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Abstract

We study a repeated game in which a group of players attempt to coordinate on a desired, but
only partially known, outcome. The desired outcome is represented by an unknown state of the
world. Agents’ stage payoffs are represented by a quadratic utility function that captures the kind
of trade-off exemplified by the Keynesian beauty contest: each agent’s stage payoff is decreasing
in the distance between her action and the unknown state; it is also decreasing in the distance
between her action and the average action taken by other agents. The agents thus have the in-
centive to correctly estimate the state while trying to coordinate with and learn from others. We
show that myopic but Bayesian agents who repeatedly play this game and observe the actions
of their neighbors over a network (that satisfies some weak connectivity condition) eventually
succeed in coordinating on a single action. The agents also asymptotically receive similar pay-
offs in spite of differences in the quality of their information. Finally, we show that if the agents’
private observations are not functions of the history of the game, then the private observations
are optimally aggregated in the limit. Therefore, agents asymptotically coordinate on choosing
the best estimate of the state given the aggregate information available throughout the network.
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1 Introduction

Social networks spread information, encourage imitation, and thereby, facilitate coordination by

speeding the resolution of uncertainties. They help individuals make consumption and investment

decisions or perform tasks in organizations, all by providing them with information on the social,

economic, or political fundamentals and on the other individuals’ actions and beliefs.

An example demonstrating the role of social networks in coordination and learning is the recent

wave of popular protests in Egypt, Iran, Tunisia, and more recently in Brazil and Turkey. These large

scale events are widely believed to have been instigated by social media. Social networks act as

conduits of information about the time and location of protests and the accounts of the events, and

help individuals decide on their level of participation by providing them with information about the

unknown “states” (such as the forcefulness of the police at an event) or the participation decisions

of others individuals.1

In light of these observations, this paper examines the coordination problem faced by a group of

agents when the relevant information is dispersed throughout a social network. Consider a group

of agents that wish to coordinate on a desired outcome that is not fully known to any one of them.

Agents choose actions which are close to what they consider to be the desired outcome. Yet, they

also need to coordinate with other agents by choosing actions that are similar to what they expect

others to choose. There is a trade-off between acting according to one’s best estimate of the desired

outcome and trying to coordinate with other agents. Such trade-offs are important in—besides

the example previously mentioned—trade decision in financial markets (Morris and Shin (2002)),

consumption decisions (Bramoullé, Kranton, and D’Amours (2009)), and problems in cooperative

robotics (Marden, Arslan, and Shamma (2009)) and organizational coordination (Calvó-Armengol

and Beltran (2009)). The decisions of traders in stock market, for example, depend on their beliefs

about the fundamental stock values. Nonetheless, traders also tend to consider how other traders

will behave as their decisions could directly affect the gains from trade. In all of these examples,

agents make decisions by attempting to second-guess the decisions of others while also guessing

the value of an unknown. Moreover, oftentimes agents can only communicate with a handful of

other agents, while at the same time, trying to coordinate with and learn from everybody else.

We use the framework of repeated games of incomplete information to model the agents’ co-

ordination problem. A number of agents play a game with payoffs that have two components: an

estimation term and a coordination term. The estimation term serves to capture the agents’ desire

to make decisions that are optimal given their private information about an unknown parameter.

The coordination term captures the payoffs agents receive by taking actions that are close to the

average action taken by the rest of the population. The game is played over multiple stages. At each

1According to Zeynep Tufekci of Princeton University, who interviewed scores of Turkish protesters, most cited social
media as a spur. (“The digital demo”, The Economist, June 29, 2013)
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stage of the game, agents observe the previous choices made by a subset of other agents, called

their neighbors. An agent’s action may reveal some information to her neighbors that was previ-

ously unknown to them. The neighbors can use this information to re-evaluate their beliefs about

the underlying parameter and their predictions of others’ future behavior. These re-evaluations

may, in turn, lead agents to revise their actions over time.

Given this dynamic environment, different behavioral assumptions lead to different outcomes.

In particular, the way agents revise their views in face of new information and the actions they

choose given these views determine the long-run outcome of the game. In this paper, we assume

that agents are Bayesian and myopic. Bayesian agents use Bayes’ rule to incorporate new observa-

tions in their beliefs. Myopic agents choose actions at each stage of the game which maximize their

stage payoffs, without regard for the effect of these actions on their future payoffs. The assumption

on myopic agent behavior simplifies the analysis significantly and results in an essentially unique

equilibrium, which is unlikely with forward-looking agents.2 We use this behavioral assumption

to define an equilibrium, and prove formal results regarding the agents’ asymptotic equilibrium

behavior, assuming a quadratic utility function.

Our analysis yields several important results. First, each agent’s action asymptotically converges

to some limit action. By making use of this result, we show that if an agent (she) observes the

actions of some other agent (he) infinitely often, she will eventually be able to imitate his actions

and achieve a payoff at least as high as his limit payoffs. We then use this argument to prove that if

the social network is sufficiently connected over time, agents asymptotically receive similar payoffs.

In our symmetric coordination game, this implies that different agents’ actions also converge to

the same value. In other words, agents eventually coordinate on the same action. These results

extend some of the results in the social learning literatures to the setting where each agent’s actions

directly affect others’ payoffs. To the best of our knowledge, this is the first such result on reaching

consensus in social networks in presence of payoff externalities.

Second, we show that if the agents’ private observations are only functions of the unknown state

(and not their own actions), then generically the agents eventually coordinate on the “efficient”

action—the action on which the agents would have coordinated if each agent had access to the pri-

vate observations of every other one. Thus, the dispersed information is asymptotically optimally

aggregated through the agents’ repeated interactions. This result is true because the agents play a

coordination game wherein their incentives are aligned, and hence, they do not have an incentive

to withhold their private information. This theorem extends the results presented by Jadbabaie,

2A series of results in game theory, all of them known by the name “folk theorem”, establishes that in games played
by sufficiently patient forward-looking agents, any individually rational payoff can be obtained as an equilibrium payoff.
We are not aware of any folk theorem that directly applies to our model. However, based on the results proved in the
literature, a unique equilibrium is unlikely to obtain in our setting if the agents are forward-looking. For two examples
of a folk theorem, a classic result and a more recent result proved for games played on networks, see the works of Abreu,
Pearce, and Stacchetti (1990) and Laclau (2012).
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Molavi, Sandroni, and Tahbaz-Salehi (2012) and Mueller-Frank (2013) on optimal aggregation of

information in Bayesian learning to the cases where the state space is not finite and the agents face

payoff externalities.

