
A Saddle Point Algorithm for Networked
Online Convex Optimization

Alec Koppel, Felicia Y. Jakubiec and Alejandro Ribeiro

Abstract—An algorithm to learn optimal actions in convex dis-
tributed online problems is developed. Learning is online because
cost functions are revealed sequentially and distributed because they
are revealed to agents of a network that can exchange information
with neighboring nodes only. Learning is measured in terms of the
global network regret, which is defined here as the accumulated loss
of causal prediction with respect to a centralized clairvoyant agent
to which the information of all times and agents is revealed at the
initial time. A variant of the Arrow-Hurwicz saddle point algorithm
is proposed to control the growth of global network regret. This
algorithm uses Lagrange multipliers to penalize the discrepancies
between agents and leads to an implementation that relies on local
operations and exchange of variables between neighbors. We show
that decisions made with this saddle point algorithm lead to regret
whose order is not larger than O(

√
T), where T is the total operating

time. Numerical behavior is illustrated for the particular case of
distributed recursive least squares. An application to computer
network security in which service providers cooperate to detect the
signature of malicious users is developed to illustrate the practical
value of the proposed algorithm.

I. INTRODUCTION

In distributed online learning problems, agents of a network
want to causally learn a strategy that is as good as the one they
could learn if they had access to the information of all other agents
while communicating with neighboring nodes only. The specific
setting considered here consists of convex cost functions that are
sequentially revealed to individual agents. In offline centralized
learning the functions of all agents and all times are known before-
hand and a constant and common action is selected for agents to
play. In online centralized learning, functions are still available at a
central location but are revealed sequentially. The common action
to be played by agents is selected ex ante using past observations
and incurs a cost ex post after the current functions become
available. In distributed online learning the agents select actions
based on previous cost functions observed locally and messages
received from neighbors in past communication exchanges. This
papers proposes the use of a saddle point algorithm so that
distributed online strategies achieve comparable performance to
centralized offline strategies.

Centralized online learning problems can be formulated in
the language of regret minimization [2], [3]. In this setting, a
learner makes a sequence of plays to which Nature provides the
answer in the form of a loss function. Regret is defined as the
accumulation over time of the loss difference between the online
learner and a clairvoyant offline learner to which cost functions
have been revealed beforehand. We interpret regret as a measure
of the price for causal prediction. When loss functions are convex,
several algorithms are known to achieve regret whose growth with

Work in this paper is supported by NSF CCF-1017454, NSF CCF-0952867
and ONR N00014-12-1-0997. The authors are with the Department of Electrical
and Systems Engineering, University of Pennsylvania, 200 South 33rd Street,
Philadelphia, PA 19104. Email: {akoppel, life, aribeiro}@seas.upenn.edu. Part of
the results in this paper appeared in [1]

the accumulated operating time T is sublinear – which entails
vanishing cost differences between online and offline plays at
specific times. Germane to this paper is online gradient descent in
which plays are updated by descending on the gradient of observed
costs. Despite the mismatch of descending on the prior function
while incurring a cost in the current function, online gradient
descent achieves regret that grows not faster than a function of
order O(

√
T) in general and not faster than O(log T) under more

stringent conditions [4]. Other methods to control regret growth
are proximal maps [5], mirror descent [6], [7], and dual averaging
[8]. All of these strategies may be understood as special cases of
a strategy known as “follow the regularized leader” [2].

Often, data is gathered by agents of a network. Nodes would
like to cooperate to learn global optimal strategies but collecting
data at a clearinghouse is slow, costly, and sometimes unsafe.
This motivates the use of distributed online learning algorithms. In
deterministic settings, optimal actions of separable convex costs
are computed using distributed optimization algorithms which can
be categorized into primal methods, dual methods, and primal-
dual methods. In primal methods agents descent along their local
gradients while averaging their signals with those of their neigh-
bors, [7], [9]–[11]. In dual methods agents reformulate distributed
optimization as an agreement constrained optimization problem
and ascend in the dual domain using the fact that dual function
gradients can be computed while cooperating with neighboring
nodes only [12], [13]. Variations of dual methods include the
alternating direction method of multipliers [14], [15] and the
incipient development of second order methods that rely on
separable approximations of global Newton steps [16]. Primal-
dual methods combine primal descent with dual ascent [9], [17],
[18]. Primal methods have been generalized to distributed online
learning and have proved effective for particular cases where
averaging is advantageous [19], [20].

In this paper we propose a variant of the saddle point method
[17], [21] to solve distributed online learning problems. Our main
technical contribution is to demonstrate that saddle point iterates
achieve a regret that grows at a rate not faster than O(

√
T). We

begin the paper in Section II with a discussion of the concept of
regret and extend it to networked settings by defining the concepts
of centralized, uncoordinated, local, and global networked regret.
The concepts of local and global networked regret, as well as their
practical meaning, are illustrated with applications to decentralized
recursive least squares (Section II-A) and decentralized online
support vector machines (Section II-B). The saddle point algorithm
is developed in Section III by drawing parallels with deterministic
and stochastic optimization. The method relies on the addition of
equality constraints and the definition of an online Lagrangian
associated with the instantaneous cost function. Primal descent
steps on the Lagrangian are used to update actions and dual ascent
steps are used to update the multipliers associated with the equality
constraints. As in the case of online gradient descent, there is

a mismatch between descending on past online Lagrangians to
find an action to be played at the current time and incur a cost
associated with a function that can be arbitrarily different. Despite
this mismatch, and again, analogous to online gradient descent, the
saddle point method achieves regret of order O(

√
T) (Section IV).

This result is first established in terms of the global networked
regret (Theorem 1) and then shown to hold for the regrets of
individual agents as well (Theorem 2).

Numerical analyses are undertaken in Section V using the
recursive least squares problem of Section II-A as an example.
Local and global networked regrets are shown to decline at the
rates guaranteed by the theoretical analysis. Agents are also shown
to learn the same globally optimal estimate that would had been
learnt had all the information being available at a central location.
We also illustrate the effects of network size, connectivity, and
topology in learning rates and compare the performance of saddle
point with the methods developed in [19], [20]. An application
of the proposed algorithm to train a support vector machine in
the context of computer network security is presented in Section
VI. Each agent of the network represents a service provider to
which friendly and hostile users connect sequentially. The service
providers aim to learn the signature of intrusions so as to deny
service to attackers. Different service providers want to collaborate
to detect intrusions but sharing information is problematic in
terms of cost, delay, and the possibility of revealing sensitive
proprietary information. The saddle point method allows provider
cooperation while sharing multipliers and classification vectors
without explicitly exchanging feature vectors. Concluding remarks
are provided in Section VII.

II. REGRET MINIMIZATION FOR DISTRIBUTED LEARNING

We consider formulations of learning problems with instanta-
neous actions x̃t ∈ X ⊆ Rp chosen by a player, instantaneous
functions ft : Rp → Rq chosen by nature, and associated losses
lt(x̃t, ft) that indicate how good the choice of playing x̃t is when
nature selects the function ft. In offline learning the functions ft
for times t = 1, . . . T are known beforehand at time t = 0 and
used to select a fixed strategy x̃t = x̃ for all times. The total
loss associated with the selection of x̃ is

∑T
t=1 lt(x̃, ft). In online

learning the function ft is revealed at time t and we are required
to choose x̃t without knowing ft but rather the functions fu that
nature played at earlier times u < t. The total loss associated
with the variables x̃t played for times 1 ≤ t ≤ T is the sum∑T

t=1 lt(x̃t, ft). The regret associated with these plays is defined
as the difference between their aggregate cost and the minimum
aggregate cost achievable by offline policies

RegC
T :=

T∑
t=1

lt(x̃t, ft)− inf
x̃∈X

T∑
t=1

lt(x̃, ft). (1)

In regret formulations of online learning the goal is to design
strategies that observe past functions fu played by nature at times
u < t to select and action x̃t that makes the regret RegC

T in (1)
small. In particular, we say that a strategy learns optimal plays
if RegC

T /T vanishes with growing T . We emphasize that the
functions ft are arbitrary and that while the offline strategy has the
advantage of knowing all functions beforehand, online strategies
have the advantage of being allowed to change their plays at each
time slot.

In this paper we subsume the functions ft and the loss lt into
the function ft : Rp → R such that ft(x̃) = lt(x̃, ft) and consider

cases in which functions ft are written as a sum of components
available at different nodes of a network. To be specific start by
defining the optimal offline strategy as x̃∗ = argminx̃

∑T
t=1 ft(x̃)

and rewrite the regret in (1) as

RegC
T =

T∑
t=1

ft(x̃t)−
T∑

t=1

ft(x̃
∗). (2)

Further consider a symmetric and connected network G = (V, E)
with N nodes forming the vertex set V = {1, . . . , N} and M =
|E| directed edges of the form e = (j, k). That the network is
symmetric means that if e = (j, k) ∈ E it must also be that
e′ = (k, j) ∈ E . That the network is connected means that all
pairs of nodes are connected by a chain of edges. We also define
the neighborhood of j as the set of nodes nj := {k : (j, k) ∈ E}
that share an edge with j. Each node in the network is associated
with a sequence of cost functions fi,t : Rp → R for all times
t ≥ 1. If a common variable x̃ is played for all these functions
the global network cost at time t is then given by

ft(x̃) =

N∑
i=1

fi,t(x̃). (3)

The functions fi,t in (4), and as a consequence the functions ft
are assumed convex for all times t but are otherwise arbitrary.

Combining the definitions in (2) and (3) we can consider a
coordinated game where all agents play a common variable x̃t

at time t. The accumulated regret associated with playing the
coordinated sequence {x̃t}Tt=1, as opposed to playing the optimal
x̃∗ = argminx̃

∑T
t=1 ft(x̃) for all times t, can then be expressed

as

RegC
T =

T∑
t=1

N∑
i=1

fi,t(x̃t)−
T∑

t=1

N∑
i=1

fi,t(x̃
∗). (4)

An alternative formulation is to consider that agents play their
own variables xi,t to incur their own local cost fi,t(xi,t). In this
case we have the aggregate cost

∑N
i=1 fi,t(xi,t) which leads to

the definition of the uncoordinated regret by time T as

RegU
T =

T∑
t=1

N∑
i=1

fi,t(xi,t)−
T∑

t=1

N∑
i=1

fi,t(x̃
∗). (5)

This formulation is of little interest because agents are effectively
independent of each other. Indeed, to reduce the regret in (5) it
suffices to let agents learn strategies that are good with respect to
their local costs

∑T
t=1 fi,t(xi,t). A simple local gradient descent

policy can achieve small regret with respect to the optimal local
action x∗i = argminxi

∑T
t=1 fi,t(xi) [22]. This uncoordinated

strategy is likely to result in negative regret in (5) since the variable
x̃∗ is chosen as common across all agents.

