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Abstract—RES, a regularized stochastic version of the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton
method, is proposed to solve strongly convex optimization prob-
lems with stochastic objectives. The use of stochastic gradient
descent algorithms is widespread, but the number of iterations
required to approximate optimal arguments can be prohibitive in
high dimensional problems. Application of second-order methods,
on the other hand, is impracticable because the computation of
objective function Hessian inverses incurs excessive computational
cost. BFGS modifies gradient descent by introducing a Hessian
approximation matrix computed from finite gradient differences.
RES utilizes stochastic gradients in lieu of deterministic gradients
for both the determination of descent directions and the approx-
imation of the objective function’s curvature. Since stochastic
gradients can be computed at manageable computational cost,
RES is realizable and retains the convergence rate advantages
of its deterministic counterparts. Convergence results show that
lower and upper bounds on the Hessian eigenvalues of the sample
functions are sufficient to guarantee almost sure convergence of a
subsequence generated by RES and convergence of the sequence
in expectation to optimal arguments. Numerical experiments
showcase reductions in convergence time relative to stochastic
gradient descent algorithms and non-regularized stochastic ver-
sions of BFGS. An application of RES to the implementation of
support vector machines is developed.

Index Terms—Quasi-Newtonmethods, large-scale optimization,
stochastic optimization, support vector machines.

I. INTRODUCTION

S TOCHASTIC optimization algorithms are used to solve
the problem of optimizing an objective function over a set

of feasible values in situations where the objective function is
defined as an expectation over a set of random functions. To
be precise, consider an optimization variable and a
random variable that determines the choice of
a function . The stochastic optimiza-
tion problems considered in this paper entail determination of
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the argument that minimizes the expected value
,

(1)

We refer to as the random or instantaneous functions
and to as the average function. We
assume that the instantaneous functions are strongly
convex for all from which it follows that the average function

is also strongly convex. Problems having the form in (1)
are common in machine learning [3]–[5] as well as in optimal
resource allocation in wireless systems [6]–[8].
Since the objective function of (1) is strongly convex, descent

algorithms can be used for its minimization. However, descent
methods require exact determination of the objective function’s
gradient , which is intractable in
general. Stochastic gradient descent (SGD) methods overcome
this issue by using unbiased gradient estimates based on small
data samples and are the workhorse methodology used to solve
large-scale stochastic optimization problems [4], [9]–[13]. Prac-
tical appeal of SGDmethods remains limited, however, because
they require a large number of iterations to converge. Indeed,
SGD inherits slow convergence from its use of gradients which
is aggravated by their replacement with stochastic estimates.
Alternatives to reduce randomness in SGD have been pro-

posed to render the convergence times of SGD closer to the
convergence times of gradient descent. Some early methods
make use of memory to either smooth iterates [14] or stochastic
gradients [15]. More recent developments have focused on hy-
brid approaches that use both, gradients and stochastic gradi-
ents, or update descent directions so that they become progres-
sively closer to gradients [13], [16], [17]. Inasmuch as they
succeed in reducing randomness, these algorithms end up ex-
hibiting the asymptotic convergence rate of gradient descent
which is faster than the asymptotic convergence rate of SGD.
Although they improve asymptotic convergence rates, the latter
methods are still often slow in practice. This is not unexpected.
Reducing randomness is of no usewhen the function has a
challenging curvature profile. In these ill-conditioned functions
SGD is limited by the slow convergence times of (deterministic)
gradient descent.
To overcome problems with the objective function’s cur-

vature, one may think of developing stochastic versions of
Newton’s method. However, computing unbiased estimates of
Newton steps is not easy except in problems with some specific
structures [18], [19]. Recourse to quasi-Newton methods then
arises as a natural alternative because they can achieve super-
linear convergence rates in deterministic settings while relying
on gradients to compute curvature estimates [20]–[23]. Consid-
ering the fact that unbiased gradient estimates are computable
at manageable cost, stochastic generalizations of quasi-Newton
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methods are not difficult to devise [6], [24], [25]. Numerical
tests of these methods on simple quadratic objectives suggest
that stochastic quasi-Newton methods retain the convergence
rate advantages of their deterministic counterparts [24]. The
success of these preliminary experiments notwithstanding,
Hessian estimations based on random stochastic gradients may
result in near singular curvature estimates. The possibility of
having singular curvature estimates makes it impossible to
provide convergence analyses for stochastic quasi-Newton
methods [24], [25] and may result in erratic numerical behavior
(see Section V-B).
In this paper we introduce a stochastic regularized version of

the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton
method to solve problems with the generic structure in (1). The
proposed regularization avoids the near-singularity problems of
more straightforward extensions and yields an algorithm with
provable convergence guarantees when the functions
are strongly convex. We begin the paper with a brief discussion
of SGD (Section II) and deterministic BFGS (Section II-A). The
fundamental idea of BFGS is to continuously satisfy a secant
condition that captures information on the curvature of the func-
tion being minimized while staying close to previous curvature
estimates. To regularize deterministic BFGS we retain the se-
cant condition but modify the proximity condition so that the
eigenvalues of the Hessian approximation matrix stay above a
given threshold (Section II-A). This regularized version is lever-
aged to introduce the regularized stochastic BFGS algorithm
(Section II-B). Regularized stochastic BFGS differs from stan-
dard BFGS in the use of regularization to make a bound on the
largest eigenvalue of the Hessian inverse approximation matrix
and in the use of stochastic gradients in lieu of deterministic gra-
dients for both the determination of descent directions and the
approximation of the objective function’s curvature. We abbre-
viate regularized stochastic BFGS as RES.
Convergence properties of RES are then analyzed

