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Metrics in the Space of High Order Networks
Weiyu Huang and Alejandro Ribeiro

Abstract—This paper presents methods to compare high order
networks. High order networks are collections of relationship
functions between elements of tuples on some nodes spaces. They
can be considered as generalizations of conventional networks
where only relationship functions between pairs are defined.
Important properties between relationships of tuples of different
lengths are established when the relationships in high order net-
works specifically encode dissimilarities or proximities between
nodes. Two families of distances are then presented in the space of
high order networks. The distances measure differences between
networks and are shown to be valid metrics in the spaces of high
order dissimilarity and proximity networks modulo permutation
isomorphisms. Practical implications are explored by comparing
the coauthorship networks of two popular signal processing
researchers. The metrics succeed in identifying their respective
collaboration patterns.

I. INTRODUCTION

We consider high order networks that describe relationships
between elements of a tuple and address the problem of
constructing valid metric distances between them. Most often,
networks are defined as structures that describe interactions
between pairs of nodes [2], [3]. This is an indisputable appro-
priate model for networks that describe binary relationships,
such as communication or influence, but not so appropriate
for problems in which binary, ternary, or n-ary relationships
in general, have different implications. This is, e.g., true of
coauthorship networks where we count the number of joint
publications by groups of scholars. Papers written by pairs
of authors capture information that can be used to identify
important authors and study mores of research communities.
However, there is extra information to be gleaned from col-
laborations between triplets of authors, or even single author
publications. The importance of capturing tuple proximities
between groups of nodes other than pairs has been recognized
and exploited in multiple domains including coverage analysis
in sensor networks [4]–[6], cognitive learning and memory
[7], broadcasting in wireless networks [8], image ranking [9],
three-dimensional object retrieval and recognition [10], and
group relationship structure in social networks [11].

The problem of defining distances between networks, or,
more loosely, the problem of determining if two networks
are similar or not, is important even in the case of pairwise
networks. The problem is not complicated if nodes have equal
labels in both networks. One can visualize the networks and
study the impact of some specific edges in different networks
[12] or explore the relationships between some chosen nodes
[13]. A more global approach to distinguish networks could be
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achieved by interpreting networks as Markov Chains by proper
normalizations [14], [15]. The problem, however, becomes
very challenging if a common labeling doesn’t exist in both
networks, as we need to consider all possible mappings be-
tween nodes of each network. This complexity has motivated
the use of network features as alternatives to the use of
distances. Examples of features that have proved useful in
particular settings are clustering coefficients [16], neighbor-
hood topology [17], betweenness [18], motifs [19], wavelets
[20], graphlet degree distribution or signatures [21], [22], and
later graphlet kernels [23]. Feature analysis is valuable, but it
does not allow for meaningful comparisons unless application
specific features are already known to be important. A different
alternative is to define actual distances [24]. Because they
have to consider node correspondences, network distances are
computationally intractable. Their practical value is limited
to small networks and to the transformation of the problem
into one of building distance approximations instead of one of
searching for appropriate features.

The main problem addressed in this paper is the construction
of metric distances between high order networks. Formal defi-
nitions of high order networks are presented (Section III) as a
generalization of pairwise networks (Section II). Dissimilarity
networks (Section III-A) and proximity networks (Section
III-B) are specific high order networks where relationship
functions are intended to encode dissimilarities or proximities
between members of tuples. Important properties as conse-
quences of the restrictions are established. Two families of
proper metric distances are then defined in the respective space
of dissimilarity and proximity networks modulo permutation
isomorphisms. These distances are build as generalizations of
the pairwise distances in [24] which are themselves gener-
alizations of the Gromov-Hausdorff distance between metric
spaces [25], [26]. Dissimilarity networks may be expressed
in terms of proximities and the transformation of expressions
preserves the metrics defined (Section III-C). Similarly prox-
imity networks can also be conveyed by dissimilarities. We
use these distances to compare the coauthorship networks of
two popular signal processing researchers and show that they
succeed in discriminating their collaboration patterns (Section
IV). As in the case of pairwise networks these distances can be
computed only when the number of nodes is small. Ongoing
work is focused on the problem of finding bounds on these
network distances that are computable in networks with large
numbers of nodes.

II. PAIRWISE NETWORKS

Conventionally, a network is defined as a pair NX =
(X, d1X), where X is a finite set of nodes and d1X : X2 =
X × X → R+ is a function that may encode similarity or
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dissimilarity between elements. For points x, x′ ∈ X , values
of this function are denoted as d1X(x, x′). We assume that
d1X(x, x′) = 0 if and only if x = x′ and we further restrict
attention to symmetric networks where d1X(x, x′) = d1X(x′, x)
for all pairs of nodes x, x′ ∈ X . The set of all such networks
is denoted as N .

When defining a distance between networks we need to
take into consideration that permutations of d1X amount to
relabelling nodes and must not be considered as different
entities. We therefore say that two networks NX = (X, d1X)
and NY = (Y, d1Y ) are isomorphic whenever there exists a
bijection φ : X → Y such that for all points x, x′ ∈ X ,

d1X(x, x′) = d1Y (φ(x), φ(x′)). (1)

Such a map is called an isometry. Since the map φ is bijective,
(1) can only be satisfied when d1X is a permutation of d1Y .
When networks are isomorphic we write NX ∼= NY . The
space of networks where isomorphic networks NX ∼= NY are
represented by the same element is termed the set of networks
modulo isomorphism and denoted by N mod ∼=. The space
N mod ∼= can be endowed with a valid metric [24]. The
definition of this distance requires introducing the prerequisite
notion of correspondence [27, Def. 7.3.17].

Definition 1 A correspondence between two sets X and Y is
a subset C ⊂ X × Y such that ∀ x ∈ X , there exists y ∈ Y
such that (x, y) ∈ C and ∀ y ∈ Y there exists x ∈ X such
that (x, y) ∈ C. The set of all correspondences between X
and Y is denoted as C(X,Y ).

A correspondence in the sense of Definition 1 is a map
between node sets X and Y so that every element of each set
has a correspondent in the other set. Correspondences include
permutations as particular cases but also allow for the mapping
of a single point in X to multiple correspondents in Y or,
vice versa, the mapping of multiple points in X to a single
correspondent in Y . Most importantly, this allows definition
of correspondences between networks with different numbers
of elements. We can now define the distance between two
networks by selecting the correspondence that makes them
most similar as we formally define next.

Definition 2 Given two networks NX = (X, d1X) and NY =
(Y, d1Y ) and a correspondence C between the node spaces X
and Y define the network difference with respect to C as

Γ1
X,Y (C) := max

(x1,y1),(x2,y2)∈C

∣∣d1X(x1, x2)− d1Y (y1, y2)
∣∣ ,

(2)

The network distance between networks NX and NY is then
defined as

d1N (NX , NY ) := min
C∈C(X,Y )

{
Γ1
X,Y (C)

}
. (3)

For a given correspondence C ∈ C(X,Y ) the network
difference Γ1

X,Y (C) selects the maximum distance difference
|d1X(x1, x2) − d1Y (y1, y2)| among all pairs of correspondents
– we compare d1X(x1, x2) with d1Y (y1, y2) when the points x1
and y1, as well as the points x2 and y2, are correspondents.

The distance in (3) is defined by selecting the correspondence
that minimizes these maximal differences. The distance in
Definition 2 is a proper metric in the space of networks
modulo isomorphism. It is nonnegative, symmetric, satisfies
the triangle inequality, and is null if and only if the networks
are isomorphic [24]. For future reference, the notions of metric
and pseudometric are formally stated next.

Definition 3 Given a space S and an isomorphism ∼=, a
function d : S ×S → R+ is a metric in S mod ∼= if for any
a, b, c ∈ S the function d satisfies:

(i) Nonnegativity. d(a, b) ≥ 0.
(ii) Symmetry. d(a, b) = d(b, a).
(iii) Identity. d(a, b) = 0 if and only if a ∼= b.
(iv) Triangle inequality. d(a, b) ≤ d(a, c) + d(c, b).

The function is a pseudometric in S mod ∼= if for any
a, b, c ∈ S the function d satisfies (i), (ii), (iv), and

(iii’) Relaxed Identity. d(a, b) = 0 if a ∼= b.

A metric d in S mod ∼= gives a proper notion of distance.
Since zero distances imply elements being isomorphic, the
distance between elements reflects how far they are from
being isomorphic. Pseudometrics are relaxed since elements
not isomorphic may still have zero distance measured by the
pseudometric. The distance in Definition 2 is a metric in N
mod ∼=. Observe that since correspondences may be between
networks with different number of elements, Definition 2
defines a distance d1N (NX , NY ) when the node cardinalities
|X| and |Y | are different. In the particular case when the
functions d1X satisfy the triangle inequality, the set of networks
N reduces to the set of metric spaces M. In this case the
metric in Definition 2 reduces to the Gromov-Hausdorff (GH)
distance between metric spaces. The distances d1N (NX , NY )
in (3) are valid metrics even if the triangle inequalities are
violated by d1X or d1Y [24].

In this paper we consider higher order networks where
the specification of functions dkX : Xk+1 → R+ are meant
to encode similarity or dissimilarity between node (k + 1)-
tuples. The goal of this paper is to devise generalizations
of Definition 2 to high order networks and to prove that
they define valid metrics in the space of high order networks
modulo isomorphism; see Definitions 7, 8, 10, and 11.