A more appropriate formulation is to consider games where
agents have an incentive to learn the cost functions of their
peers. Suppose then that each agent in the network plays his own
variables xi,t which are not necessarily identical to the variables
xj,t played by other agents j 6= i in the same time slot. However,
we still want each agent to learn a play that is optimal with respect
to the global cost in (3). Thus, we formulate a problem in which
the local regret of agent j is defined as

Regj
T =

T∑
t=1

N∑
i=1

fi,t(xj,t)−
T∑

t=1

N∑
i=1

fi,t(x̃
∗). (6)

The regret formulations in (4) and (6) are identical. This means
that (6) corresponds to a problem in which agent j aspires to
learn a play that is as good as the play that can be learned by
a centralized agent that has access to the cost functions fi,t of
all agents i. However, the assumption here is that only the local
functions fj,t are known to agent j.

By further considering the sum of all local regrets in (6) we
define global networked regret as

RegT :=
1

N

N∑
j=1

Regj
T

=
1

N

T∑
t=1

N∑
i,j=1

fi,t(xj,t)−
T∑

t=1

N∑
i=1

fi,t(x̃
∗), (7)

where we used (6) and simplified terms to write the second
equality. In this paper we develop a variation of the saddle point
algorithm of Arrow and Hurwicz [17] to find a strategy whose
local and global network regrets [cf. (6) and (7)] are of order not
larger than O(

√
T). We also show that the proposed algorithm

can be implemented by agents that have access to their local cost
functions only and perform causal variable exchanges with peers
in their network neighborhood. This saddle point algorithm is
presented in Section III after the discussion of two representative
examples.

A. Distributed recursive least squares

As an example problem that admits the formulation in (7)
consider a distributed version of recursive least squares (RLS).
Suppose we want to estimate a signal x̃ ∈ Rp when agents
collect observations yit ∈ Rq that relate to x̃ according to the
model yit = Hi,tx̃ + wi,t, where the noise wi,t is Gaussian
and independent and identically distributed across nodes and
time. The optimal estimator x̃∗ given the observations yi,t for
all i and t is the least mean squared error estimator x̃∗ =
argminx

∑T
t=1

∑N
i=1 ‖Hi,tx̃−yi,t‖2. If the signals yi,t are known

for all nodes i and times t the optimal estimator x̃∗ can be easily
computed. In this paper we are interested in cases where the
signal yj,t−1 is revealed at time t − 1 to sensor j which then
proceeds to determine the causal signal estimate xj,t ∈ Rp as
a function of past observations yj,u for u = 1, . . . , t − 1 and
information received from neighboring nodes in previous time
slots. This is tantamount to a distributed RLS problem because
signals are revealed sequentially to agents of a distributed network.
Setting aside for the moment the issue of how to select xj,t the
regret in (6) is a measure of goodness for xj,t with respect to
a clairvoyant centralized estimator. Indeed, the particular form of
(6) becomes

Regj
T =

T∑
t=1

N∑
i=1

‖Hi,txj,t − yi,t‖2 (8)

−
T∑

t=1

N∑
i=1

‖Hi,tx̃
∗ − yi,t‖2.

The regret Regj
T in (8) is measuring the mean squared error

penalty that agent j is incurring by estimating the signal x̃ as
xj,t instead of the optimal estimator x̃∗. In that sense it can be
interpreted as the penalty for distributed causal operation with
respect to centralized clairvoyant operation – the estimate x̃∗ is
centralized because it has access to the observations of all nodes

and clairvoyant because it has access to the current observation
yi,t. The algorithms developed in this paper are such that the
regret penalty Regj

T in (8) grows at a sub-linear rate not larger
than O(

√
T) – see Sections III and IV.

B. Decentralized Online Support Vector Machines

As a second example consider the problem of training a support
vector machine (SVM) for binary classification [23]. Suppose that
each agent i is given a training data set Si with T elements that are
revealed sequentially. The elements of this set are pairs (zi,t, yi,t)
where zi,t ∈ Rp is a feature vector having a known binary label
yi,t ∈ {−1, 1}. Given the aggregate training set S = ∪Ni=1Si
we seek a decision hyperplane which best separates data points
with distinct labels. That is, we seek a vector x̃ ∈ Rp such that
x̃T zi,t > 0 whenever yi,t = 1 and x̃T zi,t > 0 for yi,t = −1.
Since data sets are not separable in general, we consider a soft
margin formulation which penalizes misclassifications through the
hinge loss l((zi,t, yi,t); x̃) := max(0, 1 − yi,tx̃T zi,t). The hinge
loss l((zi,t, yi,t); x̃) is null if the label yi,t is correctly classified by
the hyperplane defined by x̃ – which happens when x̃T zi,t > 0 for
yi,t = 1 and x̃T zi,t < 0 for yi,t = −1 – and grows linearly with
the distance between the point zi,t and the classifying hyperplane
otherwise. To balance model complexity with training error we
further add a quadratic regularization term so that the optimal
classifier x̃∗ is the one that minimizes the cost

x̃∗=argmin
x̃∈X

ζ

2
‖x̃‖22 +

1

NT

T∑
t=1

N∑
i=1

max
(

0, 1−yi,t ·x̃T zi,t

)
, (9)

where ζ is the regularization constant tuning classifier bias and
variance. The classifier x̃∗ that results from solving (9) is the
centralized batch classifier.

To consider distributed online versions of SVM training define
functions fi,t : Rp → R with values

fi,t(x̃) =
ζ

2
‖x̃‖22 + max

(
0, 1− yi,tx̃T zi,t

)
, (10)

so that the minimization argument in (9) can be written as∑
i,t fi,t(x̃). This modification amounts to considering the case

where each agent in the network has access only to a distinct
local labeled data set.

The total penalty
∑

i,t fi,t(x̃
∗) of the optimal batch or offline

classifier x̃∗ quantifies the number of misclassifications incurred
when the observations of all nodes and all times are known
beforehand. The various online classifiers whose performances are
described by (4), (5), and (6) quantify the number of misclassifi-
cations incurred when the class corresponding to feature vectors
zi,t is predicted causally using features zi,u and associated classes
yi,u observed at past times u < t. The centralized regret RegC

T

in (4) corresponds to the case when all observations are causally
available at a central location. The uncoordinated regret RegU

T in
(5) corresponds to the case where classification is based on past
local observations only. The local regrets Regj

T in (6) corresponds
to cases when each of the agents is trying to accumulate past global
network knowledge through communication with neighboring
agents.

III. ARROW-HURWICZ SADDLE POINT ALGORITHM

We turn to developing a saddle point algorithm to control the
growth of the local and global network regrets [cf. (6) and (7)].
Since the regret functions Regj

T defined in (6) are the same

for all agents j, plays xj,t that are good for one agent are also
good for another. Thus, a suitable strategy is to select actions
xj,t which are the same for every agent. Since the network G
is assumed to be connected, this relationship can be attained by
imposing the constraint xj,t = xk,t for all pairs of neighboring
nodes (j, k) ∈ E . To write more compactly define the column
vector xt := [x1,t; . . . ;xN,t] ∈ RNp and the augmented graph
edge incidence matrix C ∈ RMp×Np. The matrix C is formed by
M ×N square blocks of dimension p. If the edge e = (j, k) links
node j to node k the block (e, j) is [C]ej = Ip and the block
[C]ek = −Ip, where Ip denotes the identity matrix of dimension
p. All other blocks are identically null, i.e., [C]ek = 0p for all
edges e 6= (j, k). With this definitions the constraint xj,t = xk,t

for all pairs of neighboring nodes can be written as

Cxt = 0, ∀t = 1, . . . , T. (11)

The edge incidence matrix C has exactly p null singular values.
We denote as 0 < γ the smallest nonzero singular value of C and
as Γ the largest singular value of C. The singular values γ and Γ
are measures of network connectedness.

Imposing the constraint in (11) for all times t requires global
coordination – indeed, the formulation would be equivalent to
the centralized regret problem in (4). Instead, we consider a
modification of (3) in which we add a linear penalty term to
incentivize the selection of coordinated actions. Introduce then
dual variables λe,t = λjk,t ∈ Rp associated with the constraint
xj,t − xk,t = 0 and consider the addition of penalty terms of
the form λT

jk,t(xj,t − xk,t). For an edge that starts at node j, the
multiplier λjk,t is assumed to be kept at node j. Further introduce
the stacked vector λt := [λ1,t; . . . ;λM,t] ∈ RMp and define the
online Lagrangian at time t as

Ot(xt,λt) =

N∑
i=1

fi,t(xi,t) +λT
t Cxt = ft(x) +λT

t Cxt. (12)

The definition in (12) corresponds to the Lagrangian asso-
ciated with the minimization of the instantaneous function∑N

i=1 fi,t(xi,t) subject to the agreement constraint Cxt = 0.
Using this interpretation of the online Lagragian we consider
the use of the Arrow-Hurwicz saddle point method. This method
exploits the fact that primal-dual optimal pairs are saddle points of
the Lagrangian to work through successive primal gradient descent
steps and dual gradient ascent steps. Particularized to the online
Lagrangian in (12) the saddle point algorithm takes the form

xt+1 = PX [xt − ε∇xOt(xt,λt)], (13)
λt+1 = PΛ[λt + ε∇λOt(xt,λt)], (14)

where ε is a given stepsize. The notation PΛ(λ) denotes projection
of dual variables on a given convex compact set Λ. We assume
that the set of multipliers Λ can be written as a Cartesian product
of sets Λjk so that the projection of λ into Λ is equivalent to the
separate projection of the components λjk into the sets Λjk. The
notation PX(x) denotes projection onto the set of feasible primal
variables so that we have xj ∈ X for all the N components of
the vector xt := [x1; . . . ;xN].