(Section III). We prove that lower and upper bounds on the
Hessians of the sample functions are sufficient to guar-
antee convergence of a subsequence to the optimal argument

with probability 1 over realizations of the sample functions
(Theorem 1). We complement this result with a characterization
of the convergence rate which is shown to be at least of order

in expectation (Theorem 2). This expected convergence
rate is typical of stochastic optimization algorithms and, in that
sense, no better than SGD [11]. Advantages of RES relative to
SGD are nevertheless significant, as we establish in numerical
results for the minimization of a family of quadratic objective
functions of varying dimensionality and condition number
(Section IV). As we vary the condition number we observe that
for well-conditioned objectives RES and SGD exhibit compa-
rable performance, whereas for ill-conditioned functions RES
outperforms SGD by an order of magnitude (Section IV-A).
As we vary problem dimension we observe that SGD becomes
unworkable for large-dimensional problems. RES however,
exhibits manageable degradation as the number of iterations
required for convergence doubles when the problem dimension
increases by a factor of ten (Section IV-D).
An important example of a class of problems having the form

in (1) are support vector machines (SVMs) that reduce binary

classification to the determination of a hyperplane that separates
points in a given training set; see, e.g., [4], [26], [27]. We adapt
RES for SVM problems (Section V) and show the improvement
relative to SGD in convergence time and stability through nu-
merical analysis (Section V-A). For this particular problem of
finding optimal SVM classifiers, several accelerations of SGD
have been proposed. These include the Stochastic Average Gra-
dient (SAG)method [13], the Semi-Stochastic Gradient Descent
(S2GD) algorithm [16], and Stochastic Approximation by Av-
eraging (SAA) [14]. The comparison of RES with these accel-
erated versions yields the expected conclusion. SAG and S2GD
accelerate the convergence of SGD but still underperform RES
for problems that are not well-conditioned. As we commented
above, RES solves a different problem than the one targeted by
SAG, S2GD, and SAA. The latter attempt to reduce the ran-
domness in SGD to make the convergence rate closer to that of
gradient descent. RES attempts to adapt to the curvature of the
objective function. We also compare RES to standard (non-reg-
ularized) stochastic BFGS. The regularization in RES is funda-
mental in guaranteeing convergence as standard (non-regular-
ized) stochastic BFGS is observed to routinely fail in the com-
putation of a separating hyperplane.
Notation: Lowercase boldface denotes a vector and upper-

case boldface a matrix. We use to denote the Euclidean
norm of vector and to denote the Euclidean norm of ma-
trix . The trace of is written as and the determinant
as . We use for the identity matrix of appropriate di-
mension. The notation implies that the matrix is
positive semidefinite. The operator stands for expectation
over random variable and for expectation with respect to
the distribution of a stochastic process.

II. ALGORITHM DEFINITION

Recall the definitions of the sample functions and
the average function . Since the function

is strongly convex, we can find the optimal argument
in (1) with a gradient descent algorithm. Considering that

strongly convex functions are continuously differentiable and
further assuming that the instantaneous functions have
finite gradients it follows that the gradients of are given
by

(2)

When the number of functions is large, as is the case in
most problems of practical interest, exact evaluation of the gra-
dient is impractical. This motivates the use of stochastic
gradients in lieu of actual gradients. More precisely, consider a
given set of realizations and define the sto-
chastic gradient of at given samples as

(3)

Introducing now a time index , an initial iterate , and a step
size sequence , a stochastic gradient descent algorithm is de-
fined by the iteration

(4)
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To implement (4) we compute stochastic gradients
using (3). In turn, this requires determination of the gradients
of the random functions for each component of
and their corresponding average. The computational cost is

manageable for small values of .
The stochastic gradient in (3) is an unbiased esti-

mate of the (average) gradient in (2) in the sense that
. Thus, the iteration in (4) is such that, on

average, iterates descend along a negative gradient direction,
see, e.g., [11]. This intuitive observation can be formalized into
a proof of convergence when the step size sequence is selected
as nonsummable but square summable, i.e.,

(5)

A customary step size choice for which (5) holds is to make
, for given parameters and that control

the initial step size and its speed of decrease, respectively. Con-
vergence notwithstanding, the number of iterations required to
approximate is very large in problems that don’t have small
condition numbers [12]. This motivates the alternative methods
we discuss in subsequent sections.

A. Regularized BFGS

To speed up convergence of (4) resorting to second order
methods is of little use because evaluating Hessians of the ob-
jective function is computationally intensive. A better suited
methodology is the use of quasi-Newton methods whereby gra-
dient descent directions are premultiplied by a matrix ,

(6)

The idea is to select positive definite matrices close to
the Hessian of the objective function . Var-
ious methods are known to select matrices , including those
by Broyden e.g., [28]; Davidon, Fletcher, and Powell (DFP)
[29]; and Broyden, Fletcher, Goldfarb, and Shanno (BFGS) e.g.,
[21]–[23]. We work here with the matrices used in BFGS
since they have been observed to work best in practice [22].
In BFGS—and all other quasi-Newton methods—the func-

tion’s curvature is approximated by a finite difference. Specifi-
cally, define the variable and gradient variations at time as

(7)

respectively, and select the matrix to be used in the next
time step so that it satisfies the secant condition .
The rationale for this selection is that the Hessian satis-
fies this condition for tending to . Notice however that
the secant condition is not enough to completely
specify . To resolve this indeterminacy, matrices in
BFGS are also required to be as close as possible to in terms
of the Gaussian differential entropy,

(8)

The constraint in (8) restricts the feasible space to
positive semidefinite matrices whereas the constraint
requires to satisfy the secant condition. The objective

represents the differential
entropy between random variables with zero-mean Gaussian
distributions and having covariance ma-
trices and . The differential entropy is nonnegative and
equal to zero if and only if . The solution of
the semidefinite program in (8) is therefore closest to in
the sense of minimizing the Gaussian differential entropy
among all positive semidefinite matrices that satisfy the secant
condition .
Strongly convex functions are such that the inner product of

the gradient and variable variations is positive, i.e., .
In that case the matrix in (8) is explicitly given by the
update—see, e.g., [23] and the proof of Lemma 1—,

(9)

In principle, the solution to (8) could be positive semidefinite but
not positive definite, i.e., we can have but .
However, through direct operation in (9) it is not difficult to
conclude that stays positive definite if the matrix is
positive definite. Thus, initializing the curvature estimate with a
positive definite matrix guarantees for all sub-
sequent times . Still, it is possible for the smallest eigenvalue
of to become arbitrarily close to zero which means that the
largest eigenvalue of can become arbitrarily large. This has
been proven not to be an issue in BFGS implementations but is
a significant challenge in the stochastic version proposed here.
To avoid this problem we introduce a regularization of (8) to

enforce the eigenvalues of to exceed a positive constant
. Specifically, we redefine as the solution of problem,

(10)

The curvature approximation matrix defined in (10) still
satisfies the secant condition but has a different
proximity requirement since instead of comparing and we
compare and . While (10) does not ensure that all
eigenvalues of exceed we can show that this will be
the case under two minimally restrictive assumptions. We do
so in the following proposition where we also give an explicit
solution for (10) analogous to the expression in (9) that solves
the non-regularized problem in (8).
Proposition 1: Consider the semidefinite program in (10)

where the matrix is positive definite and define the
corrected gradient variation

(11)

where is a constant. If the inner product
is positive, the solution of (10) is such that all

eigenvalues of are larger than ,

(12)
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Furthermore, is explicitly given by the expression

(13)

Proof: See Appendix.
Comparing (9) and (13), it follows that the differences be-

tween BFGS and regularized BFGS are the replacement of the
gradient variation in (7) by the corrected variation

and the addition of the regularization term . We use
(13) in the construction of the stochastic BFGS in the following
section.

