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Abstract

Global convergence of an online (stochastic) limited memory version of the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) quasi-Newton method for solving optimization problems with stochastic
objectives that arise in large scale machine learning is established. Lower and upper bounds
on the Hessian eigenvalues of the sample functions are shown to suffice to guarantee that the
curvature approximation matrices have bounded determinants and traces, which, in turn, permits
establishing convergence to optimal arguments with probability 1. Numerical experiments on
support vector machines with synthetic data showcase reductions in convergence time relative to
stochastic gradient descent algorithms as well as reductions in storage and computation relative
to other online quasi-Newton methods. Experimental evaluation on a search engine advertising
problem corroborates that these advantages also manifest in practical applications.

Keywords: Quasi-Newton methods, large-scale optimization, stochastic optimization, support
vector machines.

1. Introduction

Many problems in Machine Learning can be reduced to the minimization of a stochastic objective
defined as an expectation over a set of random functions (Bottou and Cun (2005); Bottou (2010);
Shalev-Shwartz and Srebro (2008); Mokhtari and Ribeiro (2014b)). Specifically, consider an opti-
mization variable w ∈ Rn and a random variable θ ∈ Θ ⊆ Rp that determines the choice of a function
f(w,θ) : Rn×p → R. Stochastic optimization problems entail determination of the argument w∗

that minimizes the expected value F (w) := Eθ[f(w,θ)],

w∗ := argmin
w

Eθ[f(w,θ)] := argmin
w

F (w). (1)

We refer to f(w,θ) as the random or instantaneous functions and to F (w) := Eθ[f(w,θ)] as the
average function. A canonical class of problems having this form are support vector machines
(SVMs) that reduce binary classification to the determination of a hyperplane that separates points
in a given training set; see, e.g., (Vapnik (1999); Bottou (2010); Boser et al. (ACM, 1992)). In that
case θ denotes individual training samples, f(w,θ) the loss of choosing the hyperplane defined by
w, and F (w) := Eθ[f(w,θ)] the mean loss across all elements of the training set. The optimal
argument w∗ is the optimal linear classifier.

Numerical evaluation of objective function gradients ∇wF (w) = Eθ[∇wf(w,θ)] is intractable
when the cardinality of Θ is large, as is the case, e.g., when SVMs are trained on large sets. This
motivates the use of algorithms relying on stochastic gradients that provide gradient estimates based
on small data subsamples. For the purpose of this paper stochastic optimization algorithms can be
divided into three categories: Stochastic gradient descent (SGD) and related first order methods,
stochastic Newton methods, and stochastic quasi-Newton methods.
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SGD is the most popular method used to solve stochastic optimization problems (Bottou (2010);
Shalev-Shwartz et al. (2007); Zhang (2004); LeRoux et al. (2012)). However, as we consider problems
of ever larger dimension their slow convergence times have limited their practical appeal and fostered
the search for alternatives. In this regard, it has to be noted that SGD is slow because of both, the use
of gradients as descent directions and their replacement by random estimates. Several alternatives
have been proposed to deal with randomness in an effort to render the convergence times of SGD
closer to the faster convergence times of gradient descent (Syski (1983); Konecny and Richtarik
(2013); Zhang et al. (2013a)). These SGD variants succeed in reducing randomness and end up
exhibiting the asymptotic convergence rate of gradient descent. Although they improve asymptotic
convergence rates, the latter methods are still often slow in practice. This is not unexpected.
Reducing randomness is of no use when the function F (w) has a challenging curvature profile. In
these ill-conditioned functions SGD is limited by the already slow convergence times of deterministic
gradient descent. The golden standard to deal with ill-conditioned functions in a deterministic setting
is Newton’s method. However, unbiased stochastic estimates of Newton steps can’t be computed
in general. This fact limits the application of stochastic Newton methods to problems with specific
structure (Birge et al. (1995); Zargham et al. (2013)).

If SGD is slow to converge and stochastic Newton can’t be used in general, the remaining alter-
native is to modify deterministic quasi-Newton methods that speed up convergence times relative to
gradient descent without using Hessian evaluations (J. E. Dennis and More (1974); Powell (1971);
Byrd et al. (1987); Nocedal and Wright (1999)). This has resulted in the development of the
stochastic quasi-Newton methods known as online (o) Broyden-Fletcher-Goldfarb-Shanno (BFGS)
(Schraudolph et al. (2007)), regularized stochastic BFGS (RES) (Mokhtari and Ribeiro (2014a)),
and online limited memory (oL)BFGS (Schraudolph et al. (2007)) which occupy the middle ground
of broad applicability irrespective of problem structure and conditioning. All three of these algo-
rithms extend BFGS by using stochastic gradients both as descent directions and constituents of
Hessian estimates. The oBFGS algorithm is a direct generalization of BFGS that uses stochastic
gradients in lieu of deterministic gradients. RES differs in that it further modifies BFGS to yield
an algorithm that retains its convergence advantages while improving theoretical convergence guar-
antees and numerical behavior. The oLBFGS method uses a modification of BFGS to reduce the
computational cost of each iteration.

An important observation here is that in trying to adapt to the changing curvature of the
objective, stochastic quasi-Newton methods may end up exacerbating the problem. Indeed, since
Hessian estimates are stochastic, it is possible to end up with almost singular Hessian estimates.
The corresponding small eigenvalues then result in a catastrophic amplification of the noise which
nullifies progress made towards convergence. This is not a minor problem. In oBFGS this possibility
precludes convergence analyses (Bordes et al. (2009); Schraudolph et al. (2007)) and may result in
erratic numerical behavior (Mokhtari and Ribeiro (2014a)). As a matter of fact, the main motivation
for the introduction of RES is to avoid this catastrophic noise amplification so as to retain smaller
convergence times while ensuring that optimal arguments are found with probability 1 (Mokhtari
and Ribeiro (2014a)). However valuable, the convergence guarantees of RES and the convergence
time advantages of oBFGS and RES are tainted by an iteration cost of order O(n2) and O(n3),
respectively, which precludes their use in problems where n is very large. In deterministic settings
this problem is addressed by limited memory (L)BFGS (Dong C. and Nocedal (1989)) which can
be easily generalized to develop the oLBFGS algorithm (Schraudolph et al. (2007)). Numerical
tests of oLBFGS are promising but theoretical convergence characterizations are still lacking. The
main contribution of this paper is to show that oLBFGS converges with probability 1 to optimal
arguments across realizations of the random variables θ. This is the same convergence guarantee
provided for RES and is in marked contrast with oBFGS, which fails to converge if not properly
regularized. Convergence guarantees for oLBFGS do not require such measures.

We begin the paper with brief discussions of deterministic BFGS (Section 2) and LBFGS (Section
2.1) and the introduction of oLBFGS (Section 2.2). The fundamental idea in BFGS and oLBFGS
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is to continuously satisfy a secant condition while staying close to previous curvature estimates.
They differ in that BFGS uses all past gradients to estimate curvature while oLBFGS uses a fixed
moving window of past gradients. The use of this window reduces memory and computational cost
(Appendix A). The difference between LBFGS and oLBFGS is the use of stochastic gradients in lieu
of their deterministic counterparts.

Convergence properties of oLBFGS are then analyzed (Section 3). Under the assumption that
the sample functions f(w,θ) are strongly convex we show that the trace and determinant of the
Hessian approximations computed by oLBFGS are upper and lower bounded, respectively (Lemma
3). These bounds are then used to limit the range of variation of the ratio between the Hessian
approximations’ largest and smallest eigenvalues (Lemma 4). In turn, this condition number limit
is shown to be sufficient to prove convergence to the optimal argument w∗ with probability 1 over
realizations of the sample functions (Theorem 6). This is an important result because it ensures that
oLBFGS doesn’t suffer from the numerical problems that hinder oBFGS. We complement this almost
sure convergence result with a characterization of the convergence rate which is shown to be at least
O(1/t) in expectation (Theorem 7). It is fair to emphasize that, different from the deterministic
case, the convergence rate of oLBFGS is not better than the convergence rate of SGD. This is not
a limitation of our analysis. The difference between stochastic and regular gradients introduces a
noise term that dominates convergence once we are close to the optimum, which is where superlinear
convergence rates manifest. In fact, the same convergence rate would be observed if exact Hessians
were available. The best that can be proven of oLBFGS is that the convergence rate is not worse
than that of SGD. Given that theoretical guarantees only state that the curvature correction does
not exacerbate the problem’s condition it is perhaps fairer to describe oLBFGS as an adaptive
reconditioning strategy instead of a stochastic quasi-Newton method. The latter description refers
to the genesis of the algorithm. The former is a more accurate description of its actual behavior.

To show the advantage of using oLBFGS as an adaptive reconditioning strategy we develop
its application to SVM problems (Section 4) and perform a comparative numerical analysis with
synthetic data. The conclusions of this numerical analysis are that oLBFGS performs as well as
oBFGS and RES while outperforming SGD when convergence is measured with respect to the
number of feature vectors processed. In terms of computation time, oLBFGS outperforms all three
methods, SGD, oBFGS, and RES. The advantages of oLBFGS grow with the dimension of the
feature vector and can be made arbitrarily large (Section 4.1). To further substantiate numerical
claims we use oLBFGS to train a logistic regressor to predict the click through rate in a search engine
advertising problem (Section 5). The logistic regression uses a heterogeneous feature vector with
174,026 binary entries that describe the user, the search, and the advertisement (Section 5.1). Being
a large scale problem with heterogeneous data, the condition number of the logistic log likelihood
objective is large and we expect to see significant advantages of oLBFGS relative to SGD. This
expectation is fulfilled. The oLBFGS algorithm trains the regressor using less than 1% of the data
required by SGD to obtain similar classification accuracy. (Section 5.3). We close the paper with
concluding remarks (Section 6).

Notation Lowercase boldface v denotes a vector and uppercase boldface A a matrix. We use ‖v‖
to denote the Euclidean norm of vector v and ‖A‖ to denote the Euclidean norm of matrix A. The
trace of A is written as tr(A) and the determinant as det(A). We use I for the identity matrix of
appropriate dimension. The notation A � B implies that the matrix A−B is positive semidefinite.
The operator Ex[·] stands in for expectation over random variable x and E[·] for expectation with
respect to the distribution of a stochastic process.

2. Algorithm definition

Recall the definitions of the sample functions f(w,θ) and the average function F (w) := Eθ[f(w,θ)].
We assume the sample functions f(w,θ) are strongly convex for all θ. This implies the objective
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function F (w) := Eθ[f(w,θ)], being an average of the strongly convex sample functions, is also
strongly convex. We define the gradient s(w) := ∇F (w) of the average function F (w) and assume
that it can be computed as

s(w) := ∇F (w) = Eθ[∇f(w,θ)]. (2)

Since the function F (w) is strongly convex, gradients s(w) are descent directions that can be used
to find the optimal argument w∗ in (1). Introduce then a time index t, a step size εt, and a positive
definite matrix B−1t � 0 to define a generic descent algorithm through the iteration

wt+1 = wt − εt B−1t s(wt) = wt − εt dt. (3)

where we have also defined the descent step dt = B−1t s(wt). When B−1t = I is the identity matrix,
(3) reduces to gradient descent. When Bt = H(wt) := ∇2F (wt) is the Hessian of the objective
function, (3) defines Newton’s algorithm. In this paper we focus on quasi-Newton methods whereby
we attempt to select matrices Bt close to the Hessian H(wt). Various methods are known to select
matrices Bt, including those by Broyden e.g., Broyden et al. (1973); Davidon, Fletcher, and Powell
(DFP) e.g., Fletcher (2013); and Broyden, Fletcher, Goldfarb, and Shanno (BFGS) e.g., Byrd et al.
(1987); Powell (1971). We work with the matrices Bt used in BFGS since they have been observed
to work best in practice (see Byrd et al. (1987)).

In BFGS, the function’s curvature Bt is approximated by a finite difference. Let vt denote the
variable variation at time t and rt the gradient variation at time t which are respectively defined as

vt := wt+1 −wt, rt := s(wt+1)− s(wt). (4)

We select the matrix Bt+1 to be used in the next time step so that it satisfies the secant condition
Bt+1vt = rt. The rationale for this selection is that the Hessian H(wt) satisfies this condition
for wt+1 tending to wt. Notice however that the secant condition Bt+1vt = rt is not enough to
completely specify Bt+1. To resolve this indeterminacy, matrices Bt+1 in BFGS are also required
to be as close as possible to the previous Hessian approximation Bt in terms of differential entropy.
These conditions can be resolved in closed form leading to the explicit expression – see, e.g., Nocedal
and Wright (1999) –,

Bt+1 = Bt +
rtr

T
t

vTt rt
− Btvtv

T
t Bt

vTt Btvt
. (5)

While the expression in (5) permits updating the Hessian approximations Bt+1, implementation of
the descent step in (3) requires its inversion. This can be avoided by using the Sherman-Morrison
formula in (5) to write

B−1t+1 = ZTt B−1t Zt + ρt vtv
T
t , (6)

where we defined the scalar ρt and the matrix Zt as

ρt :=
1

vTt rt
, Zt := I− ρtrtvTt . (7)

The updates in (5) and (6) require the inner product of the gradient and variable variations to be
positive, i.e., vTt rt > 0. This is always true if the objective F (w) is strongly convex and further
implies that B−1t+1 stays positive definite if B−1t � 0, Nocedal and Wright (1999).

