infeasible. Searching numer-
ically for a valuepc where the random access scheme meets
the control objectives, we findpc ≈ 73mW . Contrasting this
amount with the optimal power budget of the opportunistic
case above, in this example the channel-aware resource al-
location succeeded almost a80% decrease in power budget
compared to a not channel-aware random access scheme.

B. Stochastic online scheduling and power allocation

Next we implement the stochastic online algorithm of
Section IV in a setup with three (m = 3) control loops
sharing two (f = 2) frequencies. For example consider again
the room heating system of the previous section including
three rooms/systems with identical dynamics,Ao,i = 1.1
and Ac,i = 0.4 as before. We set the desired Lyapunov
decrease rates asρ1 = 0.75, ρ2 = ρ3 = 0.9, implying that

Control
objective
ρ

Mean
Fading
hi1

Mean
Fading
hi2

Transmit
Rate at
Freq. 1

Transmit
Rate at
Freq. 2

Plant 1 0.75 1 1 0.25 0.23
Plant 2 0.9 1 1 0.18 0.15
Plant 3 0.9 1 2 0.07 0.25

TABLE I
SYSTEM PARAMETERS& ONLINE TRANSMISSION RATES

system 1 is more demanding in communication resources. We
assume channel stateshij are independent across systemsi
and frequenciesj, and have exponential distributions with
means given in Table I. In particular we model that system
2 experiences better channel quality (higher channel fading
gain) in frequency 2.

The evolution of the dual variablesµk during Algorith 1
is shown in Fig. 5. After a number of iterations (timek
in this example corresponds to seconds) they remain in a
small neighborhood around the optimalµ∗, as anticipated
by the theoretical a.s. convergence in Prop. 3. Consequently,
the scheduling and power allocation decisions taken online
are almost feasible for the constraints of problem (20) after
a number of iterations. We observe that the dual variable
corresponding to system 1 is the largest, consistent with the
fact that it has a harder control requirement to meet. Using
the economic interpretation of Section IV-A about the dual
variables, the price at which agent 1 can sell its produced
good is higher, giving the incentive to schedule agent 1 to
produce more often. On the other hand, systems 2 and 3 have
the same control requirements but the dual variable for system
2 is larger. The reason is that system 2 experiences worse
channel conditions than system 3 (cf. Table I), which imply
higher required transmit power, or in economic terms a higher
production cost in (50). By setting a higher selling priceµ2,
system 2 becomes profitable enough so that it is scheduled to
produce at a sufficient rate to meet the requirement.

In Table I we show the average transmission rates that
the online algorithm selected during system execution. In
particular we evaluate the average number of time slots where
each systemi was selected to transmit (with a positive power
level) at each frequencyj as 1/N

∑N
k=1 αij,kI (pij,k > 0).

System 3 was scheduled mainly at frequency 2, exploiting its
better channel quality. This forced systems 1 and 2 to use
frequency 1 more often. Also system 1, which has higher
control requirement, transmitted more often than the other
systems. We note that this behavior resulted from the online
algorithm using only an observed channel sequence, not any
prior knowledge on the channel quality distribution.

Finally, we examine the evolution of the three heating
control systems when the online algorithm is employed for
scheduling and power decisions. Suppose that for all systems
i the statesxi, which measure deviations from reference
room temperatures, are perturbed by disturbanceswi,k as in
(1), which we model as independent Gaussian with mean
zero and varianceWi = 1 (at some normalized units of
temperature). We plot in Fig. 6 the evolution of the empir-
ical quadratic averages1/N

∑N
k=1 x

2
i,k. Recall that when the

Lyapunov condition (13) is satisfied, we get from (14) that the
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Fig. 6. Average quadratic costs during the online scheduling and power
allocation algorithm. The stochastic algorithm keeps the average quadratic
cost of each control system close to the upper bound of the limit expected
cost, shown with dashed lines, induced theoretically by therequired Lyapunov
decrease rates.

expected limit quadratic costs are bounded byWi/(1 − ρi).
We observe from Fig. 6 that after some initial transient the
online communication algorithm keeps the empirical average
quadratic costs close to the theoretical required upper bounds.