B. RES: Regularized Stochastic BFGS

As can be seen from (13) the regularized BFGS curvature
estimate is obtained as a function of previous estimates
, iterates and , and corresponding gradients

and . We can then think of a method in which gradients
are replaced by stochastic gradients in both the

curvature approximation update in (13) and the descent iteration
in (6). Specifically, start at time with current iterate and
let stand for the Hessian approximation computed by sto-
chastic BFGS in the previous iteration. Obtain a batch of sam-
ples , determine the value of the stochastic
gradient as per (3), and update the iterate as

(14)

where we added the identity bias term for a given positive
constant . Relative to SGD as defined by (4), RES as
defined by (14) differs in the use of the matrix to
account for the curvature of . Relative to (regularized or
non-regularized) BFGS as defined in (6) RES differs in the use
of stochastic gradients instead of actual gradients and
in the use of the curvature approximation in lieu of

. Observe that in (14) we add a bias to the curvature
approximation . This is necessary to ensure convergence
by hedging against random variations in as we discuss in
Section III.
To update the Hessian approximation matrix compute the

stochastic gradient associated with the same set of
samples used to compute the stochastic gradient .
Define then the stochastic gradient variation at time as

(15)

and redefine so that it stands for the modified stochastic gra-
dient variation

(16)

by using instead of . The Hessian approximation for
the next iteration is defined as the matrix that satisfies the sto-
chastic secant condition and is closest to in the
sense of (10). As per Proposition 1 we can compute ex-
plicitly as

(17)

Algorithm 1: RES: Regularized Stochastic BFGS

Require: Variable . Hessian approximation .

1: for do

2: Acquire independent samples

3: Compute [cf. (3)]

4: Descend along direction [cf. (14)]

5: Compute [cf. (3)]

6: Compute variable variation [cf. (7)] .

7: Compute modified stochastic gradient variation [cf. (16)]

8: Update Hessian approximation matrix [cf. (17)]

9: end for

as long as . Conditions to guarantee
that are introduced in Section III.
The resulting RES algorithm is summarized in Algorithm 1.

The two core steps in each iteration are the descent in Step 4
and the update of the Hessian approximation in Step 8. Step
2 comprises the observation of samples that are required to
compute the stochastic gradients in Steps 3 and 5. The stochastic
gradient in Step 3 is used in the descent iteration in
Step 4. The stochastic gradient of Step 3 along with the sto-
chastic gradient of Step 5 are used to compute the
variations in Steps 6 and 7 that permit carrying out the update
of the Hessian approximation in Step 8. Iterations are ini-
tialized at arbitrary variable and positive definite matrix
with the smallest eigenvalue larger than .
Remark 1: One may think that the natural substitution of

the gradient variation is the stochastic
gradient variation instead of the
variation in (15). This would have
the advantage that is the stochastic gradient used
to descend in iteration whereas is not and
is just computed for the purposes of updating . Therefore,
using the variation requires twice
as many stochastic gradient evaluations as using the variation

. However, the use of the variation
is necessary to ensure that

, which in turn is required for (17)
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to be true. This cannot be guaranteed if we use the variation
—see Lemma 1 for details. The

same observation holds true for the non-regularized version of
stochastic BFGS introduced in [24].

III. CONVERGENCE

For the subsequent analysis we define the instantaneous ob-
jective function associated with samples as

(18)

The definition of the instantaneous objective function
in association with the fact that implies

(19)

Our goal here is to show that as time progresses the sequence
of variable iterates approaches the optimal argument . In
proving this result we make the following assumptions.
Assumption 1: The instantaneous functions are twice

differentiable and the eigenvalues of the instantaneous Hessian
are bounded between constants

and for all random variables ,

(20)

Assumption 2: The second moment of the norm of the sto-
chastic gradient is bounded for all , i.e., there exists a constant
such that for all variables , it holds

(21)

Assumption 3: The regularization constant is smaller than
the smallest Hessian eigenvalue , i.e., .
As a consequence of Assumption 1 similar eigenvalue bounds

hold for the (average) function . Indeed, it follows from
the linearity of the expectation operator and the expression in
(19) that the Hessian is .
Combining this observation with the bounds in (20) it follows
that there are constants and such that

(22)

The bounds in (22) are customary in convergence proofs of
descent methods. For the results here the stronger condition
spelled in Assumption 1 is needed. The lower bound implies
strong convexity of the instantaneous functions and the upper
bound is equivalent to them having Lipschitz Continuous gradi-
ents. The restriction imposed by Assumption 2 is typical of sto-
chastic descent algorithms, its intent being to limit the random
variation of stochastic gradients [11]. Assumption 3 is necessary
to guarantee that the inner product
[cf. Proposition 1] is positive as we show in the following

lemma.
Lemma 1: Consider the modified stochastic gradient varia-

tion defined in (16) and the variable variation defined in

(7). Let Assumption 1 hold and recall the lower bound on the
smallest eigenvalue of the instantaneous Hessians. Then, for all
constants , it holds

(23)

Proof: As per (20) in Assumption 1 the eigenvalues of the
instantaneous Hessian are bounded below by
which is equivalent to saying that instantaneous objective func-
tions associated with samples are -strongly convex
with respect to . Considering the strong monotonicity of gra-
dients for the -strongly convex functions , we can
write

(24)
Observing the definitions of stochastic gradients in (3)
and instantaneous objective functions in (18) it follows
that . Hence, we can rewrite (24) as

(25)
Using the definitions of stochastic gradient variation and vari-
able variation in (15) and (7) we further simplify (25) to

(26)

Consider now the inner product in (23)
and use the bound in (26) to write

Since we are selecting by hypothesis it follows that (23)
is true for all times .
Initializing the curvature approximation matrix as ,

which implies , and setting it follows from
Lemma 1 that the hypotheses of Proposition 1 are satisfied for

. Hence, the matrix computed from (17) is the solu-
tion of the semidefinite program in (10) and, more to the point,
satisfies , which in turn implies . Proceeding
recursively we can conclude that for all times

. Equivalently, this implies that all the eigenvalues of
are between 0 and and that, as a consequence, the matrix

is such that

(27)

Having matrices that are strictly positive definite
with eigenvalues uniformly upper bounded by
leads to the conclusion that if is a descent direction,
the same holds true of . The stochastic
gradient is not a descent direction in general, but
we know that this is true for its conditional expectation