Each BFGS iteration has a cost of O(n2) arithmetic operations. This is less than the O(n3) of
each step in Newton’s method but more than the O(n) cost of each gradient descent iteration. In
general, the relative convergence rates are such that the total computational cost of BFGS to achieve
a target accuracy is smaller than the corresponding cost of gradient descent. Still, alternatives to
reduce the computational cost of each iteration are of interest for large scale problems. Likewise,
BFGS requires storage and propagation of the O(n2) elements of B−1t , whereas gradient descent
requires storage of O(n) gradient elements only. This motivates alternatives that have smaller
memory footprints. Both of these objectives are accomplished by the limited memory (L)BFGS
algorithm that we describe in the following section.
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2.1 LBFGS: Limited memory BFGS

As it follows from (6), the updated Hessian inverse approximation B−1t depends on B−1t−1 and the

curvature information pairs {vt−1, rt−1}. In turn, to compute B−1t−1, the estimate B−1t−2 and the

curvature pair {vt−2, rt−2} are used. Proceeding recursively, it follows that B−1t is a function of the
initial approximation B−10 and all previous t curvature information pairs {vu, ru}t−1u=0. The idea in
LBFGS is to restrict the use of past curvature information to the last τ pairs {vu, ru}t−1u=t−τ . Since
earlier iterates {vu, ru} with u < t− τ are likely to carry little information about the curvature at
the current iterate wt, this restriction is expected to result in a minimal performance penalty.

For a precise definition, pick a positive definite matrix B−1t,0 as the initial Hessian inverse approx-
imation at step t. Proceed then to perform τ updates of the form in (6) using the last τ curvature
information pairs {vu, ru}t−1u=t−τ . Denoting as B−1t,u the curvature approximation after u updates are

performed we have that the refined matrix approximation B−1t,u+1 is given by [cf. (6)]

B−1t,u+1 = ZTt−τ+u B−1t,u Zt−τ+u + ρt−τ+u vt−τ+u v
T
t−τ+u, (8)

where u = 0, . . . , τ − 1 and the constants ρt−τ+u and rank-one plus identity matrices Zt−τ+u are
as given in (7). The inverse Hessian approximation B−1t to be used in (3) is the one yielded after
completing the τ updates in (8), i.e., B−1t = B−1t,τ . Observe that when t < τ there are not enough
pairs {vu, ru} to perform τ updates. In such case we just redefine τ = t and proceed to use the
t = τ available pairs {vu, ru}t−1u=0 .

Implementation of the product B−1t s(wt) in (3) for matrices B−1t = B−1t,τ obtained from the

recursion in (8) does not need explicit computation of the matrix B−1t,τ . Although the details are not
straightforward, observe that each iteration in (8) is similar to a rank-one update and that as such
it is not unreasonable to expect that the product B−1t s(wt) = B−1t,τ s(wt) can be computed using τ
recursive inner products. Assuming that this is possible, the implementation of the recursion in (8)
doesn’t need computation and storage of prior matrices B−1t−1. Rather, it suffices to keep the τ most

recent curvature information pairs {vu, ru}t−1u=t−τ , thus reducing storage requirements from O(n2)
to O(τn). Furthermore, each of these inner products can be computed at a cost of n operations
yielding a total computational cost of O(τn) per LBFGS iteration. Hence, LBFGS decreases both
the memory requirements and the computational cost of each iteration from the O(n2) required
by regular BFGS to O(τn). We present the details of this iteration in the context of the online
(stochastic) LBFGS that we introduce in the following section.

2.2 Online (Stochastic) Limited memory BFGS

To implement (3) and (8) we need to compute gradients s(wt). This is impractical when the
number of functions f(w,θ) is large, as is the case in most stochastic problems of practical interest
and motivates the use of stochastic gradients in lieu of actual gradients. Consider a given set of L
realizations θ̃ = [θ1; ...;θL] and define the stochastic gradient of F (w) at w given samples θ̃ as

ŝ(w, θ̃) :=
1

L

L∑
l=1

∇f(w,θl). (9)

In oLBFGS we use stochastic gradients ŝ(w, θ̃) for descent directions and curvature estimators. In
particular, the descent iteration in (3) is replaced by the descent iteration

wt+1 = wt − εt B̂−1t ŝ(wt, θ̃t) = wt − εtd̂t, (10)

where θ̃t = [θt1; ...;θtL] is the set of samples used at step t to compute the stochastic gradient

ŝ(wt, θ̃t) as per (9) and the matrix B̂−1t is a function of past stochastic gradients ŝ(wu, θ̃u) with
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u ≤ t instead of a function of past gradients s(wu) as in (3). As we also did in (3) we have defined

the stochastic step d̂t := B̂−1t ŝ(wt, θ̃t) to simplify upcoming discussions.

To properly specify B̂−1t we define the stochastic gradient variation r̂t at time t as the difference
between the stochastic gradients ŝ(wt+1, θ̃t) and ŝ(wt, θ̃t) associated with subsequent iterates wt+1

and wt and the common set of samples θ̃t [cf. (4)],

r̂t := ŝ(wt+1, θ̃t)− ŝ(wt, θ̃t). (11)

Observe that ŝ(wt, θ̃t) is the stochastic gradient used at time t in (10) but that ŝ(wt+1, θ̃t) is
computed solely for the purpose of determining the stochastic gradient variation. The perhaps more
natural definition ŝ(wt+1, θ̃t+1)− ŝ(wt, θ̃t) for the stochastic gradient variation, which relies on the
stochastic gradient ŝ(wt+1, θ̃t+1) used at time t+1 in (10) is not sufficient to guarantee convergence;
see e.g.,(Schraudolph et al. (2007); Mokhtari and Ribeiro (2014a)).

To define the oLBFGS algorithm we just need to provide stochastic versions of the definitions
in (7) and (8). The scalar constants and identity plus rank-one matrices in (7) are redefined to the
corresponding stochastic quantities

ρ̂t−τ+u =
1

vTt−τ+ur̂t−τ+u
and Ẑt−τ+u = I− ρ̂t−τ+ur̂t−τ+uvTt−τ+u, (12)

whereas the LBFGS matrix B−1t = B−1t,τ in (8) is replaced by the oLBFGS Hessian inverse approxi-

mation B̂−1t = B̂−1t,τ which we define as the outcome of τ recursive applications of the update,

B̂−1t,u+1 = ẐTt−τ+u B̂−1t,u Ẑt−τ+u + ρ̂t−τ+u vt−τ+u vTt−τ+u, (13)

where the initial matrix B̂−1t,0 is given and the time index is u = 0, . . . , τ −1. The oLBFGS algorithm

is defined by the stochastic descent iteration in (10) with matrices B̂−1t = B̂−1t,τ computed by τ
recursive applications of (13). Except for the fact that they use stochastic variables, (10) and (13)

are identical to (3) and (8). Thus, as is the case in (3), the Hessian inverse approximation B̂−1t in
(13) is a function of the initial Hessian inverse approximation B−1t,0 and the τ most recent curvature

information pairs {vu, r̂u}t−1u=t−τ . Likewise, when t < τ there are not enough pairs {vu, r̂u} to
perform τ updates. In such case we just redefine τ = t and proceed to use the t = τ available pairs
{vu, r̂u}t−1u=0 . We also point out that the update in (13) necessitates r̂Tuvu > 0 for all time indexes
u. This is true as long as the instantaneous functions f(w,θ) are strongly convex with respect to
w as we show in Lemma 2.

The equations in (10) and (13) are used conceptually but not in practical implementations.
For the latter we exploit the structure of (13) to rearrange the terms in the computation of the

product B̂−1t ŝ(wt, θ̃t). To see how this is done consider the recursive update for the Hessian inverse

approximation B̂−1t in (13) and make u = τ − 1 to write

B̂−1t = B̂−1t,τ =
(
ẐTt−1

)
B̂−1t,τ−1

(
Ẑt−1

)
+ ρ̂t−1 vt−1 vTt−1. (14)

Equation (14) shows the relation between the Hessian inverse approximation B̂−1t and the (τ − 1)st

updated version of the initial Hessian inverse approximation B̂−1t,τ−1 at step t. Set now u = τ − 2 in

(13) to express B̂−1t,τ−1 in terms of B̂−1t,τ−2 and substitute the result in (14) to rewrite B̂−1t as

B̂−1t =
(
ẐTt−1Ẑ

T
t−2

)
B̂−1t,τ−2

(
Ẑt−2Ẑt−1

)
+ ρ̂t−2

(
ẐTt−1

)
vt−2 vTt−2

(
Ẑt−1

)
+ ρ̂t−1 vt−1 vTt−1.

(15)

We can proceed recursively by substituting B̂−1t,τ−2 for its expression in terms of B̂−1t,τ−3 and in the

result substitute B̂−1t,τ−3 for its expression in terms of B̂−1t,τ−3 and so on. Observe that a new summand
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is added in each of these substitutions from which it follows that repeating this process τ times yields

B̂−1t =
(
ẐTt−1 . . . Ẑ

T
t−τ

)
B̂−1t,0

(
Ẑt−τ . . . Ẑt−1

)
+ ρ̂t−τ

(
ẐTt−1 . . . Ẑ

T
t−τ+1

)
vt−τv

T
t−τ

(
Ẑt−τ+1 . . . Ẑt−1

)
+ · · ·+ ρ̂t−2

(
ẐTt−1

)
vt−2v

T
t−2

(
Ẑt−1

)
+ ρ̂t−1vt−1v

T
t−1. (16)

The important observation in (16) is that the matrix Ẑt−1 and its transpose ẐTt−1 are the first and

last product terms of all summands except the last, that the matrices Ẑt−2 and its transpose ẐTt−2
are second and penultimate in all terms but the last two, and so on. Thus, when computing the
oLBFGS step d̂t := B̂−1t ŝ(wt, θ̃t) the operations needed to compute the product with the next to
last summand of (16) can be reused to compute the product with the second to last summand
which in turn can be reused in determining the product with the third to last summand and so
on. This observation compounded with the fact that multiplications with the identity plus rank
one matrices Ẑt−1 requires O(n) operations yields an algorithm that can compute the oLBFGS step

d̂t := B̂−1t ŝ(wt, θ̃t) in O(τn) operations. We summarize the specifics of such computation in the

following proposition where we consider the computation of the product B̂−1t p with a given arbitrary
vector p.

Proposition 1 Consider the oLBFGS Hessian inverse approximation B̂−1t = B̂−1t,τ obtained after τ
recursive applications of the update in (13) with the scalar sequence ρ̂t−τ+u and identity plus rank-one

matrix sequence Ẑt−τ+u as defined in (12) for given variable and stochastic gradient variation pairs
{vu, ru}t−1u=t−τ . For a given vector p = p0 define the sequence of vectors pk through the recursion

pu+1 = pu − αur̂t−u−1 for u = 0, . . . , τ − 1, (17)

where we also define the constants αu := ρ̂t−u−1v
T
t−u−1pu. Further define the sequence of vectors

qk with initial value q0 = B̂−1t,0pτ and subsequent elements

qu+1 = qu + (ατ−u−1 − βu)vt−τ+u for u = 0, . . . , τ − 1, (18)

where we define constants βu := ρ̂t−τ+ur̂
T
t−τ+uqu. The product B̂−1t p equals qτ , i.e., B̂−1t p = qτ .

Proof See Appendix A.

Proposition 1 asserts that it is possible to reduce the computation of the product B̂−1t p between the
oLBFGS Hessian approximation matrix and arbitrary vector p to the computation of two vector
sequences {pu}τ−1u=0 and {qu}τ−1u=0. The product B̂−1t p = qτ is given by the last element of the latter
sequence. Since determination of each of the elements of each sequence requires O(n) operations
and the total number of elements in each sequence is τ the total operation cost to compute both
sequences is of order O(τn). In computing B̂−1t p we also need to add the cost of the product

q0 = B̂−1t,0pτ that links both sequences. To maintain overall computation cost of order O(τn) this
matrix has to have a sparse or low rank structure. A common choice in LBFGS, that we adopt for
oLBFGS, is to make B̂−1t,0 = γ̂tI. The scalar constant γ̂t is a function of the variable and stochastic
gradient variations vt−1 and r̂t−1, explicitly given by

γ̂t =
vTt−1r̂t−1

r̂Tt−1r̂t−1
=

vTt−1r̂t−1

‖r̂t−1‖2
. (19)

with the value at the first iteration being γ̂0 = 1. The scaling factor γ̂t attempts to estimate one
of the eigenvalues of the Hessian matrix at step t and has been observed to work well in practice;
see e.g., Dong C. and Nocedal (1989); Nocedal and Wright (1999). Further observe that the cost

of computing γ̂t is of order O(n) and that since B̂−1t,0 is diagonal cost of computing the product
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Algorithm 1 Computation of oLBFGS step q = B̂−1t p when called with p = ŝ(wt, θ̃t).

1: function q = qτ = oLBFGS Step
(
B̂−1t,0 , p = p0, {vu, r̂u}t−1u=t−τ

)
2: for u = 0, 1, . . . , τ − 1 do {Loop to compute constants αu and sequence pu}
3: Compute and store scalar αu = ρ̂t−u−1v

T
t−u−1pu

4: Update sequence vector pu+1 = pu − αur̂t−u−1. [cf. (17)]
5: end for
6: Multiply pτ by initial matrix: q0 = B̂−1t,0pτ
7: for u = 0, 1, . . . , τ − 1 do {Loop to compute constants βu and sequence qu}
8: Compute scalar βu = ρ̂t−τ+ur̂

T
t−τ+uqu

9: Update sequence vector qu+1 = qu + (ατ−u−1 − βu)vt−τ+u [cf. (18)]
10: end for {return q = qτ}

q0 = B̂−1t,0pτ is also of order O(n). We adopt the initialization in (19) in our subsequent analysis
and numerical experiments.