III. HIGH ORDER NETWORKS

A network of order K over the node space X is defined as
a collection of K + 1 relationship functions {dkX : Xk+1 →
R+}Kk=0 from the space Xk+1 of (k + 1)-tuples to the
nonnegative reals,

NK
X =

(
X, d0X , d

1
X , . . . , d

K
X

)
. (4)

For point collections x0:k := (x0, x1, . . . , xk) ∈ Xk+1, values
of this function are denoted as dkX(x0:k) and are intended to
represent a measure of similarity or dissimilarity for members
of the group. In particular, the zeroth order function d0X
encodes relative weights of different nodes and the first order
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function d1X represents the pairwise information discussed in
Section II. Observe however that pairwise networks are not
particular cases of networks of order 1 because a network
of order K not only requires the definition of relationships
between (K + 1)-tuples but also of relationships between
(k+ 1)-tuples for all integers 0 ≤ k ≤ K. A network of order
0 is one in which only node weights are given, a network of
order 1 is one in which weights and pairwise relationships
are defined, a network of order 2 adds relationships between
triplets and so on. We assume that relationship values are
normalized so that 0 ≤ dkX(x0:k) ≤ 1 for all k and x0:k.

We restrict attention to symmetric networks for which
dissimilarities are invariant to permutations. Formally, if we
let x[0:k] = ([x1], [x2], . . . , [xk]) be a reordering of x0:k :=
(x0, x1, . . . , xk) symmetric relationship functions are such
that dkX(x[0:k]) = dkX(x0:k) for all point collections x0:k. A
symmetric K-order network is one in which all the K + 1
functions dkX in (4) are symmetric. The set of all symmetric
networks of order K is denoted as NK . As in the case of
pairwise networks we consider K-order networks NK

X and
NK
Y to be equivalent for their k-order relationship functions

if dkX is a permutation of dkY given k as a nonnegative integer
less than or equal to K. Specifically, we say that two networks
NK
X and NK

Y are k-isomorphic if there exists a bijection
φ : X → Y such that for all x0:k ∈ Xk+1 we have

dkY (φ(x0:k)) = dkX(x0:k), (5)

where we use the shorthand notation dkY (φ(x0:k)) :=
dkY (φ(x1), φ(x2), . . . , φ(xk)). The map φ is called a k-
isometry. When networks NK

X and NK
Y are k-isomorphic we

write NK
X
∼=k N

K
Y . The space of K-order networks modulo k-

isomorphism is denoted by NK mod ∼=k. For each nonnega-
tive integer 0 ≤ k ≤ K, the space NK mod ∼=k of networks
of order K modulo k-isomorphism can be endowed with a
pseudometric. The definition of this family of pseudometrics
is a generalization of Definition 2 as we formally state next.

Definition 4 Given networks NK
X and NK

Y , a correspondence
C between the node spaces X and Y , and an integer 0 ≤ k ≤
K define the k-order network difference with respect to C as

ΓkX,Y (C) := max
(x0:k,y0:k)∈C

∣∣dkX(x0:k)− dkY (y0:k)
∣∣ (6)

The k-order network distance between networks NK
X and NK

Y

is then defined as

dkN (NK
X , N

K
Y ) := min

C∈C(X,Y )

{
ΓkX,Y (C)

}
. (7)

The distance vector between NK
X and NK

Y across all orders
can also be defined as

dKN (NK
X , N

K
Y )

=
(
d0N (NK

X , N
K
Y ), d1N (NK

X , N
K
Y ), . . . , dKN (NK

X , N
K
Y )
)T
.

(8)

Both, Definition 2 and Definition 4 consider correspon-
dences C that map the node space X onto the node space Y ,
compare dissimilarities, and set the network distance to the
comparison that yields the smallest distance value in terms

of maximum differences. The distinction between Definition
2 and (7) in Definition 4 is that in the latter dkN (NK

X , N
K
Y )

only considers dkX and dkY out of K+1 relationship functions
defined for the K-order networks. Definition 2 defines a single
distance dN (NX , NY ) between pairwise networks and (7)
defines a family of K + 1 pseudometrics dkN (NK

X , N
K
Y ) for

each integer 0 ≤ k ≤ K. Other than that the definition is not
much different since ΓkX,Y (C) selects the maximum k-order
relationship difference |dkX(x0:k)−dkY (y0:k)| among all tuples
of correspondents – we compare dkX(x0:k) with dkY (y0:k) when
all the points xl ∈ x0:k and yl ∈ y0:k are correspondents. The
distance dkN (NK

X , N
K
Y ) is defined by selecting the correspon-

dence that minimizes these maximal differences. In general,
the correspondence C minimizing ΓkX,Y (C) is not necessarily
identical as the correspondence C ′ minimizing ΓlX,Y (C ′). The
distance vector dKN defined in (8) is a vector with each element
measuring the dissimilarity between relationship functions of a
specific order. We emphasize that, as in the case of Definition
2, dkN (NK

X , N
K
Y ) and dKN (NK

X , N
K
Y ) are defined even if the

numbers of nodes in X and Y are different. The function
dkN : NK × NK → R+ is a pseudometric in the space
of K-order networks modulo k-isomorphism for any integer
0 ≤ k ≤ K as we show in the next proposition.

Proposition 1 Given any nonnegative integer K, for any
integers 0 ≤ k ≤ K, the function dkN : NK × NK → R+

defined in (7) is a pseudometric in the space NK mod ∼=k.

Proof: See Appendix A. �

For each integer 0 ≤ k ≤ K, the pseudometric
dkN (DK

X , D
K
Y ) defined in Definition 4 in the space NK

mod ∼=k measures dissimilarity between k-order functions
dkX and dkY . We can also ask the question how different two
networks are by considering all their order functions. To that
end we consider K-order networks to be equivalent if dkX is
a permutation of dkX for all integers 0 ≤ k ≤ K. Specifically,
we say that two networks NK

X and NK
Y are isomorphic if

there exists a bijection φ : X → Y such that (5) follows for
all 0 ≤ k ≤ K and x0:k ∈ Xk+1. The map φ is called an
isometry. When networks NK

X and NK
Y are isomorphic we

write NK
X
∼= NK

Y . The difference between isomorphism and
k-isomorphism is that the bijection in the former preserves
relationship functions over all orders whereas only preserves
relationship functions for order k in the latter case. NK

X
∼= NK

Y

implies NK
X
∼=k N

K
Y for all integers 0 ≤ k ≤ K however

the other direction does not necessarily follows. The space of
K-order networks modulo isomorphism is denoted by NK

mod ∼=. A family of pseudometrics measuring the difference
between networks over all order functions as a whole can
be endowed in the space NK mod ∼=. The definition of
this family of distances can be considered as an extension of
Definition 2 and an aggregation of Definition 4 as we formally
state next.

Definition 5 Given networks NK
X and NK

Y , a correspondence
C between the node spaces X and Y , and some p-norm ‖ · ‖p
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define the network difference with respect to C as∥∥ΓKX,Y (C)
∥∥
p

:=

∥∥∥∥(Γ0
X,Y (C),Γ1

X,Y (C), . . . ,ΓKX,Y (C)
)T∥∥∥∥

p

,

(9)

where for each integer 0 ≤ k ≤ K, ΓkX,Y (C) is the k-
order network difference with respect to C defined in (6). The
network distance respect to the p-norm ‖·‖p between networks
NK
X and NK

Y is then defined as

dN ,p(N
K
X , N

K
Y ) := min

C∈C(X,Y )

{∥∥ΓKX,Y (C)
∥∥
p

}
. (10)

The difference between Definition 2, Definition 4 and Defi-
nition 5 is that in the case of network distance dN ,p(NK

X , N
K
Y )

we compare not only one relationship functions dkX(x0:k) and
dkY (y0:k) but also all the relationship functions of order not
larger than K. The norm over the vector ΓKX,Y (C) formed by
k-order network differences with respect to C for 0 ≤ k ≤ K
is assigned as the difference between NK

X and NK
Y measured

by the correspondence C. The distance dN ,p(N
K
X , N

K
Y ) is

then defined as the minimum of these differences achieved
by some correspondence. Similar as in the cases of Definition
2 and Definition 4, dN ,p(NK

X , N
K
Y ) is defined even if the

numbers of nodes in X and Y are different. The function
dN ,p : NK × NK → R+ is a pseudometric in the space of
K-order networks modulo isomorphism as we show in the
following proposition.

Proposition 2 Given some p-norm ‖ · ‖p, for any nonnegative
integer K the function dN ,p : NK × NK → R+ defined in
(10) is a pseudometric in the space NK mod ∼=.

Proof: See Appendix B. �

Observe that in (10) we are only allowed to pick one
correspondence minimizing ‖ΓKX,Y (C)‖p whereas in (7) for
each k we are able to pick one correspondence minimizing
the order specific ΓkX,Y (C). This establishes a relationship
between dN ,p and ‖dKN ‖p and bridges a connection between
Definition 4 and Definition 5 as next.

Proposition 3 Given some p-norm ‖ · ‖p, for any nonnegative
integer K the function dN ,p defined in (10) is no smaller
than ‖dKN ‖p where dKN is defined in (8). I.e., for any K-order
networks NK

X , N
K
Y , we have the following relationship

dN ,p(N
K
X , N

K
Y ) ≥

∥∥dKN (NK
X , N

K
Y )
∥∥
p

=
∥∥∥(d0N (NK

X , N
K
Y ), . . . , dKN (NK

X , N
K
Y )
)T∥∥∥

p
.