Related Literature The paper is related to three main lines of research. The first is the literature on

Bayesian learning over networks. The focus of the social learning literature is on modeling the way

agents use their observations to update their beliefs and characterizing the outcomes of the learn-

ing process. Examples include, Bikhchandani, Hirshleifer, and Welch (1992), Banerjee (1992), and

Acemoglu, Dahleh, Lobel, and Ozdaglar (2011) that study sequential decision problems; and Borkar

and Varaiya (1982), Gale and Kariv (2003), Rosenberg, Solan, and Vieille (2009), and Mueller-Frank

(2013) that study repeated and simultaneous interactions. Due to the complexity of social learning,

the focus in the latter family of models is on asymptotic outcomes. In this paper, we extend the

repeated Bayesian social learning framework to an environment with payoff externalities, i.e., one

where an agent’s stage payoff is a function of other agents’ actions.

The current work is also related to the literature on learning in games, such as the works by Jor-

dan (1991, 1995), Kalai and Lehrer (1993), Jackson and Kalai (1997), Nachbar (1997), and Foster

and Young (2003). The central question in this literature is whether agents learn to play a Nash (or

Bayesian Nash) equilibrium. Whereas, in the current paper, the focus is on whether agents in a net-

work asymptotically receive the same payoffs and whether they optimally aggregate the dispersed

information.

Finally, our work is related to the literature in economic theory that studies the effect of public

and private information on welfare pioneered by the work of Morris and Shin (2002) who study the

effect of public information on the equilibrium welfare when agents play a beauty contest game.

In this paper, we borrow the payoff function introduced by Morris and Shin (2002) to model the

agents’ coordination problem. However, unlike the model of Morris and Shin, the focus of the cur-

rent work is on coordination and aggregation of information dispersed in social networks. Among

other related papers that study effect of public and private information on welfare are the works

by Angeletos and Pavan (2007, 2009), Vives (2010), and Amador and Weill (2012).

Organization of the Paper The rest of the paper is organized as follows. We present the baseline

model in Section 2. In Section 3, we introduce our equilibrium notion, prove its existence and

uniqueness, and provide a simple characterization of the equilibrium strategies. In Section 4, we

study the asymptotic equilibrium behavior of the agents and argue that they reach consensus in

their actions and payoffs. Section 5 provides conditions under which agents coordinate on the

efficient action. Finally, Section 6 concludes the paper. Proofs are provided in the Appendix.
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2 Baseline Model

2.1 Agents and Payoffs

Consider n agents indexed by i ∈ N = {1, . . . , n} who repeatedly play a game with uncertain pay-

offs. The payoff-relevant uncertainty is captured by a common unknown parameter θ, called the

state of the world, that takes values in Θ = R. Agents start with a common prior belief about θ

denoted by µ. We make the following technical assumption on µ.

Assumption 1. The state is square integrable with respect to µ, that is,∫
Θ
θ2dµ <∞.

The game is played over a countable set of time periods that is indexed by the positive inte-

gers. At time t, each agent observes a private signal in addition to the time t − 1 actions of a

subset of agents, takes an action simultaneously with other agents, and receives a payoff. We use

sit ∈ Si to denote the private signal observed by agent i at time t, where Si is a complete sepa-

rable metric space, and use st = (s1t, . . . , snt) ∈ S = ×ni=1Si to denote the corresponding signal

profile. Furthermore, we let ait ∈ Ai = R denote the action taken by agent i at time t, and let

at = (a1t, . . . , ant) ∈ A = Rn denote the corresponding action profile. Finally, ui(a, θ) denotes the

stage payoff received by agent i when agents play the action profile a and given that the realized

state is θ. Agent i’s stage payoff has the following representation:

ui(a, θ) = −(1− λ)(ai − θ)2 − λ(ai − ā−i)2, (1)

where λ ∈ [0, 1) is a constant and ā−i = 1
n−1

∑
j 6=i aj denotes the average payoff across other agents.

The first term is a quadratic loss in the distance between the realized state and agent i’s action, cap-

turing the agent’s preference for actions which are close to the unknown state. The second term is

the “beauty contest” term representing the agent’s preference for acting in conformity with the rest

of the population. This utility function was introduced by Morris and Shin (2002) to represent the

preferences of the agents who engage in second-guessing others’ actions as postulated by Keynes

(1936).

2.2 Social Network

At time t+1, in addition to her private signal, each agent also observes the time t actions of a subset

of other agents, denoted by Nit ⊆ N and called her time t neighbors. We use the convention that

agents are their own neighbors at all times, that is, i ∈ Nit for all i and t. The time t interactions

between agents can be summarized by a directed network gt ∈ G = {0, 1}n×n where [gt]ji = 1 if and

only if agent j is a time t neighbor of agent i, that is, if j ∈ Nit.
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Assumption 2. The network gt is generated according to some probability distribution νt indepen-

dently of other random variables in the model.

This assumption is satisfied by many commonly used models of social networks, such as fixed

networks, i.i.d networks, and deterministically time-varying ones. But it excludes cases where an

agent’s realized neighborhoods are informative about the state or other agents’ signals. We main-

tain Assumption 2 throughout the paper.

A directed path from i to j is a sequence of agents starting with i and ending with j such that

each agent is a neighbor of the next one in the sequence. We say that a social network is strongly

connected if there exists a directed path from each node to any other. Let ν = ×∞t=1νt denote the

probability distribution over the sequences of networks {gt}t∈N. We impose the following mild con-

nectivity assumption on the networks generated by the stochastic process ν.