The computation of the product B̂−1t p using the result in Proposition 1 is summarized in algo-
rithmic form in the function in Algorithm 1. The function receives as arguments the initial matrix
B̂−1t,0 , the sequence of variable and stochastic gradient variations {vu, r̂u}t−1u=t−τ and the vector p to

produce the outcome q = qτ = B̂−1t p. When called with the stochastic gradient p = ŝ(wt, θ̃t), the

function outputs the oLBFGS step d̂t := B̂−1t ŝ(wt, θ̃t) needed to implement the oLBFGS descent
step in (10). The core of Algorithm 1 is given by the loop in steps 2-5 that computes the constants
αu and sequence elements pu as well as the loop in steps 7-10 that computes the constants βu and
sequence elements qu. The two loops are linked by the initialization of the second sequence with the
outcome of the first which is performed in Step 6. To implement the first loop we require τ inner
products in Step 4 and τ vector summations in Step 5 which yield a total of 2τn multiplications.
Likewise, the second loop requires τ inner products and τ vector summations in steps 9 and 10,
respectively, which yields a total cost of also 2τn multiplications. Since the initial Hessian inverse
approximation matrix B̂−1t,0 is diagonal the cost of computation B̂−1t,0pτ in Step 6 is n multiplications.
Thus, Algorithm 1 requires a total of (4τ + 1)n multiplications which affirms the complexity cost of
order O(τn) for oLBFGS.

For reference, oLBFGS is also summarized in algorithmic form in Algorithm 2. As with any
stochastic descent algorithm the descent iteration is implemented in three steps: the acquisition of
L samples in Step 2, the computation of the stochastic gradient in Step 3, and the implementation
of the descent update on the variable wt in Step 6. Steps 4 and 5 are devoted to the computation of
the oLBFGS descent direction d̂t. In Step 4 we initialize the estimate B̂t,0 = γ̂tI as a scaled identity
matrix using the expression for γ̂t in (19) for t > 0. The value of γt = γ0 for t = 0 is left as an
input for the algorithm. We use γ̂0 = 1 in our numerical tests. In Step 5 we use Algorithm 1 for
efficient computation of the descent direction d̂t = B̂−1t ŝ(wt, θ̃t). Step 7 determines the value of the
stochastic gradient ŝ(wt+1, θ̃t) so that the variable variations vt and stochastic gradient variations

r̂t become available for the computation of the curvature approximation matrix B̂−1t . In Step 8
the variable variation vt and stochastic gradient variation r̂t are computed to be used in the next
iteration. We analyze convergence properties of this algorithm in Section 3, study its application to
SVMs in Section 4, and develop an application to search engine advertisement in Section 5.

8



Global Convergence of Online Limited Memory BFGS

Algorithm 2 oLBFGS

Require: Initial value w0. Initial Hessian approximation parameter γ̂0 = 1.
1: for t = 0, 1, 2, . . . do
2: Acquire L independent samples θ̃t = [θt1, . . . ,θtL]

3: Compute stochastic gradient: ŝ(wt, θ̃t) =
1

L

L∑
l=1

∇wf(wt,θtl) [cf. (9)]

4: Initialize Hessian inverse estimate as B̂−1
t,0 = γ̂tI with γ̂t =

vTt−1r̂t−1

r̂Tt−1r̂t−1
for t > 0 [cf (19)]

5: Compute descent direction with Algorithm 1: d̂t = oLBFGS Step
(
B̂−1
t,0 , ŝ(wt, θ̃t), {vu, r̂u}t−1

u=t−τ

)
6: Descend along direction d̂t: wt+1 = wt − εtd̂t [cf. (10)]

7: Compute stochastic gradient: ŝ(wt+1, θ̃t) =
1

L

L∑
l=1

∇wf(wt+1,θtl) [cf. (9)]

8: Variations vt = wt+1 −wt [variable, cf. (4)] r̂t = ŝ(wt+1, θ̃t)− ŝ(wt, θ̃t) [stoch. gradient, cf.(11)]
9: end for

3. Convergence analysis

For the subsequent analysis it is convenient to define the instantaneous objective function associated
with samples θ̃ = [θ1, . . . ,θL] as

f̂(w, θ̃) :=
1

L

L∑
l=1

f(w,θl). (20)

The definition of the instantaneous objective function f̂(w, θ̃) in association with the fact that
F (w) := Eθ[f(w,θ)] implies that

F (w) = Eθ[f̂(w, θ̃)]. (21)

Our goal here is to show that as time progresses the sequence of variable iterates wt approaches the
optimal argument w∗. In proving this result we make the following assumptions.

Assumption 1 The instantaneous functions f̂(w, θ̃) are twice differentiable and the eigenvalues

of the instantaneous Hessian Ĥ(w, θ̃) = ∇2
wf̂(w, θ̃) are bounded between constants 0 < m̃ and

M̃ <∞ for all random variables θ̃,

m̃I � Ĥ(w, θ̃) � M̃I. (22)

Assumption 2 The second moment of the norm of the stochastic gradient is bounded for all w.
i.e., there exists a constant S2 such that for all variables w it holds

Eθ

[
‖ŝ(wt, θ̃t)‖2

∣∣wt

]
≤ S2. (23)

Assumption 3 The step size sequence is selected as nonsummable but square summable, i.e.,

∞∑
t=0

εt =∞, and

∞∑
t=0

ε2t <∞. (24)

Assumptions 2 and 3 are customary in stochastic optimization. The restriction imposed by
Assumption 2 is intended to limit the random variation of stochastic gradients. If the variance of
their norm is unbounded it is possible to have rare events that derail progress towards convergence.
The condition in Assumption 3 balances descent towards optimal arguments – which requires a
slowly decreasing stepsize – with the eventual elimination of random variations – which requires

9
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rapidly decreasing stepsizes. An effective step size choice for which Assumption 3 holds is to make
εt = ε0T0/(T0 + t), for given parameters ε0 and T0 that control the initial step size and its speed of
decrease, respectively. Assumption 1 is stronger than usual and specific to oLBFGS. Observe that
considering the linearity of the expectation operator and the expression in (21) it follows that the

Hessian of the average function can be written as ∇2
wF (w) = H(w) = Eθ[Ĥ(w, θ̃)]. Combining this

observation with the bounds in (22) we conclude that there are constants m ≥ m̃ and M ≤ M̃ such
that

m̃I � mI � H(w) �MI � M̃I. (25)

The bounds in (25) are customary in convergence proofs of descent methods. For the results here
the stronger condition spelled in Assumption 1 is needed. This assumption in necessary to guarantee
that the inner product r̂Tt vt > 0 is positive as we show in the following lemma.

Lemma 2 Consider the stochastic gradient variation r̂t defined in (11) and the variable variation
vt defined in (4). Let Assumption 1 hold so that we have lower and upper bounds m̃ and M̃ on the
eigenvalues of the instantaneous Hessians. Then, for all steps t the inner product of variable and
stochastic gradient variations r̂Tt vt is bounded below as

m̃‖vt‖2 ≤ r̂Tt vt . (26)

Furthermore, the ratio of stochastic gradient variation squared norm ‖r̂t‖2 = r̂Tt r̂t to inner product
of variable and stochastic gradient variations is bounded as

m̃ ≤ r̂Tt r̂t
r̂Tt vt

=
‖r̂t‖2

r̂Tt vt
≤ M̃. (27)

Proof See Appendix B.

According to Lemma 2, strong convexity of instantaneous functions f̂(w, θ̃) guaranties positive-
ness of the inner product vTt r̂t as long as the variable variation is not identically null. In turn, this
implies that the constant γ̂t in (19) is nonnegative and that, as a consequence, the initial Hessian

inverse approximation B̂−1t,0 is positive definite for all steps t. The positive definiteness of B̂−1t,0 in
association with the positiveness of the inner product of variable and stochastic gradient variations
vTt r̂t > 0 further guarantees that all the matrices B̂−1t,u+1, including the matrix B̂−1t = B̂−1t,τ in par-
ticular, that follow the update rule in (13) stay positive definite – see Mokhtari and Ribeiro (2014a)
for details. This proves that (10) is a proper stochastic descent iteration because the stochastic
gradient ŝ(wt, θ̃t) is moderated by a positive definite matrix. However, this fact alone is not enough

to guarantee convergence because the minimum and maximum eigenvalues of B̂−1t could become ar-
bitrarily small and arbitrarily large, respectively. To prove convergence we show this is not possible
by deriving explicit lower and upper bounds on these eigenvalues.

The analysis is easier if we consider the matrix B̂t – as opposed to B̂−1t . Consider then the
update in (13), and use the Sherman-Morrison formula to rewrite as an update that relates B̂t,u+1

to B̂t,u,

B̂t,u+1 = B̂t,u −
B̂t,uvt−τ+uv

T
t−τ+uB̂t,u

vTt−τ+uB̂t,uvt−τ+u
+

r̂t−τ+ur̂
T
t−τ+u

vTt−τ+ur̂t−τ+u
, (28)

for u = 0, . . . , τ − 1 and B̂t,0 = 1/γ̂tI as per (19). As in (13), the Hessian approximation at step t

is B̂t = B̂t,τ . In the following lemma we use the update formula in (28) to find bounds on the trace

and determinant of the Hessian approximation B̂t.

10
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Lemma 3 Consider the Hessian approximation B̂t = B̂t,τ defined by the recursion in (28) with

B̂t,0 = γ̂−1t I and γ̂t as given by (19). If Assumption 1 holds true, the trace tr(B̂t) of the Hessian

approximation B̂t is uniformly upper bounded for all times t ≥ 1,

tr
(
B̂t

)
≤ (n+ τ)M̃. (29)

Likewise, if Assumption 1 holds true, the determinant det(B̂t) of the Hessian approximation B̂t is
uniformly lower bounded for all times t

det
(
B̂t

)
≥ m̃n+τ

[(n+ τ)M̃ ]τ
. (30)

Proof See Appendix C.

Lemma 3 states that the trace and determinants of the Hessian approximation matrix B̂t = B̂t,τ

are bounded for all times t ≥ 1. For time t = 0 we can write a similar bound that takes into account
the fact that the constant γt that initializes the recursion in (28) is γ0 = 1. Given that we are
interested in an asymptotic convergence analysis, this bound in inconsequential. The bounds on the
trace and determinant of B̂t are respectivey equivalent to bounds in the sum and product of its
eigenvalues. Further considering that the matrix B̂t is positive definite, as it follows from Lemma
2, these bounds can be further transformed into bounds on the smalls and largest eigenvalue of B̂t.
The resulting bounds are formally stated in the following lemma.

Lemma 4 Consider the Hessian approximation B̂t = B̂t,τ defined by the recursion in (28) with

B̂t,0 = γ̂−1t I and γ̂t as given by (19). Define the strictly positive constant 0 < c := m̃n+τ/[(n +

τ)M̃ ]n+τ−1 and the finite constant C := (n + τ)M̃ < ∞. If Assumption 1 holds true, the range of

eigenvalues of B̂t is bounded by c and C for all time steps t ≥ 1, i.e.,

m̃n+τ

[(n+ τ)M̃ ]
n+τ−1 I =: cI � B̂t � CI := (n+ τ)M̃ I. (31)

Proof See Appendix D.

The bounds in Lemma 4 imply that their respective inverses are bounds on the range of the
eigenvalues of the Hessian inverse approximation matrix B̂−1t . Specifically, the minimum eigenvalue
of the Hessian inverse approximation B̂−1t is larger than 1/C and the maximum eigenvalue of B̂−1t
does not exceed 1/c, or, equivalently,

1

C
I � B̂−1t � 1

c
I . (32)

We further emphasize that the bounds in (32), or (31) for that matter, limit the conditioning of B̂−1t
for all realizations of the random samples {θ̃t}∞t=0, irrespective of the particular random draw. Having

matrices B̂−1t that are strictly positive definite with eigenvalues uniformly upper bounded by 1/c

leads to the conclusion that if ŝ(wt, θ̃t) is a descent direction, the same holds true of B̂−1t ŝ(wt, θ̃t).
The stochastic gradient ŝ(wt, θ̃t) is not a descent direction in general, but we know that this is true

for its conditional expectation E[ŝ(wt, θ̃t)
∣∣wt] = ∇F (wt). Hence, we conclude that B̂−1t ŝ(wt, θ̃t)

is an average descent direction since E[B̂−1t ŝ(wt, θ̃t)
∣∣wt] = B̂−1t ∇F (wt). Stochastic optimization

methods whose displacements wt+1−wt are descent directions on average are expected to approach
optimal arguments. We show that this is true of oLBFGS in the following lemma.

11
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Lemma 5 Consider the online Limited memory BFGS algorithm as defined by the descent iteration
in (10) with matrices B̂−1t = B̂−1t,τ obtained after τ recursive applications of the update in (13)

initialized with B̂−1t,0 = γ̂tI and γ̂t as given by (19). If Assumptions 1 and 2 hold true, the sequence
of average function values F (wt) satisfies

E
[
F (wt+1)

∣∣wt

]
≤ F (wt)−

εt
C
‖∇F (wt)‖2 +

MS2ε2t
2c2

. (33)

Proof See Appendix E.

Setting aside the term MS2ε2t/2c
2 for the sake of argument, (33) defines a supermartingale rela-

tionship for the sequence of average functions F (wt). This implies that the sequence εt‖∇F (wt)‖2/C
is almost surely summable which, given that the step sizes εt are nonsummable as per (24), further
implies that the limit infimum lim inft→∞ ‖∇F (wt)‖ of the gradient norm ‖∇F (wt)‖ is almost surely
null. This latter observation is equivalent to having lim inft→∞ ‖wt −w∗‖2 = 0 with probability 1
over realizations of the random samples {θ̃t}∞t=0. The term MS2ε2t/2c

2 is a relatively minor nuisance
that can be taken care of with a technical argument that we present in the proof of the following
theorem.