The pair of iterations in (13)-(14) can be implemented in a
distributed manner such that the variables kept at node j, namely,
xj,t and λjk,t, are updated using the values of other local variables
and variables of neighboring nodes, namely, xk,t and λkj,t for
k ∈ nj . To see that this is true, take the gradient with respect

to xj,t in (13) and observe that only the term ∇xj,t
fj,t(xj,t) is

not null in the sum in (12). Further observe that when taking the
gradient of the linear penalty term λT

t Cxt the variable xj appears
only in the terms associated with edges of the form e = (j, k) or
e = (k, j). Thus, the gradient of this penalty term with respect
to xj can be written as ∇xj,t

(λT
t Cxt) =

∑
k∈nj

λjk,t − λkj,t.
Combining these two observations it follows that the gradient of
the online Lagrangian with respect to the primal variable xj,t of
node j can be written as

∇xj
Ot(xt,λt) = ∇xj

fj,t(xj,t) +
∑
k∈nj

(λjk,t − λkj,t). (15)

The computation of this gradient only depends on the local
gradient of the local loss function fj,t, the local primal variable
xj,t, the local dual variables λjk,t and the dual variables λkj,t of
neighboring nodes k ∈ nj . Similarly, to determine the gradient
of the online Lagrangian with respect to the dual variable λjk

observe that the only term in (12) that involves this variable is
the one associated with the constraint xj,t − xk,t. Therefore, the
gradient with respect to λjk can be written as

∇λjk
Ot(xt,λt) = xj,t − xk,t. (16)

To compute this gradient at node j we use the local primal variable
xj,t and the neighboring play xk,t. Separating (13) along the
components xj,t associated with node j it follows that the primal
iteration is equivalent to the N parallel updates

xj,t+1 = PX

[
xj,t − ε

(
∇xj

fj,t(xj,t) +
∑
k∈nj

(λjk,t − λkj,t)
)]
,

(17)

where PX(xj,t) denotes projection of xj,t into the feasible primal
set X . Likewise, separating (14) into the subcomponents along the
λjk direction yields the M parallel updates

λjk,t+1 = PΛjk

[
λjk,t + ε (xj,t − xk,t)

]
, (18)

where PΛjk
denotes projection of λjk into the dual set Λjk. Node

j can implement (17)-(18) by using local variables and receiving
variables λkj,t and xk,t maintained at neighboring nodes k ∈ nj .

As an example application consider the distributed RLS problem
in Section II-A. From (8), we glean that local functions are
fi,t(xi,t) = ‖Hi,txi,t − yi,t‖2 to conclude that the primal update
at agent j shown in (17) takes the specific form

xj,t+1 = PXj

[
xj,t − ε

(
2HT

j,t

(
Hj,txj,t − yj,t

)
+
∑
k∈nj

(λjk,t − λkj,t)
)]
. (19)

As a second application consider the SVM classification problem
of Section II-B. In this case the functions fi,t are given in (10)
and the specific form of (17) is case the functions fi,t are given
in (10) and the specific form of (17) is

xj,t+1 = PXj

[
xj,t − ε

(
ζxj,t − yi,tzi,tI

(
yi,tx̃

T zi,t < 1
)

+
∑
k∈nj

(λjk,t − λkj,t)
)]
, (20)

where I
(
yi,tx̃

T zi,t < 1
)

= 1 when yi,tx̃
T zi,t < 1 and

I
(
yi,tx̃

T zi,t < 1
)

= 0 otherwise. The conditional subtraction
in the third term on the right hand side of (20) comes from
the computation of the subgradient of the hinge loss, and moves

the current classifier in the direction of mistaken feature vectors
weighted by the label. This update may be interpreted as a
projected version of the Perceptron algorithm [24], [25] with
a dual correction term that incorporates side information about
neighbors’ classifiers. For both, RLS and SVM, the dual iteration
is as given in (18) because the form of this update is independent
of the specific form of the cost functions fi,t.

Remark 1 Recursive application of the primal and dual iterations
in (13)-(14), or, equivalently, (17)-(18), would result in the mini-
mization of the instantaneous global cost

∑N
i=1 fi,t(xi,t) subject

to the agreement constraint Cxt = 0. However, (13) and (14) are
applied only once for each online Lagrangian and, moreover, this
instantantaneous minimization is not the optimization problem that
specifies the optimal action x̃∗ which we defined as the minimizer
of the accumulated cost

∑T
t=1

∑N
i=1 fi,t(x̃). In fact, the variables

xt+1 are obtained upon descending on the online Lagrangian
Ot(xt,λt) associated with the functions fi,t – that are observed
at time t – but their contribution to the regrets in (6) and (7) is
determined by the functions fi,t+1 – which are to be observed after
playing xt+1 at time t+1. It is thus not obvious that (13)-(14) is a
viable strategy to control regret, even though it will turn out to be
so under mild assumptions; see Section IV. The justification for
the use of these iterations comes from modeling the functions fi,t
as drawn from a stationary distribution. This renders the problem
of regret minimization equivalent to the solution of a stochastic
optimization problem and (13)-(14) equivalent to a stochastic
saddle point algorithm. In general, methods that work in stochastic
optimization tend to work for regret minimization. Do observe,
however, that no stochastic model is assumed in this paper. The
functions fi,t are arbitrary.

IV. REGRET BOUNDS

We turn to establishing that the local and global network regrets
in (6) and (7) associated with plays xj,t generated by the saddle
point algorithm in (13)-(14) grow not faster than O(

√
T). In order

to obtain these results, some conditions are required of the primal
and dual variables, cost functions, and network. We state these
assumptions below.

Assumption 1 The network G is connected. The smallest nonzero
singular value of the incidence matrix C is γ, the largest singular
value is Γ, and the network diameter is D.

Assumption 2 The gradients of the loss functions for any x is
bounded by a constant L, i.e.

‖∇ft(x)‖ ≤ L. (21)

Assumption 3 The loss functions fi,t(x) are Lipschitz continuous
with modulus Ki,t ≤ K,

‖fi,t(x)− fi,t(y)‖ ≤ Ki,t‖x− y‖ ≤ K‖x− y‖. (22)

Assumption 4 The set X of feasible plays is included in the 2-
norm ball of radius Cx/N .

X ⊆
{
x̃ ∈ Rp : ‖x̃‖ ≤ Cx/N

}
. (23)

Assumption 5 The convex set Λjk onto which the dual variables
λjk,t are projected is included in a 1-norm ball of radius Cλ,

Λjk ⊆
{
λ ∈ Rp : ‖λ‖1 ≤ Cλ

}
, (24)

for some constant Cλ ≥ DNK + 1.

Assumption 1 is standard in distributed algorithms. Assump-
tions 2 and 3 are typical in the analysis of saddle point algorithms.
The bounds on the sets X and Λjk in assumptions 4 and 5 are
constructed so that the iterates xj,t and λjk,t are bounded by
the respective constants in (23) and (24). The constant Cx/N in
Assumption 4 is chosen so that the 2-norm of the stacked primal
iterates xt := [x1,t; . . . ;xN,t] are bounded as ‖xt‖ ≤ Cx.

The various bounds in Assumptions 1 - 5 permit bounding the
norm of the gradients of the online Lagrangians in (12). For the
gradient with respect to the primal variable x, use of the triangle
and Cauchy-Schwarz inequalities yields

‖∇xOt(xt,λt)‖ = ‖∇ft(xt)+CTλt‖ ≤ ‖∇ft(xt)‖+‖CT ‖‖λt‖.
(25)

Use now the bounds in (21) and (24) and the definition of Γ as
the largest singular value of C to simplify (25) to

‖∇xOt(xt,λt)‖ ≤ L+ Γ
√
MCλ := Lx, (26)

where we defined Lx for future reference. For the gradient with
respect to the dual variable λ, we can similarly write

‖∇λOt(xt,λt)‖ = ‖Cxt‖ ≤ ‖C‖‖xt‖ ≤ ΓCx := Lλ. (27)

Our results concerning local and global networked regret are both
derived from the following lemma that simultaneously bounds the
uncoordinated regret in (5) and the weighted penalty disagreement∑T

t=1 λ
TCxt as we formally state next.

Lemma 1 Consider the sequence xt := [x1,t; . . . ;xN,t] gener-
ated by the saddle point algorithm in (17)-(18). Let x̃∗ be the
optimal offline action in (6), assume λ1 = 0 and further assume
that assumptions 1 - 5 hold. If we select ε = 1/

√
T we have that

for all λ ∈ Λ it holds

T∑
t=1

N∑
i=1

[
fi,t(xi,t)− fi,t(x̃∗)

]
+

T∑
t=1

λTCxt (28)

≤
√
T

2

(
‖x1 − x̃∗‖2 + ‖λ‖2 + L2

x + L2
λ

)
.

Proof: The proof is broken up into three parts. In the first part,
we use the definition of the saddle point primal iterate and the
first order characterization of convexity to bound the difference
between the current algorithmic choice xt and an arbitrary x ∈ X .
In the second, we mirror the first step in the dual variable λ. We
wrap up by combining the bounds obtained in the previous two
steps, summing over time and using feasibility and boundedness
properties to simplify expressions.

Begin then by considering the squared 2-norm of the difference
between the iterate xt+1 at time t+1 and an arbitrary point x ∈ X
and use (13) to express xt+1 in terms of xt,

‖xt+1 − x‖2 = ‖PX [xt − ε∇xOt(xt,λt)]− x‖2. (29)

Since x ∈ X the distance between the projected vector PX [xt −
ε∇xOt(xt,λt)] and x is smaller than the distance before projec-
tion. Use this fact in (29) and expand the square to write

‖xt+1 − x‖2 ≤ ‖xt − ε∇xOt(xt,λt)− x‖2

= ‖xt − x‖2 − 2ε∇xOt(xt, λt)
T (xt − x)

+ ε2‖∇xOt(xt,λt)‖2. (30)

Further note that as stated in (26) the norm of the primal gradient
of the online Lagrangian is bounded by Lx. Substitute this bound
for the corresponding term in (30) and reorder terms to write

∇xOt(xt,λt)
T (xt − x) (31)

≤ 1

2ε

(
‖xt − x‖2 − ‖xt+1 − x‖2

)
+
εL2

x

2
.

Observe now that since the functions fi,t(xi) are convex, the
online Lagrangian is a convex function of x [cf. (12)]. Thus, it
follows from the first order convexity condition that

Ot(xt,λt)−Ot(x,λt) ≤ ∇xOt(xt,λt)
T (xt − x). (32)

Substituting the upper bound in (31) for the right hand side of the
inequality in (32) yields

Ot(xt,λt)−Ot(x,λt) (33)

≤ 1

2ε

(
‖xt − x‖2 − ‖xt+1 − x‖2

)
+
εL2

x

2
.

We set this analysis aside and proceed to repeat the steps in (29)-
(33) for the distance between the iterate λt+1 at time t + 1 and
an arbitrary multiplier λ.

‖λt+1 − λ‖2 = ‖PΛ[λt + ε∇λOt(xt,λt)]− λ‖2, (34)

where we have substituted (14) to express λt+1 in terms of λt.
Using the non-expansive property of the projection operator in
(34) and expanding the square, we obtain

‖λt+1 − λ‖2 ≤ ‖λt + ε∇λOt(xt,λt)− λ‖2. (35)

= ‖λt − λ‖2 + 2ε∇λOt(xt, λt)
T (λt − λ)

+ ε2‖∇λOt(xt,λt)‖2.