Assumption 3. For ν-almost all {gt}t∈N, there exists a strongly connected network ḡ such that if j is

a neighbor of i given ḡ, then j is also a neighbor of i given gt for infinitely many t.

The above assumption guarantees that information obtained by an agent at any given time pe-

riod can eventually flow to any other agent in the network. That said, we have to remark that an

agent’s private information may never become available to other agents. Whether this is indeed the

case depends on the actions chosen by the agents in the equilibrium of the game.

2.3 Histories

Let (Ω,B) denote the measurable space of plays, where Ω = Θ × (S × A × G)N and B is the cor-

responding Borel σ-algebra. A generic element of the set Ω is denoted by ω and is called a path of

play. This is an infinite history of the game, consisting of the state and a list of all the private signals,

actions, and realized networks at all time periods. Similarly, let ht denote the time t history of the

game defined recursively as

ht = (ht−1; st−1, at−1, gt−1),

with h1 = θ. This is a complete description of the game up to time period t that belongs to the

measurable space Ht = Θ × (S ×A×G)t−1. We let Ht ⊆ B denote the σ-algebra of subsets of Ω

generated by the Borel sets of Ht.

Agents’ private signals are endogenously generated according to some probability distribution

which is a function of the history of the game. Given ht ∈ Ht, the time t signal profile is generated

according to the probability distribution πt(ht)[·], where πt is a transition probability from Ht to S.3

3Given measurable spaces (X,X ) and (Y,Y), a function f : X × Y → [0, 1] is called a transition probability from X to
Y if (i) for any given x ∈ X, f(x)[·] is a probability distribution over (Y,Y); and (ii) given any measurable set B ∈ Y , the
function x 7→ f(x)[B] is measurable.
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The time t private history of agent i is a list of all of her observations, denoted by hit and defined

recursively as

hit =
(
hit−1; sit−1, (ajt−1)j∈Nit−1

)
,

with hi1 = ∅. We let Hit denotes the set of agent i’s time t private histories, let Hi = ∪∞t=1Hit denote

the set of agent i’s private histories of any length, and letHit ⊆ Ht andHi ⊆ B denote the σ-algebras

of subsets of Ω generated by the Borel sets of Hit and Hi, respectively.

2.4 Strategies and Belief Systems

A strategy is a function that maps an agent’s private histories to her actions, whereas a belief system

is mapping from private histories to probability distributions over the space of plays.

Definition 1. A pure behavior strategy for agent i is a function σi : Hi → Ai.

Agent i’s strategy is a complete contingency plan determining the action to be taken by her at all

time periods and given any private history. More generally, the joint behavior of the agents is fully

described by the strategy profile σ = (σ1, . . . , σn), where σi is a strategy for agent i.

Any strategy profile σ—together with the agents’ common prior µ, the stochastic process ν,

and the signaling functions {πt}t∈N—induces a probability distribution over the measurable space

(Ω,B), denoted by Pσ. We let Eσ denote the expectation operator corresponding to Pσ. Given that

agents follow the strategy profile σ, the path of play ω is simply a point in the probability space

(Ω,F ,Pσ). The realized time t private history of agent i is in turn a measurable function of the real-

ized path of play, denoted by h̃it(·) : Ω→ Hit. We let σ̃it(·) = σi(h̃it(·)) : Ω→ Ai denote the random

variable that determines the time t action of agent i as a function of the realized path of play ω.

Definition 2. A belief system for agent i is a transition probability qi : Hi × B → [0, 1].

A belief is a probably distribution over the space of plays (Ω,B), whereas a belief system is a

collection of beliefs—one for every possible private history—that describes the agent’s belief after

observing any private history. More generally, the beliefs of the agents are fully described by q =

(q1, . . . , qn), where qi is a belief system for agent i. Finally, given a belief system qi, we let q̃it(·)[·] =

qi(h̃it(·))[·] : Ω × B → [0, 1] denote the transition probability that determines agent i’s time t belief

as a function of ω.

3 Equilibrium

In this section, we introduce our equilibrium notion and provide a characterization of the equi-

librium behavior. Our notion is a variant of the weak perfect Bayesian Equilibrium according to

which (i) agents’ strategies maximize their expected stage payoffs given their beliefs; and (ii) agents’
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equilibrium beliefs are consistent with their strategies. Before formally presenting our equilibrium

notion, we introduce some notation.

Agent i’s expected utility of taking an action is dependent on her belief about the path of play as

well as what she expects other agents to do. However, if we fix a strategy profile, the other agents’

actions are only functions of the realized path of play. Thus, given a strategy profile σ, the expected

time t payoff to agent i of taking action ai is uniquely determined as a function of her belief pi over

(Ω,B) as

vit(ai, σ−i; pi) =

∫
Ω
ui (ai, σ̃−it, θ) dpi,

where σ̃−it = (σ̃jt)j 6=i.

Definition 3. A weak perfect Bayesian equilibrium consists of a strategy profile σ∗ = (σ∗1, . . . , σ
∗
n)

and a collection of belief systems q∗ = (q∗1, . . . , q
∗
n) that satisfy the following conditions for all i and

t.4

(a) For P∗-almost all hit ∈ Hit and all ai ∈ Ai,

vit
(
σ∗i (hit), σ

∗
−i; q

∗
i (hit)

)
≥ vit

(
ai, σ

∗
−i; q

∗
i (hit)

)
.

(b) q̃∗it is a regular conditional probability of P∗ givenHit.5

According to the first condition, in equilibrium agents do not have access to profitable unilat-

eral deviations given all, but possibly a set of measure zero, of private histories. Bayesian Nash

equilibrium is typically defined by requiring the agents to maximize their expected utilities given

all information sets, including the ones that are reached with zero probability. Our equilibrium

notion is thus weaker than the standard Bayesian Nash equilibrium. However, the requirement is

sufficiently strong to ensure the existence of an equilibrium that is unique up to sets of measure

zero.