VI. D ISCUSSION AND CONCLUSIONS

In this paper we presented a framework for designing oppor-
tunistic channel-aware schedulers for wireless control systems
with multiple loops closing over a shared wireless medium.
We showed that a stochastic optimization formulation is suit-
able for this setup. In particular, we considered scheduling
and transmit power designs that minimize the total expected
power expenditures while guaranteeing that given Lyapunov
functions for each of the control systems exhibit a desired
decrease rate for stability and performance. We developed an
offline optimization algorithm, as well as an online stochastic
algorithm utilizing a random observed channel sequence to
solve the problem.

While the proposed online algorithm guarantees almost sure
convergence to the optimal solution, it does not provide a

theoretical characterization of the convergence rate. This could
potentially introduce a long transient control system behavior
before the desired performance is reached. Another drawback
is that the online algorithm uses decreasing step sizes, which
limits the ability to adapt to an environment where the channel
distributions are not stationary but vary with time. These issues
will be the focus of future work. The case of scheduling
interdependent control tasks is considered in [23]. A different
research direction is to include, apart from channel states,
the measured plant system states when making the scheduling
decisions, as in, e.g., [10]–[12], or in the power management
paradigm for a single closed loop in [19].

APPENDIX

A. Proof of Proposition 2

We first show part (a) of the proposition. Consider the
problem of minimizing the Lagrangian as given at the form
(36) over variablesα(.), p(.) for someµ ∈ R

m
+ . SinceµT c is

constant the problem is equivalent to

min
α,p∈(A,P)

Eh

m
∑

i=1

f
∑

j=1

αij(h) [pij(h)− µiq(hij , pij(h))] .

(53)

Without loss of generality we can exchange the expectation
over h and the minimization over functionsα(.), p(.) in (53)
to equivalently solve for eachh ∈ Hm×f

min
α(h) ∈ ∆m,f

pij(h) ∈ [0, pmax]

m
∑

i=1

f
∑

j=1

αij(h) [pij(h)− µiq(hij , pij(h))]

(54)

This step is valid because any pair of functionsα, p that
does not minimize the objective in (54) on a set of values
of variablesh with φ-positive measure must yield a strictly
larger expected value in the objective of (53). In other words,
the minimizers of (53) can only differ from the minimizers of
(54) at a set of values forh with measure zero.

Then note that at anyh ∈ Hm×f and any choice for the
variableα(h) we have thatαij(h) ≥ 0. Hence the optimization
over p(h) in (54) can be rearranged to

min
α(h)∈∆m,f

m
∑

i=1

f
∑

j=1

αij(h)

min
pij(h)∈[0,pmax]

pij(h)− µiq(hij , pij(h)). (55)

The optimization over power variablespi,j(h) in this expres-
sion corresponds exactly to (37). Using the notation introduced
in (39), the minimization over scheduling variablesα(h) in
(55) becomes

min
α(h)∈∆m,f

m
∑

i=1

f
∑

j=1

αij(h) ξ(hij , µi), (56)

The expression given in (38) is obtained by relaxing the integer
constraintαij ∈ {0, 1} of the set∆m,f (cf.(8)) in problem (56)
with αij ≥ 0. The resulting problem (38) is a linear program,



but the optimal solution will be integer (see, e.g., [22, Th.
7.5]) and feasible with respect to∆m,f .

Now let us prove part (b) of the proposition. We need to
show that any pairα(µ), p(µ), which are functions ofh, that
solves (53) gives a unique evaluation ofs(µ) given in (31).
Sincesi(µ) involves integrating the term

f
∑

j=1

αij(µ;h) q(hij , pij(µ;h)) (57)

with respect to the distributionφ of h ∈ Hm×f , it suffices to
show that (57) is uniqueφ-a.s.