(11)

Proof : From (7), for any K-order networks NK
X , N

K
Y , a

particular correspondence C between the node spaces X and
Y , and an integer 0 ≤ k ≤ K, it holds true that

ΓkX,Y (C) ≥ dkN (NK
X , N

K
Y ). (12)

This implies the vector dKN (NK
X , N

K
Y ) is elementwise no

greater than ΓKX,Y (C). The property of p-norm guarantees that∥∥ΓKX,Y (C)
∥∥
p
≥
∥∥dKN (NK

X , N
K
Y )
∥∥
p
. (13)

Since (13) applies for any correspondence C, the mini-
mum of

∥∥ΓKX,Y (C)
∥∥
p

achieved by some correspondence in
the set of correspondence C(X,Y ) is still no smaller than∥∥dKN (NK

X , N
K
Y )
∥∥
p
. This completes the proof. �

In general, the k-order function dkX of a given network
NK
X does not impose any constraint on the l-order function

dlX of the same network. In practical situations, however,
it is common to observe that adding nodes to tuple results
in either increasing or decreasing relationships between the
extended tuple. This motivates the definition and consideration
of dissimilarity networks and proximity networks that we
undertake in the next two sections.

A. Dissimilarity Networks

In dissimilarity networks the function dkX(x0:k) encodes a
level of dissimilarity between elements of the x0:k tuple. In
this scenario it is reasonable to assume that adding elements
to a tuple makes the group more dissimilar. This restriction
along with a standard identity property makes up the formal
definition that we introduce next.

Definition 6 We say that the K-order network DK
X =(

X, d0X , d
1
X , . . . , d

K
X

)
is a dissimilarity network if the follow-

ing two properties holds:

Identity. For any 0 ≤ k ≤ K, dkX(x0:k) = 0 if and only if
all nodes in x0:k are identical; i.e., if and only if xi = xj for
all xi, xj ∈ x0:k.
Order increasing. For any order 1 ≤ k ≤ K and tu-
ples x0:k := (x0, x1, . . . , xk) ∈ Xk+1 and x0:k−1 :=
(x0, x1, . . . , xk−1) ∈ Xk it holds that

dkX(x0:k) ≥ dk−1X (x0:k−1). (14)

The set of all dissimilarity networks of order K is denoted as
Dk.

In pairwise networks we required dkX(x, x′) = 0 if and
only if x = x′. The identity property in Definition 6 can
be considered as a generalization. In pairwise dissimilarity
networks dissimilarity 0 stands for most similarity and is
reserved to represent the dissimilarity of a node to itself.
In high order dissimilarity networks the highest similarity
dkX(x0:k) = 0 is also reserved to represent the closeness of
a node to itself. Further note that since we restrict attention
to symmetric networks a relationship akin to (14) holds if we
remove an arbitrary element of the tuple x0:k, not necessarily
the last. Thus, the order increasing property implies that
removing an element from a tuple can’t make the group more
dissimilar than it was. Equivalently, adding a node to a tuple
makes the group as a whole more dissimilar or, at least, does
not change the group’s dissimilarity.

To see that the order increasing property in Definition
6 is reasonable consider a network describing the temporal
dynamics of the formation of a research community – see
Figure 1. The k-order dissimilarity function in this network
marks the normalized time instant at which members of a
given (k + 1)-tuple write their first joint paper. In particular,
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Fig. 1. Temporal dynamics for the formation of a research community. The
k-order dissimilarity function in this 2-order network [cf. (4)] marks the
normalized time instant at which members of a given (k + 1)-tuple write
their first joint paper. E.g., A writes her first paper at time 0, and coauthors
with B, D, and C at times 1/9, 4/9, and 5/9. She also writes jointly with
B and D at time 4/9 and with B and C at time 1. This is a dissimilarity
network [cf. Definition 6] because the order increasing property follows from
the fact that a paper can’t be coauthored by three people without being at the
same time coauthored by each of the three possible pairs of authors authors
can’t become coauthors until after they write their first paper.

the zeroth order dissimilarities d0X are the normalized time
instants when authors publish their first academic paper. In
Figure 1 authors A, B, C, and D publish their first papers at
times 0, 1/9, 3/9, and 5/9. The first order dissimilarities d1X
denote the normalized times at which nodes become coauthors.
Since authors can’t become coauthors until after they write
their first paper it is certain that d1X(x0, x1) ≥ d0X(x0) and
d1X(x0, x1) ≥ d0X(x1) for all x0 and x1. In Figure 1 A and B
become coauthors at time 2/9, which occurs after they publish
their respective first papers at times 0 and 1/9. Authors A and
D as well as B and D become coauthors at time 4/9, A and C
become coauthors at time 5/9 and B and C become coauthors
at time 8/9. Authors C and D never write a paper together.
Observe that the first order dissimilarity between A and C is
the same as the zeroth order dissimilarity of C which means
that, most likely, the first paper that C writes is a joint work
with A.

Second order dissimilarities d2X for triplets x0:2 =
(x0, x1, x2) denote the normalized time at which a paper
is coauthored by the three members of the triplet. Since a
paper can’t be coauthored by three people without being at
the same time coauthored by each of the three possible pairs
of authors we must have that d2X(x0, x1, x2) ≥ d1X(x0, x1),
d2X(x0, x1, x2) ≥ d1X(x0, x2), and d2X(x0, x1, x2) ≥
d1X(x1, x2) for all x0, x1, and x2. In Figure 1, authors A,
B, and D publish a joint paper at time 4/9, which is not
smaller than the pairwise coauthorship times between each
two of the individual authors. Notice that the second order
distance between A, B, and D is the same as the first order
distances between A, D and B, D, which is most likely due
to the fact that the first papers coauthored by A, D and B, D
is actually a joint paper by A, B, and D. Authors A, B, and
C publish a joint paper at time 1, which is a time that comes
after the individual paired publications that occur at times 4/9,

5/9, and 8/9. Since distances up to order 2 are defined, the
network in Figure 1 is a dissimilarity network of order 2.

Order increasing property is also reflected in the identity
property. Observe that if the members of a nodes k-tuple
xl,l,...,l are all identical, identity property requires the dis-
similarity in the group dkX(xl,...,l) = 0. On the other hand,
adding any node xl′ 6= xl to the tuple makes not all the
members of the tuple being identical and the identity property
forces dk+1

X (xl,...,l,l′) > 0 = dkX(xl,...,l). This also suggests
that adding a node to a tuple makes the group as a whole
more dissimilar or, at least, does not change the group’s
dissimilarity.

Restricting dkN defined in Definition 4 to dissimilarity net-
works gives a family of k-order dissimilarity network distance
dkD which we define as follows.

Definition 7 Given dissimilarity networks DK
X and DK

Y and
an integer 0 ≤ k ≤ K, the k-order dissimilarity network dis-
tance between dissimilarity networks DK

X and DK
Y is defined

as

dkD(DK
X , D

K
Y ) := min

C∈C(X,Y )

{
ΓkX,Y (C)

}
, (15)

where ΓkX,Y (C) is the k-order network difference with respect
to C defined in (6).

The distance vector between DK
X and DK

Y across all orders
is then defined as

dKD (DK
X , D

K
Y )

=
(
d0D(DK

X , D
K
Y ), d1D(DK

X , D
K
Y ), . . . , dKD (DK

X , D
K
Y )
)T
.

(16)

Inherited from dkN , the function dkD : DK ×DK → R+ is a
pseudometric in the space of K-order dissimilarity networks
modulo k-isomorphism. Moreover, for each nonnegative inte-
ger 1 ≤ k ≤ K, restricting our attention on dissimilarity net-
works makes dkD a well-defined metric, not only pseudometric,
in the space DK mod ∼=k of dissimilarity networks of order
K modulo k-isomorphism. We show this in the following
theorem.

Theorem 1 Given any nonnegative integer K, for any posi-
tive integers 1 ≤ k ≤ K, the function dkD : DK ×DK → R+

defined in (15) is a metric in the space DK mod ∼=k.
The function d0D : DK × DK → R+ defined in (15) is a
pseudometric in the space DK mod ∼=0.

Proof: See Appendix C. �

The caveat for d0D is because we may have two dissimilarity
networks DK

X and DK
Y owning different number of nodes and

the zeroth other dissimilarities d0X and d0Y being identical for
any nodes in the two dissimilarity networks. In such scenarios,
d0D(DK

X , D
K
Y ) = 0 however two dissimilarity networks are not

0-isomorphic.
Restricting dN ,p defined in Definition 5 to dissimilarity

networks yields a family of dissimilarity network distances
dD,p as we formally state the next.
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Definition 8 Given networks DK
X and DK

Y and some p-norm
‖ · ‖p, the dissimilarity network distance respect to the p-norm
between dissimilarity networks DK

X and DK
Y is defined as

dD,p(D
K
X , D

K
Y ) := min

C∈C(X,Y )

{∥∥ΓKX,Y (C)
∥∥
p

}
, (17)

where the born ‖ΓKX,Y (C)‖p of network differences with
respect to C is defined in (9).

By restricting our attention on dissimilarity networks instead
of general high order networks, dD,p becomes a well-defined
metric, not only pseudometric, in the space DK mod ∼= of
dissimilarity networks of order K modulo isomorphism. We
state this in the following theorem.

Theorem 2 Given some p-norm ‖ · ‖p, for any nonnegative
integer K the function dD,p : DK × DK → R+ defined in
(17) is a metric in the space DK mod ∼=.

Proof: See Appendix C. �

The Definition 7 and Definition 8 may also be connected in
a similar way as Proposition 3.