The assumption that the agents maximize their stage payoffs corresponds to myopia on agents’

behalf. An alternative equilibrium notion is obtained by assuming that the agents choose actions

that maximize the average (or discounted sum) of their payoffs over their lifetime. However, us-

ing this alternative equilibrium notion significantly complicates the analysis and more importantly

results in multiplicity of equilibria.

The second equilibrium condition is the consistency requirement according to which the agents’

beliefs are obtained using Bayes’ rule given their prior and the equilibrium strategy profile σ∗. We

remark that, as typically is the case with weak perfect Bayesian equilibria, agents’ beliefs are not

uniquely determined given the equilibrium strategy profile. Rather, any regular probability distri-

bution distribution of P∗ givenHit is a consistent time t belief for agent i.

4We use P∗ and E∗ to denote the probability distribution and expectation operator, respectively, induced by σ∗.
5Given a probability space (X,X ,P) and a sub σ-algebra Y ⊆ X , the transition probability f : X × X → [0, 1] is a

regular conditional probability of P given Y if for each B ∈ X , x 7→ f(x)[B] is a version of P(B|Y).
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Definition 4. σ∗ is an equilibrium strategy profile if there exists some q∗ such that the pair (σ∗, q∗)

constitutes an equilibrium.

The following lemma provides a characterization of the equilibrium strategy profiles.

Lemma 1. σ∗ is an equilibrium strategy profile if and only if for all i and t,

E∗
[
ui(σ̃

∗
it, σ̃

∗
−it, θ)|Hit

]
≥ E∗

[
ui(σ̃it, σ̃

∗
−it, θ)|Hit

]
, (2)

for any strategy σi and with P∗-probability one.

In the rest of the paper, we restrict our attention to square integrable strategies in order to rule

out the uninteresting equilibria wherein each agent’s expected payoff is equal to minus infinity,

regardless of her own strategy.

Definition 5. A strategy profile σ is square integrable if

Eσ
[
σ̃2
it

]
<∞,

for all i and t.

If agents follow square integrable strategies, their expected payoffs of taking any action given

any private history is finite. Moreover, agents’ expected stage payoffs are quadratic, and concave in

their own actions. Thus, the equilibria of the game can be characterized by a set of necessary and

sufficient first-order conditions that result in the following simple characterization of the square

integrable strategy profiles.

Corollary 1. The square integrable strategy profile σ∗ is an equilibrium strategy profile if and only if

for all i and t,

σ̃∗it = (1− λ)E∗ [θ|Hit] + λ
1

n− 1

∑
j 6=i

E∗
[
σ̃∗jt|Hit

]
, (3)

with P∗-probability one.

Agents’ equilibrium strategies are linear in their expectation of the state and others’ actions.

This feature of the equilibrium keeps the analysis tractable. Moreover, equation (3) can be used to

show that square integrable strategy profiles are the fixed-points of a contraction mapping in the

Lp space. We use this property to show that square integrable equilibrium strategies always exist

and result in equilibrium actions which are almost always unique.

Proposition 1. Suppose that Assumption 1 is satisfied. Then, a square integrable equilibrium strat-

egy profile σ∗ exists. Furthermore, for any other square integrable equilibrium strategy profile σ† and

all i and t,

σ̃∗it = σ̃†it,

P∗-almost surely and P†-almost surely.
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Thus, the agents’ equilibrium actions are uniquely determined after a set of full measure of

histories. In the next section, we use this result and the characterization of the equilibrium actions

in Corollary 1 to analyze the asymptotic behavior of the agents’ equilibrium actions.

4 Reaching Consensus

In this section, we show that the agents eventually reach consensus in their actions and that their

realized payoffs are asymptotically the same. To prove these results, we first show that agents’ ac-

tions converge to some limit action.

Proposition 2. Suppose that Assumption 1 is satisfied. Let σ∗ be a square integrable equilibrium

strategy profile. Then, σ̃∗it converges to someHi-measurable random variable ς̃∗i in the L2 sense, that

is,

E∗
[
(σ̃∗it − ς̃∗i )2

]
−→ 0 as t→∞,

for all i ∈ N .

Agent j’s action converges in L2 to some limit action that is a function of the realized path of

play. If agent i can observe the actions of j infinitely often, she can asymptotically imitate the ac-

tions of agent j. In a strongly connected network, agent j can in turn imitate the actions of some

other agent k, and so on, with some agent being able to imitate the actions of agent i. All agents

in such a chain must, therefore, asymptotically believe that their actions are better than the ones

taken by the others. However, since the agents’ payoffs are symmetric and their actions are strate-

gic complements, this is only possible if any two agents asymptotically choose the same action, re-

gardless of the realization of the state of the world. This is an instance of argument by the so-called

Imitation Principle, according to which each agent’s asymptotic payoff is always at least as high as

the asymptotic payoff of any agent she can imitate, and hence, in a connected network, agents’

asymptotic payoffs are the same.6 We use this line of reasoning to prove the following theorem on

consensus in the agents’ payoffs and actions.

Theorem 1. Suppose that Assumptions 1–3 are satisfied. Let σ∗ be a square integrable equilibrium

strategy profile. Then, as t goes to infinity, for all i, j ∈ N ,

(a) E∗
[ ∣∣ui (σ̃∗it, σ̃∗−it, θ)− uj (σ̃∗jt, σ̃∗−jt, θ)∣∣ ] −→ 0,

(b) E∗
[(
σ̃∗it − σ̃∗jt

)2] −→ 0,

(c) σ̃∗it
L1

−→ E∗ [θ|Hi] = E∗ [θ|Hj ].
6The Imitation Principle was first introduced by Gale and Kariv (2003) to study rational social learning with purely

informational externalities. For another application of the Imitation Principle, see Rosenberg, Solan, and Vieille (2009).
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According to part (a) of the theorem, the differences between the agents’ payoffs asymptotically

vanish in the L1 sense. Thus, in spite of the differences in their location in the network and the

quality of their private signals, agents asymptotically receive similar payoffs. This is due to the

structure of the game wherein agents’ incentives are aligned, and thus, each agent would benefit

from making her private information available to the rest of the population. From the point of view

of the agents, however, the asymptotic payoffs are not necessarily the same. That is, the conditional

expectations of the agents’ limit payoffs given their information at the end of the game could be

dissimilar. The following example illustrates this possibility.