. Therefore, we conclude that
is an average descent direction be-

cause .
Stochastic optimization algorithms whose displacements

are descent directions on average are expected to
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approach optimal arguments in a sense that we specify formally
in the following lemma.
Lemma 2: Consider the RES algorithm as defined by

(14)–(17). If Assumptions 1, 2, and 3 hold true, the sequence
of average function satisfies

(28)

where the constant .
Proof: It follows from Assumption 1 that the eigenvalues

of the Hessian are
bounded between and as stated in (22). Taking a
Taylor’s expansion of the dual function around
and using the upper bound in the Hessian eigenvalues we can
write

(29)
From the definition of the RES update in (14) we can write
the difference of two consecutive variables as

. Making this substitution in (29),
taking expectation with given in both sides of the resulting
inequality, and observing the fact that when is given the
Hessian approximation is deterministic we can write

(30)

We proceed to bound the third term in the right hand side of
(30). Start by observing that the 2-norm of a product is not larger
than the product of the 2-norms and that, as noted above, with
given the matrix is also given to write

(31)

Notice that, as stated in (27), is an upper bound for
the eigenvalues of . Further observe that the second
moment of the norm of the stochastic gradient is bounded by

, as stated in Assumption 2. These
two upper bounds substituted in (31) yield

(32)

Substituting the upper bound in (32) for the third term of (30)
and further using the fact that in
the second term leads to

(33)

We now find a lower bound for the second term in the right hand
side of (33). Since the Hessian approximation matrices are

positive definite their inverses are positive semidefinite. In
turn, this implies that all the eigenvalues of are not
smaller than since increases all the eigenvalues of by
. This lower bound for the eigenvalues of implies
that

(34)

Substituting the lower bound in (34) for the corresponding sum-
mand in (33) and noting the definition of

in the statement of the lemma, the result in (29) follows.
Setting aside the term for the sake of argument (28)

defines a supermartingale relationship for the sequence of
average functions . This implies that the sequence

is almost surely summable which, given that
the stepsizes are nonsummable as per (5), further implies
that the limit infimum of the gradient
norm is almost surely null. This latter observation
is equivalent to having with
probability 1 over realizations of the random samples .
The term is a relatively minor nuisance that can be taken
care with a technical argument that we present in the proof of
the following theorem.
Theorem 1: Consider the RES algorithm as defined by

(14)–(17). If Assumptions 1, 2, and 3 hold true and the se-
quence of stepsizes satisfies (5), the limit infimum of the
squared Euclidean distance to optimality satisfies

(35)

over realizations of the random samples .
Proof: The proof uses the relationship in the statement (28)

of Lemma 2 to build a supermartingale sequence. For that pur-
pose define the stochastic process with values

(36)

Note that is well-defined because
is summable. Further define the sequence with values

(37)

Let now be a sigma-algebra measuring , , and . The
conditional expectation of given can be written as

(38)

because the term is just a deterministic constant.
Substituting (28) of Lemma 2 into (38) and using the definitions
of in (36) and in (37) yields

(39)

Since the sequences and are nonnegative it follows from
(39) that they satisfy the conditions of the supermartingale con-
vergence theorem—see e.g. theorem E7.4 [30]. Therefore, we
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conclude that: (i) The sequence converges almost surely. (ii)
The sum is almost surely finite. Using the ex-
plicit form of in (37) we have that is equiva-
lent to

(40)

Since the sequence of stepsizes is nonsummable for (40) to be
true we need to have a vanishing subsequence embedded in

. By definition, this implies that the limit infimum
of the sequence is null,

(41)

To transform the gradient bound in (41) into a bound pertaining
to the squared distance to optimality simply observe
that the lower bound on the eigenvalues of applied to
a Taylor’s expansion around the optimal argument implies
that

(42)
Observe now that since is the minimizing argument of
we must have for all . Using this fact
and reordering terms we simplify (42) to

(43)

Further observe that the Cauchy-Schwarz inequality implies
that . Substitu-
tion of this bound in (43) and simplification of a
factor yields

(44)

Since the limit infimum of is null as stated in (41)
the result in (35) follows from considering the bound in (44) in
the limit as the iteration index .
Theorem 1 establishes convergence of a subsequence of the

RES algorithm summarized in Algorithm 1. In the proof of the
prerequisite Lemma 2 the lower bound in the eigenvalues of
enforced by the regularization in (17) plays a fundamental

role. Roughly speaking, the lower bound in the eigenvalues of
results in an upper bound on the eigenvalues of which

limits the effect of random variations on the stochastic gradient
. If this regularization is not implemented, i.e., if we

keep , we may observe catastrophic amplification of
random variations of the stochastic gradient. This effect is in-
deed observed in the numerical experiments in Section IV. The
addition of the identity matrix bias in (14) is instrumental in
the proof of Theorem 1 proper. This bias limits the effects of
randomness in the curvature estimate . If random variations
in the curvature estimate result in a matrix with small
eigenvalues the term dominates and (14) reduces to (regular)
SGD. This ensures continued progress towards the optimal ar-
gument .

A. Rate of Convergence

We complement the convergence result in Theorem 1 with a
characterization of the expected convergence rate that we intro-
duce in the following theorem.
Theorem 2: Consider the RES algorithm as defined by

(14)–(17) and let the sequence of step sizes be given by
with the parameter sufficiently small and

the parameter sufficiently large so as to satisfy the inequality

(45)

If Assumptions 1, 2, and 3 hold true the difference between the
expected objective value at time and the optimal
objective satisfies

(46)

where the constant satisfies

(47)

Proof: See Appendix.
Theorem 2 shows that under specified assumptions, the ex-

pected error in terms of the objective value after RES itera-
tions is at least of order . An expected convergence rate
of order is typical of stochastic optimization algorithms
and, in that sense, no better than conventional SGD. While the
convergence rate doesn’t change, improvements in convergence
time are marked as we illustrate with the numerical experiments
of Sections IV and V-A.