Now we reorder terms and substitute the bound Lλ for the norm
of the dual subgradient of the online Lagrangian given in (27) to
write

∇λOt(xt,λt)
T (λt − λ) (36)

≥ 1

2ε

(
‖λt+1 − λ‖2 − ‖λt − λ‖2

)
− ε

2
L2
λ.

Note that the online Lagrangian [cf. (12)] is a linear function
of its Lagrange multipliers, which implies that online Lagrangian
differences for fixed xt satisfy

Ot(xt,λt)−Ot(xt,λ) ≥ ∇λOt(xt,λt)
T (λt − λ). (37)

Substitute the lower bound (36) into the right hand side of (37)
to obtain

Ot(xt,λt)−Ot(xt,λ) (38)

≥ 1

2ε

(
‖λt+1 − λ‖2 − ‖λt − λ‖2

)
− ε

2
L2
λ.

We now turn to combining the bounds in (33) and (38). To do
so observe that the term Ot(xt,λt) appears in both inequalities.
Thus, subtraction of the terms in inequality (38) from those in
(33) followed by reordering terms yields

Ot(xt,λ)−Ot(x,λt) (39)

≤ 1

2ε

(
‖xt − x‖2 − ‖xt+1 − x‖2

+ ‖λt − λ‖2 − ‖λt+1 − λ‖2
)

+
ε

2

(
L2
x + L2

λ

)
.

Now sum (39) over time to write

T∑
t=1

Ot(xt,λ)−Ot(x,λt) (40)

≤ 1

2ε

(
‖x1 − x‖2 + ‖λ‖2

)
+
ε

2
T (L2

x + L2
λ).

Here we have used the telescopic property of the summand on
the right hand side of (40) and omitted the subtraction of the
nonnegative quantity ‖λT −λ‖2. Using the explicit expression for
the online Lagrangian in (12) we can write the online Lagrangian
difference on the left side of (39) as

Ot(xt,λ)−Ot(x,λt) (41)

=

N∑
i=1

fi,t(xi,t) + λTCxt −
N∑
i=1

fi,t(x)− λT
t Cx.

Let now x be an arbitrary feasible point for the coordinated regret
game, i.e., one for which xi = xj for all i and j, or, equivalently,
one for which Cx = 0. For these feasible points the last term
in (41) vanishes. Substituting the resulting expression for the left
hand side of (40) yields, after reordering terms,

T∑
t=1

N∑
i=1

(fi,t(xi,t)− fi,t(x)) +

T∑
t=1

λTCxt

≤ 1

2ε

(
‖x1 − x‖2 + ‖λ‖2

)
+
ε

2
T (L2

x + L2
λ),

(42)

for arbitrary feasible point x satisfying Cx = 0. The bound in
(42) holds for x̃∗ because x̃∗ is optimal for coordinated regret –
thus feasible, in particular. The result in (28) follows by making
x = x̃∗ and ε = 1/

√
T in (42).

From Lemma 1 we obtain a bound for the uncoordinated regret
RegU

T defined in (5). To do so simply note that λ = 0 belongs
to the set Λ. Using this particular value of λ in (28) yields

RegU
T =

T∑
t=1

N∑
j=1

fj,t(xj,t)−
T∑

t=1

N∑
i=1

fj,t(x̃
∗)

≤
√
T

2

(
‖x1 − x‖2 + L2

x + L2
λ

)
. (43)

This bound is of little use because, as we mentioned in Section II,
agents can reduce uncoordinated regret by just operating indepen-
dently of each other. Observe, however, that the relationship in (28)
also includes the weighted penalty disagreement

∑T
t=1 λ

TCxt.
The presence of this term indicates that the actions of different
users can’t be too different and that it should be possible to relate
global networked regret to uncoordinated regret. This is indeed
possible and leads to the regret bound that we introduce in the
following theorem.

Theorem 1 Let xt := [x1,t; . . . ;xN,t] denote the sequence gen-
erated by the saddle point algorithm in (17)-(18) and let x̃∗ be
the optimal offline action in (6). If Assumptions 1-5 hold, with the
initialization λ1 = 0 and step size ε = 1/

√
T , the global network

regret [cf. (7)] is bounded by

RegT ≤
√
T

2

(
‖x1 − x̃∗‖2 +MC2

λ + L2
x + L2

λ

)
= O(

√
T).

(44)

Proof : We begin by writing the expression for RegT , and add
and subtract the left hand side of (28), the uncoordinated regret
plus a constraint slack penalizing node disagreement to write

RegT =

T∑
t=1

1

N

N∑
j,k=1

fk,t(xj,t)−
T∑

t=1

N∑
k=1

fk,t(x̃
∗) (45)

=

T∑
t=1

(
1

N

N∑
j,k=1

fk,t(xj,t)−
N∑

k=1

fk,t(xk,t)− λTCxt

)

+

T∑
t=1

(
N∑

k=1

fk,t(xk,t)−
N∑

k=1

fk,t(x̃
∗) + λTCxt

)
.

The second time summation on the right side of (45) may be
bounded with Lemma 1. Thus we turn to providing an upper
estimate of the first sum. Assumption 3 regarding the Lipschitz
continuity of the loss functions implies

N∑
j,k=1

[
fk,t(xj,t)− fk,t(xk,t)

]
≤

N∑
j,k=1

Kk,t‖xj,t − xk,t‖. (46)

Maximize over the right hand side of (46) to obtain an expression
for the magnitude of the worst case node discrepancy

N∑
j,k=1

Kk,t‖xj,t − xk,t‖ ≤ N2K max
j,k
‖xj,t − xk,t‖. (47)

Using Assumption 1 regarding the diameter of the network, the
worst case node discrepancy on the right hand side of (47) may be
further bounded above by the magnitude of the constraint violation
as maxj,k ‖xj,t − xk,t‖ ≤ D‖Cxt‖. Substituting this bound into
(47) yields

N∑
j,k=1

[
fk,t(xj,t)− fk,t(xk,t)

]
≤ DN2K‖Cxt‖. (48)

We return to bounding the first sum in the right hand side of
(45). To do so write

∑N
k=1 fk,t(xk,t) = (1/N)

∑N
j,k=1 fk,t(xk,t),

which we can do because fk,t(xk,t) is independent of j. Use this
to substitute (1/N)

∑N
j,k=1 fk,t(xj,t) −

∑N
k=1 fk,t(xk,t) for the

bound in (48) to write

T∑
t=1

(
1

N

N∑
j,k=1

[
fk,t(xj,t)− fk,t(xk,t)

]
− λTCxt

)
(49)

≤
T∑

t=1

(
DNK‖Cxt‖ − λTCxt

)
=

T∑
t=1

(
DNK

Cxt

‖Cxt‖
− λ

)T

Cxt.

where the last equality follows from grouping terms. The differ-
ence between node losses evaluated at other nodes’ predictions and
their own is bounded by the magnitude of the constraint violation
and a Lagrangian penalty term. We annihilate the right hand side
of (49) by constructing a dual feasible λ̃ as follows. Partition the
edge set E = E+ ∪ E− with E+ = {e : [

∑T
t=1 C[xt]e ≥ 0}. and

E− = {e : [
∑T

t=1[Cxt]e < 0}. Define λ̃ as

λ̃e =

{
DNK[Cxt]e/‖Cxt‖+ 1 for e ∈ E+ and all t
DNK[Cxt]e/‖Cxt‖ − 1 for e ∈ E− and all t

(50)

Our ability to construct such a fixed finite λ̃ follows from the
compactness of X and hence the boundedness of ‖Cxt‖. Note
that

‖λ̃‖ ≤
√
|E+|(DNK + 1)2 + |E−|(DNK − 1)2 (51)

≤
√
M(DNK + 1) ≤

√
MCλ.

so λ̃ is dual feasible in the sense of (24). The first inequality
in (51) follows from the fact that computing ‖λ̃‖ is a sum over
the entries of a unit vector, while the second inequality uses the
relationship |E+|−|E−| ≤M . Now plug λ = λ̃ into (49) to write

T∑
t=1

∑
e∈E+

(
DNK

[Cxt]e
‖Cxt‖

−DNK [Cxt]e
‖Cxt‖

− 1

)
[Cxt]e (52)

+

T∑
t=1

∑
e∈E−

(
DNK

[Cxt]e
‖Cxt‖

−DNK [Cxt]e
‖Cxt‖

+ 1

)
[Cxt]e

=

T∑
t=1

(∑
e∈E+

−[Cxt]e +
∑
e∈E−

[Cxt]e

)
= 0.

With the dual variable selection given by (50), we have made
first three terms on the right hand side of (45) null. Now apply
Lemma 1 to the last three terms on the right hand side of (45)
and substitute in the bound for the magnitude of λ̃ in (51), which
allows us to conclude (44).

Theorem 1 provides a guarantee that the saddle point iterates
achieve a global networked regret that grows not faster than
O(
√
T). This rate is the same that can be guaranteed in centralized

problems when functions are not strongly convex. The learning
rate depends on primal initialization, network size and topology, as
well as smoothness properties of the loss functions. The learning
rate result established in Theorem 1 is a bound on the global
networked regret which is the average the local regrets incurred
by each agent. By relating the uncoordinated regret bound in (43)
with the local regret defined in (6) we obtain a similar bound on
the regret of each individual agent as we formally state next.

Theorem 2 Let xt := [x1,t; . . . ;xN,t] be the sequence generated
by the saddle point algorithm in (17)-(18) and let x̃∗ be the global
batch learner in (6). If Assumptions 1-5 hold, with the initialization
λ1 = 0 and step size ε = 1/

√
T , the local regret of node j [cf.

(6)] is bounded by

Regj
T ≤

√
T

2

(
‖x1 − x̃∗‖2 +MC2

λ + L2
x + L2

λ

)
= O(

√
T).

(53)

Proof: Begin writing the expression for local regret of node j and
add and subtract the left hand side of (43).

Regj
T =

T∑
t=1

N∑
k=1

fk,t(xj,t)−
T∑

t=1

N∑
k=1

fk,t(x̃
∗) (54)

=

T∑
t=1

(
N∑

k=1

[fk,t(xj,t)− fk,t(xk,t)]− λTCxt

)

+

T∑
t=1

(
N∑

k=1

[fk,t(xk,t)− fk,t(x̃∗)] + λTCxt

)
The last three terms of (54) were bounded in Lemma 1, so we
turn our focus to the first tree terms in an analogous manner to

the proof of Theorem 1. The Lipschitz continuity of the losses in
Assumption 3 yields

N∑
k=1

(fk,t(xj,t)− fk,t(xk,t)) ≤
N∑

k=1

Kk,t‖xj,t − xk,t‖. (55)

Now, maximize over the right hand side of (55) to write an
expression for the maximum difference between node predictions

N∑
k=1

Kk,t‖xj,t − xk,t‖ ≤ NK max
k
‖xj,t − xk,t‖. (56)

The quantity on the right hand side of (56) can be expressed in
terms of the magnitude of the constraint violation. In particular,
the definition of the diameter as the maximum of shortest paths
between nodes combined with the triangle inequality allows us to
write

NK max
k
‖xj,t − xk,t‖ ≤ DNK‖Cxt‖. (57)

We substitute in the right hand side of (57) into (55), and apply
the resulting inequality to the first three terms on the right hand
side of (54) to obtain

T∑
t=1

(
N∑

k=1

[
fk,t(xj,t)− fk,t(xk,t)

]
− λTCxt

)
(58)

≤
T∑

t=1

(
DNK‖Cxt‖ − λTCxt

)
=

T∑
t=1

(
DNK

Cxt

‖Cxt‖
− λ

)T

Cxt.