Example 1. Consider two agents who observe each others’ actions at all time periods. The common

prior is the uniform distribution over the set {−2,−1, 1, 2}. Agents 2 receives no signal (S2 = ∅),

whereas Agent 1’s private signals belong to the set S1 = {1, 2}, and her signaling functions πt are

given by

πt(ht) =

{
δ1 if |θ| < 2,

δ2 if |θ| ≥ 2,

where δs1t is the degenerate probability distribution with unit mass on the signal s1t ∈ S1. Thus,

agent 1 is informed of the absolute value of θ. Observe that in any equilibrium of the game σ̃∗it = 0

at all times and for both agents, Agent 1 learns the absolute value of θ, whereas Agent 2 never makes

any informative observations. At the end of the game, Agent 1’s expected payoff conditional on

her information is equal to −(1 − λ)|θ|2, while the corresponding payoff for Agent 2 is given by

−(1−λ)5
2 . Although these conditional expected payoffs are unequal for any realization of the state,

the unconditional expected payoffs and the realized payoffs are the same for both agents—as also

implied by Theorem 1.

Part (b) of the theorem proves that the agents asymptotically coordinate their actions without

ever communicating their private signals, whereas part (c) shows that agents asymptotically reach

an agreement in their conditional expectations of the state. Nevertheless, it is not immediately

obvious whether the agents coordinate on the “optimal” action—on which they would have coor-

dinated, had they been able to fully communicate their private signals—or whether their consensus

estimate of the state is the best possible. The following example shows that this may indeed not be

the case.

Example 2. Consider two agents who observe each others’ actions at all time periods. The common

prior P is the uniform distribution over the set {−1, 1}. Agents’ private signals belong to the sets

S1 = S2 = {H,T}, and the signaling functions πt are given by

πt(ht) =


1

2
δ(H,H) +

1

2
δ(T,T) if θ ≥ 0,

1

2
δ(H,T) +

1

2
δ(T,H) if θ < 0,
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where δst is the degenerate probability distribution with unit mass on the signal profile st ∈ S. We

first show that, in the unique equilibrium of the game, both agents choose σ̃∗it = 0 at all times. Given

the prior, in any equilibrium of the game, agents choose σ̃∗i1 = 0 at t = 1. Agents then each receive

a signal that is H (T) with probability one half, regardless of the realization of θ. Agents’ private

signals are thus completely uninformative about the realized state. As a result, agents also choose

σ̃∗i2 = 0 at t = 2, regardless of the realized state. These actions reveal no information; moreover, the

time 2 private signals are uninformative. Therefore, agents continue to choose the zero action in all

subsequent stages of the game.

Next, consider the alternative setting in which both agents observe the signal profile st = (s1t, s2t)

at time t. (This setup is equivalent to one in which each agent communicates her private signals

to the other.) In this modified game, both of the agents learn the realized state at t = 2. Therefore,

in any equilibrium σ† of the modified game both agents choose σ̃†it = θ for all t ≥ 2 and given any

realization of θ. This shows that in the original game the agents did not coordinate on the optimal

action—which they would have chosen if they had observed each others’ private signals.

In the above example, the information content of the private signals is not successfully ag-

gregated through the agents’ repeated interactions. The reason for this failure is that the agents’

equilibrium actions reveal no information about their private signals, although the signals contain

useful information about the realized state. This example is however nongeneric in the sense that

the transition probabilities πt are “fine-tuned” to make all the states equally likely after the obser-

vation of any private signal. In the next section, we argue that when the signals are exogenously

generated—as is in fact the case in Example 2—the agents generically coordinate on the action that

is efficient given their aggregate information.

5 Exogenous Signals and Asymptotic Efficiency

In this section, we provide conditions under which agents aggregate the dispersed information and

asymptotically coordinate on the efficient action. Repeated games of incomplete information of

the type discussed in this paper generally exhibit two distinct inefficiencies. The first inefficiency

is the result of the payoff externality whereby agents try to second-guess the actions of others by

choosing actions that are close to their estimates of the average action across the population. A

social planner that wants to maximize the sum of agents’ payoffs, in contrast, would make them

take actions which are simply close to their estimates of the state. This inefficiency is present even

in static variants of the game, such as the model studied by Morris and Shin (2002). Yet, Theorem 1

of Section 4 shows that this inefficiency asymptotically disappears as each agent learns to correctly

predict the actions of other agents.

The second inefficiency is due to the informational externalities present in a dynamic setting,

wherein agents do not internalize the effect of their actions on the informativeness of the future
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observations. This inefficiency is also present in models of social learning, such as the model pro-

posed by Vives (1997), in which each agent’s payoff is independent of the actions taken by the rest

of the population. This learning inefficiency could especially be severe if the distribution of the

agents’ private signals is a function of their previous actions. The following example illustrates

some of the complications that can arise with endogenously generated signals.

Example 3. Consider a single agent who repeatedly plays a game with payoffs as in (1) with λ = 0.

The agent’s prior is given by the standard normal N (0, 1). The signaling functions are given by

πt(ht) = N (θ, 1) for t ≤ 2, and

πt(ht) =

{
N (θ, 1) if |θ − a2| > 1,

N (0, 1) if |θ − a2| ≤ 1.

for t > 2. The agent observes informative signals and chooses actions in the first two periods. If

her time 2 action is not within unit distance of the realized state, she continues to observe infor-

mative private signals and asymptotically learns the state with arbitrary precision. However, if the

agent’s time 2 action is sufficiently close to the realized state, she does not observe any informative

signals after the second time period and thus never learns the state. In this example, there is an

externality associated with the effect of the agent’s time 2 action on the distribution of the private

signals observed by her future incarnations. If the agent is myopic (or sufficiently impatient), this

informational externality is not internalized in the equilibrium.