By the argument presented already, minimizing (53) is a.s.
equivalent to minimizing (54). The latter is again equivalent
to the problem (55) since allαij(h) ≥ 0. Note that the only
case where the optimizers in (54) can differ from the ones
obtained in (55) is ifαij(µ;h) = 0 for somei, j is optimal
at some valuesh ∈ Hm×f and the power minimizerpij(µ;h)
in (54) can be chosen arbitrarily. But this does not affect the
computation ofsi(µ) since (57) will equal zero. Hence we
only need to show that the minimizersα(µ;h), p(µ;h) in (55)
imply a.s. uniqueness of (57).

For values ofh where the minimizersα(µ;h), p(µ;h) of
problem (55) are unique it is immediate that (57) has a unique
value, hence we only need to considerh where the minimizers
are not unique. By Assumption 2(c) the minimizerp(µ;h),
which is given in (37), is unique for almost allh, therefore
we only need to focus on the set of values forh where the
minimizerα(µ;h), described by (38), is not unique.

Let us denote byE the set of interest, i.e., the set ofh ∈
Hm×f whereα(µ;h) in (38) is not unique. By considering
all possible pairs of multiple solutionsα′ 6= α′′ in the finite
set∆m,f , we can rewriteE as a union

E =
⋃

α′ 6=α′′∈∆m,f

Eα′,α′′ (58)

where2

Eα′,α′′ =

{

h ∈ Hm×f : α′, α′′ ∈ argmin
α∈∆m,f

∑

i,j

αij ξ(hij , µi)

}

.

(59)

In other words, the setEα′,α′′ is the set of valuesh where
bothα′, α′′ are optimal for (38). The rest of the proof shows
that on anyEα′,α′′ the value of (57) is almost surely unique.

The setEα′,α′′ depends on the shape of the functionξ
defined in (39), so next we point out two properties of
ξ(hij , µi).

Fact 1: For almost allhij where the optimal value of
problem (39) isξ(hij , µi) = 0, the optimal solution is unique
and equalspij(µ;h) = 0.

Proof of Fact 1:First we note that for anyhij , the choice
p = 0 is feasible for problem (39) and by Assumption 2(a)
it gives an objectivep − µiq(hij , p) = 0. So whenever the
optimal value of problem (39) is0, thenp = 0 is an optimal
solution. This optimal solution is unique for almost allhij

because of Assumption 2(c).

2Within this proof we denote
∑m

i=1

∑f
j=1

as
∑

i,j for compactness.

Fact 2: If at somehij the optimal value of problem (39) is
ξ(hij , µi) < 0, then forh′

ij > hij we have thatξ(h′
ij , µi) <

ξ(hij , µi).
Proof of Fact 2: First note that at the givenhij it must

be that the optimal solutionpij(µ;h) of problem (39) sat-
isfies q(hij , pij(µ;h)) > 0. This is true because otherwise
q(hij , pij(µ;h)) = 0 implies ξ(hij , µi) = pij(µ;h) ≥ 0.
Second by Assumption 2(b) whenq(.) > 0, it is strictly
increasing in its argument. Thus we have forh′

ij > hij that

ξ(hij , µi) = pij(µ;h)− µiq(hij , pij(µ;h))

> pij(µ;h)− µiq(h
′
ij , pij(µ;h)) ≥ ξ(h′

ij , µi).
(60)

Let us now fix someα′ 6= α′′ ∈ ∆m,f and consider the
setEα′,α′′ . Pick indicesı,  whereα′, α′′ differ, i.e., without
loss of generality,α′

ı, = 1, α′′
ı, = 0. Consider first the case of

h ∈ Eα′,α′′ whereξ(hı,, µı) = 0. By Fact 1 above we know
that this impliespı,(µ;h) = 0 is almost surely the unique
optimizer of (37). But in that caseq(hı,, pı,(µ;h)) = 0, and
the choice ofαı,(h) does not affect the value of (57), which
is zero.