Theorem 6 Consider the online Limited memory BFGS algorithm as defined by the descent itera-
tion in (10) with matrices B̂−1t = B̂−1t,τ obtained after τ recursive applications of the update in (13)

initialized with B̂−1t,0 = γ̂tI and γ̂t as given by (19). If Assumptions 1-3 hold true the limit infimum

of the squared Euclidean distance to optimality ‖wt −w∗‖2 converges to zero almost surely, i.e.,

Pr
[
lim inf
t→∞

‖wt −w∗‖2 = 0
]

= 1, (34)

where the probability is over realizations of the random samples {θ̃t}∞t=0.

Proof See Appendix F.

Theorem 6 establishes convergence of a subsequence of the oLBFGS algorithm summarized in
Algorithm 2. The lower and upper bounds on the eigenvalues of B̂t derived in Lemma 4 play
a fundamental role in the proofs of the prerequisite Lemma 5 and Theorem 6 proper. Roughly
speaking, the lower bound on the eigenvalues of B̂t results in an upper bound on the eigenvalues
of B̂−1t which limits the effect of random variations on the stochastic gradient ŝ(wt, θ̃t). If this
bound does not exist – as is the case, e.g., of regular stochastic BFGS – we may observe catastrophic
amplification of random variations of the stochastic gradient. The upper bound on the eigenvalues of
B̂t, which results in a lower bound on the eigenvalues of B̂−1t , guarantees that the random variations
in the curvature estimate B̂t do not yield matrices with arbitrarily small norm. If this bound does
not hold, it is possible to end up halting progress before convergence as the stochastic gradient is
nullified by multiplication with an arbitrarily small eigenvalue.

The result in Theorem 6 is strong because it holds almost surely over realizations of the random
samples {θ̃t}∞t=0 but not stronger than the same convergence guarantees that hold for SGD. We
complement the convergence result in Theorem 6 with a characterization of the expected convergence
rate that we introduce in the following theorem.

Theorem 7 Consider the online Limited memory BFGS algorithm as defined by the descent itera-
tion in (10) with matrices B̂−1t = B̂−1t,τ obtained after τ recursive applications of the update in (13)

initialized with B̂−1t,0 = γ̂tI and γ̂t as given by (19). Let Assumptions 1 and 2 hold, and further
assume that the stepsize sequence is of the form εt = ε0/(t + T0) with the parameters ε0 and T0

12
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satisfying the inequality 2mε0T0/C > 1. Then, the difference between the expected optimal objective
E [F (wt)] and the optimal objective F (w∗) is bounded as

E [F (wt)]− F (w∗) ≤ C0

T0 + t
, (35)

where the constant C0 is defined as

C0 := max

{
ε20 T

2
0CMS2

2c2(2mε0T0 − C)
, T0 (F (w0)− F (w∗))

}
. (36)

Proof See Appendix G.

Theorem 7 shows that under specified assumptions the expected error in terms of the objective
value after t oLBFGS iterations is of order O(1/t). As is the case of Theorem 6, this result is not
better than the convergence rate of conventional SGD. As can be seen in the proof of Theorem 7,
the convergence rate is dominated by the noise term introduced by the difference between stochastic
and regular gradients. This noise term would be present even if exact Hessians were available and
in that sense the best that can be proven of oLBFGS is that the convergence rate is not worse
than that of SGD. Given that theorems 6 and 7 parallel the theoretical guarantees of SGD it is
perhaps fairer to describe oLBFGS as an adaptive reconditioning strategy instead of a stochastic
quasi-Newton method. The latter description refers to the genesis of the algorithm, but the former is
more accurate description of its behavior. Do notice that while the convergence rate doesn’t change,
improvements in convergence time are significant as we illustrate with the numerical experiments
that we present in the next two sections.

4. Support vector machines

Given a training set with points whose classes are known the goal of an SVM is to find a hyperplane
that best separates the training set. Let S = {(xi, yi)}Ni=1 be a training set containing N pairs of
the form (xi, yi), where xi ∈ Rn is a feature vector and yi ∈ {−1, 1} is the corresponding class. The
goal is to find a hyperplane supported by a vector w ∈ Rn which separates the training set so that
wTxi > 0 for all points with yi = 1 and wTxi < 0 for all points with yi = −1. A loss function
l((x, y);w) defines a measure of distance between the point xi and the hyperplane supported by w.
We then select the hyperplane supporting vector as

w∗ := argmin
w

λ

2
‖w‖2 +

1

N

N∑
i=1

l((xi, yi);w), (37)

where we have also added the regularization term λ‖w‖2/2 for some constant λ > 0. Common
selections for the loss function are the hinge loss l((x, y);w) = max(0, 1− y(wTx)) and the squared
hinge loss l((x, y);w) = max(0, 1− y(wTx))2. See, e.g., Bottou (2010). To model (37) as a problem
in the form of (1), define θi = (xi, yi) as a given training point and the probability distribution of
θ as uniform on the training set S = {(xi, yi)}Ni=1 = {θi}Ni=1. It then suffices to define

f(w,θ) = f(w, (x, y)) :=
λ

2
‖w‖2 + l((x, y);w), (38)

as sample functions to see that the objective in (37) can be written as the average F (w) = Eθ[f(w,θ)]
as in (1). We can then use SGD, oBFGS, RES, and oLBFGS to find the optimal classifier w∗.
There are also several algorithms that accelerate SGD through the use of memory. These algorithms
reduce execution times because they reduce randomness, not because they improve curvature, but
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Objective function value

Algorithm Minimum Average Maximum

oLBFGS 1.3×10−5 1.7×10−5 3.4×10−5

oBFGS 1.2×10−5 1.4×10−5 2.0×10−5

RES 1.5×10−5 1.9×10−5 3.3×10−5

SGD 1.2×10−3 1.6×10−3 1.9×10−3

SAG 4.4×10−4 5.7×10−4 7.1×10−4

(f) Statistics

Figure 1: Histograms of objective function value F (wt) after processing Lt = 4×104 feature vectors
for n = 102. The values of objective function for oLBFGS, oBFGS and RES are close to
each other and smaller than the objective function values for SAG and SGD.

are nonetheless alternatives to oLBFGS. We further add Stochastic Average Gradient (SAG) to the
comparison set. SAG is a variant of SGD that uses an average of stochastic gradients as a descent
direction (Schmidt et al. (2013)). The performances of other SGD algorithms with memory are
similar to SAG. For these five algorithms we want to compare achieved objective values with respect
to the number of feature vectors processed (Section 4.1) as well as with respect to processing times
(Section 4.2).

4.1 Convergence versus number of feature vectors processed

For numerical tests we use the squared hinge loss l((x, y);w) = max(0, 1 − y(xTw))2 in (37). The
training set S = {(xi, yi)}Ni=1 contains N = 104 feature vectors, half of which belong to the class
yi = −1 with the other half belonging to the class yi = 1. For the class yi = −1 each of the
n components of each of the feature vectors xi ∈ Rn is chosen uniformly at random from the
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interval [−0.8, 0.2]. Likewise, each of the n components of each of the feature vectors xi ∈ Rn is
chosen uniformly at random from the interval [−0.2, 0.8] for the class yi = 1. In all of our numerical
experiments the parameter λ in (37) is set to λ = 10−4. In order to study the advantages of oLBFGS
we consider two different cases where the dimensions of the feature vectors are n = 102 and n = 103.
The size of memory for oLBFGS is set to τ = 10 in both cases. For SGD and SAG the sample size in
(9) is L = 1 and for RES, oBFGS and oLBFGS is L = 5. In all tests, the number of feature vectors
processed is represented by the product Lt between the iteration index and the sample size used
to compute stochastic gradients. This is done because the sample sizes are different. For all five
algorithms we use a decreasing stepsize sequence of the form εt = ε0T0/(T0 + t). We report results
for ε0 = 2× 10−2 and T0 = 102 for RES, oLBFGS and oBFGS, which are the values that yield best
average performance after processing 4×104 feature vectors. Further improvements can be obtained
by tuning stepsize parameters individually for each individual algorithm and feature dimension n.
Since these improvements are minor we report common parameters for easier reproducibility. For
SGD and SAG, whose performance is more variable, we tune the various parameters individually
for each dimension n and report results for the combination that yields best average performance
after processing 4× 104 feature vectors.

Figures 1 and 2 show the empirical distributions of the objective function value F (wt) attained
after processing Lt = 4×104 feature vectors using J = 103 realizations for the cases that n = 102 and
n = 103, respectively. According to Figure 1 the averages of objective value function for oLBFGS,
oBFGS and RES are 1.7×10−5, 1.4×10−5 and 1.9×10−5, respectively. These numbers show that the
performance of oLBFGS is very close to the performances of oBFGS and RES. This similarity holds
despite the fact that oLBFGS uses only the last τ = 10 stochastic gradients to estimate curvature
whereas oBFGS and RES utilize all past stochastic gradients to do so. The advantage of oLBFGS
is in the smaller computational cost of processing feature vectors as we discuss in Section 4.2. The
corresponding average objective values achieved by SGD and SAG after processing Lt = 4 × 104

feature vectors are 1.6 × 10−3 and 5.7 × 10−4, respectively. Both of these are at least an order of
magnitude larger than the average objective value achieved by oLBFGS – or RES and oBFGS for
that matter.

Figure 2 repeats the study in Figure 1 for the case in which the feature vector dimension is
increased to n = 103. The performance of oLBGS is still about the same as the performances of
oBFGS and RES. The average objective function values achieved after processing Lt = 4 × 104

feature vectors are 9.9×10−6, 9.8×10−6 and 9.5×10−6 for oLBFGS, oBFGS and RES, respectively.
The relative performance with respect to SGD and SAG, however, is now larger. The averages of
objective function values for SAG and SGD in this case are 2.1× 10−2 and 4.5× 10−2, respectively.
These values are more than 3 orders of magnitude larger than the corresponding values achieved by
oLBFGS. This relative improvement can be further increased if we consider problems of even larger
dimension. Further observe that oBFGS and RES start to become impractical if we further increase
the feature vector dimension since the respective iterations have computational costs of order O(n2)
and O(n3). We analyze this in detail in the following section.

4.2 Convergence versus processing time

The analysis in Section 4.1 is relevant for online implementations in which the goal is to make the
best possible use of the information provided by each new acquired feature vector. In implemen-
tations where computational cost is of dominant interest we have to account for the fact that the
respective iteration costs are of order O(n) for SGD and SAG, of order O(τn) for oLBFGS, and of
orders O(n2) and O(n3) for oBFGS and RES. As we increase the problem dimension we expect the
convergence time advantages of oBFGS and RES in terms of number of feature vectors processed
to be overwhelmed by the increased computational cost of each iteration. For oLBFGS, on the con-
trary, we expect the convergence time advantages in terms of number of feature vectors processed to
persist in terms of processing time. To demonstrate that this is the case we repeat the experiments
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Objective function value

Algorithm Minimum Average Maximum

oLBFGS 8.6×10−6 9.9×10−6 11.5×10−6

oBFGS 8.5×10−6 9.8×10−6 11.4×10−6

RES 7.9×10−6 9.5×10−6 11.3×10−6

SGD 4.1×10−2 4.5×10−2 5.1×10−2

SAG 1.9×10−2 2.1×10−2 2.4×10−2

(f) Statistics

Figure 2: Histograms of objective function value F (wt) after processing Lt = 4×104 feature vectors
for n = 103. The values of objective function for oBFGS, oLBFGS and RES are close to
each other and smaller than the objective function values for SAG and SGD.

in Section 4.1 but record the processing time required to achieve a target objective value. The
parameters used here are the same parameters of Section 4.1.

In Figure 3 we consider n = 102 and record the processing time required to achieve the objective
function value F (wt) = 10−4. Histograms representing empirical distributions of execution times
measured in seconds (s) are shown for oLBFGS, oBFGS, RES, SGD, and SAG. We also summarize
the average minimum and maximum times observed for each algorithm. The average run times for
oBFGS and RES are 0.14 s and 0.26 s which are better than the average run times of SGD and SAG
that stand at 0.63 s and 0.50 s. The advantage, however, is less marked than when measured with
respect to the number of feature vector processed. For oLBGS the advantage with respect to SGD
and SAG is still close to one order of magnitude since the average convergence time stands at 0.073 s.
When measured in computation time oLBGS is also better than RES and oBFGS, as expected.

Figure 4 presents the analogous histograms and summary statistics when the feature vector
dimension is n = 103 and the algorithm is run until achieving the objective value F (wt) = 10−5.
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(e) SAG

CPU runtime (seconds)

Algorithm Minimum Average Maximum

oLBFGS 0.0574 0.0734 0.0897

oBFGS 0.1149 0.1485 0.2375

RES 0.2150 0.2609 0.4623

SGD 0.6057 0.6364 0.6639

SAG 0.4682 0.5017 0.5300

(f) Statistics

Figure 3: Histograms of required CPU runtime for achieving objective function value F (wt) = 10−4

when n = 102. The convergence time of oLBFGS is smaller than the required runtimes
of oBFGS and RES, while SAG and SGD are slower than all the three quasi-Newton
methods.