This example illustrates the path-dependence that learning with endogenously generated sig-

nals can exhibit: The total amount of information available to the agents is not fixed; it rather is a

function of the realized path of play. Consequently, no well-defined notion of the efficient aggrega-

tion of information is readily available when learning is endogenous. We thus restrict our attention

in this section to a setting where the signals are exogenously generated in the following sense.

Definition 6. The private signals are exogenously generated if for any t, there exists some transition

probability π̂t from Θ×St−1 to S such that for all ht = (θ; s1, a1, g1; . . . ; st−1, at−1, gt−1) ∈ Ht one has

πt(ht) = π̂t(θ; s1; s2; . . . ; st−1).

To simplify the analysis, we also replace Assumption 1 with Assumption 1′ below and replace

Assumptions 2 and 3 with Assumption 2′ below.

Assumption 1′. The set Θ is a bounded and measurable subset of R.

Assumption 2′. There exists a strongly connected network ḡ such that ḡ = gt for all t and with

ν-probability one.

When the private signals are exogenously generated and Assumptions 1′ and 2′ are satisfied, we

can express our results more simply by using an alternative representation of the space of plays.

13



Let (Ξ,Z) be the measurable space with Ξ = Θ × SN and Z the corresponding Borel σ-algebra.

Any prior µ and signaling functions {πt}t∈N induce a probability distribution P over (Ξ,Z) which

is independent of the strategy profile followed by the agents—unlike in the case of endogenously

generated private signals. On the other hand, given a strategy profile σ, the private history of agent

i at time t is anHi-valued random variable h̃it : Ξ→ Ai. We define Iσit to be the σ-algebra generated

by h̃it when agents follow the strategy profile σ, and define Iσi to be the σ-algebra generated by the

union of Iσit over all t ∈ N. If the signals are exogenously generated, the results of the previous sec-

tions can alternatively be expressed in terms of the probability distribution P over the measurable

space (Ξ,Z). For instance, we have the following counterpart of Theorem 1, the proof of which is

the same as the proof of Theorem 1 and is thus omitted.

Theorem 1′. Suppose that the private signals are exogenously generated and Assumptions 1′ and 2′

are satisfied. Let σ∗ be an equilibrium strategy profile. Then, as t goes to infinity, for all i, j ∈ N ,

(a) E
[ ∣∣ui (σ̃∗it, σ̃∗−it, θ)− uj (σ̃∗jt, σ̃∗−jt, θ)∣∣ ] −→ 0,

(b) E
[(
σ̃∗it − σ̃∗jt

)2] −→ 0,

(c) σ̃∗it
L1

−→ E
[
θ|I∗i

]
= E

[
θ|I∗j

]
.

Let (P, d) denote the metric space of all probability distributions over (Ξ,Z), where d is the total

variation distance. When agents’ private signals are exogenously generated, any prior distribution

µ and signaling functions {πt}t∈N induce some probability measure over (Ξ,Z), and any probability

distribution over (Ξ,Z) is induced uniquely (up to sets of measure zero) by some prior and signaling

functions. We can make use of this correspondence to define a generic set of priors and signaling

functions as a set of priors and signaling functions such that their corresponding set of induced

probability measures over (Ξ,Z) is a residual subset of P, where here and in the rest of the paper

we assume that P is endowed with the topology of uniform convergence (metrized by d).7 We have

the following result on the generic optimality of asymptotic actions.

Theorem 2. Suppose that the private signals are exogenously generated and Assumptions 1′ and 2′

are satisfied. If S is a finite set, then for P in a residual subset of P and all i,

EP
[ ∣∣∣σ̃Pit − EP [θ∣∣IσP ]∣∣∣ ] −→ 0,

where EP and σP denote the expectation operator and equilibrium strategy profile given P , respec-

tively, and IσP is the σ-algebra generated by the union of IσPi over all i ∈ N .

7Given a topological space X, a subset A of X is a meager set if it can be expressed as the union of countably many
nowhere dense subsets of X. The complement of a meager set is called a residual set.
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The theorem states that for a generic set of probability distributions P , the agents asymptoti-

cally play as if they all had the information captured by the σ-algebra IσP . Note that IσP captures

the aggregate information that is collectively available to the agents at the end of the game. There-

fore, E
[
θ|IσP

]
is the optimal action given all the signals that the agents receive through the course

of the game. To formalize this idea of optimality, one could consider an alternative setting in which

a coordinator asks the agents to play according to a strategy profile that maximizes the sum of their

expected payoffs. The asymptotically optimal action profile is then the agents’ limit action pro-

file when they follow the coordinator’s prescription. Theorem 2 shows that the agents’ equilibrium

actions converge to this asymptotically optimal action in the L1 sense.

An important special case of Theorem 2 is obtained by letting λ = 0. In this case, the agents

only attempt to form the best possible estimate of the state given the information available to them.

Their equilibrium actions are in turn simply their estimate of θ conditional on their information.

The agents’ problem then becomes an instance of social learning. Theorem 2 states that the agents

asymptotically learn to estimate the state as if they had access to all the available information.

In this sense, Theorem 2 extends and complements some of the earlier optimality results in the

Bayesian social learning literature. In particular, it extends Theorem 4 of Mueller-Frank (2013) to

the case where the join of the agents’ partitions of the state space at the end of the game is infi-

nite dimensional. It also extends Proposition 4 of Jadbabaie, Molavi, Sandroni, and Tahbaz-Salehi

(2012) to the case where the agents communicate their conditional estimates of the state, rather

than their entire beliefs.

Finally, we remark that the assumption that the signal space is finite is somehow crucial. If the

agents’ signals belong to spaces that are higher dimensional than the action space, the efficient

aggregation of information seems impossible as a large set of signals map to the same action, thus

making it hard for the agents to infer the other agents’ signals by observing their actions.

The following numerical example illustrates the evolution of the agents’ actions over time and

their convergence to the optimal action given a setting where the state and the private signals are

normally distributed.