Proposition 4 Given some p-norm ‖ · ‖p, for any nonnegative
integer K the function dD,p defined in (17) is no smaller
than ‖dKD‖p where dKD is defined in (16). I.e., for any K-
order dissimilarity networks DK

X , D
K
Y , we have the following

relationship

dD,p(D
K
X , D

K
Y ) ≥

∥∥dKD (DK
X , D

K
Y )
∥∥
p
. (18)

B. Proximity Networks

In proximity networks the relationship functions dkX(x0:k)
denote similarity or proximity between elements of a tuple.
Thus, large values of the proximity function dkX(x0:k) rep-
resent strong relationship whereas small values denote weak
relationships – the exact opposite is true of dissimilarity
networks. In this framework it is reasoned to assume that
adding elements to a tuple forces the group to be less similar.
This constraint along with an identity property makes up the
formal definition we introduce as follows.

Definition 9 We say that the K-order network PKX =(
X, d0X , d

1
X , . . . , d

K
X

)
is a proximity network if the following

two properties holds:

Identity. For any 0 ≤ k ≤ K, dkX(x0:k) = 1 if and only if
all nodes in x0:k are identical; i.e., if and only if xi = xj for
all xi, xj ∈ x0:k.
Order decreasing. For any order 1 ≤ k ≤ K and tuples
x0:k ∈ Xk+1 and x0:k−1 ∈ Xk it holds that

dkX(x0:k) ≤ dk−1X (x0:k−1). (19)

The set of all proximity networks of order K is denoted as
PK .

In dissimilarity networks we required dkX(x0:k) = 0 if and
only if all nodes in the tuple are identical. The identity property

1/19 2/19

18/19 17/19

1

(a)

A

11/19

B

9/19

C2/19 D 5/19

4/19

2/19

1/19

2/19

2/19

(b)

A

8/19

B

10/19

C17/19 D 14/19

15/19

17/19

18/19

17/19

17/19

1

Fig. 2. (a): Collaborations between authors in a research community. The k-
order proximity function in this 2-order network [cf. (4)] marks the number
of publications between members of a given (k + 1)-tuples normalized by
the total number of papers. E.g., author A publishes 11 papers and there
are 19 papers in total which implies d0X(A) = 11/19. Author A co-
publishes 4, 1, and 2 papers with B, D, and C implying d1X(A,B) =
4/19, d1X(A,D) = 1/19, and d1X(A,C) = 2/19. Authors A, B and D
co-publish 2 papers suggesting d2X(A,B,D) = 2/19. This is a proximity
network [cf. Definition 9] because the order decreasing property follows from
the fact that a paper collaborated by three authors is also a collaboration for
each pair of authors and a paper written by a pair of authors is also a paper for
each of the individuals. (b): Relationships between authors expressed in terms
of dissimilarities constructed from the proximity network in (a). The k-order
relationship function in this 2-order network denotes the level of dissimilarities
between members of a given (k + 1)-tuples. This is a dissimilarity network
because the order increasing property follows. The constructed dissimilarity
network has same order and identical node sets as the proximity network.

in Definition 9 can also be considered as a generalization. In
dissimilarity networks dissimilarity 0 stands for most similar-
ity and is reserved to represent the dissimilarity of a node to
itself. In high order proximity networks the highest proximity
dkX(x0:k) = 1 is reserved to represent the closeness of a node
to itself. We emphasize that, as in the case of Definition 6,
we restrict to symmetric networks a relationship as in (19)
holds if we remove an arbitrary node from the tuple x0:k,
not necessarily the last. Thus, the order decreasing property
implies that removing an element from a tuple can’t make the
set less similar than it was. Alternatively speaking, adding a
node to a tuple makes the set as a whole less similar or, at
least, does not change the set’s proximity.

To see that the order decreasing property in Definition 9
is reasoned consider a network illustrating the collaborations
between authors in a research community – See Figure 2
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(a). The k-order proximity function in this network labels the
number of publications between members of a given (k+ 1)-
tuples. In specific, the zeroth order proximities d0X are the
numbers of papers published by authors normalized by the
total number of papers. In Figure 2 (a) authors A,B,C,D
publish 11, 9, 2, 5 papers in total and there are 19 papers
in total which implies d0X(A) = 11/19, d0X(B) = 9/19,
d0X(C) = 2/19, d0X(D) = 5/19. The first order proximities
d1X represent the number of papers co-published by nodes.
Since collaboration for a pair of authors is also a paper for
each of the individuals it is certain that d1X(x0, x1) ≤ d0X(x0)
and d1X(x0, x1) ≤ d0X(x1) for all x0 and x1. In Figure 9 (a)
A and B collaborate 4 papers, which is less than the 11 and
9 papers written by each of the individuals. Authors A and C
as well as A and D as well as B and D collaborate 2 papers
in total, B and C collaborate 1 paper. Authors C and D never
write a paper together. Notice that the first order proximity
between A and C is the same as the zeroth order proximity of
C, which is mostly likely due to the fact that C spends most
of her time working with A.

Second order proximities d2X for triplets x0:2 indicates the
number of papers coauthored by the three members of the
triplet. Since a paper with three authors is also a collaboration
for the three possible pairs of authors we must have that
d2X(x0, x1, x2) ≤ d1X(x0, x1), d2X(x0, x1, x2) ≤ d1X(x0, x2),
and d2X(x0, x1, x2) ≤ d1X(x1, x2) for all x0, x1, and x2. In
Figure 2 (a), authors A, B, and D cowrite 2 paper, which is no
more than the number of pairwise collaborations between each
pair of the authors. Observe that the second order proximity
between A, B, and D is the same as the first order proximities
between A, D and B, D which means that, most likely, the 2
papers coauthored by A, D and B, D are actually joint papers
by A, B, and D. Authors A, B, C publish 1 joint paper, a
number smaller than the individual paired publications of 4, 2,
and 1. Since proximities up to order 2 are defined, the network
in Figure 2 (a) is a proximity network of order 2.

Restricting dkN defined in Definition 4 to proximity net-
works gives a family of k-order proximity network distance
dkP as we formally state next.

Definition 10 Given proximity networks PKX and PKY and an
integer 0 ≤ k ≤ K, the k-order proximity network distance
between proximity networks PKX and PKY is defined as

dkP(DK
X , D

K
Y ) := min

C∈C(X,Y )

{
ΓkX,Y (C)

}
, (20)

where ΓkX,Y (C) is the k-order network difference with respect
to C defined in (6). The distance vector between PKX and PKY
across all orders is then defined as

dKP (PKX , P
K
Y )

=
(
d0P(PKX , P

K
Y ), d1P(PKX , P

K
Y ), . . . , dKP (PKX , P

K
Y )
)T
.

(21)

Similar as dkD defined in Definition 7, for each nonnegative
integer 1 ≤ k ≤ K, the function dkP : PK × PK → R+

is a proper metric, not only pseudometric, in the space PK
mod ∼=k of proximity networks of order K modulo k-
isomorphism. We show this in the following theorem.

Theorem 3 Given any nonnegative integer K, for any posi-
tive integers 1 ≤ k ≤ K, the function dkP : PK × PK → R+

defined in (20) is a metric in the space PK mod ∼=k.
The function d0P : PK × PK → R+ defined in (20) is a
pseudometric in the space PK mod ∼=0.

Proof: See Appendix D. �

Similar as in Theorem 1, the caveat for d0P is because two
proximity networks PKX and PKY may possess different number
of nodes while the zeroth other dissimilarities d0X and d0Y are
identical for any nodes in the two proximity networks. In such
scenarios, d0P(PKX , P

K
Y ) = 0 however two proximity networks

are not 0-isomorphic.
Restricting dN ,p defined in Definition 5 to proximity net-

works gives us a family of proper proximity network metrics
dP,p as we formally state next.

Definition 11 Given networks PKX and PKY and some p-norm
‖ · ‖p, the proximity network distance respect to the p-norm
between proximity networks PKX and PKY is defined as

dP,p(P
K
X , P

K
Y ) := min

C∈C(X,Y )

{∥∥ΓKX,Y (C)
∥∥
p

}
, (22)

where the norm ‖ΓKX,Y (C)‖p of network differences with
respect to C is defined in (9).

Theorem 4 Given some p-norm ‖ · ‖p, for any nonnegative
integer K the function dP,p : PK × PK → R+ defined in
(22) is a metric in the space PK mod ∼=.

Proof: See Appendix D. �

A relationship between the Definition 10 and Definition 11
can be established in a similar way as Proposition 3.