IV. NUMERICAL ANALYSIS

We compare convergence times of RES and SGD in problems
with small and large condition numbers. We use a stochastic
quadratic objective function as a test case. In particular, consider
a positive definite diagonal matrix , a vector ,
a random vector , and diagonal matrix defined
by . The function in (1) is defined as

(48)

In (48), the vector is chosen uniformly at random from the
-dimensional box for some given constant

. The linear term is added so that the instanta-
neous functions have different minima which are (al-
most surely) different from the minimum of the average func-
tion . The quadratic term is chosen so that the condition
number of is the condition number of . Indeed, just ob-
serve that since , the average function in (48) can be
written as . The parameter
controls the variability of the instantaneous functions .
For small the instantaneous functions are close to each
other and to the average function. For large the instanta-
neous functions vary over a large range. We emphasize that the
restriction of to diagonal positive definite quadratic forms
is not significant. What is important is the ability to control the
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Fig. 1. Convergence of SGD andRES for the function in (48). Relative distance
to optimality is shown with respect to the number of
stochastic functions processed. For RES the number of iterations required to
achieve a certain accuracy is smaller than the corresponding number for SGD.
See text for parameters’ values.

condition number of and the variability of the instanta-
neous functions . Analogous results can be obtained if
we pre and post multiply the quadratic form with a random or-
thogonal matrix.
Further note that we can write the optimum argument as

for comparison against iterates . This allows
us to consider a given and study the convergence metric

(49)

which represents the time needed to achieve a given relative dis-
tance to optimality as measured in terms
of the number of stochastic functions that are processed to
achieve such accuracy.

A. Effect of Problem’s Condition Number

To study the effect of the problem’s condition number we
generate instances of (48) by choosing uniformly at random
from the box and the matrix as diagonal with elements
uniformly drawn from the discrete set .

This choice of yields problems with condition number .
Representative runs of RES and SGD for ,
, and are shown in Fig. 1. For the RES run the sto-

chastic gradients in (3) are computed as an average of
realizations, the regularization parameter in (10) is set

to , and the minimum progress parameter in (14) to
. For SGD we use in (3). In both cases the

step size sequence is of the form . Separate
rough searches are performed to find step size parameters and
for RES and SGD that minimize the objective function after
iterations. For the runs in Fig. 1 the best parameters for SGD

are and , while for RES the best choices
are and . Since we are using different
values of for SGD and RES we plot the relative distance to
optimality against the number of func-
tions processed up until iteration .
As expected for a problem with large condition

number—since we are using , the condition number
of is —RES is much faster than SGD. After

the distance to optimality for the SGD iterate is
. Comparable accuracy

Fig. 2. Convergence of SGD and RES for well-conditioned problems. Empir-
ical distributions of the number of stochastic functions that are pro-
cessed to achieve relative precision are shown.
Histogram is across realizations of functions as in (48) with condi-
tion number . See text for parameters’ values.

Fig. 3. Convergence of SGD and RES for ill-conditioned problems. Empirical
distributions of the number of stochastic functions that are processed to
achieve relative precision are shown. Histogram
is across realizations of functions as in (48) with condition number

. See text for parameters’ values.

for RES is achieved after
iterations. Since we are using for RES this

corresponds to random function evaluations. Con-
versely, upon processing random functions—which
corresponds to iterations—RES achieves accuracy

. This relative performance
difference can be made arbitrarily large by modifying the
condition number of .
A more comprehensive analysis of the relative advantages of

RES appears in Figs. 2 and 3. We keep the same parameters
used to generate Fig. 1 except that we use for Fig. 2
and for Fig. 3. This yields a family of well-conditioned
functions with condition number and a family of
ill-conditioned functions with condition number .
In Fig. 3 we use the same step size parameters of Fig. 1 be-
cause the function’s parameters are the same. In Fig. 2, where
the condition number is smaller, the best stepsize parameters for
SGD are and , and for RES the op-
timal choices are and . In both figures
we consider and study the convergence times and
of RES and SGD, respectively [cf. (49)]. Resulting empir-

ical distributions of and across instances of
the functions in (48) are reported in Figs. 2 and 3 for the
well-conditioned and ill-conditioned families, respectively. For
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Fig. 4. Central processing unit (CPU) runtimes of SGD and RES for well-con-
ditioned problems. Empirical distributions of CPU runtimes to achieve relative
precision are shown. Histogram is across

realizations of functions as in (48) with condition number .
See text for parameters’ values.

Fig. 5. Central processing unit (CPU) runtimes of SGD and RES for ill-con-
ditioned problems. Empirical distributions of CPU runtimes to achieve relative
precision are shown. Histogram is across

realizations of functions as in (48) with condition number .
See text for parameters’ values.

the well-conditioned family RES reduces the number of func-
tions processed from an average of in the case of SGD
to an average of . This nondramatic improvement be-
comes more significant for the ill-conditioned family where the
reduction is from an average of for SGD to an
average of for RES.

B. Central Processing Unit Runtime Comparisons

Since the complexity of each RES iteration is larger than the
corresponding complexity of SGD we also compare the per-
formances of SGD and RES in terms of the central processing
unit (CPU) runtime required to achieve relative accuracy

. The empirical distributions of runtimes across
realizations are reported in Figs. 4 and 5 for the well-condi-
tioned and ill-conditioned families, respectively. In the well-
conditioned family, RES reduces runtime from an average of

seconds in the case of SGD to an average of
seconds. A more significant improvement can be seen for

the ill-conditioned family where the reduction is from an av-
erage of seconds for SGD to an average of
seconds for RES.
It is important to emphasize that the advantage of RES in

terms of CPU runtime depends on specific problem parameters.

Fig. 6. Convergence of SGD and RES for a very large dimensional problem
with small condition number. Empirical distributions of the number
of stochastic functions that are processed to achieve relative precision

are shown. Histogram is across
realizations of functions as in (48) with condition number . See text
for parameters’ values.

Fig. 7. Convergence of SGD and RES for a very large dimensional problem
with small condition number. Empirical distributions of CPU runtimes to
achieve relative precision are shown. Histogram
is across realizations of functions as in (48) with condition number

. See text for parameters’ values.

In particular, if the condition number of is small, we ex-
pect that as we increase the variable dimension the RES reduc-
tion on the number of iterations is overcome by the added com-
putational complexity of each iteration. To illustrate this draw-
back we repeat the numerical experiments in Figs. 2 and 4 where
the condition number is , but change the number of
variables to . Convergence times needed to achieve
relative accuracy as measured by
the number of stochastic functions processed and the CPU run-
time are shown in Figs. 6 and 7, respectively. In both cases we
show empirical distributions across realizations of
the functions . As evidenced by Fig. 6, RES is faster in
terms of the number of random functions required. But, as ev-
idenced by Fig. 7, the opposite is true when we consider CPU
runtimes. Indeed, the average number of function evaluations
are for RES and and SGD but the av-
erage runtimes are 1.6 seconds for RES and seconds
for SGD. It follows as a conclusion that SGD outperforms RES
for problems that are well-conditioned and large dimensional.
We summarize this conclusion in the following remark.
Remark 2: In all of our numerical experiments RES reduces

the number of stochastic functions that have to be processed to
achieve a target accuracy. The reduction is moderate for well-
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Fig. 8. Convergence of RES for different sample sizes in the computation of
stochastic gradients. Empirical distributions of the number of processed
stochastic functions to achieve relative precision
are shown when we use , , , , and in the
evaluation of the stochastic gradients in (3). The average convergence
time decreases as we go from small to moderate values of and starts increasing
as we go frommoderate to large values of . The variance of convergence times
decreases monotonically with increasing .

conditioned problems but becomes arbitrarily large as the con-
dition number of the objective function increases. However,
the computational cost of each RES iteration becomes progres-
sively larger as the dimension of the variable increases. It fol-
lows that RES is best suited to problems where the cost of
computing stochastic gradients is large, problems where the di-
mension is not too large, problems where the Hessian approx-
imation matrices are sparse, or problems where the condition
number makes SGD impracticable. For problems where the cost
of computing stochastic gradients is reasonable, with condition
numbers close to one, and whose Hessians lack any amenable
structure, SGD and variants of SGD are preferable; see also
Section V-A.