Second, we examine the seth ∈ Eα′,α′′ whereξ(hı, µı) <
0. We will show that this event happens withφ-probability
zero. In particular by Assumption 1φ has a probability
density function onHm×f , or more formallyφ is absolutely
continuous with respect to the Lebesgue measure onHm×f .
Hence to show that the discussed event hasφ-measure zero, it
suffices to show that it has Lebesgue measure zero. Note that
we can upper bound the set as follows

Eα′,α′′

⋂

{h : ξ(hı, µı) < 0}

⊆ {h :
∑

i,j

(α′′
ij − α′

ij) ξ(hij , µi) = 0, ξ(hı, µı) < 0}

= {h :
∑

i6=ı,j 6=

(α′′
ij − α′

ij) ξ(hij , µi) = ξ(hı, µı) < 0} (61)

The subset in the first step is justified from the fact that, in
contrary to the definition ofEα′,α′′ in (59), we do not take
α′, α′′ to be optimal for problem (38). We only require that
they yield the same objective in the problem. The second step
follows by the appropriately selected indicesı, .

We will now argue that the last set in (61) has Lebesgue
measure zero. If we fix the values of all the vari-
ables/coordinateshij , i 6= ı, j 6= , there is at most one
value for the variable/coordinatehı that belongs in the set.
The reason is that for values of thehı coordinate where
ξ(hı, µı) < 0, Fact 2 above states thatξ(hı, µı) is strictly
monotonic inhı. Hence there can be at most one valuehı

that equals the sum within the last set of (61). This means that
the last set in (61) can be equivalently described by a mapping
from anm ·f−1 dimensional space to the spaceHm×f , or in
other words it is a lower-dimensional subset ofHm×f . Hence
it has Lebesgue measure zero. This implies that the first set
in (61) has Lebesgue (andφ) measure zero as well.

The above procedure can be iterated for any pairα′, α′′ in
(58) to conclude that on the setE the value of the subgradient
vector is almost surely unique.



B. Proof of Proposition 3

We begin by noting that at every timek the vectorsk
computed by (41) is a stochastic subgradient for the dual
function g(µ) at the pointµk, i.e.,

g(µ′)−g(µk) ≤ (µ′−µk)
T
E[sk

∣

∣µk] for all µ′ ∈ R
m
+ . (62)

To show this fact compare equations (40)-(41) of the online
algorithm with (31) to conclude thatE[sk

∣

∣µk] = s(µk)
becausehk is i.i.d for everyk. Inequality (62) then follows
directly from (30).

Then note that by Assumption 3 there exists a strictly
feasible primal solutionα′, p′. Call P ′ the resulting objective
value (20) at this point, and let a positive constantε′ > 0
denote the constraint slack of (21) at this point, i.e.,ci + ε′ ≤
Eh

∑f
j=1 α

′
ij(h) q(hij , p

′
ij(h)). Then we may bound the dual

function (23) at any pointµ by

g(µ) ≤ L(α′, p′, µ)

= P ′ +
m
∑

i=1

µi



ci − Eh

f
∑

j=1

α′
ij(h) q(hij , p

′
ij(h))





≤ P ′ −
m
∑

i=1

µiε
′ (63)

Rearranging the terms in the above inequality, and sinceµ ≥ 0
it follows that for everyi, µi ≤

∑m
ℓ=1 µℓ ≤ (P ′ − g(µ))/ε′.

In particular we find that the optimal dual variables are finite,
µ∗
i ≤ (P ′ −D)/ε′.
Since the optimal dual variables are finite, the distance

‖µk − µ∗‖ between any randomµk obtained by Algorithm 1
and the set of optimal dual variablesµ∗ is a well-defined and
bounded random variable. The following lemma gives an up-
per bound on this distance. Here recall that as we commented
after (31) the subgradientss(µ) are always bounded in our
problem.