Proposition 5 Given some p-norm ‖ · ‖p, for any nonnegative
integer K the function dP,p defined in (22) is no smaller
than ‖dKP ‖p where dKP is defined in (21). I.e., for any K-
order proximity networks PKX , P

K
Y , we have the following

relationship

dP,p(P
K
X , P

K
Y ) ≥

∥∥dKP (PKX , P
K
Y )
∥∥
p
. (23)

C. Connections between Dissimilarity Networks and Proxim-
ity Networks

In a proximity network the relationship functions encode
a level of similarity between elements of the x0:k tuple. A
corresponding dissimilarity network can be constructed with
identical nodes as the proximity network, preserving the rela-
tionship functions between elements of the x0:k tuple however
expressing the relationships as dissimilarities. Similarly, given
a dissimilarity network, a corresponding proximity network
can be constructed with identical nodes as the dissimilarity
network and conveying the same relationship functions be-
tween elements in a tuple in terms of proximities. These
two constructions bridges a connection between proximity
networks and dissimilarity networks we formally state next.
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Definition 12 The dissimilarity network DK
X′ constructed

from a given K-order proximity network PKX is defined as

DK
X′ =

{
(X ′, d1X′ , . . . , dKX′) | X ′ = X,

dkX′(x0:k) = 1− dkX(x0:k),

for all integers 0 ≤ k ≤ K,x0:k ∈ X
}
. (24)

The proximity network PKX′ constructed from a given K-order
dissimilarity network DK

X is defined as

PKX′ =
{

(X ′, d1X′ , . . . , dKX′) | X ′ = X,

dkX′(x0:k) = 1− dkX(x0:k),

for all integers 0 ≤ k ≤ K,x0:k ∈ X
}
. (25)

For a given proximity network PKX , the constructed dis-
similarity network DK

X′ has same order and identical node
sets as PKX . For any nodes (k + 1)-tuples x0:k ∈ X , their
dissimilarity dkX′(x0:k) is defined as 1 minus their proximity
dkX(x0:k). Order increasing property naturally follow for DK

X′ .
Most importantly, if all nodes are identical in the sequence
x0:k, dkX(x0:k) = 1, from which dkX′(x0:k) = 0 follows. An
illustration for the construction is presented in Figure 2 (b),
where we construct the corresponding dissimilarity network
for the coauthorship network considered in Figure 2 (a). Sim-
ilarly, for a given dissimilarity network DK

X , the constructed
dissimilarity network PKX′ has same order and identical node
sets as DK

X . The identity and order decreasing properties holds
true for PKX′ . Both the k-order network distances and the
network distance by considering relationship functions at all
orders as a whole are preserved by the constructions. We show
these in the following propositions.

Proposition 6 Given two proximity networks PKX and PKY , for
any integer 0 ≤ k ≤ K, the constructed dissimilarity networks
DK
X′ and DK

Y ′ built from (24) satisfy

dkD(DK
X′ , DK

Y ′) = dkP(PKX , P
K
Y ). (26)

Similarly, given two dissimilarity networks DK
X and DK

Y , for
any integer 0 ≤ k ≤ K, the constructed proximity networks
PKX′ and PKY ′ built from (25) satisfy

dkP(PKX′ , PKY ′) = dkD(DK
X , D

K
Y ). (27)

Proposition 7 Given two proximity networks PKX and PKY
and some p-norm ‖ · ‖p, the constructed dissimilarity networks
DK
X′ and DK

Y ′ built from (24) satisfy

dD,p(D
K
X′ , DK

Y ′) = dP,p(P
K
X , P

K
Y ). (28)

Similarly, given two dissimilarity networks DK
X and DK

Y and
some p-norm ‖ · ‖p, the constructed proximity networks PKX′

and PKY ′ built from (25) satisfy

dP,p(P
K
X′ , PKY ′) = dD,p(D

K
X , D

K
Y ). (29)

Proof: See Appendix E. �

Now the development of metrics in high order networks
is complete. For general symmetric networks of order K,
the pseudometric dkN in the space NK mod ∼=k measures
differences between k-order relationship functions between

networks for any integers 0 ≤ k ≤ K. The pseudometric
dN ,p in the space NK mod ∼= measures the differences
between networks by considering all order functions given
some p-norm. These two pseudometrics are related such that
‖dKN ‖p ≤ dN ,p. Restricting our attention to dissimilarity
networks makes dkD a metric in the space DK mod ∼=k for
each integer 1 ≤ k ≤ K and dD,p a metric in the space
DK mod ∼=. Similarly, considering only proximity networks
produces dkP a metric in the space PK mod ∼=k for each
integer 1 ≤ k ≤ K and dP,p a metric in the space PK
mod ∼=. Dissimilarity networks and proximity networks may
be transformed from one to the other while preserving both
the k-order network distances and the network distance. The
metrics defined and their relationships established in Section
III are depicted in Figure 3.

IV. COMPARISON OF COAUTHORSHIP NETWORKS

We apply the metrics defined in Section III to compare
second order coauthorship networks where relationship func-
tions denote the number of publications of single authors,
pairs of authors, and triplets of authors. These coauthorship
networks are proximity networks because they satisfy the order
decreasing property in Definition 9. Since both, Definition
10 and Definition 11, require searching over all possible
correspondences between the node spaces, we can compute
exact distances for networks with a small number of nodes
only. Thus, we consider publications in the IEEE Transactions
on Signal Processing (TSP) in the last decade but restrict
attention to the collaboration networks of Prof. Georgios B.
Giannakis (GG) of the University of Minnesota and Prof.
Martin Vetterli (MV) of the École Polytechnique Fédérale
de Lausanne. For each of the lead coauthors, GG and MV,
we construct networks for the 2004-2008 and 2009-2013
quinquennia. These networks are referred to in the following
as GG0408, GG0913, MV0408, and MV0913. For GG we also
define networks for each of the biennia 2004-2005, 2006-2007,
2008-2009, 2010-2011, and 2012-2013. We denote these net-
works as GG0405 GG0607, GG0809, GG1011, and GG1213.
Lists of publications are queried from the Engineering Village
database [28].

For each of these lead authors we consider all of their TSP
publications in the period of interest and construct proximity
networks where the node space X is formed by the lead author
and the respective set of coauthors. Zeroth order proximities
are defined as the total number of publications of each member
of the network, first order proximities as the number of papers
coauthored by given pairs, and second order proximities as
the number of papers coauthored by specific triplets. To make
networks with different numbers of papers comparable we
normalize all distances by the total number of papers in the
network. With this construction we have that the zeroth order
proximity of GG or MV are 1 in all of their respective
networks. There are papers with more than three coauthors
but we don’t record proximities of order larger than 2.

The quenquennial networks GG0408, GG0913, MV0408,
and MV0913 are shown in Figure 4 and the biennial networks
GG0607, GG0809, GG1011, and GG1213 in Figure 5. The
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NK

dkN (7) : pseudometric in NK mod ∼=k,∀k

dN ,p (10) : pseudometric in NK mod ∼=∥∥dK
N
∥∥
p
=

∥∥(d0N , d1N , . . . , dKN
)∥∥

p
≤ dN ,p (11)

DK

dkD (15) : metric in DK mod ∼=k, ∀k ≥ 1

d0D (15) : pseudometric in DK mod ∼=0

dD,p (17) : metric in DK mod ∼=∥∥dK
D
∥∥
p
≤ dD,p (18)

PK

dkP (20) : metric in PK mod ∼=k, ∀k ≥ 1

d0P (20) : pseudometric in PK mod ∼=0

dP,p (22) : metric in PK mod ∼=∥∥dK
P
∥∥
p
≤ dP,p (23)

(25)

(24)

Identity
Order Increasing

Identity
Order DecreasingGeneralization

Fig. 3. Relationships between the spaces of high order networks, dissimilarity networks, and proximity networks. A family of pseudometrics can be defined
to measure dissimilarities between a specific order functions between high order networks. Another family of pseudometrics can be defined to quantify
distinctions between high order networks across all order functions. These two families of pseudometrics are related and become metrics in the corresponding
spaces when we restrict attentions to dissimilarity networks or proximity networks.

size of the nodes is proportional to the zeroth order distances,
and the width of the links to the first order distances. Second
order proximities are represented by shading the triangle
enclosed by the coauthor triplet and the color intensity is
proportional to the second order proximities. There are clear
differences in the collaboration patterns. We show here that
proximity network distances succeed in identifying these pat-
terns and distinguish between the coauthorship networks of
GG and MV.

A. Quinquennial networks

Heat map representations of the k-order proximity network
distances dkP for k ∈ {0, 1, 2} and the proximity network
distance with respect to the 1-norm, dP,1, for the networks
GG0408, GG0913, MV0408, and MV0913 are shown in
Figure 6 (top). Two dimensional Euclidean embeddings of the
same distances are also shown in Figure 6 (bottom). The two
GG networks (diamonds) separate clearly from the two MV
networks (circles) either by considering the individual k-order
distances dkP or the aggregate distance dP,1. The two MV
networks do not group as clearly. Overall they are closer to
each other than to the GG networks, but the difference is small.
An unsupervised classification run across all four distances
would assign all four networks correctly.

The k-order network distance dkP is defined by searching
for a correspondence such that the maximum k-order prox-
imity difference |dkX(x0:k) − dkY (y0:k)| among all tuple of
correspondents is minimized [cf. (6) and (7)]. For the optimal
correspondence C? = argminC∈C(X,Y ) ΓkX,Y (C), define the
pair of correspondent tuples that achieve the maximum k-order
difference as

(x?0:k, y
?
0:k) = argmax

(x0:k,y0:k)∈C?

∣∣dkX(x0:k)− dkY (y0:k)
∣∣ . (30)

The tuple pair (x?0:k, y
?
0:k) is the bottleneck that prevents

making the networks closer to each other. Examining these

bottleneck pairs for each k-order distance reveals what are the
differences between proximity networks to which dkP is most
sensitive about. In general, k-order bottleneck pairs tend to be
pairs of tuples with high proximity values in their respective
networks. Minimizing correspondences C? map tuples with
high proximity as closely as possible. Therefore, network
distances are typically determined by large proximity values in
one of the networks that can’t be matched closely to proximity
values in the other network.