C. Choice of Stochastic Gradient Average

The stochastic gradients in (3) are computed as an
average of sample gradients . To study the effect
of the choice of on RES we consider problems as in (48)
with matrices and vectors generated as in Section IV-A.
We consider problems with , , and ;
set the RES parameters to and ; and the
step size sequence to with
and . We then consider different choices of and for
each specific value generate problem instances. For
each run we record the total number of sample functions that
need to be processed to achieve relative distance to optimality

[cf. (49)]. If we report
and interpret this outcome as a convergence failure.

The resulting estimates of the probability distributions of the
times are reported in Fig. 8 for , , ,

, and .
The trends in convergence times apparent in Fig. 8 are:

(i) As we increase the variance of convergence times de-
creases. (ii) The average convergence time decreases as we go
from small to moderate values of and starts increasing as we
go from moderate to large values of . Indeed, the empirical
standard deviations of convergence times decrease monotoni-
cally from to , ,

, and , when increases from to
, , , and . The empirical mean de-

creases from to as we move from
to , stays at about the same value for
and then increases to and

for and . This behavior is expected since in-
creasing results in curvature estimates closer to the Hes-
sian thereby yielding better convergence times. As we
keep increasing , there is no payoff in terms of better curvature
estimates and we just pay a penalty in terms of more function
evaluations for an equally good matrix. This can be corrobo-
rated by observing that the convergence times are about half
those of which in turn are about half those of . This means
that the actual convergence times have similar distributions
for , , and . The empirical distributions in
Fig. 8 show that moderate values of suffice to provide work-
able curvature approximations. This justifies the use in
Sections IV-A and IV-D.

D. Effect of Problem’s Dimension

To evaluate performance for problems of different dimen-
sions we consider functions of the form in (48) with uni-
formly chosen from the box and diagonal matrix as
in Section IV-A. However, we select the elements as uni-
formly drawn from the interval [0,1]. This results in problems
with more moderate condition numbers and allows for a com-
parative study of performance degradations of RES and SGD as
the problem dimension grows.
The variability parameter for the random vector is set to

. The RES parameters are , , and

. For SGDwe use . In bothmethods the step size
sequence is with and .
For a problem of dimension we study convergence times
and of RES and SGD as defined in (49) with . For each
value of consideredwe determine empirical distributions of
and across problem instances. If we
report and interpret this outcome as a convergence
failure. The resulting histograms are shown in Fig. 9 for ,

, , and .
For problems of small dimension having the average

performances of RES and SGD are comparable, with SGD per-
forming slightly better. E.g., the medians of these times are

and , respectively. A
more significant difference is that times of RES are more con-
centrated than times of SGD. The latter exhibits large conver-
gence times with probability 0.06 and fails to converge
altogether in a few rare instances—we have in 1
out of 1,000 realizations. In the case of RES all realizations of
are in the interval .
As we increase we see that RES retains the smaller spread

advantage while eventually exhibiting better average perfor-
mance as well. Medians for are still comparable at

and , as well as for
at and .

For the RES median is decidedly better since
and .

For large dimensional problems having SGD be-
comes unworkable. It fails to achieve convergence in
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Fig. 9. Histogram of the number of data points that SGD and RES need to converge. Convergence time for RES increases smoothly by increasing the dimension
of problem, while convergence time of SGD increases faster. (a) ; (b) ; (c) ; (d) .

iterations with probability 0.07 and exceeds iterations {with
probability 0.45. For RES we fail to achieve convergence in

iterations with probability and achieve conver-
gence in less than iterations in all other cases. Further ob-
serve that RES degrades smoothly as increases. The median
number of gradient evaluations needed to achieve convergence
increases by a factor of as we
increase by a factor of 10. The spread in convergence times
remains stable as grows.

V. SUPPORT VECTOR MACHINES

A particular case of (1) is the implementation of a sup-
port vector machine (SVM). Given a training set with points
whose class is known the goal of an SVM is to find a hy-
perplane that best separates the training set. To be specific
let be a training set containing pairs
of the form , where is a feature vector and

is the corresponding vector’s class. The goal
is to find a hyperplane supported by a vector which
separates the training set so that for all points with

and for all points with . This vector
may not exist if the data is not perfectly separable, or, if the
data is separable there may be more than one separating vector.
We can deal with both situations with the introduction of a
loss function defining some measure of distance
between the point and the hyperplane supported by . We
then select the hyperplane supporting vector as

(50)

where we also added the regularization term for some
constant . The vector in (50) balances the mini-
mization of the sum of distances to the separating hyperplane,
as measured by the loss function , with the mini-
mization of the norm to enforce desirable properties
in . Common selections for the loss function are the hinge
loss , the squared hinge
loss and the log loss

. See, e.g., [4], [26].
In order to model (50) as a stochastic optimization problem

in the form of problem (1), we define as a given
training point and as a uniform probability distribution
on the training set . Upon defining
the sample functions

(51)

it follows that we can rewrite the objective function in (50) as

(52)

since each of the functions is drawn with probability
according to the definition of . Substituting (52) into

(50) yields a problem with the general form of (1) with random
functions explicitly given by (51).
We can then use Algorithm (1) to attempt solution of (50).

For that purpose we particularize Step 2 to the drawing of
feature vectors and their corresponding
class values to construct the vector of pairs
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. These training points are se-
lected uniformly at random from the training set .We also need
to particularize Steps 3 and 5 to evaluate the stochastic gradient
of the instantaneous function in (51). E.g., Step 3 takes the form

(53)

The specific form of Step 5 is obtained by replacing for
in (53). We analyze the behavior of Algorithm (1) in the

implementation of a SVM in the following section.