Using λ = λ̃ defined in (50), we make the right hand side of
(58) null in precisely the same manner as (52). Returning to the
first three terms of (54), we apply Lemma 1 and substitute in the
expression for the magnitude of λ̃ in (51) to yield (53).

Theorem 2 establishes that the local regret of each individual
agent in the network grows at a rate not larger than O(

√
T), which

is equivalent to saying that its time average vanishes as O(1/
√
T).

It follows that individuals learn global information while only hav-
ing access to local observations and the strategies of neighboring
agents. The constants that bound the regret growth depend on the
initial condition, network connectivity, and properties of the loss
functions.

V. NUMERICAL ANALYSIS

We study the numerical behavior of the saddle point algorithm
in (17)-(18) when used to solve the distributed recursive least
squares problem in Section II-A for a variety of network sizes,
topologies, and levels of connectivity (sections V-A - V-C). We
also investigate how saddle point iterates compare against other
networked online learning methods (Section V-D). The primal iter-
ation for recursive least squares is given by the explicit expression
in (19). Besides the local and global network regrets in (6) and
(7) that we know grow not faster than O(

√
T) [cf. theorems 1 and

2] we also study the relative error of the estimates xj,t relative to
the optimal batch estimator x̃∗ and the relative agreement between
estimates xj,t and xk,t of different agents. Specifically, the relative
error associated with the estimate xj,t of agent j at time t is
defined as

RE(xj,t) :=
‖xj,t − x̃∗‖
‖x̃∗‖

. (59)

The agreement between estimates of different nodes is defined in
terms of the variable time averages x̄j,t := (1/t)

∑t
u=1 xj,u. For

the average estimate x̄j,t of agent j at time t we define the average
relative variation as

RV(x̄j,t) :=
1

N

N∑
k=1

‖x̄j,t − x̄k,t‖
‖x̃∗‖

. (60)

The average relative variation RV(x̄j,t) denotes the average Eu-
clidean error between x̄j,t and all others, relative to the magnitude
of the offline strategy x̃∗. The reason to focus on time averages
x̄j,t instead of the plain estimates xj,t is that the latter tend to
oscillate around the batch estimate x̃∗ and agreement between
estimates of different agents is difficult to visualize.

For all of the subsequent numerical experiments, we consider
q = 1 and p = 10 – i.e., observations yit = Hi,tx̃+wi,t are scalar
and the signal x̃ has dimension p = 10. The matrices Hi,t =
Hi ∈ R1×p are constant across time but vary across agents. The
components of the vector Hi are chosen with equal probability
from {1/p, 2/p, . . . , 1}. The random noise terms wi,t ∈ R are
Gaussian distributed with zero mean and variance σ2 = 0.1 and
the true signal is x̃ = 1 . Further observe that since q < p it is
impossible to estimate x̃ without cooperation between members
of the network because the individual signals of each agent are
not sufficient to determine x̃. In all cases we run (19) - (18) for
a total of T = 103 iterations with step size ε = 1/

√
T = 0.03.

Initial iterates are chosen as xj,1 = 0 for all j and λjk,1 = 0 for
all j and k.

The trajectories of a sample run for a random network with N =
200 nodes in which the probability of connecting two nodes is
ρ = 0.2 are shown in Figure 1. The time average of the global and
local regrets, Regt/t and Regj

t/t, respectively, for representative
nodes are shown in Figure 1a. Observe that Regt/t decreases until
t ≈ 200 iterations and then stabilizes at Regt/t ≈ 5×10−2. This
is consistent with the result in Theorem 1 in which regret of order
O(
√
T) is attained by selecting a stepsize of order O(T). To obtain

smaller regret values the algorithm has to be run with smaller
stepsize. The same decline is observed for the average local regrets
Regj

t/t. The only difference is that the Regj
t/t exhibit oscillating

variations as iterations progress. These are not present in Regt/t
which averages values across the whole network.

Learning of the global batch strategy can be corroborated by
reduction of the Euclidean distance to x̃∗ at each node and the
achievement of primal variable consensus. Figure 1b shows that
the relative error RE(xj,t) declines with the iteration index t
and stabilizes below 0.4 for t ≥ 100, demonstrating that the
former goal is achieved, though the noise in the observations yields
persistent oscillations. Figure 1c plots RV(x̄j,t) versus iteration t.
Observe that agents also converge towards a common value, i.e.
RV(x̄j,t) ≤ 10−2 for t ≥ 700, as exchange of local information
successfully allows agents to learn a globally optimal strategy.

A. Network size

To investigate the dependence of the learning rates in theorems
1 and 2 with the network size N we run (19) - (18) for problem
instances with N = 5, N = 50, and N = 200 nodes. Connections
between nodes are random, with the probability of two nodes
being connected set to ρ = 0.2. Figure 2 shows the results of
this numerical experiment for an arbitrary agent in the network.
In Figure 2a, we show Regj

t/t over iteration t. Observe that as N
increases, Regj

t/t declines at comparable rates for the different

0 100 200 300 400 500 600 700 800 900 1000
10

−3

10
−2

10
−1

10
0

10
1

10
2

t, number of iterations

T
im

e
a
v
e
r
a
g
e
r
e
g
r
e
t

Global networked
Node 49 Local
Node 124 Local
Node 102 Local
Node 83 Local

(a) Average regret Regi
t/t versus iteration t

0 100 200 300 400 500 600 700 800 900 1000
10

−2

10
−1

10
0

t, number of iterations

R
E
(
x
j
,
t)
,
R
e
la
t
iv
e
e
r
r
o
r

Node 49
Node 124
Node 102
Node 83

(b) Relative error RE(xj,t) versus iteration t

0 100 200 300 400 500 600 700 800 900 1000
10

−3

10
−2

10
−1

10
0

10
1

t, number of iterations

R
V
(
x̄
j
,
t)
,
R
e
la
t
iv
e
v
a
r
ia
t
io
n

Node 49
Node 124
Node 102
Node 83

(c) Relative variation RV(x̄j,t) versus iteration t

Fig. 1: In a N = 200 node random network with connection probability ρ = 0.2, figures 1a-1b show average global networked regret RegT /T
and local regrets Regj

t/t for a representative sample of agents, and RE(xj,t), respectively, versus iteration t. Average regrets sharply decline and
then stabilize, consistent with the regret bounds dependence on a fixed step size ε = 1/

√
T . Decentralized online learning is corroborated by both

distance to the global batch learner, measured by RE(xj,t), decreasing, as shown in 1b, and consensus in the primal variable, which is shown in
Figure 2c. In the later, we plot RV(x̄j,t) versus iteration t, which goes to null as agents learn all information available throughout the network.

0 100 200 300 400 500 600 700 800 900 1000
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

t, number of iterations

R
e
g
t
j
/
t
,
T
im

e
a
v
e
r
a
g
e
lo
c
a
l
r
e
g
r
e
t

5
50
200

(a) Average regret Regj
t/t versus iteration t

0 100 200 300 400 500 600 700 800 900 1000
10

−2

10
−1

10
0

t, number of iterations

R
E
(
x
j
,
t)
,
R
e
la
t
iv
e
e
r
r
o
r

5
50
200

(b) Relative error RE(xj,t) versus iteration t

0 100 200 300 400 500 600 700 800 900 1000
10

−3

10
−2

10
−1

10
0

t, number of iterations

R
V
(
x̄
j
,
t)
,
R
e
la
t
iv
e
v
a
r
ia
t
io
n

5
50
200

(c) Relative variation RV(x̄j,t) versus iteration t

Fig. 2: Learning achieved by an arbitrary agent in networks of size N = 5, N = 50, and N = 200 with nodes randomly connected with prob. ρ = 0.2.
2a-2b show Regj

t/t, the time average local regret, and RE(xj,t), the relative error, respectively, as compared with iteration t. Both Regj
t/t and

RE(xj,t) decline sharply, but with more instability in smaller networks, and stabilize near 10−2 and 10−1, respectively. Figure 2c shows RV (x̄j,t)
versus iteration t, and illustrate that node j’s average prediction remain close to that of other nodes. Network disagreement becomes more stable and
declines faster with increasing N , as information contained per individual required for learning the global batch strategy declines.

0 100 200 300 400 500 600 700 800 900 1000
10

−3

10
−2

10
−1

10
0

10
1

10
2

t, number of iterations

R
e
g
t
j
/
t
,
T
im

e
a
v
e
r
a
g
e
lo
c
a
l
r
e
g
r
e
t

0.01
0.2
0.5
0.75

(a) Average regret Regj
t/t versus iteration t

0 100 200 300 400 500 600 700 800 900 1000
10

−2

10
−1

10
0

t, number of iterations

R
E
(
x
j
,
t)
,
R
e
la
t
iv
e
e
r
r
o
r

0.01
0.2
0.5
0.75

(b) Relative error RE(xj,t) versus iteration t

0 100 200 300 400 500 600 700 800 900 1000
10

−3

10
−2

10
−1

10
0

t, number of iterations

R
V
(
x̄
j
,
t)
,
R
e
la
t
iv
e
v
a
r
ia
t
io
n

0.01
0.2
0.5
0.75

(c) Relative variation RV(xj,t) versus iteration t

Fig. 3: Saddle point algorithm learning rates and discrepancy on a random N = 50 node network with connection probability ρ ∈
{0.01, 0.2, 0.5, 0.75}. Figure 3a-3b show Regj

T /T , the time average local regret of an arbitrary node in the network, and RE(xj,t), the relative
error, respectively, as compared with iteration t. Both Regj

T /T and RE(xj,t) are more oscillatory in less connected networks. Figure 3c shows
RV (x̄j,t) versus iteration t. Primal variable consensus is more difficult to achieve in networks with fewer communication links.

network sizes, and this rate similarity is also reflected in the
trajectory of RE(xj,t) over time t, as shown in Figure 2b. To reach
the benchmark RE(xj,t) ≤ 10−3 we require t = 354, t = 279,
and t = 232 for N = 5, N = 50, and N = 200, respectively.