In the coauthorship networks of networks of Figure 4 the
bottleneck pair for 0-order distances d0P , is formed by nodes
with high zero order proximities and d0P reflects the difference
between their zero order proximities. Since the networks
are normalized so that the lead nodes have size 1, d0P is
determined by their predominant coauthors, i.e., the scholars
that collaborated most prolifically with GG or VM during the
period of interest. The distances d0P between GG and VM
networks are large because these predominant collaborations
are different. In GG networks there are usually groups of 3 to
5 predominant collaborators, whereas in MV networks there
are usually one or two that concentrate a larger fraction of the
total number of publications.

Similarly, high first order proximity distances between net-
works are likely due to one of the following situations: (i)
Large differences between the numbers of papers authored
by the predominant collaborators. (ii) Different patterns in
the formation of communities – defined here as clusters
of pairwise collaboration. In the latter case large distances
arise because it is impossible to match the communities in
one network to communities in the other. The distances d1P
between GG and MV networks are large because the latter
contain a smaller number of communities, which are also more
strongly connected than the communities in GG networks.

In second order distances the bottleneck pair of triplets
may reflect one of the following scenarios: (i) One network
has collaboration between four or more authors while the
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Fig. 4. Quinquennial coauthorship networks representing research communities centered at Prof. Georgios Giannakis (GG) or Prof. Martin Vetterli (MV).
The size of the nodes is proportional to the zeroth order proximities, and the width of the links to the first order proximities. Second order proximities are
represented by shading the triangle enclosed by the coauthor triplet. Color intensity is proportional to the second order proximities.
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Fig. 5. Biennial coauthorship networks representing research communities centered at Prof. Georgios Giannakis (GG).

other doesn’t (ii) There exist three authors with a strong
collaboration between them in one network whereas in the
other network there does not exist collaboration between three
authors or, if such collaboration exists, it is weak. Many papers
written by MV are collaborations of three or four scholars
and the predominant coauthor in MV networks appears in at
least one collaboration of four scholars. For GG, his 2004-
2008 network has a few collaborations consisting of four
scholars however all such collaborations are weak. His 2009-
2013 network has no publications written by four authors.

B. Biennial networks

The networks GG0408 and GG0913 have more nodes than
the networks MV0408 and MV0913 prompting the possibility
that the differences in distances discussed in Section IV-B are
just due their different number of publications. This is part of
the reason, but not all. To see that this true we consider the
biennial GG collaboration networks. Each of these networks
contain numbers of papers that are comparable to the number
of papers in the quinquennial MV networks.

The individual k-order distances dkP for k ∈ {0, 1, 2}
and the aggregate distance dP,1 between the 4 quinquennial
networks and the 5 biennial networks are represented in Figure
7 (top). Two dimensional Euclidean embeddings of these
distances are shown in Figure 7 (bottom). An unsupervised
classification run across all four distances would assign 6

networks correctly to GG and the other three networks to MV
– one of them incorrectly.

We expect more variation in biennial networks because
the time for averaging behavior is reduced. E.g., we may
see deviations from usual collaboration patterns due to the
presence of exceptional doctoral students. Still, three of the
biennial networks, GG0405, GG0607, GG1011, (up triangles)
and the two quinquennial networks GG0408, GG0913 (di-
amonds) are close to each other in every metric used and
form a cluster clearly separate from the two five-year networks
MV0408 and MV0913 (circles). This is due to the fact that
the distinctive features of GG coauthorship are well reflected
in GG0405, GG0607, GG1011. These features include: (i)
Multiple predominant coauthors, each of whose collaboration
with GG does not comprise a dominant portion of GG’s
scholarship during the period. (ii) Multiple small coauthor-
ship communities in which strong collaborations within each
community are rare. (iii) The number of publications with four
or more authors is low. These features contrast with the rather
opposite properties of the MV networks.

The networks GG0809 and GG1213 (down triangles) do
not cluster with the other five GG networks. Depending on
which distance we consider they may be closest to some of the
other GG networks or to one of the two MV networks. This is
because, likely due to random variation, GG0809 and GG1213
have some features that resemble GG networks and some
other features that resemble MV networks. Fundamentally this



11

d0P d1P d2P dP,1

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

−0.1

−0.05

0

0.05

0.1

0.15

−0.1 −0.05 0 0.05 0.1

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

−0.1 −0.05 0 0.05 0.1

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Fig. 6. Top: Heat map representations of the k-order proximity network distance d0P , d1P , d2P and the proximity network distance with respect to the 1-
norm, dP,1, for the quinquennial networks where the networks are ordered as GG0408, GG0913, MV0408, MV0913. Bottom: two dimensional Euclidean
embeddings of the distances between quinquennial networks. In the embeddings, denote MV0408, MV0913 as circles, GG0408, GG0913 as diamonds.
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Fig. 7. Top: Heat map representations of the k-order proximity network distance d0P , d1P , d2P and the proximity network distance with respect to the 1-norm,
dP,1, for the biennial and quinquennial networks where the networks are ordered as GG0408, GG0913, GG0405, GG0607, GG1011, GG0809, GG1213,
MV0408, MV0913. Bottom: two dimensional Euclidean embeddings of the distances between networks. In the embeddings, denote MV0408, MV0913 as
circles, GG0408, GG0913 as diamonds, GG0405, GG0607, GG1011 as up triangles and GG0809, GG1212 as down triangles.

happens because of exceptionally prolific collaborations with
Ioannis Schizas (IS) in the 2008-2009 period and Gonzalo
Mateos (GM) in the 2012-2013 period. In the network GG0809
the IS node commands a significant fraction of GG publica-
tions and creates strong links between collaboration clusters
that would be otherwise separate. Both of these features are
more characteristic of MV networks. In the GG1213 network
the node GM accounts for half of the publications in which
GG is an author. This is, also, a feature more representative
of MV networks than of GG networks.

In summary, proximity network distances capture features
of scholar collaboration that permit discerning networks of
different authors even when we consider networks that have
very different numbers of nodes. The zeroth order distance d0P

responds primarily to the number of predominant coauthors
and the proportion of collaboration between predominant
coauthors and the central scholar. The first order distance d1P
is mostly determined by the fraction of collaborations that
involve predominant coauthors and the central scholar as well
as the level and number of strong collaborations within each
community in the group. The second order distance d2P is
largely given by the existence, level, and number of collab-
orations between four or more scholars and the appearance
of predominant coauthors in a collaboration between four or
more scholars.
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V. CONCLUSION

High order networks, as a generalization of conventional
pair-wise networks, was introduced. Restricting the relation-
ship functions between members of tuples to the most com-
monly used ones, dissimilarities and proximities, yields two
specific subspaces of high order networks – dissimilarity
networks and proximity networks. Properties arisen from such
restrictions were discussed. We defined two families of dis-
tances measuring differences between dissimilarity networks
and between proximity networks. These distances are valid
metrics in the corresponding subspace of high order networks
modulo isomorphism. We use these distances to successfully
identify collaboration patterns of Prof. Georgios B. Giannakis
and Prof. Martin Vetterli. Tractable approximations will be
provided in forthcoming contributions.

APPENDIX A
PROOF OF PROPOSITION 1

To prove that dkN for any integer 0 ≤ k ≤ K is a
pseudometric in the space of K-order networks modulo k-
isomorphism we prove the (i) nonnegativity, (ii) symmetry,
(iii’) relaxed identity, and (iv) triangle inequality properties in
Definition 3.
Proof of nonnegativity property: For any integers 0 ≤
k ≤ K, since the function |dkX(x0:k) − dkY (y0:k)| is non-
negative the k-order network difference with respect to C as
defined in (6) also is. The network distance must then satisfy
dkN (NK

X , N
K
Y ) ≥ 0 because it is a minimum of nonnegative

numbers. �

Proof of symmetry property: A correspondence C ⊂ X×Y
with elements ci = (xi, yi) results in the same associations as
the correspondence C̃ ⊂ Y × X with element c̃i = (yi, xi).
Thus, for any correspondence C and integers 0 ≤ k ≤ K, we
have a correspondence C̃ such that ΓkX,Y (C) = ΓkY,X(C̃). It
follows that the minima in (7) must coincide from where it
follows that dkN (NK

X , N
K
Y ) = dkN (NK

Y , N
K
X ). �

Proof of relaxed identity property: We need to show
that for any integers 0 ≤ k ≤ K if NK

X and NK
Y are k-

isomorphic we must have dkN (NK
X , N

K
Y ) = 0. To see that

this is true recall that for k-isomorphic networks there exists
a bijection φ : X → Y that preserves distance functions at
order k [cf. (5)]. Consider then the particular correspondence
Cφ = {(x, φ(x)), x ∈ X}. For all x0 ∈ X there is an element
c = (x0, y) ∈ Cφ and for all y0 ∈ Y there is an element
c′ = (x, y0) ∈ Cφ since φ is bijective. Thus Cφ is a valid
correspondence between X and Y for which (5) indicates that
it must be

dkY (y0:k) = dkY (φ(x0:k) = dkX(x0:k), (31)

for any (x0:k, y0:k) ∈ Cφ. This implies ΓX,Y (C) =∣∣dkX(x0:k) − dkY (y0:k)
∣∣ = 0 for any (x0:k, y0:k) ∈ Cφ. Since

Cφ is a particular correspondence, taking a minimum over all
correspondence in (7) yields

dkN (NK
X , N

K
Y ) ≤ ΓkX,Y (C) = 0. (32)

Since dkN (NK
X , N

K
Y ) ≥ 0, as already shown, it must be that

dkN (NK
X , N

K
Y ) = 0 when two dissimilarity networks NK

X and
NK
Y are k-isomorphic. �

Proof of triangle inequality: To show that the triangle
inequality holds, let the correspondence C1 between X and
Z and the correspondence C2 between Z and Y be the
minimizing correspondences in (7). We can then write

dkN (NK
X , N

K
Z ) = ΓkX,Z(C1).

dkN (NK
Z , N

K
Y ) = ΓkZ,Y (C2).