Example 4. There are n = 6 agents over a fixed strongly connected social network playing the game

with payoffs given by (1) with λ = 2/3. We consider two network topologies: a directed ring network

depicted in Figure 1(a) and a star network depicted in Figure 1(b). The common prior over θ is given

by the standard normal distribution N (0, 1). The signal spaces are given by S1 = S2 = R, and the

signaling functions are given by π1(θ) = N (θ, 1) and πt(ht) = δ0 for t ≥ 2, where δ0 is the degenerate

probability distribution with unit mass over zero. That is, the agents receive only one informative

signal. The evolution of the agents’ actions over time is depicted in Figure 2 for two realizations of

the path of play with θ = 0. The dashed line represents the efficient action given the agents’ private

signals—which in the context of this example is equal to the average of the private signals. Since
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agents’ prior is N (0, 1), they start by choosing the zero action. At time t = 1, agents each receive a

private signal and choose the action that is equal to her time 1 private signal. Yet, as time passes, the

agents’ actions converge to the efficient action. Moreover, over both of the networks, convergence

is complete after a number of time periods equal to the diameter of the graph.8 In this example,

although the agents’ signal spaces are not finite, convergence to the efficient action is achieved. 9
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(a) The ring social network
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(b) The star social network

Figure 1. The ring and star social networks
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(a) Agents’ actions given the ring network
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(b) Agents’ actions given the star network

Figure 2. Evolution of the agents’ actions over time in Example 4

8The diameter of a directed network is defined as maxi,j `(i, j), where `(i, j) is the length of the shortest directed path
starting from i and ending at j.

9For a recursive characterization of the agents’ equilibrium actions in the Bayesian quadratic network games similar
to the one studied in Example 4, see the complementary paper by the authors (Eksin et al. (2013)).
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6 Conclusions

This paper studies a repeated game in which a number of agents attempt to coordinate on an out-

come about which they have incomplete and asymmetric information. Any agent’s actions reveal

information which is used by other agents to revise their beliefs, and hence, their actions. We prove

formal results regarding the asymptotic outcomes obtained when myopic agents play the actions

prescribed by the weak perfect Bayesian equilibrium. In particular, we show that the agents reach

consensus in their actions if the observation network is connected, and the consensus action is

generically optimal if the agents’ private observations are exogenously generated and the signal

space is finite.

Finally, we remark that although we proved the results assuming that the agents’ preferences

are represented by a quadratic utility function, the insights of our analysis do not hinge on the

particular utility function used. In fact, similar results can be proved for more general coordination

games with payoffs that satisfy some symmetry, concavity, and supermodularity conditions.
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Appendix: Proofs

Proof of Lemma 1

First, note that given any strategy profile σ, it is possible to construct a collection of consistent

belief systems q by defining qi(hit) to be a regular conditional probability of Pσ givenHit, evaluated

at some ω ∈ h̃−1
it (hit). Therefore, we only need to prove that if q̃∗it is a regular conditional probability

of P∗ given Hit, then (2) is equivalent to condition (a) of Definition 3. Given the strategy profile σ

and collection of belief systems q, let ṽit(σi, σ−i; qi) be the real-valued random variable defined as

ṽit(σi, σ−i; qi) = vit

(
σi
(
h̃it
)
, σ−i; qi

(
h̃it
))
.

Condition (a) of the equilibrium definition can be expressed in terms of ṽit as follows: for any strat-

egy σi and with P∗-probability one,

ṽit(σ
∗
i , σ
∗
−i; q

∗
i ) ≥ ṽit(σi, σ∗−i; q∗i ).

On the other hand, it is easy to verify that if q̃∗it is a regular conditional probability of P∗ given Hit,
then ṽit(σi, σ−i; q∗i ) is a version of E∗ [ui(σ̃t, θ)|Hit].

Proof of Proposition 1

Before presenting the proof, we first introduce some notation and prove a technical lemma. Let

1 ≤ p < ∞, and let (X,X , P ) be a measure space. Consider the set of all Lp-integrable random

variables, that is, the set of all measurable functions f : X → R such that

‖f‖p =

(∫
X
|f |p dP

)1
p
<∞.

The set of such functions, together with the function ‖·‖p, defines a seminormed vector space, de-

noted by Lp(X,P ). This can be made into a normed vector space in a standard way; one simply

takes the quotient space with respect to the kernel of ‖·‖p:

ker(‖·‖p) = {f : f = 0 P -almost everywhere} .

In the quotient space, two functions f and g are identified if f = g almost everywhere. The resulting

normed vector space is, by definition,

Lp(X,P ) = Lp(X,P )/ker(‖·‖p).

Further let Lp(X,P ) = (Lp(X,P ))n denote the Banach space with the norm ‖·‖p defined as

‖f‖p =

n∑
i=1

‖fi‖p .
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By Riesz-Fischer theorem,Lp(X,P ) and Lp(X,P ), together with the corresponding ‖·‖p, are Banach

spaces. In our notation, we have suppressed the dependence of ‖ · ‖p on the underlying probability

measure. Whenever we ‖ · ‖p use without reference to a specific probability measure, the correct

measure will be obvious from the context.

Lemma 2. Let (X,X , P ) be a measure space, and let E be the expectation operator corresponding to

P . Also let θ be a square integrable random variable, and letXi ⊆ X be a sub σ-algebra for any i ∈ N .

Then, there exists a unique f ∈ L2(X,P ) such that

fi = (1− λ)E[θ|Xi] +
λ

n− 1

∑
j 6=i

E[fj |Xi],

for all i ∈ N .

Proof. Let T : L2(X,P )→ L2(X,P ) be the mapping defined as

Ti(f) = (1− λ)E[θ|Xi] +
λ

n− 1

∑
j 6=i

E[fj |Xi],

where we are using the fact that θ is square integrable. Note that

‖Ti(f)− Ti(g)‖2 =
λ

n− 1

∥∥∥∥∥∥
∑
j 6=i

E[fj − gj |Xi]

∥∥∥∥∥∥
2

≤ λ

n− 1

∑
j 6=i
‖E[fj − gj |Xi]‖2

≤ λ

n− 1

∑
j 6=i
‖fj − gj‖2,

where the first inequality is the triangle inequality and the second one is a consequence of the fact

that conditional expectation is a contraction with respect to the norm ‖ · ‖2. Therefore,

‖T (f)− T (g)‖2 =

n∑
i=1

‖Ti(f)− Ti(g)‖2

≤ λ

n− 1

n∑
i=1

∑
j 6=i
‖fj − gj‖2

= λ‖f − g‖2.