Lemma 1. Let D be the optimal value of the dual problem
(25), µ∗ be an optimal solution, andS be the bound on the
subgradient‖s(µ)‖ ≤ S for any µ ∈ R

m
+ . Then at each step

k of Algorithm 1 the update ofµk+1 satisfies

E[‖µk+1−µ∗‖2 |µk] ≤ ‖µk−µ∗‖2+ ε2kS
2−2εk(D− g(µk))

(64)

Proof: First use the expressionµk+1 = [µk + εksk]+ in
Algorithm 1 to write

‖µk+1−µ
∗‖ = ‖[µk+εksk]+−µ

∗‖ ≤ ‖µk+εksk−µ
∗‖, (65)

where the last inequality holds because when projecting on the
positive orthant the distance from a pointµ∗ in the orthant can
only decrease. Taking expectation on both sides givenµk and
expanding the square norm of the right hand side, we get

E[‖µk+1 − µ∗‖2 |µk] ≤‖µk − µ∗‖2 + ε2kS
2

+ 2εk(µk − µ∗)TE[sk
∣

∣µk] (66)

where we bounded‖E[sk
∣

∣µk]‖
2 < S2. The statement (64)

follows from (66) by applying inequality (62) with the substi-
tution µ′ = µ∗.

Our goal is to use (64) to show that‖µk+1 − µ∗‖2 → 0
almost surely. To pursue this we will define a sequence that
behaves as a supermartingale stochastic process and use the
a.s. convergence results for such processes. In particularwe
will make use of the following result [24, Th. E7.4].

Theorem 3. Suppose{ak, k ≥ 0} and {bk, k ≥ 0} are
integrable non-negative stochastic processes adapted to a
filtration Fk, i.e., ak, bk measurable with respect toFk, and
they also satisfy

E[ak+1

∣

∣Fk] ≤ ak − bk (67)

Then ak converges almost surely andbk is almost surely
summable, i.e.,

∑∞
k=0 bk <∞ a.s.

To make the connection between the above theorem and
(64) define

ak = ‖µk − µ∗‖2 +

∞
∑

ℓ=k

ε2l S
2, (68)

bk = 2εk(D − g(µk)), (69)

and let Fk = {µ0, . . . , µk}. Note that the processak is
well defined because by assumption the stepsizes are square
summable. Moreoverak ≥ 0 and alsobk ≥ 0 because by
definitionD is the maximum valueg(µk) can take (cf. (25)).
Also ak andbk are bounded variables for everyk becauseµk

generated by Algorithm 1 is bounded at everyk. Thusak and
bk are integrable, and trivially measurable with respect toFk.
To check that condition (67) holds use the definition ofak to
write

E[ak+1

∣

∣Fk] = E[‖µk+1 − µ∗‖2 |µk] +
∞
∑

ℓ=k+1

ε2l S
2

≤ ‖µk − µ∗‖2 + ε2kS
2 − 2εk(D − g(µk)) +

∞
∑

ℓ=k+1

ε2l S
2

(70)

where for the last inequality we used (64). It is immediate that
the right hand side of (70) equalsak−bk by our appropriately
constructed processes. Hence all conditions of Theorem 3 hold
true.

The theorem states thatak converges almost surely to
some random variable. Observe that the second summand
∑∞

ℓ=k ε
2
l S

2 of ak in (68) is deterministic and converges to
0 because of square summability of the stepsizes. Thus we
conclude that the random variable‖µk − µ∗‖2 converges
almost surely to some random variable.

To arrive at a contradiction suppose the limit random
random variable is not identically zero, i.e., it takes positive
values with nonzero probability. Equivalently there existδ > 0
andε > 0 such that with probabilityδ we have‖µk−µ

∗‖ ≥ ε
for all sufficiently largek. This implies thatµk are bounded
away from the optimal, i.e., that for sufficiently largek we
haveD−g(µk) ≥ ε′ for someε′ > 0. Hence with probability
δ we have

∞
∑

k=0

bk =

∞
∑

k=0

2εk(D − g(µk)) = +∞ (71)



But this contradicts with Theorem 3 which states that
∑∞

k=0 bk = ∞ can only happen at a set of probability
measure zero. Therefore‖µk − µ∗‖ must converge to zero
with probability 1.