While learning occurs at comparable rates in the different net-
works, the trajectories are more oscillatory in smaller networks. To
be specific, in Figure 2b. we note that to achieve RE(xj,t) ≤ 0.2,
the algorithm requires t = 106, t = 30, and t = 18 iterations
for N = 5, N = 50, and N = 200, respectively. Moreover,
average wavelength of oscillations of RE(xj,t) is τ = 50, τ = 20,
and τ = 10 for N = 5, N = 50, and N = 200, respectively.
This stability difference reflects the fact that as N increases,

the fraction of information per node contained in each agent’s
prediction decreases. Hence each dual variable must compensate
for a larger relative level of discrepancy per communication link
in smaller networks. Equivalently, for agents in larger networks to
achieve comparable learning rates, information must diffuse faster.

Figure 2c shows that the network reaches consensus, as mea-
sured with RV(x̄j,t), faster with larger N . In particular, for the
benchmark RV(x̄j,t) ≤ 10−2, the algorithm requires t = 719,
t = 317, and t = 179 iterations for N = 5, N = 50, and N = 200
node networks, respectively. This suggests that the agreement
constraint plays a larger role in maintaining a comparable learning
rate in larger networks, as the amount of disagreement must

0 100 200 300 400 500 600 700 800 900 1000
10

−3

10
−2

10
−1

10
0

10
1

10
2

t, number of iterations

R
e
g
t
j
/
t
,
T
im

e
a
v
e
r
a
g
e
lo
c
a
l
r
e
g
r
e
t

Random
Cycle

Grid
Small World

(a) Average regret Regj
t/t versus iteration t

0 100 200 300 400 500 600 700 800 900 1000
10

−2

10
−1

10
0

t, number of iterations

R
E
(
x
j
,
t)
,
R
e
la
t
iv
e
e
r
r
o
r

Random
Cycle
Grid
Small World

(b) Relative error RE(xj,t) versus iteration t

0 100 200 300 400 500 600 700 800 900 1000
10

−3

10
−2

10
−1

10
0

t, number of iterations

R
V
(
x̄
j
,
t)
,
R
e
la
t
iv
e
v
a
r
ia
t
io
n

Random
Cycle
Grid
Small World

(c) Relative variation RV(x̄j,t) versus iteration t

Fig. 4: Saddle point algorithm run on N = 50 node cycle, grid, random and small world networks, where edges are generated randomly between
agents with probability ρ = 0.2 in the later two. Model noise is sampled from wi,t ∼ N (0, 0.1). Figure 4a-4b show Regj

T /T and RE(xj,t),
respectively, over iteration t. Learning slows and numerical oscillations become more prevalent with increasing network diameter. Grid and cycle
networks have larger diameter than small world and random networks, resulting in slower information propagation. Figure 4c shows that the agents
reach consensus slower in terms of RV(x̄j,t) with increasing network diameter.

be smaller for individuals to learn global information in larger
networks.

B. Node connectivity

To understand the impact of network connectivity on algorithm
performance we fix the network size to N = 50 and run (19)
- (18) on random networks where the probability of connecting
two nodes takes values ρ ∈ {0.01, 0.2, 0.5, 0.75}. Figure 3 shows
the results of this experimental setup. Figure 3a depicts Regj

t/t
versus iteration t, and illustrates that the difference in connectivity
levels leads to a negligible difference in the learning rate. However,
we see that numerical stability varies substantially. The sparsely
connected networks experience more oscillatory behavior, as may
be observed in the plot of of relative error versus iteration t
in Figure 3b. This stability difference follows from the slower
rate of information diffusion, and also coincides with slowing
convergence to the batch strategy. Figure 3c shows the evolution of
RV(x̄j,t) over time. The achievement of primal variable consensus
is more challenging in sparsely connected networks. That is, for
the benchmark RV(x̄j,t) ≤ 2 × 10−2, the algorithm requires
t = 875, t = 183, t = 120, and t = 43 iterations for the
cases ρ = 0.01, ρ = 0.2, ρ = 0.5, and ρ = 0.75, respectively.
Intuitively, the discrepancy in agents’ predictions is smaller when
more communication links are present in the network.

C. Topology and Diameter

To study the interplay of network topology and diameter on the
learning rates established in Theorems 1 and 2, we fix the network
size to N = 50 and run (19) - (18) over random graphs, small
world graphs, cycles, and grids. In the first two, the probability that
node pairs are randomly connected is fixed at ρ = 0.2. The latter
two are deterministically generated. A cycle is a closed directed
chain of nodes. Grids are formed by taking the two-dimensional
integer lattice of size

√
N×
√
N , with

√
N rounded to the nearest

integer. Connections are drawn between adjacent nodes in the
lattice as well as between remainder nodes at the boundary. Cycles,
grids and random networks have progressively larger number of
connections per node and smaller diameter. Random networks
have small degree and small diameter; see [26], [27].

We present the results of this experiment in Figure 4. In Figure
4a, we plot Regj

t/t compared with iteration t. Observe that
the rate at which Regj

t/t decreases is comparable across the
different networks, yet we can differentiate the learning achieved

in the different settings by the benchmark Regj
t/t ≤ 10−2. To

surpass this bound, the algorithm requires t = 293, t = 221
iterations for random and small world networks, respectively,
whereas for grids and cycles it requires t = 483, t = 865
iterations. This indicates that structured deterministic networks are
a more difficult setting for networked online learning, and the
randomness present in random and small world networks allows
more effective information flow.

In the plot of RE(xj,t) over time t shown in Fig 4b, we see
a slower rate of convergence towards the batch learner in the
structured deterministic networks: RE(xj,t) ≤ 0.2 requires t = 81,
t = 176, t = 556, and t = 578 iterations for random, small
world, grid, and cycle networks, respectively, which validates the
relationship observed in Figure 4a. We observe this rate difference
more readily in Fig 4c, which plots RV(x̄j,t) over time t. To obtain
RV(x̄j,t) ≤ 5 × 10−2, the algorithm requires t = 49, t = 301,
t = 809, and t = 525 iterations respectively for random, small
world, grid, and cycle networks. These experiments indicate that
information propagation slows in large diameter networks, causing
more numerical oscillations and decreasing the learning rate. Put
another way, networks in which agents may communicate more
effectively reach consensus.

D. Algorithm Comparison

We turn to comparing the saddle point method against other
recent works in networked online convex optimization. To that
end, we consider grid and cycle topologies with N = 50 agents.
We implement Distributed Online Gradient Descent (DOGD) [19],
and Distributed Autonomous Online Learning (DAOL) [28]. Both
of these are consensus protocols based on an iterative weighted
averaging process. The primary difference between these two
methods is that DOGD performs many gradient averaging steps
per node update, whereas DAOL only does a single local averaging
per iterate.

Figure 5 shows the results of this comparison. In figures 5a and
5d, we plot Regj

t/t versus the iteration t on a grid and cycle
network, respectively. Both DOGD and DAOL fail to achieve
learning: for all t ≥ 100, Regj

t/t ≈ 10 in the grid network.
Moreover, in the cycle case Regj

t/t ≈ 10 for all t ≥ 500 for
DOGD, while DAOL suffers unbounded regret as t increases. On
the other hand, Regj

t/t ≤ 5 × 10−2 for t ≥ 580 for the saddle
point algorithm (DSPA). DSPA experiences a more substantial
edge in learning performance in cycle networks, as compared with

0 100 200 300 400 500 600 700 800 900 1000
10

−2

10
−1

10
0

10
1

10
2

t, number of iterations

R
e
g
t
j
/
t
,
T
im

e
a
v
e
r
a
g
e
lo
c
a
l
r
e
g
r
e
t

DOGD
DAOL
DSPA

(a) Average regret Regj
t/t versus iteration t

0 100 200 300 400 500 600 700 800 900 1000

10
0

10
1

t, number of iterations

R
E
(
x
j
,
t)
,
R
e
la
t
iv
e
e
r
r
o
r

DOGD
DAOL
DSPA

(b) Relative error RE(xj,t) versus iteration t

0 100 200 300 400 500 600 700 800 900 1000
10

−2

10
−1

10
0

10
1

t, number of iterations

R
V
(
x̄
j
,
t)
,
R
e
la
t
iv
e
v
a
r
ia
t
io
n

DOGD

DAOL

DSPA

(c) Relative variation RV(x̄j,t) versus iteration t

0 100 200 300 400 500 600 700 800 900 1000
10

−4

10
−2

10
0

10
2

10
4

10
6

10
8

10
10

t, number of iterations

R
e
g
t
j
/
t
,
T
im

e
a
v
e
r
a
g
e
lo
c
a
l
r
e
g
r
e
t

DOGD
DAOL
DSPA

(d) Average regret Regj
t/t versus iteration t

0 100 200 300 400 500 600 700 800 900 1000
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

t, number of iterations

R
E
(
x
j
,
t)
,
R
e
la
t
iv
e
e
r
r
o
r

DOGD
DAOL
DSPA

(e) Relative error RE(xj,t) versus iteration t

0 100 200 300 400 500 600 700 800 900 1000
10

−2

10
−1

10
0

10
1

t, number of iterations

R
V
(
x̄
j
,
t)
,
R
e
la
t
iv
e
v
a
r
ia
t
io
n

DOGD

DAOL

DSPA

(f) Relative variation RV(x̄j,t) versus iteration t

Fig. 5: Comparison of saddle point method (DSPA) against other decentralized online learning methods as measured by Regj
T /T , RE(xj,t), and

RV(x̄j,t) versus iteration t on grid (top) and cycle (bottom) networks of size N = 50 with wi,t ∼ N (0, 0.1) signal noise. DSPA yields a more
effective learning strategy in both network settings, measured in terms of Regj

T /T , RE(xj,t), when compared with consensus methods. DSPA and
DOGD achieve comparable levels of consensus in cycle networks, though DOGD fails to learn the batch strategy, as seen in Figure 5d and Figure
5f. Gradient averaging methods (DOGD, DAOL) fail to learn in the grid network, and DAOL diverges in the cycle setting. Such methods may not
be an appropriate tool for networked online learning problems since they seek a consensus which may diverge from the global batch strategy.

the diffusion methods.
The dynamics apparent in the regret plots appear in the relative

error performance metric as well, as may be observed in Figures
5b and 5e, which plot RE(xj,t) versus time t for grid and cycle
networks, respectively. In the grid network, for all t ≥ 100,
RE(xj,t) ≈ 10 for DOGD, DAOL. In cycle networks DOGD
achieves a near constant error after t = 300 iterations, while
DAOL incurs an unbounded RE(xj,t) with increasing t. Averaging
the predictions of neighbors does not yield an effective strategy
for this problem setting.