(33)

Define a correspondence C between X and Y as the one
induced by pairs (x, z) and (z, y) sharing a common node
z ∈ Z,

C := {(x, y) | ∃z ∈ Z with (x, z) ∈ C1, (z, y) ∈ C2} . (34)

To show that C is a well defined correspondence we need to
show that for every x ∈ X there exists y0 ∈ Y such that
(x, y0) ∈ C and by symmetry for every y ∈ Y there exists
x0 ∈ Y such that (x0, y) ∈ C. To see this, first pick an
arbitrary x ∈ X . Because C1 is a correspondence between
X and Z there must exist z0 ∈ Z such that (x, z0) ∈ C1.
There must exist y0 ∈ Y such that (z0, y0) ∈ C2 since
C2 is also a correspondence between Y and Z. Therefore,
there exists a pair (x, y0) ∈ T with y0 ∈ Y for any
x ∈ X . The second part follows by symmetry and C is a well
defined correspondence. The correspondence C may not be the
minimizing correspondence for the distance dkN (NK

X , N
K
Y ).

However since it is a valid correspondence with the definition
in (7) we can write

dkN (NK
X , N

K
Y ) ≤ ΓkX,Y (C) (35)

By the definition of C in (34), the requirement (x0:k, y0:k) ∈ C
is equivalent as (x0:k, z0:k) ∈ C1 and (z0:k, y0:k) ∈ C2 for any
0 ≤ k ≤ K. Further adding and subtracting dkZ(z0:k) in the
absolute value of ΓkX,Y (C) =

∣∣dkX(x0:k)−dkY (y0:k)
∣∣ and using

the triangle inequality of the absolute value yields

ΓkX,Y (C) ≤ max
(x0:k,z0:k)∈C1

(z0:k,y0:k)∈C2

{∣∣dkX(x0:k)− dkZ(z0:k)
∣∣

+
∣∣dkZ(z0:k)− dkY (y0:k)

∣∣}.
(36)

We can further bound (36) by taking maximum over each
summand,

ΓkX,Y (C) ≤ max
(x0:k,z0:k)∈C1

∣∣dkX(x0:k)− dkZ(z0:k)
∣∣

+ max
(z0:k,y0:k)∈C2

∣∣dkZ(z0:k)− dkY (y0:k)
∣∣

= ΓkX,Z(C1) + ΓkZ,Y (C2). (37)

Substituting (35) and (33) back into (37) yields the triangle
inequality. �
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APPENDIX B
PROOF OF PROPOSITION 2

To prove that dN ,p is a distance in the space of K-order
dissimilarity networks modulo isomorphism we prove the (i)
nonnegativity, (ii) symmetry, (iii’) relaxed identity, and (iv)
triangle inequality properties in Definition 3.
Proof of nonnegativity property: Since the norm
‖ΓKX,Y (C)‖p is nonnegative, the network distance must then
satisfy dN ,p(N

K
X , N

K
Y ) ≥ 0 because it is a minimum of

nonnegative numbers. �

Proof of symmetry property: A correspondence C ⊂ X×Y
with elements ci = (xi, yi) results in the same associations as
the correspondence C̃ ⊂ Y × X with element c̃i = (yi, xi).
Thus, for any correspondence C we have a correspondence C̃
such that ΓKX,Y (C) = ΓKY,X(C̃). This implies their p-norms
are also the same ‖ΓKX,Y (C)‖p = ‖ΓKY,X(C̃)‖p. It follows that
the minima in (10) must coincide from where it follows that
dN ,p(N

K
X , N

K
Y ) = dN ,p(N

K
Y , N

K
X ). �

Proof of relaxed identity property: We need to show that if
NK
X and NK

Y are isomorphic we must have dN ,p(NK
X , N

K
Y ) =

0. To see that this is true recall that for isomorphic networks
there exists a bijection φ : X → Y that preserves distance
functions at every order [cf. (5)]. Consider then the partic-
ular correspondence Cφ = {(x, φ(x)), x ∈ X}. We have
demonstrated in Appendix A that Cφ is a valid correspondence
between X and Y . The definition of isomorphism indicates
that it must be (31) holds true for all 0 ≤ k ≤ K and
(x0:k, y0:k) ∈ Cφ. Since Cφ is a particular correspondence,
taking a minimum over all correspondence in (7) yields

dN ,p(N
K
X , N

K
Y ) ≤

∥∥ΓKX,Y (C)
∥∥
p
. (38)

Because dkX(x0:k) − dkY (y0:k) = 0 for any 0 ≤ k ≤ K and
any (x0:k, y0:k) ∈ Cφ by the first equality in (31),

ΓKX,Y (C) = 0. (39)

‖ · ‖p is a proper norm implies ‖ΓKX,Y (C)‖p = 0. Substitut-
ing this back into (38) shows dN ,p(N

K
X , N

K
Y ) ≤ 0. Since

dN ,p(N
K
X , N

K
Y ) ≥ 0, as already shown, it must be that

dN ,p(N
K
X , N

K
Y ) = 0 when two dissimilarity networks NK

X

and NK
Y are isomorphic. �

Proof of triangle inequality: To show that the triangle
inequality holds, let the correspondence C1 between X and
Z and the correspondence C2 between Z and Y be the
minimizing correspondences in (10). We can then write

dN ,p(N
K
X , N

K
Z ) =

∥∥ΓKX,Z(C1)
∥∥
p
.

dN ,p(N
K
Z , N

K
Y ) =

∥∥ΓKZ,Y (C2)
∥∥
p
.

(40)

Define a correspondence C between X and Y in the same
way as (34). We have demonstrated in Appendix A that C is
a well defined correspondence. Therefore with the definition
in (10) we can write

dN ,p(N
K
X , N

K
Y ) ≤

∥∥ΓKX,Y (C)
∥∥
p

(41)

Moreover, in Appendix A we also showed for any 0 ≤ k ≤ K,

ΓkX,Y (C) ≤ ΓkX,Z(C1) + ΓkZ,Y (C2). (42)

This implies the vector ΓKX,Z(C1)+ΓKZ,Y (C2) is elementwise
no smaller than the vector ΓKX,Y (C). The definition of p-norm

‖x‖p =
(∑n

i=0 |xi|p
)1/p

guarantees that the value of ‖x‖p
is monotonically nondecreasing on each element xi in x =
(x0, x1, . . . , xn)T . Therefore,∥∥ΓkX,Y (C)

∥∥
p
≤
∥∥ΓkX,Z(C1) + ΓkZ,Y (C2)

∥∥
p
. (43)

We can further bound (43) by using the triangle inequality of
the p-norm,∥∥ΓkX,Y (C)

∥∥
p
≤
∥∥ΓkX,Z(C1)

∥∥
p

+
∥∥ΓkZ,Y (C2)

∥∥
p
. (44)

Substituting (41) and (40) back into (44) yields the triangle
inequality. �

APPENDIX C
PROOF OF THEOREMS IN SECTION III-A

Proof of Theorem 1: The proof in Appendix A has demon-
strated that dkD for any integer 0 ≤ k ≤ K is a pseudometric
in the space of K-order dissimilarity networks modulo k-
isomorphism. To prove that dkD for any integer 1 ≤ k ≤ K is a
metric in the space of K-order dissimilarity networks modulo
k-isomorphism we need to show the missing part in the (iii)
identity property in Definition 3.
Proof of the second part of the identity property: We
want to prove that having dkD(DK

X , D
K
Y ) = 0 must imply that

DK
X and DK

Y are k-isomorphic. If dkD(DK
X , D

K
Y ) = 0, there

exists a correspondence C0 such that dkX(x0:k) = dkY (y0:k)
for any (x0:k, y0:k) ∈ C0. Define a function φ : X → Y that
associates x with an arbitrary y chosen from the set that form
a pair with x in C0,

φ : x 7→ y0 ∈ {y | (x, y) ∈ C0}. (45)

Since C0 is a correspondence the set {y | (x, y) ∈ C0} is
nonempty for any x implying that φ is well-defined for any
x ∈ X . Therefore dkX(x0:k) = dkY (φ(x0:k)) for any x0:k ∈
C. This implies the function φ must be injective. If it were
not, there would be a pair of nodes xl 6= xl′ with φ(xl) =
φ(xl′) = y ∈ Y . Hence the k-order dissimilarity between
xl,l,...,l,l′ where the first k nodes in the tuple are xl and the
last node is xl′ would satisfy

dkX(xl,l,...,l′) = dkY (φ(xl,l,...,l,l′)) = 0, (46)

where the first equality follows from the definition of φ and the
second equality is because of φ(xl) = φ(xl′) = y and the iden-
tity property of dissimilarity networks that dkY (y, y, . . . , y) =
0. However, this is inconsistent with the identity property of
dissimilarity networks which requires dkX(xl,l,...,l′) = 0 if and
only if all the members in the tuple xl,l,...,l,l′ are identical. It
then must be φ(xl) = φ(xl′) if and only if xl = xl′ implying
that φ is an injection.