By continuity of the (concave) dual functiong(µ) we also
have thatg(µk) converge to the optimal valueg(µ∗) = D a.s.

C. Proof of Theorem 2

To show that (48) holds we first convert it into an equivalent
one involving variables relating to the dual problem (25).
Imitating the steps leading from problem (16) to problem (20),
the statement of (48) becomes equivalent to

lim sup
k→∞

ci − Ehk





f
∑

j=1

αij,k q(hij,k, pij,k)

∣

∣

∣

∣

∣

∣

µk



 ≤ 0. (72)

Here to suppress notation we have exploited the fact that
according to the online algorithm the variablesαk, pk depend
just on the value of the variableµk and not on the whole
observed channel history (butµk does depend on the whole
history).

Then by the expression ofsk given in (41) condition (72) is
equivalent tolim supk→∞ Ehk

[sk
∣

∣µk] ≤ 0. Also we already
argued in the proof of Prop. 3 thatEhk

[sk
∣

∣µk] = s(µk) where
s(µk) is given by (31) and expresses a subgradient of the dual
function g at µk. To sum up, we have shown so far that (48)
is equivalent tolim supk→∞ s(µk) ≤ 0.

Under Assumption 3 we have established in Proposition 3
that for the online algorithmµk → µ∗ almost surely with
respect to the channel sequence{hk, k ≥ 0}. Then we note a
convex analysis fact by [21, Prop. 4.2.3]. Ifg is concave, and
µk → µ∗, ands(µk) is selected as a subgradient ofg at µk,
then every limit point ofs(µk) is a subgradient ofg at µ∗.
Hence for the sequence ofµk obtained by the online algorithm
we have that almost surely the sequences(µk) converges to a
subgradient ofg at µ∗.

Also, as follows from Danskin’s theorem [21, Prop. 4.5.1],
the subgradients of the dual functiong at any pointµ belong in
the convex hull of the vectorss(µ) obtained in (31). But under
Assumptions 1, 2, and 3, Proposition 1(c) combined with
Proposition 2(b) shows that all subgradient vectorss(µ∗) at
µ∗ satisfys(µ∗) ≤ 0, as we argued in the proof of Theorem 1.
Hence for the sequence ofµk obtained by the online algorithm
we have that almost surelylim supk s(µk) ≤ 0, which verifies
statement (48).

Finally let us prove (49). Recall that the dual function
equalsg(µ) = L(α(µ), p(µ), µ) whereα(µ), p(µ) are chosen
as Lagrange optimizers atµ according to (24). Using the
definition of the Lagrangian at (22) and the interpretation of
the subgradients(µ) at (31) as the constraint slack, we have
that for anyµk

g(µk) = L(α(µk), p(µk), µk)

= Eh

m
∑

i=1

αi(µk;h)pi(µk;h) + µT
k s(µk) (73)

Now observe that the expectation in (49) equals the expec-
tation given in (73) because by design of Algorithm 1 the

primal variablesαk, pk are selected as Lagrange optimizers at
µk. Therefore to show that (49) holds a.s. it suffices to show
that the expectation in (73) converges a.s. toP which equals
D by strong duality.

Proposition 3 establishes that the left hand side of (73)
converges tog(µk)→ D, and also thatµk → µ∗ a.s. We have
also already argued thats(µk) → s(µ∗) a.s. Therefore also
µT
k s(µk) → µ∗T s(µ∗) a.s. But by Prop. 1(b)µ∗T s(µ∗) = 0.

This shows that the expectation at the right hand side of (73)
converges toD, which completes the proof.
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