For this problem and metric the performances of RES and oBFGS are worse than the corresponding
performances of SGD and SAG. The respective average convergence times are 7.7 s and 4.1 s for RES
and oBFGS and 1.4 s and 2.0 s for SAG and SGD. The oLBFGS algorithm, however, has an average
convergence time of 0.11 s. This is still an order of magnitude faster than the first order methods
SAG and SGD – and has an even larger advantage with respect to oBFGS and RES, by extension.
The relative reduction of execution times of oLBGS relative to all other 4 methods becomes more
marked for problems of larger dimension. We investigate these advantages on the search engine
advertising problem that we introduce in the following section.
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(e) SAG

CPU runtime (seconds)

Algorithm Minimum Average Maximum

oLBFGS 0.1139 0.1153 0.1230

oBFGS 3.90 4.11 4.83

RES 7.44 7.73 8.61

SGD 2.01 2.03 2.10

SAG 1.40 1.42 1.46

(f) Statistics

Figure 4: Histograms of required CPU runtime for achieving objective function value F (wt) = 10−5

when n = 103. SAG and SGD have a faster convergence time in comparison to oBFGS
and RES, while oLBFGS is the fastest algorithm among all.

5. Search engine advertising

We apply oLBFGS to the problem of predicting the click-through rate (CTR) of an advertisement
displayed in response to a specific search engine query by a specific visitor. In these problems we
are given meta information about an advertisement, the words that appear in the query, as well as
some information about the visitor and are asked to predict the likelihood that this particular ad
is clicked by this particular user when performing this particular query. The information specific
to the ad includes descriptors of different characteristics such as the words that appear in the title,
the name of the advertiser, keywords that identify the product, and the position on the page where
the ad is to be displayed. The information specific to the user is also heterogeneous and includes
gender, age, and propensity to click on ads. To train a classifier we are given information about past
queries along with the corresponding click success of the ads displayed in response to the query. The
ad metadata along with user data and search words define a feature vector that we use to train a
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Table 1: Components of the feature vector for prediction of advertisements click-through rates. For
each feature class we report the total number of components in the feature vector as well
as the maximum and average number of nonzero components.

Nonzero components

Feature type Total components Maximum (observed/structure) Mean (observed)

Age 6 1 (structure) 1.0

Gender 3 1 (structure) 1.0

Impression 3 1 (structure) 1.0

Depth 3 1 (structure) 1.0

Position 3 1 (structure) 1.0

Query 20,000 125 (observed) 3.0

Title 20,000 29 (observed) 8.8

Keyword 20,000 16 (observed) 2.1

Advertiser ID 5,184 1 (structure) 1.0

Advertisement ID 108,824 1 (structure) 1.0

Total 174,026 148 (observed) 20.9

logistic regressor that predicts the CTR of future ads. Given the heterogeneity of the components
of the feature vector we expect a logistic cost function with skewed level sets and consequent large
benefits from the use of oLBFGS.

5.1 Feature vectors

For the CTR problem considered here we use the Tencent search engine data set Sun (2012). This
data set contains the outcomes of 236 million (236× 106) searches along with information about the
ad, the query, and the user. The information contained in each sample point is the following:

• User profile: If known, age and gender of visitor performing query.

• Depth: Total number of advertisements displayed in the search results page.

• Position: Position of the advertisement in the search page.

• Impression: Number of times the ad was displayed to the user who issued the query.

• Query: The words that appear in the user’s query.

• Title: The words that appear in the title of ad.

• Keywords: Selected keywords that specify the type of product.

• Ad ID: Unique identifier assigned to each specific advertisement.

• Advertiser ID: Unique identifier assigned to each specific advertiser.

• Clicks: Number of times the user clicked on the ad.

From this information we create a set of feature vectors {xi}Ni=1, with corresponding labels
yi ∈ {−1, 1}. The label associated with feature vector xi is yi = 1 if the number of clicks in the ad
is more than 0. Otherwise the label is yi = −1. We use a binary encoding for all the features in
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the vector xi. For the age of the user we use the six age intervals (0, 12], (12, 18], (18, 24], (24, 30],
(30, 40], and (40,∞) to construct six indicator entries in xi that take the value 1 if the age of the
user is known to be in the corresponding interval. E.g., a 21 year old user has an age that falls in the
third interval which implies that we make [xi]3 = 1 and [xi]k = 0 for all other k between 1 and 6. If
the age of the user is unknown we make [xi]k = 0 for all k between 1 and 6. For the gender of the
visitors we use the next three components of xi to indicate male, female, or unknown gender. For
a male user we make [xi]7 = 1, for a female user [xi]8 = 1, and for visitors of unknown gender we
make [xi]9 = 1. The next three components of xi are used for the depth feature. If the the number
of advertisements displayed in the search page is 1 we make [xi]10 = 1, if 2 different ads are shown
we make [xi]11 = 1, and for depths of 3 or more we make [xi]12 = 1. To indicate the position of
the ad in the search page we also use three components of xi. We use [xi]13 = 1, [xi]14 = 1, and
[xi]15 = 1 to indicate that the ad is displayed in the first, second, and third position, respectively.
Likewise we use [xi]16, [xi]17 and [xi]18 to indicate that the impression of the ad is 1, 2 or more than
3.

For the words that appear in the query we have in the order of 105 distinct words. To reduce
the number of elements necessary for this encoding we create 20,000 bags of words through random
hashing with each bag containing 5 or 6 distinct words. Each of these bags is assigned an index
k. For each of the words in the query we find the bag in which this word appears. If the word
appears in the kth bag we indicate this occurrence by setting the k+ 18th component of the feature
vector to [xi]k+18 = 1. Observe that since we use 20,000 bags, components 19 through 20,018 of
xi indicate the presence of specific words in the query. Further note that we may have more than
one xi component different from zero because there may be many words in the query, but that the
total number of nonzero elements is much smaller than 20,000. On average, 3.0 of these elements of
the feature vector are nonzero. The same bags of words are used to encode the words that appear
in the title of the ad and the product keywords. We encode the words that appear in the title of
the ad by using the next 20, 000 components of vector xi, i.e. components 20, 019 through 40, 018.
Components 40, 019 through 60, 018 are used to encode product keywords. As in the case of the
words in the search just a few of these components are nonzero. On average, the number of non-
zero components of feature vectors that describe the title features is 8.8. For product keywords the
average is 2.1. Since the number of distinct advertisers in the training set is 5, 184 we use feature
components 60, 019 through 65202 to encode this information. For the kth advertiser ID we set
the k + 60, 018th component of the feature vector to [xi]k+60,018 = 1. Since the number of distinct
advertisements is 108, 824 we allocate the last 108, 824 components of the feature vector to encode
the ad ID. Observe that only one out of 5, 184 advertiser ID components and one of the 108, 824
advertisement ID components are nonzero.

In total, the length of the feature vector is 174,026 where each of the components are either 0
or 1. The vector is very sparse. We observe a maximum of 148 nonzero elements and an average
of 20.9 nonzero elements in the training set – see Table 5. This is important because the cost of
implementing inner products in the oLBFGS training of the logistic regressor that we introduce in
the following section is proportional to the number of nonzero elements in xi.

5.2 Logistic regression of click-through rate

We use the training set to estimate the CTR with a logistic regression as in, e.g., Zhang et al.
(2013b). For that purpose let x ∈ Rn be a vector containing the features described in Section 5.1,
w ∈ Rn a classifier that we want to train, and y ∈ −1, 1 an indicator variable that takes the value
y = 1 when the ad presented to the user is clicked and y = −1 when the ad is not clicked by the
user. We hypothesize that the CTR, defined as the probability of observing y = 1, can be written
as the logistic function

CTR(x;w) := P
[
y = 1

∣∣x;w
]

=
1

1 + exp
(
− xTw

) . (39)
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We read (39) as stating that for a feature vector x the CTR is determined by the inner product
xTw through the given logistic transformation.

Consider now the training set S = {(xi, yi)}Ni=1 which contains N realizations of features xi
and respective click outcomes yi and further define the sets S1 := {(xi, yi) ∈ S : yi = 1} and
S−1 := {(xi, yi) ∈ S : yi = −1} containing clicked and unclicked advertisements, respectively. With
the data given in S we define the optimal classifier w∗ as a maximum likelihood estimate (MLE) of
w given the model in (39) and the training set S. This MLE can be found as the minimizer of the
log-likelihood loss

w∗ := argmin
λ

2
‖w‖2 +

1

N

N∑
i=1

log
(

1 + exp
(
− yixTi w

))
= argmin

λ

2
‖w‖2 +

1

N

[ ∑
xi∈S1

log
(

1 + exp(−xTi w)
)

+
∑

xi∈S−1

log
(

1 + exp(xTi w)
) ]

, (40)

where we have added the regularization term λ‖w‖2/2 to disincentivize large values in the weight
vector w∗; see e.g., Ng (2004).

The practical use of (39) and (40) is as follows. We use the data collected in the training set S
to determine the vector w∗ in (40). When a user issues a query we concatenate the user and query
specific elements of the feature vector with the ad specific elements of several candidate ads. We
then proceed to display the advertisement with, say, the largest CTR. We can interpret the set S as
having been acquired offline or online. In the former case we want to use a stochastic optimization
algorithm because computing gradients is infeasible – recall that we are considering training samples
with a number of elements N in the order of 106. The performance metric of interest in this case is
the logistic cost as a function of computational time. If elements of S are acquired online we update
w whenever a new vector becomes available so as to adapt to changes in preferences. In this case
we want to exploit the information in new samples as much as possible. The correct metric in this
case is the logistic cost as a function of the number of feature vectors processed. We use the latter
metric for the numerical experiments in the following section.

5.3 Numerical Results

Out of the 236× 106 in the Tencent dataset we select 106 sample points to use as the training set S
and 105 sample points to use as a test set T . To select elements of the training and test set we divide
the first 1.1× 106 sample points of the complete dataset in 105 consecutive blocks with 11 elements.
The first 10 elements of the block are assigned to the training set and the 11th element to the test set.
To solve for the optimal classifier we implement SGD and oLBFGS by selecting feature vectors xi
at random from the training set S. In all of our numerical experiments the regularization parameter
in (40) is λ = 10−6. The stepsizes for both algorithms are of the form εt = ε0T0/(T0 + t). We set
ε0 = 10−2 and T0 = 104 for oLBFGS and ε0 = 10−1 and T0 = 106 for SGD. For SGD the sample size
in (9) is set to L = 20 whereas for oLBFGS it is set to L = 100. The values of parameters ε0, T0,
and L are chosen to yield best convergence times in a rough parameter optimization search. Observe
the relatively large values of L that are used to compute stochastic gradients. This is necessary due
to the extreme sparsity of the feature vectors xi that contain an average of only 20.9 nonzero out
174,026 elements. Even when considering L = 100 vectors they are close to orthogonal. The size
of memory for oLBFGS is set to τ = 10. With L = 100 features with an average sparsity of 20.9
nonzero elements and memory τ = 10 the cost of each LBGS iteration is in the order of 2.1 × 104

operations.
Figure 5 illustrates the convergence path of SGD and oLBFGS on the advertising training set.

We depict the value of the log likelihood objective in (40) evaluated at w = wt where wt is the
classifier iterate determined by SGD or oLBFGS. The horizontal axis is scaled by the number of
feature vectors L that are used in the evaluation of stochastic gradients. This results in a plot of log
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Figure 5: Illustration of Negative log-likelihood value for oLBFGS and SGD after processing certain
amount of feature vectors. The accuracy of oLBFGS is better than SGD after processing
a specific number of feature vectors.

likelihood cost versus the number Lt of feature vectors processed. To read iteration indexes from
Figure 5 divide the horizontal axis values by L = 100 for oLBGS and L = 20 for SGD. Consistent
with the synthetic data results in Section 4, the curvature correction of oLBFGS results in significant
reductions in convergence time. For way of illustration observe that after processing Lt = 3 × 104

feature vectors the objective value achieved by oLBFGS is F (wt) = 0.65, while for SGD it still
stands at F (wt) = 16 which is a meager reduction from the random initialization point at which
F (w0) = 30. In fact, oLBFGS converges to the minimum possible log likelihood cost F (wt) = 0.65
after processing 1.7 × 104 feature vectors. This illustration hints that oLBGS makes better use of
the information available in feature vectors.

To corroborate that the advantage of oLBGS is not just an artifact of the structure of the log
likelihood cost in (40) we process 2× 104 feature vectors with SGD and oLBFGS and evaluate the
predictive accuracy of the respective classifiers on the test set. As measures of predictive accuracy we
adopt the frequency histogram of the predicted click through rate CTR(x;w) for all clicked ads and
the frequency histogram of the complementary predicted click through rate 1 − CTR(x;w) for all
the ads that were not clicked. To do so we separate the test set by defining the set T1 := {(xi, yi) ∈
T : yi = 1} of clicked ads and the set T−1 := {(xi, yi) ∈ T : yi = −1} of ads in the test set that
were not clicked. For a given classifier w we compute the predicted probability CTR(xi;w) for each
of the ads in the clicked set T1. We then consider a given interval [a, b] and define the frequency
histogram of the predicted click through rate as the fraction of clicked ads for which the prediction
CTR(xi;w) falls in [a, b],

H1(w; a, b) :=
1

#(T1)

∑
(xi,yi)∈T1

I
{

CTR(xi;w) ∈ [a, b]
}
, (41)

where #(T1) denotes the cardinality of the set T1. Likewise, we consider the ads in the set T−1 that
were not clicked and compute the prediction 1−CTR(xi;w) on the probability of the ad not being
clicked. We then consider a given interval [a, b] and define the frequency histogram H−1(w; a, b) as
the fraction of unclicked ads for which the prediction 1− CTR(xi;w) falls in [a, b],

H−1(w; a, b) :=
1

#(T−1)

∑
(xi,yi)∈T−1

I
{

1− CTR(xi;w) ∈ [a, b]
}
. (42)

The histogram H1(w; a, b) in (41) allows us to study how large the predicted probability CTR(xi;w)
is for the clicked ads. Conversely, the histogram H−1(w; a, b) in (42) gives an indication of how large
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(a) Histogram H1(w; a, b), [cf. (41)].
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(b) Histogram H−1(w; a, b), [cf. (42)].