A. RES vs Stochastic Gradient Descent for Support Vector
Machines

We test Algorithm 1 when using the squared hinge loss
in (50). The training set

contains feature vectors half of which
belong to the class with the other half belonging to the
class . For the class each of the components
of each of the feature vectors is chosen uniformly at
random from the interval [ 0.8,0.2]. Likewise, each of the
components of each of the feature vectors is chosen
uniformly at random from the interval [ 0.2,0.8] for the class

. Observe that the overlap in the range of the feature
vectors is such that the classification accuracy expected from
a clairvoyant classifier that knows the statistical model of the
data set is less than 100%.
In all of our numerical experiments the parameter in (50)

is set to . Recall that since the Hessian eigenvalues
of are, at least, equal
to this implies that the eigenvalue lower bound is such
that . We therefore set the RES regularization
parameter to . Further set the minimum progress
parameter in (3) to .
Accelerated versions of SGD can be used for the implemen-

tation of SVMs. We provide a comparison of RES with re-
spect to regular SGD and three accelerated versions: Stochastic
Average Gradient (SAG) [13], Semi-Stochastic Gradient De-
scent (S2GD) [16], and Stochastic Approximation by Averaging
(SAA) [14]. The SAG algorithm incorporates memory of pre-
vious stochastic gradients and uses an average of stochastic gra-
dients as descent direction. The S2GD algorithm is a hybrid
method which runs through several epochs. Each epoch is char-
acterized by the computation of a single full gradient and a
random number of stochastic gradients, with the number of sto-
chastic gradients selected according to a geometric distribution.
In SAA a time average of iterates is computed and reported.
An illustration of the relative performances of SAA, SGD,

SAG, S2GD and RES for and is presented
in Fig. 10. For RES, we set and choose the decreasing
stepsize sequence with and

. These parameters yield best performance after pro-
cessing feature vectors. For SGD, SAA, SAG, and S2GD
we tune the various parameters and report results for the combi-
nation that yields best performance after processing feature
vectors. In Fig. 10 the value of the objective function is

Fig. 10. Comparison of RES, SGD, the SGD accelerations SAA, SAG, and
S2GD to find an optimal linear classifier with respect to the cost in (50) for a
problem of dimension and training set with feature vectors.
RES processes a much smaller number of feature vectors to achieve comparable
objective values. See text for parameters’ values.

Fig. 11. Comparison of Fig. 10 for problem dimension and training
set cardinality . The reduction in the number of feature vectors pro-
cessed is more pronounced than in Fig. 10, but less pronounced in terms of the
CPU runtimes shown in Table I. See text for parameters’ values.

TABLE I
CPU RUNTIMES OF RES, SGD, THE SGD ACCELERATIONS SAA, SAG,
AND S2GD TO FIND AN OPTIMAL LINEAR CLASSIFIER WITH RESPECT
TO THE COST IN (50) FOR DIFFERENT PROBLEM DIMENSION AND

CARDINALITY OF TRAINING SET . TIMES REPORTED
ARE TO ACHIEVE OBJECTIVE VALUES

represented with respect to the number of feature vectors pro-
cessed, which is given by the product between the iteration
index and the sample size used to compute stochastic gradi-
ents. To achieve the objective function value ,
RES processes training points which is a
little more than 3 passes over the complete data set. The re-
quired time for processing these number of feature vectors is 45
milliseconds (ms). Reaching the same objective function value

requires processing training
points for SGD which is more than 83 passes over the whole
data set. It takes 520 ms for SGD to achieve this value for the
objective function. The number of processed training points to
achieve the same objective function value for
SAG and S2GD are and , respec-
tively. In terms of CPU runtime SAG and S2GD requires 350
ms and 280 ms to achieve objective function value . The
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performance of SAA is worse than the performance of regular
SGD.
To compare the performances of RES, SGD, SAA, SAG, and

S2GD in a larger SVM problemwe set the size of the training set
to and the dimension of the feature vectors to .
For RES we make , and . For
SGD and its accelerations we select the parameters that achieve
optimal performance after processing feature vectors. The
results with respect to number of feature vectors processed are
shown in Fig. 11 and the CPU times are shown in Table I. The
advantage of RES in terms of the number of feature vectors pro-
cessed is more marked than in the previous experiment. The
advantage in terms of CPU processing times is smaller. For
reference, RES achieves the objective value
after processing feature vectors in 0.8 seconds. Cor-
respondingly, the numbers of feature vectors processed to at-
tain are and for SAG and
S2GD. The CPU runtimes are 1.3 and 1.2, respectively. SGD
cannot achieve objective function value after
processing feature vectors in 1.5 seconds. The performance
of SAA is still worse than the performance of regular SGD.

B. RES and Stochastic BFGS

We also investigate the difference between regularized and
non-regularized versions of stochastic BFGS for feature vectors
of dimension . Observe that non-regularized stochastic
BFGS corresponds to making and in Algorithm 1.
To illustrate the advantage of the regularization induced by the
proximity requirement in (10), as opposed to the non-regular-
ized proximity requirement in (8), we keep a constant stepsize

. The corresponding evolutions of the objective func-
tion values with respect to the number of feature vectors
processed are shown in Fig. 12 along with the values associ-
ated with stochastic gradient descent. As we reach convergence
the likelihood of having small eigenvalues appearing in be-
comes significant. In regularized stochastic BFGS (RES) this
results in recurrent jumps away from the optimal classifier .
However, the regularization term limits the size of the jumps and
further permits the algorithm to consistently recover a reason-
able curvature estimate. In Fig. 12 we process feature vec-
tors and observe many occurrences of small eigenvalues. How-
ever, the algorithm always recovers and heads back to a good ap-
proximation of . In the absence of regularization small eigen-
values in result in larger jumps away from . This not only
sets back the algorithm by a much larger amount than in the reg-
ularized case but also results in a catastrophic deterioration of
the curvature approximation matrix . In Fig. 12 we observe
recovery after the first two occurrences of small eigenvalues but
eventually there is a catastrophic deviation after which non-reg-
ularized stochastic BFGS behaves not better than SGD.