Likewise, define the function ψ : Y → X that associates y
with an arbitrary x chosen from the set that form a pair with
y in C0,

ψ : y 7→ x0 ∈ {x|(x, y) ∈ C0}. (47)
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It follows by similar arguments that ψ must be injective.
By applying the Cantor-Bernstein-Schroeder theorem [29,
Section 2.6] to the reciprocal injections φ : X → Y and
ψ : Y → X , the existence of a bijection between X and Y is
guaranteed. This forces X and Y to have same cardinality and
φ and ψ being bijections. Pick the bijection φ and it follows
dkX(x0:k) = dkY (φ(x0:k) for all nodes (k+1)-tuples x0:k ∈ X .
This shows that DK

X
∼=k D

K
Y and completes the proof of the

identity statement. �

Having demonstrated all four properties in Theorem 1, the
global proof completes. �

Proof of Theorem 2: The proof in Appendix B has demon-
strated that dD,p is a pseudometric in the space of K-order
dissimilarity networks modulo isomorphism. To prove that
dD,p is a metric in the space of K-order dissimilarity networks
modulo isomorphism we further demonstrate the missing part
in the (iii) identity property in Definition 3.
Proof of the second part of the identity property: We
want to show that having dD,p(D

K
X , D

K
Y ) = 0 must imply

that DK
X and DK

Y are isomorphic. If dD,p(D
K
X , D

K
Y ) =

minC∈C(X,Y ) ‖ΓKX,Y (C)‖p = 0, there exists a correspondence
C0 such that

‖ΓKX,Y (C0)‖p = 0. (48)

The property of p-norm implies that this correspondence C0

satisfies ΓkX,Y (C0) = 0 for any integers 0 ≤ k ≤ K, i.e.
dkX(x0:k) = dkY (y0:k) for any integers 0 ≤ k ≤ K and any
(x0:k, y0:k) ∈ C0. Define functions φ : X → Y as in (45) and
ψ : Y → X as in (47). The analysis in Appendix C Proof of
Theorem 1 for any integers 0 ≤ k ≤ K demonstrated that φ
and ψ are bijections and that X and Y have same cardinality.
Pick the bijection φ and it follows dkX(x0:k) = dkY (φ(x0:k))
for any integers 0 ≤ k ≤ K and all nodes (k + 1)-tuples
x0:k ∈ X . This shows that DK

X
∼= DK

Y and completes the
proof of the identity statement. �

Having demonstrated all four properties in Theorem 2, the
global proof completes. �

APPENDIX D
PROOF OF THEOREMS IN SECTION III-B

Proof of Theorem 3 : The proof in Appendix A has
demonstrated that dkP for any integer 0 ≤ k ≤ K is a
pseudometric in the space of K-order dissimilarity networks
modulo k-isomorphism. To prove that dkP for any integer
1 ≤ k ≤ K is a metric in the space of K-order dissimilarity
networks modulo k-isomorphism we need to show the missing
part in the (iii) identity property in Definition 3.
Proof of the second part of the identity property: Most
parts of the proof follow from the proof of the second part
of the identity property for Theorem 1 in Appendix C. The
only difference is in demonstrating the function φ constructed
in (45) is injective. Under the same setup where there exist a
pair of nodes xl 6= xl′ such that φ(xl) = φ(xl′) = y ∈ Y . The
k-order proximity between xl,l,...,l,l′ where the first k nodes
in the tuple are xl and the last node is xl′ would satisfy

dkX(xl,l,...,l,l′) = dkY (φ(xl,l,...,l′)) = 1, (49)

where the first equality comes from the definition of φ
and the second equality is due to the fact that φ(xl) =
φ(xl′) = y and the identity property of proximity networks
that dkY (y, y, . . . , y) = 1. However, this is consistent with
the identity property of proximity networks which requires
dkX(xl,l,...,l′) = 1 if and only if all nodes in the tuple xl,l...,l,l′
are identical. It then must be φ(xl) = φ(xl′) if and only if
xl = xl′ implying that φ is an injection. The rest of the proof
follows. �

Having demonstrated all four properties in Theorem 3, the
global proof completes. �

Proof of Theorem 4: The proof in Appendix B has demon-
strated that dP,p is a pseudometric in the space of K-order
proximity networks modulo isomorphism. To prove that dP,p
is a metric in the space of K-order proximity networks modulo
isomorphism we further demonstrate the missing part in the
(iii) identity property in Definition 3.
Proof of the second part of the identity property: We
want to show that having dP,p(P

K
X , P

K
Y ) = 0 must imply

that PKX and PKY are isomorphic. If dD,p(PKX , P
K
Y ) = 0,

there exists a correspondence C0 such that ‖ΓKX,Y (C0)‖p = 0.
The property of p-norm implies that this correspondence C0

satisfies dkX(x0:k) = dkY (y0:k) for any integers 0 ≤ k ≤ K
and any (x0:k, y0:k) ∈ C0. Define functions φ : X → Y as
in (45) and ψ : Y → X as in (47), the analysis in Appendix
D Proof of Theorem 3 has demonstrated that φ and ψ are
bijections and that X and Y have same cardinality. Pick the
bijection φ and it follows dkX(x0:k) = dkY (φ(x0:k)) for any
integers 0 ≤ k ≤ K and all nodes (k + 1)-tuples x0:k ∈ X .
This shows that PKX ∼= PKY and completes the proof of the
identity statement. �

Having demonstrated all four properties in Theorem 4, the
global proof completes. �

APPENDIX E
PROOFS IN SECTION III-C

Proof of Proposition 6 : We first prove that dkD(DK
X′ , DK

Y ′) =
dkP(PKX , P

K
Y ) for any integer 0 ≤ k ≤ K where DK

X′ and DK
Y ′

are the constructed dissimilarity networks built from PKX and
PKY using (24). Let the correspondence C between X and Y
be the minimizing correspondence in (20) so that we can write

dkP(PKX , P
K
Y ) = ΓkX,Y (C). (50)

Since X = X ′, Y = Y ′, although C may not be the
minimizing correspondence for the distance dKD (PKX′ , PKY ′), it
is a valid correspondence. With the definition in (15) we can
write,

dkD(DK
X′ , DK

Y ′) ≤ ΓkX′,Y ′(C). (51)

Substituting the definition of dkX′ and dkY ′ in (24) for the right
hand side of the definition for ΓkX′,Y ′(C) in (51),

ΓkX′,Y ′(C) = max
(x0:k,y0:k)∈C

∣∣∣(1− dkX(x0:k)
)

−
(
1− dkY (y0:k)

)∣∣∣. (52)
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The 1s in (52) cancels and therefore,

ΓkX′,Y ′(C) = ΓkX,Y (C). (53)

Substituting (50) and (51) back to (53) implies

dkP(PKX , P
K
Y ) ≥ dkD(DK

X′ , DK
Y ′). (54)

Let the correspondence C ′ between X ′ and Y ′ be the
minimizing correspondence in (15). Then C ′ is also a valid
correspondence for the distance dKP (PKX , P

K
Y ) used in (20).

By symmetry, we have

dkD(DK
X′ , DK

Y ′) ≥ dkP(PKX , P
K
Y ). (55)

Combining (54) and (55) yields the desired result

dkD(DK
X′ , DK

Y ′) = dkP(PKX , P
K
Y ). (56)

The other part of the proposition in which dkP(PKX′ , PKY ′) =
dkD(DK

X , D
K
Y ) for any integer 0 ≤ k ≤ K where PKX′ and

PKY ′ are the constructed proximity networks built from DK
X

and DK
Y using (25) follows by symmetry. �

Proof of Proposition 7 : We first prove that
dD,p(D

K
X′ , DK

Y ′) = dP,p(P
K
X , P

K
Y ) for some p-norm ‖ · ‖p

where DK
X′ and DK

Y ′ are the constructed dissimilarity networks
built from PKX and PKY using (24). Let the correspondence C
between X and Y be the minimizing correspondence in (22)
so that we can write

dP,p(P
K
X , P

K
Y ) =

∥∥ΓKX,Y (C)
∥∥
p
. (57)

Since X = X ′, Y = Y ′, although C may not be the
minimizing correspondence for the distance dD,p(PKX′ , PKY ′),
it is a valid correspondence. With the definition in (17) we
can write,

dD,p(D
K
X′ , DK

Y ′) ≤
∥∥ΓKX′,Y ′(C)

∥∥
p
. (58)

We have demonstrated in the Proof of Proposition 6 in
Appendix E that for any integers 0 ≤ k ≤ K, ΓkX′,Y ′(C) =

ΓkX,Y (C). In vector form, this is ΓKX′,Y ′(C) = ΓKX,Y (C).
Therefore, the property of p-norm implies that∥∥ΓKX′,Y ′(C)

∥∥
p

=
∥∥ΓKX,Y (C)

∥∥
p
. (59)

Substituting (57) and (58) back to (59) yields

dP,p(P
K
X , P

K
Y ) ≥ dD,p(DK

X′ , DK
Y ′). (60)

Let the correspondence C ′ between X ′ and Y ′ be the
minimizing correspondence in (17). Then C ′ is also a valid
correspondence for the distance dKP (PKX , P

K
Y ) used in (22).

By symmetry, we have

dD,p(D
K
X′ , DK

Y ′) ≥ dP,p(PKX , PKY ). (61)

Combining (60) and (61) yields the desired result

dD,p(D
K
X′ , DK

Y ′) = dP,p(P
K
X , P

K
Y ). (62)

The other part of the proposition in which dP,p(PKX′ , PKY ′) =
dD,p(D

K
X , D

K
Y ) for some p-norm where PKX′ and PKY ′ are the

constructed proximity networks built from DK
X and DK

Y using
(25) follows by symmetry. �
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