Figure 6: Performance of classifier after processing 2× 104 feature vectors with SGD and oLBFGS
for the cost in (40). Histograms for: (a) predicted click through rate CTR(x;w) for all
clicked ads; and (b) complementary predicted click through rate 1 − CTR(x;w) for all
unclicked ads. For an ideal classifier that predicts a click probability CTR(x;w) = 1 for
all clicked ads and a click probability CTR(x;w) = 0 for all unclicked ads the frequency
counts in H1(w; a, b) and H−1(w; a, b) would accumulate in the [0.9, 1] bin. Neither SGD
nor oLBFGS compute acceptable classifiers because the number of clicked ads in the test
set is very small and predicting CTR(x;w) = 0 for all ads is close to the minimum of (40).

the predicted probability 1−CTR(xi;w) is for the unclicked ads. An ideal classifier is one for which
the frequency counts in H1(w; a, b) accumulate at CTR(xi;w) = 1 and for which H−1(w; a, b) ac-
cumulates observations at 1−CTR(xi;w) = 1. This corresponds to a classifier that predicts a click
probability of 1 for all ads that were clicked and a click probability of 0 for all ads that were not
clicked.

Fig. 6(a) shows the histograms of predicted click through rate CTR(x;w) for all clicked ads by
oLBFGS and SGD classifiers after processing 2× 104 training sample points. oLBFGS classifier for
88% of test points in T1 predicts CTR(x;w) in the interval [0, 0.1] and the classifier computed by
SGD estimates the click through rate CTR(x;w) in the same interval for 37% of clicked ads in the
test set. These numbers shows the inaccurate click through rate predictions of both classifiers for the
test points with label y = 1. Although, SGD and oLBFGS classifiers have catastrophic performances
in predicting click through rate CTR(x;w) for the clicked ads in the test set, they perform well in
estimating complementary predicted click through rate 1−CTR(x;w) for the test points with label
y = −1. This observation implied by Fig. 6(b) which shows the histograms of complementary
predicted click through rate 1− CTR(x;w) for all not clicked ads by oLBFGS and SGD classifiers
after processing 2×104 training sample points. As it shows after processing 2×104 sample points of
the training set the predicted probability 1−CTR(x;w) by the SGD classifier for 38.8% of the test
points are in the interval [0.9, 1], while for the classifier computed by oLBFGS 97.3% of predicted
probability 1− CTR(x;w) are in the interval [0.9, 1] which is a significant performance.

The reason for the inaccurate predictions of both classifiers is that most elements in the training
set S are unclicked ads. Thus, the minimizer w∗ of the log likelihood cost in (40) is close to a
classifier that predicts CTR(x;w∗) ≈ 0 for most ads. Indeed, out of the 106 elements in the training
set, 94.8% of them have labels yi = −1 and only the remaining 5.2× 104 feature vectors correspond
to clicked ads. To overcome this problem we replicate observations with labels yi = 1 to balance
the representation of both labels in the training set. Equivalently, we introduce a constant γ and
redefine the log likelihood objective in (40) to give a larger weight to feature vectors that correspond
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(b) Histogram H−1(w; a, b), [cf. (42)].

Figure 7: Performance of classifier after processing 2× 104 feature vectors with SGD and oLBFGS
for the cost in (43). Histograms for: (a) predicted click through rate CTR(x;w) for all
clicked ads; and (b) complementary predicted click through rate 1 − CTR(x;w) for all
unclicked ads. For an ideal classifier that predicts a click probability CTR(x;w) = 1 for
all clicked ads and a click probability CTR(x;w) = 0 for all unclicked ads the frequency
counts in H1(w; a, b) and H−1(w; a, b) would accumulate in the [0.9, 1] bin. The classifier
computed by oLBFGS is much more accurate than the one computed by SGD.

to clicked ads,

w∗ = argmin
λ

2
‖w‖2 +

1

M

[
γ
∑

xi∈S1

log
(

1 + exp(−xTi w)
)

+
∑

xi∈S−1

log
(

1 + exp(xTi w)
)]
, (43)

where we defined M := γ#(S1) + #(S−1) to account for the replication of clicked featured vectors
that is implicit in (43). To implement SGD and oLBFGS in the weighted log function in (43) we
need to bias the random choice of feature vector so that vectors in S1 are γ times more likely to
be selected than vectors in S2. Although our justification to introduce γ is to balance the types
of feature vectors, γ is just a tradeoff constant to increase the percentage of correct predictions for
clicked ads – which is close to zero in Figure 6 – at the cost of reducing the accuracy of correct
predictions of unclicked ads – which is close to one in Figure 6.

We repeat the experiment of processing 2× 104 feature vectors that we sumamrized in Figure 6
but now we use the objective cost in (43) instead of the cost in (40). We set γ = 18.2 which makes
replicated clicked ads as numerous as unclicked ads. The resulting SGD and oLBFGS histograms
of the predicted click through rates for all clicked ads and complementary predicted click through
rates for all unclicked ads are shown in Figure 7. In particular, Figure 7(a) shows the histograms of
predicted click through rate CTR(x;w) for all clicked ads after processing 2× 104 training sample
points. The modification of the log likelihood cost increases the accuracy of the oLBFGS classifier
which is now predicting a click probability CTR(x;w) ∈ [0.9, 1] for 54.7% of the ads that were indeed
clicked. There is also improvement for the SGD classifier but the prediction is much less impressive.
Only 15.5% of the clicked ads are associated with a click probability prediction in the interval
[0.9, 1]. This improvement is at the cost of reducing the complementary predicted click through
rate 1 − CTR(x;w) for the ads that were indeed not clicked. However, the classifier computed by
oLBFGS after processing 2× 104 feature vectors still predicts a probability 1−CTR(x;w) ∈ [0.9, 1]
for 46.3% of the unclicked ads. The corresponding frequency for the SGD classifier is 10.8%.

Do note that the relatively high prediction accuracies in Figure 7 are a reflection of sample bias
to some extent. Since ads were chosen for display because they were deemed likely to be clicked
they are not a completely random test set. Still, the point to be made here is that oLBFGS succeeds
in finding an optimal classifier when SGD fails. It would take the processing of about 106 feature
vectors for SGD to achieve the same accuracy of oLBFGs.
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6. Conclusions

An online limited memory version of the (oL)BFGS algorithm was studied for solving strongly
convex optimization problems with stochastic objectives. Almost sure convergence was established
by bounding the traces and determinants of curvature estimation matrices under the assumption
that sample functions have well behaved Hessians. The convergence rate of oLBFGS was further
determined to be at least of order O(1/t) in expectation. This rate is customary of stochastic
optimization algorithms which are limited by their ability to smooth out the noise in stochastic
gradient estimates. The application of oLBFGS to support vector machines was also developed
and numerical tests on synthetic data were provided. The numerical results show that oLBFGS
affords important reductions with respect to stochastic gradient descent (SGD) in terms of the
number of feature vectors that need to be processed to achieve a target accuracy as well as in the
associated execution time. Moreover, oLBFGS also exhibits a significant execution time reduction
when compared to other stochastic quasi-Newton methods. These reductions increase with the
problem dimension and can become arbitrarily large. A detailed comparison between oLBFGS and
SGD for training a logistic regressor in a large scale search engine advertising problem was also
presented. The numerical tests show that oLBFGS trains the regressor using less than 1% of the
data required by SGD to obtain similar classification accuracy.
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Appendix A. Proof of Proposition 1

We begin by observing that the pu sequence in (17) is defined so that we can write pu+1 = Ẑt−u−1pu
with p0 = p. Indeed, use the explicit expression for Ẑt−u−1 in (12) to write the product Ẑt−u−1pu
as

Ẑt−u−1pu =
(
I− ρ̂t−u−1r̂t−u−1vTt−u−1

)
pu = pu − αur̂t−u−1 = pu+1, (44)

where the second equality follows from the definition αu := ρ̂t−u−1v
T
t−u−1pu and the third equality

from the definition of the pu sequence in (17).
Recall now the oLBFGS Hessian inverse approximation expression in (16). It follows that for

computing the product B̂−1t p we can multiply each of the τ + 1 summands in the right hand side of
(16) by p = p0. Implementing this procedure yields

B̂−1t p =
(
ẐTt−1. . .Ẑ

T
t−τ

)
B̂−1t,0

(
Ẑt−τ . . .Ẑt−1

)
p0 + ρ̂t−τ

(
ẐTt−1. . .Ẑ

T
t−τ+1

)
vt−τv

T
t−τ

(
Ẑt−τ+1. . .Ẑt−1

)
p0

+ · · ·+ ρ̂t−2

(
ẐTt−1

)
vt−2v

T
t−2

(
Ẑt−1

)
p0 + ρ̂t−1vt−1v

T
t−1p0. (45)

The fundamental observation in (45) is that all summands except the last contain the product

Ẑt−1p0. This product cannot only be computed efficiently but, as shown in (44), is given by

p1 = Ẑt−1p0. A not so fundamental, yet still important observation, is that the last term can be
simplified to ρ̂t−1vt−1v

T
t−1p0 = α0vt−1 given the definition of α0 := ρ̂t−1v

T
t−1p0. Implementing

both of these substitutions in (45) yields

B̂−1t p =
(
ẐTt−1. . .Ẑ

T
t−τ

)
B̂−1t,0

(
Ẑt−τ . . .Ẑt−2

)
p1 + ρ̂t−τ

(
ẐTt−1. . .Ẑ

T
t−τ+1

)
vt−τv

T
t−τ

(
Ẑt−τ+1. . .Ẑt−2

)
p1

+ · · ·+ ρ̂t−2

(
ẐTt−1

)
vt−2v

T
t−2p1 + α0vt−1. (46)
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The structure of (46) is analogous to the structure of (45). In all terms except the last two we require

determination of the product Ẑt−2p1, which, as per (44) can be computed with 2n multiplications

and is given by p2 = Ẑt−2p1. Likewise, in the second to last term we can simplify the product
ρ̂t−2vt−2v

T
t−2p1 = α1vt−2 using the definition α1 = ρ̂t−2v

T
t−2p1. Implementing these substitutions

in (46) yields an expression that is, again, analogous. In all of the resulting summands except the

last three we need to compute the product Ẑt−3p2, which is given by p3 = Ẑt−3p2 and in the third
to last term we can simplify the product ρ̂t−3vt−3v

T
t−3p2 = α2vt−3. Repeating this process keeps

yielding terms with analogous structure and, after τ − 1 repetitions we simplify (46) to

B̂−1t p =
(
ẐTt−1. . .Ẑ

T
t−τ+1Ẑ

T
t−τ

)
B̂−1t,0pτ +

(
ẐTt−1. . .Ẑ

T
t−τ+1

)
ατ−1vt−τ + . . .+ ẐTt−1α1vt−2 + α0vt−1.

(47)

In the first summand in (47) we can substitute the definition of the first element of the qu sequence

q0 := B̂−1t,0pτ . More important, observe that the matrix ẐTt−1 is the first factor in all but the last

summand. Likewise, the matrix ẐTt−2 is the second factor in all but the last two summands and, in

general, the matrix ẐTt−u is the uth factor in all but the last u summands. Pulling these common

factors recursively through (47) it follows that B̂−1t pt can be equivalently written as

B̂−1t p = α0vt−1 + ẐTt−1

[
α1vt−2 + ẐTt−2

[
. . .
[
ατ−2vt−τ+1 + ẐTt−τ+1

[
ατ−1vt−τ + ẐTt−τq0

]]
. . .

]]
.

(48)

To conclude the proof we just need to note that the recursive definition of qu in (18) is a computation
of the nested elements of (48). To see this consider the innermost element of (48) and use the

definition of β0 := ρ̂t−τ r̂
T
t−τq0 to conclude that ατ−1vt−τ + ẐTt−τq0 is given by

ατ−1vt−τ + ẐTt−τq0 = ατ−1vt−τ + q0 − ρ̂t−τvt−τ r̂Tt−τq0 = q0 + (ατ−1 − β0)vt−τ = q1 (49)

where in the last equality we use the definition of q1 [cf. (18). Substituting this simplification into
(48) eliminates the innermost nested term and leads to

B̂−1t p = α0vt−1 + ẐTt−1

[
α1vt−2 + ẐTt−2

[
. . .
[
ατ−2vt−τ+1 + ẐTt−τ+1q1

]
. . .

]]
. (50)

Mimicking the computations in (49) we can see that the innermost term in (50) is ατ−2vt−τ+1 +

ẐTt−τ+1q1 = q2 and obtain an analogous expression that we can substitute for q3 and so on. Re-

peating this process τ − 2 times leads to the last term being B̂−1t p = α0vt−1 + ẐTt−1qτ−1 which we

can write as α0vt−1 + ẐTt−1qτ−1 = qτ by repeating the operations in (49). This final observation

yields B̂−1t p = qτ .