VI. CONCLUSIONS

Strongly convex optimization problems with stochastic ob-
jectives were considered. RES, a stochastic implementation of
a regularized version of the Broyden-Fletcher-Goldfarb-Shanno
quasi-Newton method was introduced to find corresponding op-
timal arguments. Almost sure convergence of at least a subse-
quence generated by RES was established under the assump-

Fig. 12. Comparison of SGD, regularized stochastic BFGS (RES), and (non
regularized) stochastic BFGS. The regularization is fundamental to control the
erratic behavior of stochastic BFGS; See text for parameters’ values.

tion that sample functions have well-behaved Hessians. A linear
convergence rate in expectation was further proven. Numer-
ical results showed that RES affords important reductions in
terms of convergence time relative to stochastic gradient de-
scent. These reductions are of particular significance for prob-
lems with large condition numbers or large dimensionality since
RES exhibits remarkable stability in terms of the total number
of iterations required to achieve target accuracies. An applica-
tion of RES to support vector machines was also developed. In
this particular case the advantages of RES manifest in improve-
ments of classification accuracies for training sets of fixed car-
dinality. Future research directions include the development of
limited memory versions as well as distributed versions where
the function to be minimized is spread over agents of a network.

APPENDIX A
PROOF OF PROPOSITION 1

We first show that (13) is true. Since the optimization problem
in (10) is convex in we can determine the optimal variable

using Lagrangian duality. Introduce then the multi-
plier variable associated with the secant constraint
in (10) and define the Lagrangian

(54)

The dual function is defined as and
the optimal dual variable is . We define the
primal Lagrangian minimizer associated with dual variable as

(55)

Observe that combining the definitions in (55) and (54) we can
write the dual function as

(56)

We will determine the optimal Hessian approximation
as the Lagrangian minimizer associated with the optimal

dual variable . To do sowe first find the Lagrangianminimizer
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(55) by nulling the gradient of with respect to in order
to show that must satisfy

(57)

Multiplying the equality in (57) by from the right and rear-
ranging terms it follows that the inverse of the argument of the
log-determinant function in (56) can be written as

(58)

If, instead, we multiply (57) by from the right it
follows after rearranging terms that

(59)

Further considering the trace of both sides of (59) and noting
that we can write the trace in (56) as

(60)
Observe now that since the trace of a product is invariant under
cyclic permutations of its arguments and the matrix is sym-
metric we have

. Since the argument in the latter is a scalar
the trace operation is inconsequential from which it follows that
we can rewrite (60) as

(61)

Observing that the log-determinant of a matrix is the opposite
of the log-determinant of its inverse we can substitute (58) for
the argument of the log-determinant in (56). Further substituting
(61) for the trace in (56) and rearranging terms yields the explicit
expression for the dual function

(62)
In order to compute the optimal dual variable we set the
gradient of (62) to zero and manipulate terms to obtain

(63)

where we have used the definition of the corrected gradient vari-
ation . To complete the derivation plug the expres-
sion for the optimal multiplier in (63) into the Lagrangian
minimizer expression in (57) and regroup terms so as to write

(64)
Applying the Sherman-Morrison formula to compute the in-
verse of the right hand side of (64) leads to

(65)

which can be verified by direct multiplication. The result in
(13) follows after solving (65) for and noting that for the
convex optimization problem in (10) we must have

as we already argued.
To prove (12) we operate directly from (13). Consider first the

term and observe that since the hypotheses include
the condition , we must have

(66)

Consider now the term and factorize
from the left and right side so as to write

(67)

Define the vector and write

as well as
. Substituting these observations into (67) we can con-

clude that

(68)

because the eigenvalues of the matrix belong to
the interval [0,1]. The only term in (13) which has not been
considered is . Since the rest add up to a positive semidefinite
matrix it then must be that (12) is true.

APPENDIX B
PROOF OF THEOREM 2

Theorem 2 claims that the sequence of expected objective
values approaches the optimal objective at a
linear rate . Before proceeding to the proof of Theorem
2 we introduce a technical lemma that provides a sufficient con-
dition for a sequence to exhibit a linear convergence rate.
Lemma 3: Let , and be given con-

stants and be a nonnegative sequence that satisfies the
inequality

(69)

for all times . The sequence is then bounded as

(70)

for all times , where the constant is defined as

(71)

Proof: We prove (70) using induction. To prove the claim
for simply observe that the definition of in (71) implies
that

(72)
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because the maximum of two numbers is at least equal to both
of them. By rearranging the terms in (72) we can conclude that

(73)

Comparing (73) and (70) it follows that the latter inequality is
true for .
Introduce now the induction hypothesis that (70) is true for
. To show that this implies that (70) is also true for

substitute the induction hypothesis into the
recursive relationship in (69). This substitution shows that
is bounded as

(74)

Observe now that according to the definition of in (71), we
know that because is the maximum of
and . Reorder this bound to show that and
substitute into (74) to write

(75)

Pulling out as a common factor and simplifying
and reordering terms it follows that (75) is equivalent to

(76)

To complete the induction step use the difference of squares
formula for to conclude that

(77)

Reordering terms in (77) it follows that
, which upon substitution into (76) leads to the

conclusion that

(78)

Eq. (78) implies that the assumed validity of (70) for
implies the validity of (70) for . Combined with the
validity of (70) for , which was already proved, it follows
that (70) is true for all times .
Lemma 3 shows that satisfying (69) is sufficient for a se-

quence to have the linear rate of convergence specified in (70).
In the following proof of Theorem 2 we show that if the step-
size sequence parameters and satisfy (45) the sequence

of expected optimality gaps satisfies (69)
with , and . The result in (46)
then follows as a direct consequence of Lemma 3.
Proof of Theorem 2: Consider the result in (28) of Lemma 2

and subtract the average function optimal value from
both sides of the inequality to conclude that the sequence of
optimality gaps in the RES algorithm satisfies

(79)

where, we recall, by definition.
We proceed to find a lower bound for the gradient norm

in terms of the error of the objective value
—this is a standard derivation which we

include for completeness, see, e.g., [31]. It follows from As-
sumption 1 that the eigenvalues of the Hessian are
bounded between and as stated in (22). Taking
a Taylor’s expansion of the objective function around
and using the lower bound in the Hessian eigenvalues we can
write

(80)

For fixed , the right hand side of (80) is a quadratic function of
whose minimum argument we can find by setting its gradient

to zero. Doing this yields the minimizing argument
implying that for all we must have

(81)

The bound in (81) is true for all and . In particular, for
and (81) yields

(82)

Rearrange terms in (82) to obtain a bound on the gradient norm
squared . Further substitute the result in (79) and
regroup terms to obtain the bound

(83)

Take now expected values on both sides of (83). The re-
sulting double expectation in the left hand side simplifies to

, which allow us to conclude
that (83) implies that

(84)

Further substituting , which is the assumed
form of the step size sequence by hypothesis, we can rewrite
(84) as

(85)

Given that the product as per the hypothesis in (45)
the sequence satisfies the hypotheses of
Lemma 3 with , and . It then
follows from (70) and (71) that (46) is true for the constant
defined in (47) upon identifying with ,

with , and substituting , and
for their explicit values.
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