The gradient averaging methods fail to achieve consensus in the
primal variable in the grid network, as may be seen in Figure 5c,
which plots RV(x̄j,t) versus t. Moreover, while DOGD reaches
a comparable level of agent discrepancy to DSPA in the cycle
network, as may be seen in Figure 5f, DAOL experiences an
unbounded growth in the average relative variation. Thus, in the
later setting, DOGD yields a strategy which achieves consensus
but diverges from the strategy of the batch learner. This follows
form the fact that if the dimension of the signal to be estimated
is less that of the observations, the averaging process of the
consensus algorithms fails to move towards the optimum since
averaging node predictions does not yield the average of individual
loss functions’ optima.

VI. COMPUTER NETWORK SECURITY

We test the use of the saddle point algorithm in (17)-(18) to train
a SVM for detecting security breaches in computer networks. The
setting is one in which a number of service providers track user
connectivity information in order to predict which users may be
potentially harmful. This scenario is naturally cast as an online
learning problem since users connect sequentially. If we further
consider a network of interconnected service providers we see

that each of them would benefit from additional information from
other hosts, yet direct information sharing is problematic in terms
of communication cost, delay, and the possibility of revealing
sensitive proprietary information. This is casted naturally as a
networked online learning problem where the service providers
train their classifiers based on their local information and com-
munication with neighboring peers. Instead of sharing the values
of their feature vectors the different service providers exchange
multipliers and classification vectors.

In the language of sections II-B and III we consider service
providers that collect feature vectors zi,t that they tag as friendly
or malicious by setting yi,t = 1 or yi,t = −1, respectively. Starting
with the local feature zi,t and class yi,t given, as well as with the
current local classifier xi,t and multipliers λij,t and λji,t also
given, we use the primal iteration in (17), which for the particular
case of SVM classification takes the specific form in (20), to
update the local classifier. The vector xi,t+1 is then used to predict
the label yi,t+1 corresponding to feature zi,t+1. The correct label
is observed and recorded for use in the subsequent iteration. The
updated classifier xi,t+1 is also shared with neighboring providers
that use it to update their Lagrange multipliers using (18). The
updated multipliers are then shared with neighbors as well. This
permits updating of the classifier xi,t+1 through the use of (20).
The feature vectors zi,t that we use in our numerical experiments
are described next.

A. Feature Vectors

We use the feature vectors in the data set in [29] which is
constructed from approximately seven weeks of tcpdump data
of network traffic that is processed into connection records. The
training set on which we test the saddle point algorithm consists of
d = 4.94×105 single sample points of size p̃ = 41 which contain

TABLE I: Components of feature vector for detecting computer network attacks: Standard user connection features.

Number Feature Type Type Range Description
1. Duration Integer [0, 5.84× 104] Connection duration
2-4. Protocol Type Binary {0, 1} Binary indicators for whether protocol type is TCP, UDP, or ICMP
5-9. Service Binary {0, 1} Binary indicators for service types: http, ftp, smtp, telnet, otherwise ”other”
10-25. Flag Binary {0, 1} Binary indicators for connection statuses: SF, S0, S1, S2, S3, OTH, REJ, RSTO,

RSTOS0, SH, RSTRH, SHR, RSTOS0, SH, RSTRH, SHR
26. Source Bytes Integer [0, 6.93× 108] Bytes sent from user
27. Destination Bytes Integer [0, 5.16× 106] Bytes received by host
28. Land Binary {0, 1} Indicator: 1 if source/destination IP addresses and port Number equal, 0 else
29. Wrong Fragment Integer [0, 3] Number of bad checksum packets
30. Urgent Packets Integer [0, 3] Number of packets with urgent bit activated

TABLE II: Components of feature vector for detecting computer network attacks: Content features tracking suspicious user to host behavior.

Number Feature Type Type Range Description
31. Hot Integer [0, 30] Number of ”hot” actions: enter system directory, or create/execute programs
32. Number of Failed Logins Integer [0, 5] Number of failed logins per connection
33. Login Binary {0, 1} 1 if login is correct, 0 otherwise
34. Number Compromised Integer [0, 884] Number of ”not found” connection errors
35. Root Shell Binary {0, 1} 1 if root gets the shell, 0 otherwise
36. su Attempted Binary {0, 1} 1 if su command used, 0 otherwise
37. Number Root Commands Integer [0, 993] Number of user operations done as root
38. Number File Creations Integer [0, 28] Number files user created during session
39. Number Shell Accesses Integer [0, 2] Number of logins of normal users
40. Number access files Integer [0, 8] Number of operations on control files
41. Number Outbound Commands Integer 0 Number of outbound ftp commands
42. Hot Login Binary {0, 1} 1 if admin/root accessed, 0 else
43. Guest Login Binary {0, 1} 1 if guest login used, 0 else

TABLE III: Components of feature vector for detecting computer network attacks: Time traffic features derived from user behavior in the last two
seconds.

Number Feature Type Type Range Description
44. Count Integer [0, 511] Number requests for same dest. IP
45. Server Count Integer [0, 511] Number requests for same dest. port
46. Server Rate Real [0, 1] Prop. of connections flagged (4) s0 - s3, among those in Count (23)
47. Server S. Error Rate Real [0, 1] Prop. of users flagged in (4) as s0 - s3, per Server Count (24)
48. REJ Error Rate Real [0, 1] Prop. of users flagged in (4) as REJ, compared with Count (23)
49. Server Error Rate Real [0, 1] Prop. of users flagged (4) as REJ, compared with Server Count (24)
50. Same Server Rate Real [0, 1] Prop. of connections to same service, compared to Count (23)
51. Different Server Rate Real [0, 1] Proportion of connections to different services, per Count (23)
52. Server Different from Host Rate Real [0, 1] Prop. of connections to diff. dest. compared to Server Count (24)

TABLE IV: Components of feature vector for detecting computer network attacks: Machine traffic features derived from the past 100 connections to
host. These features are computed with respect same host/client indicators as time traffic features.

Number Feature Type Type Range Description
53. Dst. Host Count Integer [0, 255] Number requests for same dest. IP
54. Dst. Host Srv. Count Integer [0, 255] Number requests for same dest. port
55. Dst. Host Same Srv. Rate Real [0, 1] Prop. users to same service, compared to Dst. Host Count (32)
56. Dst. Host Diff. Srv. Rate Real [0, 1] Prop. users to diff. services, compared to Dst. Host Count (32)
57. Dst. Host. Same Src. Port Rate Real [0, 1] Prop. users to same source port, compared to Dst. Host Srv. Count (33)
58. Dst. Host Srv. Diff Host Rate Real [0, 1] Prop. users to diff. dest. machine, compared to Dst. Host Srv. Count (32)
59. Dst. Host Serror Rate Real [0, 1] Prop. users flagged (4) as s0 - s3, compared to Dst. Host Count (32)
60. Dst. Host Srv. Serror Rate Real [0, 1] Prop. users flagged (4) as s0 - s3, compared to Dst. Host Srv. Count (33)
61. Dst. Host R. Error Rate Real [0, 1] Proportion of users flagged (4) as REJ, as compared to Dst. Host Count (32)
62. Dst. Host Srv. Error Rate Real [0, 1] Prop. users flagged (4) as REJ, compared to Dst. Host Srv. Count (33)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

1

10
2

10
3

10
4

10
5

t, number of user connections processed

R
e
g
tj
/
t,

T
im

e
a
v
e
r
a
g
e
lo
c
a
l
r
e
g
r
e
t

Fig. 6: Average local regret Regj
t/t vs. number of user connections

processed t on a N = 50 node cycle network for the network security
application of the distributed online SVM saddle point algorithm (20)-
(18). Local regret of node j = 29 vanishes with t as node j’s classifier
converges to the global batch classifier computed with Liblinear [31].
Spikes in Regj

t/t correspond to misclassifications, and follow from
nondifferentiability of the hinge loss. Large spikes at t = 1476, 6905
correspond to attacker examples not previously seen by the service
provider that compromise its security, from which it quickly recovers.

client connectivity information, whose features fall into three
categories: basic, content, and traffic features; see tables I - IV and
[30]. The basic features in Table I consist of information contained
in a TCP/IP connection, such as protocol type and user and host
information. The content features in Table II consist of those that
are most useful for detecting attacks related to user to root and
remote to local attacks, examples of which include number of
failed login attempts and root access attempts. The traffic features
in Table III are computed with respect to a window interval around
the connection, and consist of two groups: same host features and
same service features. The former tracks connections in the prior
two seconds that have the same host destination as the current
connection and compute relevant statistics. The latter examines
connections in the past two seconds that have the same service type
as the current connection. We also record this same information
averaged from the perspective of hosts over the last 100 user
connections. These metrics are the traffic features shown in Table
IV.

Basic, content, and traffic information are recorded for each
user connection to construct a set of feature vectors {vk}dk=1,
with labels yk ∈ {−1, 1} denoting whether a user is harmless or
an attacker, respectively. The labels are formed by modifying the
data in [29] to merge all the attacker types into one group, and
adjusting the number of positive and negative training examples
to be approximately equal. Feature statistics reported in Tables I -
IV reflect these adjustments. Many features in data set in [29] are
categorical (nominal), which we modify to obtain binary features.
In particular, for each possible value the categorical variable may
take, we construct a binary indicator variable denoting whether
the variable takes on a particular value. For example, the feature
Protocol Type in [29] takes integer values 1, 2, 3 corresponding to
TCP, UDP, or ICMP, from which construct three separate indicator
variables for protocol type of the individual connection. With this
modification, the feature vectors zi,t are extended to dimension
p = 62.

B. Numerical Results

We implement (20)-(18) for this intrusion detection problem
in a cycle network with N = 50 nodes. We randomly partition

the adjusted data from [29] into N blocks such that each service
provider (node) trains a classifier online on its own data subset.
We run the simulation over the entire one-percent adjusted training
set, i.e. using NT = 5×105 data points, with a constant step size
ε = 1/

√
T ≈ 0.01. The regularization parameter ζ = log(62) is

chosen after 10-fold cross-validation and the Residual Information
Criterion (RIC) as in [32]. The primal and dual variables are
initialized at time t = 1 as zero vectors xj,1 = 0 for all j and
λjk,1 = 0 for all j and k. We compute the global batch classifier
x̃∗ with Liblinear [31].

Fig. 6 shows Regj
t/t the time average local regret for the

(arbitrarily chosen) node j = 29. The iteration index t corresponds
to the number of user connections processed. Observe that Regj

t/t
decays with the number of processed user connections at the rate
guaranteed by Theorem 1. The large instantaneous magnitude of
Regj

t/t is a result of the large ranges of features such as Source
and Destination Bytes. Large spikes at t = 1, 476 and t = 6, 905
correspond to attacker examples not previously observed. Observe
that by t = 105, Regj

t/t ≤ 21, indicating that the service provider
effectively learns an intrusion classifier as good as the one with
user information aggregated at a central location for all times
in advance. Each time an attacker compromises the host, which
correspond to a spike in the local regret trajectory, the intrusion
detection protocol recovers quickly.