Appendix B. Proof of Lemma 2

As per (22) in Assumption 1 the eigenvalues of the instantaneous Hessian Ĥ(w, θ̃) are bounded by
m̃ and M̃ . Thus, for any given vector z it holds

m̃‖z‖2 ≤ zT Ĥ(w, θ̃)z ≤ M̃‖z‖2. (51)

For given wt and wt+1 define the mean instantaneous Hessian Ĝt as the average Hessian value along
the segment [wt,wt+1]

Ĝt =

∫ 1

0

Ĥ
(
wt + τ(wt+1 −wt), θ̃t

)
dτ. (52)
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Consider now the instantaneous gradient ŝ(wt + τ(wt+1 −wt), θ̃t) evaluated at wt + τ(wt+1 −wt)

and observe that its derivative with respect to τ is ∂ŝ
(
wt+τ(wt+1−wt), θ̃t

)
/∂τ = Ĥ(wt+τ(wt+1−

wt), θ̃t)(wt+1 −wt). Then according to the fundamental theorem of calculus∫ 1

0

Ĥ
(
wt + τ(wt+1 −wt) , θ̃t

)
(wt+1 −wt) dτ = ŝ(wt+1, θ̃t)− ŝ(wt, θ̃t). (53)

Using the definitions of the mean instantaneous Hessian Ĝt in (52) as well as the definitions of the
stochastic gradient variations r̂t and variable variations vt in (11) and (4) we can rewrite (53) as

Ĝtvt = r̂t. (54)

Invoking (51) for the integrand in (52), i.e., for Ĥ(w, θ̃) = Ĥ
(
wt + τ(wt+1 −wt), θ̃

)
, it follows that

for all vectors z the mean instantaneous Hessian Ĝt satisfies

m̃‖z‖2 ≤ zT Ĝtz ≤ M̃‖z‖2. (55)

The claim in (26) follows from (54) and (55). Indeed, consider the ratio of inner products r̂Tt vt/v
T
t vt

and use (54) and the first inequality in (55) to write

r̂Tt vt
vTt vt

=
vTt Ĝtvt
vTt vt

≥ m̃. (56)

It follows that (26) is true for all times t.
To prove (27) we operate (54) and (55). Considering the ratio of inner products r̂Tt r̂t/r̂

T
t vt and

observing that (54) states Ĝtvt = r̂t, we can write

r̂Tt r̂t
r̂Tt vt

=
vTt Ĝ

2
tvt

vTt Ĝtvt
(57)

Since the mean instantaneous Hessian Ĝt is positive definite according to (55), we can define zt =

Ĝ
1/2
t vt. Substituting this observation into (57) we can conclude

r̂Tt r̂t
r̂Tt vt

=
zTt Ĝtzt
zTt zt

. (58)

Observing (58) and the inequalities in (55), it follows that (27) is true.

Appendix C. Proof of Lemma 3

We begin with the trace upper bound in (29). Consider the recursive update formula for the Hessian

approximation B̂t as defined in (28). To simplify notation we define s as a new index such that
s = t− τ + u. Introduce this simplified notation in (28) and compute the trace of both sides. Since
traces are linear function of their arguments we obtain

tr
(
B̂t,u+1

)
= tr

(
B̂t,u

)
− tr

(
B̂t,uvsv

T
s B̂t,u

vTs B̂t,uvs

)
+ tr

(
r̂sr̂

T
s

vTs r̂s

)
. (59)

Recall that the trace of a matrix product is independent of the order of the factors to conclude that
the second summand of (59) can be simplified to

tr
(
B̂t,uvsv

T
s B̂t,u

)
= tr

(
vTs B̂t,uB̂t,uvs

)
= vTs B̂t,uB̂t,uvs =

∥∥∥B̂t,uvs

∥∥∥2 , (60)
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where the second equality follows because vTs B̂t,uB̂t,uvs is a scalar and the second equality by

observing that the term vTs B̂t,uB̂t,uvs is the inner product of the vector B̂t,uvs with itself. Use the
same procedure for the last summand of (59) so as to write tr(r̂sr̂

T
s ) = r̂Ts r̂s = ‖r̂s‖2. Substituting

this latter observation as well as (60) into (59) we can simplify the trace of B̂t,u+1 to

tr
(
B̂t,u+1

)
= tr

(
B̂t,u

)
− ‖B̂t,uvs‖2

vTs B̂t,uvs
+
‖r̂s‖2

r̂Ts vs
. (61)

The second term in the right hand side of (61) is negative because, as we have already shown, the

matrix B̂t,u is positive definite. The third term is the one for which we have derived the bound that

appears in (27) of Lemma 2. Using this two observations we can conclude that the trace of B̂t,u+1

can be bounded as
tr
(
B̂t,u+1

)
≤ tr

(
B̂t,u

)
+ M̃. (62)

By considering (62) as a recursive expression for u = 0, . . . τ − 1, we can conclude that

tr
(
B̂t,u

)
≤ tr

(
B̂t,0

)
+ uM̃. (63)

To finalize the proof of (29) we need to find a bound for the initial trace tr(B̂t,0). To do so we

consider the definition B̂t,0 = I/γ̂t with γ̂t as given by (19). Using this definition of B̂t,0 as a scaled

identity it follows that we can write the trace of B̂t,0 as

tr
(
B̂t,0

)
= tr

(
I

γ̂t

)
=

n

γ̂t
. (64)

Substituting the definition of γ̂t into the rightmost side of (19) it follows that for all times t ≥ 1,

tr
(
B̂t,0

)
= n

r̂Tt−1r̂t−1

vTt−1r̂t−1
= n

‖r̂t−1‖2

vTt−1r̂t−1
. (65)

The term ‖r̂t−1‖2/vTt−1r̂t−1 in (77) is of the same form of the rightmost term in (61). We can then,
as we did in going from (61) to (62) apply the bound that we provide in (27) of Lemma 2 to conclude
that for all times t ≥ 1

tr
(
B̂t,0

)
≤ nM̃. (66)

Substituting (66) into (63) and pulling common factors leads to the conclusion that for all times
t ≥ 1 and indices 0 ≤ u ≤ τ it holds

tr
(
B̂t,u

)
≤ (n+ u)M̃. (67)

The bound in (29) follows by making u = τ in (67) and recalling that, by definition, B̂t = B̂t,τ .

For time t = 0 we have γ̂t = γ̂0 = 1 and (77) reduces to tr(B̂t,0) = n while (67) reduces to

tr(B̂t,τ ) ≤ (1 + τ)M̃ . Furthermore, for t < τ we make B̂t = B̂t,t instead of B̂t = B̂t,τ . In this

case the bound in (67) can be tightened to tr(B̂t,τ ) ≤ (n+ t)M̃ . Given that we are interested in an
asymptotic convergence analysis, these bounds are inconsequential.

We consider now the determinant lower bound in (30). As we did in (59) begin by considering
the recursive update in (28) and define s as a new index such that s = t− τ +u to simplify notation.

Compute the determinant of both sides of (28), factorize B̂t,u on the right hand side, and use the
fact that the determinant of a product is the product of the determinants to conclude that

det
(
B̂t,u+1

)
= det

(
B̂t,u

)
det

(
I− vs(B̂t,uvs)

T

vTs B̂t,uvs
+

B̂−1t,ur̂sr̂
T
s

r̂Ts vs

)
. (68)
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To simplify the right hand side of (68) we should first know that for any vectors u1, u2, u3 and
u4, we can write det(I + u1u

T
2 + u3u

T
4 ) = (1 + uT1 u2)(1 + uT3 u4) − (uT1 u4)(uT2 u3) – see, e.g., Li

and Fukushima (2001), Lemma 3.3). Setting u1 = vs, u2 = B̂t,uvs/v
T
s B̂t,uvs, u3 = B̂−1t,ur̂s and

u4 = r̂s/r̂
T
s vs, implies that det(I + u1u

T
2 + u3u

T
4 ) is equivalent to the last term in the right hand

side of (68). Applying these substitutions implies that (1 + uT1 u2) = 1 − vTs B̂t,uvs/vsB̂t,uvs = 0
and uT1 u4 = −vTs r̂s/r̂Ts vs = −1. Hence, the term det(I + u1u

T
2 + u3u

T
4 ) can be simplified as uT2 u3.

By this simplification we can write the right hand side of (68) as

det

[
I− vs(B̂t,uvs)

T

vTs B̂t,uvs
+

B̂−1t,ur̂sr̂
T
s

r̂Ts vs

]
=

(
B̂t,uvs

)T
vTs B̂t,uvs

B̂−1t,ur̂s. (69)

To further simplify (69) write (B̂t,uvs)
T = vTs B̂

T
t,u and observer that since B̂t,u is symmetric we

have B̂T
t,uB̂

−1
t,u = B̂t,uB̂

−1
t,u = I. Therefore,

det

[
I− vs(B̂t,uvs)

T

vTi B̂t,uvs
+

B̂−1t,ur̂sr̂
T
s

r̂Ts vs

]
=

r̂Ts vs

vTs B̂t,uvs
. (70)

Substitute the simplification in (70) for the corresponding factor in (68). Further multiply and divide
the right hand side by the nonzero norm ‖vs‖ and regroup terms to obtain

det
(
B̂t,u+1

)
= det

(
B̂t,u

) r̂Ts vs
‖vs‖

‖vs‖
vTs B̂t,uvs

. (71)

To bound the third factor in (71) observe that the largest possible value for the normalized quadratic

form vTs B̂t,uvs/‖vs‖2 occurs when vs is an eigenvector of B̂t,u associated with its largest eigenvalue.

In such case the value attained is precisely the largest eigenvalue of B̂t,u implying that we can write

vTs B̂t,uvs
‖vs‖

≤ λmax

(
B̂t,u

)
. (72)

But to bound the largest eigenvalue λmax(B̂t,u) we can just use the fact that the trace of a matrix

coincides with the sum of its eigenvalues. In particular, it must be that λmax(B̂t,u) ≤ tr(B̂t,u) be-

cause all the eigenvalues of the positive definite matrix B̂t,u are positive. Combining this observation
with the trace bound in (67) leads to

vTs B̂t,uvs
‖vs‖

≤ tr
(
B̂t,u

)
≤ (n+ u)M̃. (73)

We can also bound the second factor in the right hand side of (71) if we reorder the inequality in (26)
of Lemma 2 to conclude that r̂Ts vs/‖vs‖ ≤ m̃. This bound, along with the inverse of the inequality
in (73) substituted in (71) leads to

det
(
B̂t,u+1

)
≥ m̃

nM̃ + uM̃
det
(
B̂t,u

)
. (74)

Apply (74) recursively between indexes u = 0 and u = τ − 1 and further observing that u ≤ τ in all
of the resulting factors it follows that

det
(
B̂t,τ

)
≥
[

m̃

(n+ τ)M̃

]τ
det
(
B̂t,0

)
. (75)
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To finalize the derivation of (30) we just need to bound the determinant of the initial curvature

approximation matrix B̂t,0. To do so we consider, again, the definition B̂t,0 = I/γ̂t with γ̂t as given

by (19). Using this definition of B̂t,0 as a scaled identity it follows that we can write the determinant

of B̂t,0 as

det
(
B̂t,0

)
= det

(
I

γ̂t

)
=

1

γ̂nt
. (76)

Substituting the definition of γ̂t into the rightmost side of (76) it follows that for all times t ≥ 1,

det
(
B̂t,0

)
=

(
r̂Tt−1r̂t−1

vTt−1r̂t−1

)n
=

(
‖r̂t−1‖2

vTt−1r̂t−1

)n
. (77)

The term ‖r̂t−1‖2/vTt−1r̂t−1 has lower and upper bounds that we provide in (27) of Lemma 2. Using
the lower bound in (27) it follows that the initial determinant must be such that

det
(
B̂t,0

)
≥ m̃n. (78)

Substituting the upper bound in (78) for the determinant of the initial curvature approximation
matrix in (75) allows us to conclude that for all times t ≥ 1

det
(
B̂t,τ

)
≥ m̃n

[
m̃

(n+ τ)M̃

]τ
. (79)

The bound in (30) follows by making u = τ in (79) and recalling that, by definition, B̂t = B̂t,τ . At

time t = 0 the initialization constant is set to γ̂t = γ̂0 = 1 and (78) reduces to det(B̂t,0) = 1 while

(79) reduces to det(B̂t,τ ) ≤ [m̃/(1 + τ)M̃ ]τ . For t < τ we make B̂t = B̂t,t instead of B̂t = B̂t,τ .

In this case the bound in (67) can be tightened to det(B̂t,τ ) ≤ m̃[m̃n/(1 + τ)M̃ ]τ . As in the case
of the trace, given that we are interested in an asymptotic convergence analysis, these bounds are
inconsequential.

Appendix D. Proof of Lemma 4

We first prove the upper bound inequality in (31). Let us define λi as the ith largest eigenvalue of

matrix B̂t. Considering the result in Lemma 3 that tr(B̂t) ≤ (n+ τ)M̃ for all steps t ≥ 1, we obtain

that the sum of eigenvalues of the Hessian approximation B̂t satisfy

n∑
i=1

λi = tr
(
B̂t

)
≤ (n+ τ)M̃. (80)

Considering the upper bound for the sum of eigenvalues in (80) and recalling that all the eigenvalues

of the matrix B̂t are positive because B̂t is positive definite, we can conclude that each of the
eigenvalues of B̂t is less than the upper bound for their sum in (80). We then have λi ≤ (n+ τ)M̃
for all i from where the right inequality in (31) follows.

To prove the lower bound inequality in (31) consider the second result of Lemma 3 which provides

a lower bound for the determinant of the Hessian approximation matrix B̂t. According to the
fact that determinant of a matrix is the product of its eigenvalues, it follows that the product of
the eigenvalues of B̂t is bounded below by the lower bound in (30), or, equivalently,

∏n
i=1 λi ≥

m̃n+τ/[(n+ τ)M̃ ]τ . Hence, for any given eigenvalue of B̂t, say λj , we have

λj ≥
1∏n

k=1,k 6=j λk
× m̃n+τ[

(n+ τ)M̃
]τ . (81)
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But in the first part of this proof we have already showed that (n+ τ)M̃ is a lower bound for the

eigenvalues of B̂t. We can then conclude that the product of the n − 1 eigenvalues
∏n
k=1,k 6=j λk is

bounded above by [(n+ τ)M̃ ]n−1, i.e.,

n∏
k=1,k 6=j

λk ≤
[
(n+ τ)M̃

]n−1
. (82)

Combining the inequalities in (81) and (82) we conclude that for any specific eigenvalue of B̂t can
be lower bounded as

λj ≥
1[

(n+ τ)M̃
]n−1 × m̃n+τ[

(n+ τ)M̃
]τ . (83)

Since inequality (83) is true for all the eigenvalues of B̂t, the left inequality (31) holds true.

Appendix E. Proof of Lemma 5

The proof is standard in stochastic optimization and provided here for reference. As it follows from
Assumption 1 the eigenvalues of the Hessian H(wt) = Eθ̃[Ĥ(wt, θ̃t)] = ∇2

wF (wt) are bounded
between 0 < m and M < ∞ as stated in (25). Taking a Taylor’s expansion of the function F (w)
around w = wt and using the upper bound in the Hessian eigenvalues we can write

F (wt+1) ≤ F (wt) +∇F (wt)
T (wt+1 −wt) +

M

2
‖wt+1 −wt‖2. (84)

From the definition of the oLBFGS update in (3) we can write the difference of two consecutive

variables wt+1 −wt as −εtB̂−1t ŝ(wt, θ̃t). Making this substitution in (84), taking expectation with
wt given in both sides of the resulting inequality, and observing the fact that when wt is given the
Hessian approximation B̂−1t is deterministic we can write

E
[
F (wt+1)

∣∣wt

]
≤ F (wt)− εt∇F (wt)

T B̂−1t E
[
ŝ(wt, θ̃t)

∣∣wt

]
+
ε2M

2
E
[∥∥∥B̂−1t ŝ(wt, θ̃t)

∥∥∥2 ∣∣wt

]
.

(85)
We proceed to bound the third term in the right hand side of (85). Start by observing that the
2-norm of a product is not larger than the product of the 2-norms and that, as noted above, with
wt given the matrix B̂−1t is also given to write

E
[∥∥∥B̂−1t ŝ(wt, θ̃t)

∥∥∥2 ∣∣wt

]
≤
∥∥∥B̂−1t ∥∥∥2 E

[∥∥∥ŝ(wt, θ̃t)
∥∥∥2∣∣wt

]
(86)

Notice that, as stated in (32), 1/c is an upper bound for the eigenvalues of B̂−1t . Further observe that

the second moment of the norm of the stochastic gradient is bounded by E
[
‖ŝ(wt, θ̃t)‖2

∣∣wt

]
≤ S2,

as stated in Assumption 2. These two upper bounds substituted in (86) yield

E
[∥∥∥B̂−1t ŝ(wt, θ̃t)

∥∥∥2 ∣∣wt

]
≤ S2

c2
. (87)

Substituting the upper bound in (87) for the third term of (85) and further using the fact that

E
[
ŝ(wt, θ̃t)

∣∣wt

]
= ∇F (wt) in the second term leads to

E
[
F (wt+1)

∣∣wt

]
≤ F (wt)− εt∇F (wt)

T B̂−1t ∇F (wt) +
ε2tMS2

2c2
. (88)
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We now find a lower bound for the second term in the right hand side of (88). As stated in (32),

1/C is a lower bound for the eigenvalues of B̂−1t . This lower bound implies that

∇F (wt)
T B̂−1t ∇F (wt) ≥

1

C
‖∇F (wt)‖2 (89)

By substituting the lower bound in (89) for the corresponding summand in (88) the result in (33)
follows.

Appendix F. Proof of Theorem 6

The proof uses the relationship in the statement (33) of Lemma 5 to build a supermartingale se-
quence. This is also a standard technique in stochastic optimization and provided here for reference.
To construct the supermartingale sequence define the stochastic process αt with values

αt := F (wt) +
MS2

2c2

∞∑
u=t

ε2u. (90)

Observe that αt is well defined because the
∑∞
u=t ε

2
u <

∑∞
u=0 ε

2
u < ∞ is summable. Further define

the sequence βt with values

βt :=
εt
C
‖∇F (wt)‖2. (91)

Let now Ft be a sigma-algebra measuring αt, βt, and wt. The conditional expectation of αt+1 given
Ft can be written as

E
[
αt+1

∣∣Ft] = E
[
F (wt+1)

∣∣Ft]+
MS2

2c2

∞∑
u=t+1

ε2u, (92)

because the term (MS2/2c2)
∑∞
u=t+1 ε

2
u is just a deterministic constant. Substituting (33) of Lemma

5 into (92) and using the definitions of αt in (90) and βt in (91) yields

E
[
αt+1

∣∣αt] ≤ αt − βt (93)

Since the sequences αt and βt are nonnegative it follows from (93) that they satisfy the conditions
of the supermartingale convergence theorem – see e.g. (Theorem E7.4 in Solo and Kong (1995)) .
Therefore, we conclude that: (i) The sequence αt converges almost surely. (ii) The sum

∑∞
t=0 βt <∞

is almost surely finite. Using the explicit form of βt in (91) we have that
∑∞
t=0 βt <∞ is equivalent

to
∞∑
t=0

εt
C
‖∇F (wt)‖2 <∞, a.s. (94)

Since the sequence of stepsizes is nonsummable, for (94) to be true we need to have a vanishing
subsequence embedded in ‖∇F (wt)‖2. By definition, this implies that the limit infimum of the
sequence ‖∇F (wt)‖2 is null almost surely,

lim inf
t→∞

‖∇F (wt)‖2 = 0, a.s. (95)

To transform the gradient bound in (95) into a bound pertaining to the squared distance to optimality
‖wt−w∗‖2 simply observe that the lower bound m on the eigenvalues of H(wt) applied to a Taylor’s
expansion around the optimal argument w∗ implies that

F (w∗) ≥ F (wt) +∇F (wt)
T (w∗ −wt) +

m

2
‖w∗ −wt‖2. (96)
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Observe now that since w∗ is the minimizing argument of F (w) we must have F (w∗)− F (wt) ≤ 0
for all w. Using this fact and reordering terms we simplify (96) to

m

2
‖w∗ −wt‖2 ≤ ∇F (wt)

T (wt −w∗). (97)

Further observe that the Cauchy-Schwarz inequality implies that∇F (wt)
T (wt−w∗) ≤ ‖∇F (wt)‖‖wt−

w∗‖. Substitution of this bound in (97) and simplification of a ‖w∗ −wt‖ factor yields

m

2
‖wt −w∗‖ ≤ ‖∇F (wt)‖. (98)

Since the limit infimum of ‖∇F (wt)‖ is null as stated in (95) the result in (34) follows from consid-
ering the bound in (98) in the limit as the iteration index t→∞.

Appendix G. Proof of Theorem 7

The proof follows along the lines of (Mokhtari and Ribeiro (2014a)) and is presented here for com-
pleteness. Theorem 7 claims that the sequence of expected objective values E [F (wt)] approaches
the optimal objective F (w∗) at a linear rate O(1/t). Before proceeding to the proof of Theorem 7
we repeat a technical lemma of (Mokhtari and Ribeiro (2014a)) that provides a sufficient condition
for a sequence ut to exhibit a linear convergence rate.

Lemma 8 (Mokhtari and Ribeiro (2014a)) Let a > 1, b > 0 and t0 > 0 be given constants and
ut ≥ 0 be a nonnegative sequence that satisfies the inequality

ut+1 ≤
(

1− a

t+ t0

)
ut +

b

(t+ t0)
2 , (99)

for all times t ≥ 0. The sequence ut is then bounded as

ut ≤
Q

t+ t0
, (100)

for all times t ≥ 0, where the constant Q is defined as

Q := max

[
b

a− 1
, t0u0

]
. (101)

Proof We prove (100) using induction. To prove the claim for t = 0 simply observe that the
definition of Q in (101) implies that

Q := max

[
b

a− 1
, t0u0

]
≥ t0u0, (102)

because the maximum of two numbers is at least equal to both of them. By rearranging the terms
in (102) we can conclude that

u0 ≤
Q

t0
. (103)

Comparing (103) and (100) it follows that the latter inequality is true for t = 0.
Introduce now the induction hypothesis that (100) is true for t = s. To show that this implies

that (100) is also true for t = s + 1 substitute the induction hypothesis us ≤ Q/(s + t0) into the
recursive relationship in (99). This substitution shows that us+1 is bounded as

us+1 ≤
(

1− a

s+ t0

)
Q

s+ t0
+

b

(s+ t0)
2 . (104)
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Observe now that according to the definition of Q in (101), we know that b/(a− 1) ≤ Q because Q
is the maximum of b/(a−1) and t0u0. Reorder this bound to show that b ≤ Q(a−1) and substitute
into (104) to write

us+1 ≤
(

1− a

s+ t0

)
Q

s+ t0
+

(a− 1)Q

(s+ t0)
2 . (105)

Pulling out Q/(s + t0)2 as a common factor and simplifying and reordering terms it follows that
(105) is equivalent to

us+1 ≤
Q
[
s+ t0 − a+ (a− 1)

]
(s+ t0)

2 =
s+ t0 − 1

(s+ t0)
2 Q. (106)

To complete the induction step use the difference of squares formula for (s + t0)2 − 1 to conclude
that [

(s+ t0)− 1
][

(s+ t0) + 1
]

= (s+ t0)2 − 1 ≤ (s+ t0)2. (107)

Reordering terms in (107) it follows that
[
(s + t0) − 1

]
/(s + t0)2 ≤ 1/

[
(s + t0) + 1

]
, which upon

substitution into (106) leads to the conclusion that

us+1 ≤
Q

s+ t0 + 1
. (108)

Eq. (108) implies that the assumed validity of (100) for t = s implies the validity of (100) for
t = s+ 1. Combined with the validity of (100) for t = 0, which was already proved, it follows that
(100) is true for all times t ≥ 0.

Lemma 8 shows that satisfying (99) is sufficient for a sequence to have the linear rate of conver-
gence specified in (100). In the following proof of Theorem 7 we show that if the stepsize sequence
parameters ε0 and T0 satisfy 2ε0T0/C > 1 the sequence E [F (wt)] − F (w∗) of expected optimality
gaps satisfies (99) with a = 2ε0T0/C, b = ε20T

2
0MS2/2c2 and t0 = T0. The result in (35) then follows

as a direct consequence of Lemma 8.

Proof of Theorem 7: Consider the result in (33) of Lemma 5 and subtract the average function
optimal value F (w∗) from both sides of the inequality to conclude that the sequence of optimality
gaps in the RES algorithm satisfies

E
[
F (wt+1)

∣∣wt

]
− F (w∗) ≤ F (wt)− F (w∗)− εt

C
‖∇F (wt)‖2 +

ε2tMS2

2c2
. (109)

We proceed to find a lower bound for the gradient norm ‖∇F (wt)‖ in terms of the error of the
objective value F (wt) − F (w∗) – this is a standard derivation which we include for completeness,
see, e.g., Boyd and Vandenberghe (2004). As it follows from Assumption 1 the eigenvalues of the
Hessian H(wt) are bounded between 0 < m and M < ∞ as stated in (25). Taking a Taylor’s
expansion of the objective function F (y) around w and using the lower bound in the Hessian
eigenvalues we can write

F (y) ≥ F (w) +∇F (w)T (y −w) +
m

2
‖y −w‖2. (110)

For fixed w, the right hand side of (110) is a quadratic function of y whose minimum argument we can
find by setting its gradient to zero. Doing this yields the minimizing argument ŷ = w−(1/m)∇F (w)
implying that for all y we must have

F (y) ≥ F (w) +∇F (w)T (ŷ −w) +
m

2
‖ŷ −w‖2

= F (w)− 1

2m
‖∇F (w)‖2. (111)
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The bound in (111) is true for all w and y. In particular, for y = w∗ and w = wt (111) yields

F (w∗) ≥ F (wt)−
1

2m
‖∇F (wt)‖2. (112)

Rearrange terms in (112) to obtain a bound on the gradient norm squared ‖∇F (wt)‖2. Further
substitute the result in (109) and regroup terms to obtain the bound

E
[
F (wt+1)

∣∣wt

]
− F (w∗) ≤

(
1− 2mεt

C

)(
F (wt)− F (w∗)

)
+
ε2tMS2

2c2
. (113)

Take now expected values on both sides of (113). The resulting double expectation in the left hand
side simplifies to E

[
E
[
F (wt+1)

∣∣wt

]]
= E [F (wt+1)], which allow us to conclude that (113) implies

that

E [F (wt+1)]− F (w∗) ≤
(

1− 2mεt
C

)(
E [F (wt)]− F (w∗)

)
+
ε2tMS2

2c2
. (114)

Furhter substituting εt = ε0T0/(T0 + t), which is the assumed form of the step size sequence by
hypothesis, we can rewrite (114) as

E [F (wt+1)]− F (w∗) ≤
(

1− 2mε0T0
(T0 + t)C

)(
E [F (wt)]− F (w∗)

)
+

(
ε0T0
T0 + t

)2
MS2

2c2
. (115)

Given that the product 2mε0T0/C > 1 as per the hypothesis, the sequence E [F (wt+1)] − F (w∗)
satisfies the hypotheses of Lemma 8 with a = 2mε0T0/C, b = ε20T

2
0MS2/2c2. It then follows from

(100) and (101) that (35) is true for the C0 constant defined in (36) upon identifying ut with
E [F (xt+1)] − F (x∗), C0 with Q, and substituting c = 2mε0T0/C, b = ε20T

2
0MS2/2c2 and t0 = T0

for their explicit values.
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