We turn to studying the classifier error rates. Denote the vector
of predictions ŷj,t, which is of length t and whose uth entry
is given by [ŷj,t]u = sgn(xT

j,tzj,u) for users u ≤ t. We break
misclassifications into two categories: (i) the false alarm rate
αj,t := P (ŷj,u = 1 | yj,u = −1) which tracks the proportion
of friendly users predicted as attackers; (ii) the error rate βj,t :=
P (ŷj,u = −1 | yj,u = 1) which accounts for the attackers that
were not detected. These quantities are computed as the number
of entries of ŷj,t that equal 1 over the number of associated users
u ≤ t with label −1, and vice versa. We consider the average
false alarm rate ᾱj,t =

∑t
u=1 P (ŷj,u = 1 | yj,u = −1)/t, and the

average error rate β̄j,t =
∑t

u=1 P (ŷj,u = −1 | yj,u = 1)/t on a
test data set of size T = 1× 104.

Fig. 7 shows the evolution of ᾱj,t, the average false alarm
rate, versus the number of connections processed t. The expected
classifier accuracy (1− ᾱj,t) stabilizes between [0.67, 0.70] after a
burn-in period t ≥ 5×103 (false alarm rate [0.30, 0.33]), indicating
that an inordinate proportion of friendly users are not denied
service in this intrusion detection protocol. A node’s ability to flag
harmful users is the essential performance metric. Fig. 8 plots at
β̄j,t, the error rate of service provider j = 29 on a test set of
fixed size T = 1×104, with the number of connections processed
t. The average rate of correctly detecting an attacker, or power,
(1− β̄j,t) begins near null and stabilizes between [0.86, 0.90] for
t ≥ 3 × 103, which is competitive given the difficulty predicting
attacks in commercial settings. The price for this accuracy level
is its conservative treatment of normal users.

VII. CONCLUSION

We extended the idea of online convex optimization to net-
worked settings, where nodes are allowed to make autonomous
learning decisions while incorporating neighbors’ information. We
developed regret formulations illustrating the distributed learning
goal and proposed the use of a saddle point algorithm to solve such
problems. Theorem 1 showed that the saddle point iterates achieve
the networked online learning goal, which is the sub linear growth

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t, number of user connections processed

ᾱ
j
,t
,
P
r
o
p
.
o
f
fl
a
g
g
e
d
h
a
r
m
le
s
s
u
e
r
s

Fig. 7: Time average error rate of incorrectly flagging a benign user
ᾱj,T =

∑T
t=1 P (ŷj,t = 1 | yj,t = −1) on a test set of T = 1 × 104

user connections. The error rate stabilizes between [0.30, 0.33] as the
server learns to not flag benign users unnecessarily, despite widely varying
connectivity information.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

t, number of user connections processed

β̄
j
,t
,
A
t
t
a
c
k
e
r
d
e
t
e
c
t
io
n
e
r
r
o
r
r
a
t
e

Fig. 8: Time average empirical probability of failing to detect an attacker
β̄j,T =

∑T
t=1 P (ŷj,t = −1 | yj,t = 1) on a test set of T = 1 × 104

user connections. The error rate stabilizes between [0.10, 0.15] as the host
learns to deny service to a variety of attacker profiles.

rate of global networked regret: the time average regret goes to
null at a rate of O(1/

√
T). Theorem 2 guaranteed that individual

agents also achieve this learning rate as well.
Numerical analysis demonstrated the algorithm performance

dependency on network size, connectivity, and topology: learning
rates are comparable across different network sizes but more prone
to numerical oscillations in smaller networks. Similarly, network
topologies with smaller diameter yield more stable predictions.
We applied this algorithm to the problem of training a SVM
classifier online over a network, and consider an attacker detection
problem in a computer network security application. Empirically
this method yields competitive prediction accuracy and is able to
maintain the privacy of distinct nodes’ users connectivity data.

REFERENCES

[1] A. Koppel, F. Y. Jakubiec, and A. Ribeiro, “A saddle point algorithm
for networked online convex optimization,” in Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal Processing.

[2] S. Shalev-Shwartz, “Online learning and online convex optimization,” Found.
Trends Mach. Learn., vol. 4, no. 2, pp. 107–194, Feb. 2012.

[3] Vladimir N. Vapnik, The Nature of Statistical Learning Theory, Springer-
Verlag New York, Inc., New York, NY, USA, 1995.

[4] Martin Zinkevich, “Online convex programming and generalized infinitesimal
gradient ascent,” 2003.

[5] C. B. Do, Q. V. Le, and C. Foo, “Proximal regularization for online and
batch learning.,” in ICML, A.P. Danyluk, L. Bottou, and M.L. Littman, Eds.
2009, vol. 382 of ACM International Conference Proceeding Series, p. 33,
ACM.

[6] S. Shalev-shwartz and Y. Singer, “Logarithmic regret algorithms for strongly
convex repeated games,” in The Hebrew University, 2007.

[7] S.S. Ram, A. Nedic, and V.V. Veeravalli, “Distributed stochastic subgradient
projection algorithms for convex optimization,” Journal of Optimization
Theory and Applications, vol. 147, no. 3, pp. 516–545, 2010.

[8] T. Suzuki, “Dual averaging and proximal gradient descent for online alter-
nating direction multiplier method,” in Proceedings of the 30th International
Conference on Machine Learning (ICML-13), Atlanta, GA, 2013, vol. 28,
pp. 392–400, JMLR Workshop and Conference Proceedings.

[9] A. Nedic and A. Ozdaglar, “Subgradient methods for saddle-point problems,”
Journal of Optimization Theory and Applications, pp. 205–228, 2009.

[10] Dusan Jakovetic, Jo ao Manuel Freitas Xavier, and José M. F. Moura, “Fast
distributed gradient methods,” CoRR, vol. abs/1112.2972, 2011.

[11] Kun Yuan, Qing Ling, and Wotao Yin, “On the convergence of decentralized
gradient descent,” arXiv preprint arXiv:1310.7063, 2013.

[12] M.G. Rabbat, R.D. Nowak, and J.A Bucklew, “Generalized consensus
computation in networked systems with erasure links,” in Signal Processing
Advances in Wireless Communications, 2005 IEEE 6th Workshop on, June
2005, pp. 1088–1092.

[13] F. Jakubiec and A. Ribeiro, “D-map: Distributed maximum a posteriori
probability estimation of dynamic systems,” IEEE Trans. Signal Process.,
vol. 61, no. 2, pp. 450–466, February 2013.

[14] I. Schizas, A. Ribeiro, and G. Giannakis, “Consensus in ad hoc wsns with
noisy links - part i: distributed estimation of deterministic signals,” IEEE
Trans. Signal Process., vol. 56, no. 1, pp. 350–364, January 2008.

[15] Q. Ling, W. Shi, G. Wu, and A. Ribeiro, “Dlm: Decentralized linearized
alternating direction method of multipliers,” IEEE Trans. Signal Process.,
August 2014.

[16] M. Zargham, A. Ribeiro, A. Jadbabaie, and A. Ozdaglar, “Accelerated dual
descent for network optimization,” IEEE Trans. Autom. Control, vol. 59, no.
4, pp. 905 – 920, April 2014.

[17] K.J. Arrow, L. Hurwicz, and H. Uzawa, Studies in linear and non-linear
programming, With contributions by H. B. Chenery, S. M. Johnson, S.
Karlin, T. Marschak, R. M. Solow. Stanford Mathematical Studies in the
Social Sciences, vol. II. Stanford University Press, Stanford, 1958.

[18] Y. Nesterov, “Primal-dual subgradient methods for convex problems,” Tech.
Rep., 2005.

[19] K. I. Tsianos and M. G. Rabbat, “Distributed strongly convex optimization,”
CoRR, vol. abs/1207.3031, 2012.

[20] F. Yan, S. V. N. Vishwanathan, and Y. Qi, “Cooperative autonomous online
learning,” CoRR, vol. abs/1006.4039, 2010.

[21] A. Nedic and A. Ozdaglar, “Approximate primal solutions and rate analysis
for dual subgradient methods,,” SIAM Journal on Optimization, vol. 19, no.
4, pp. 1757–1780, 2008.

[22] I. Lobel and A. Ozdaglar, “Distributed subgradient methods for convex
optimization,” LIDS Report, vol. 2800, 2009.

[23] C. J. C. Burges, “A tutorial on support vector machines for pattern
recognition,” Data Min. Knowl. Discov., vol. 2, no. 2, pp. 121–167, June
1998.

[24] H. Block, “The perceptron: a model for brain functioning,” Reviews of
Modern Physics, vol. 34, pp. 123–135, 1962.

[25] Y. Freund and R. E. Schapire, “Large margin classification using the
perceptron algorithm,” Mach. Learn., vol. 37, no. 3, pp. 277–296, Dec.
1999.

[26] D. J. Watts and S. H. Strogatz, “Collective dynamics of ’small-world’
networks,” Nature, vol. 393, no. 6684, pp. 440–442, June 4 1998.

[27] D. B. West, Introduction to Graph Theory, Prentice Hall, 2 edition,
September 2000.

[28] F. Yan, S. Sundaram, S. V. N. Vishwanathan, and Y. Qi, “Distributed
autonomous online learning: Regrets and intrinsic privacy-preserving proper-
ties,” IEEE Trans. on Knowl. and Data Eng., vol. 25, no. 11, pp. 2483–2493,
Nov. 2013.

[29] “KDD Cup 1999 Data,” http://archive.ics.uci.edu/ml/databases/kddcup99
/kddcup99.html.

[30] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed
analysis of the kdd cup 99 data set,” in Proceedings of the Second IEEE
International Conference on Computational Intelligence for Security and
Defense Applications, Piscataway, NJ, USA, 2009, CISDA’09, pp. 53–58,
IEEE Press.

[31] R-E Fan, K-W Chang, C-J Hsieh, X-R Wang, and C-J Lin, “LIBLINEAR: A
library for large linear classification,” Journal of Machine Learning Research,
vol. 9, pp. 1871–1874, 2008.

[32] P. Shi and C-L Tsai, “Regression model selection-a residual likelihood
approach,” Journal of the Royal Statistical Society Series B, vol. 64, no.
2, pp. 237–252, 2002.

	Introduction
	Regret Minimization for Distributed Learning
	Distributed recursive least squares
	Decentralized Online Support Vector Machines

	Arrow-Hurwicz Saddle Point Algorithm
	Regret Bounds
	Numerical Analysis
	Network size
	Node connectivity
	Topology and Diameter
	Algorithm Comparison

	Computer Network Security
	Feature Vectors
	Numerical Results

	Conclusion
	References