Thus, T is a contraction mapping with the Lipschitz constant λ < 1. Hence, by the Banach fixed-

point theorem, T has a unique fixed-point f ∈ L2(X,P ).

Proof of Propositions 1 The proof is constructive. We start at t = 1 and inductively construct the

functions σ∗it : Hit → Ai. The equilibrium strategies are then defined as σ∗i (Hit) = σ∗it(Hit) for all i

and t.
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Let P1 be the probability distribution over (H1,H1) induced by µ, ν, and π1, and let E1 be the

corresponding expectation operator. Consider some strategy profile σ. The marginal of Pσ over

(H1,H1) is equal to P1. Furthermore, θ is measurable with respect toH1 and σ̃i1 is measurable with

respect toHi1 ⊆ H1 for all i. Therefore, for any σ,

(1− λ)Eσ[θ|Hi1] +
λ

n− 1

∑
j 6=i

Eσ [σ̃i1|Hi1] = (1− λ)E1[θ|Hi1] +
λ

n− 1

∑
j 6=i

E1 [σ̃i1|Hi1] .

In particular, by Corollary 1, for any square integrable equilibrium strategy profile σ∗,

σ̃∗i1 = (1− λ)E∗[θ|Hi1] +
λ

n− 1

∑
j 6=i

E∗ [σ̃∗i1|Hi1]

= (1− λ)E1[θ|Hi1] +
λ

n− 1

∑
j 6=i

E1

[
σ̃∗j1|Hi1

]
.

By Assumption 1 and Lemma 2, the above set of equations has a unique fixed-point in L2(H1, P1).

Consequently, (i) there exists a fixed-point σ̃∗1 = (σ̃∗11, . . . , σ̃
∗
n1) such that σ̃∗i1 ∈ L2(H1, P1); and (ii)

for any other square integrable equilibrium strategy profile σ†, we have that σ̃∗i1 = σ̃†i1 with P1-

probability one. Furthermore, by construction σ̃∗i1 is Hi1-measurable for all i. This implies that

there exists some function σ∗i1 : Hi1 → Ai such that σ∗i1(h̃i1) = σ̃∗i1.

Next, let P2 be the probability distribution over (H2,H2) induced by µ, ν, π1 and π2, and the time

1 profile (σ∗11, . . . , σ
∗
n1) constructed earlier. Recall that, for any two square integrable equilibrium

strategy profiles, σ̃∗i1 = σ̃†i1 with P1-probability one. Thus, all such strategy profiles induce the same

probability distribution over (H2,H2). We can thus repeat the same argument to conclude that

there exist functions σ∗i2 : Hi2 → Ai such that σ∗i2(h̃i2) = σ̃∗i2 ∈ L2(H2, P2) and

σ̃∗i2 = (1− λ)E∗[θ|Hi2] +
λ

n− 1

∑
j 6=i

E∗ [σ̃∗i2|Hi2]

= (1− λ)E2[θ|Hi2] +
λ

n− 1

∑
j 6=i

E2 [σ̃∗i2|Hi2] ,

for all i. Moreover, for any other square integrable strategy profile σ†, we have that σ̃∗i2 = σ̃†i2 with

P2-probability one. We can proceed inductively to complete the proof.

Proof of Proposition 2

Consider the following system of equations:

ς̃i = (1− λ)E∗[θ|Hi] +
λ

n− 1

∑
j 6=i

E∗[ς̃j |Hi].

By Lemma 2, the above set of equations has some solution (ς̃∗i )i∈N , where ς̃∗i ∈ L2(Ω,P∗). Moreover,

by construction ς̃∗i isHi-measurable. We prove the lemma by showing that σ̃∗it → ς̃∗i in the L2 sense
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as t goes to infinity. By Corollary 1,

σ̃∗it − ς̃∗i = (1− λ) (E∗[θ|Hit]− E∗[θ|Hi]) +
λ

n− 1

∑
j 6=i

(
E∗[σ̃∗jt|Hit]− E∗[ς̃∗j |Hi]

)
.

Using the triangle inequality, we can conclude that

‖σ̃∗it − ς̃∗i ‖2 ≤ (1− λ) ‖E∗[θ|Hit]− E∗[θ|Hi]‖2

+
λ

n− 1

∑
j 6=i

∥∥E∗[σ̃∗jt − ς̃∗j |Hit]∥∥2

+
λ

n− 1

∑
j 6=i

∥∥E∗[ς̃∗j |Hit]− E∗[ς̃∗j |Hi]
∥∥

2
. (4)

Since the conditional expectation is a contraction,∥∥E∗[σ̃∗jt − ς̃∗j |Hit]∥∥2
≤
∥∥σ̃∗jt − ς̃∗j ∥∥2

.

Summing (4) over i and using the above inequality imply
n∑
i=1

‖σ̃∗it − ς̃∗i ‖2 ≤ (1− λ)

n∑
i=1

‖E∗[θ|Hit]− E∗[θ|Hi]‖2

+ λ

n∑
i=1

‖σ̃∗it − ς̃∗i ‖2

+
λ

n− 1

n∑
i=1

∑
j 6=i

∥∥E∗[ς̃∗j |Hit]− E∗[ς̃∗j |Hi]
∥∥

2
.

Hence,
n∑
i=1

‖σ̃∗it − ς̃∗i ‖2 ≤
n∑
i=1

‖E∗[θ|Hit]− E∗[θ|Hi]‖2 +
λ

1− λ
1

n− 1

n∑
i=1

∑
j 6=i

∥∥E∗[ς̃∗j |Hit]− E∗[ς̃∗j |Hi]
∥∥

2
.

It is easy to verify that E∗[θ|Hit] is a martingale with respect to the filtrationHit ↑ Hi. Furthermore,

sup
t
‖E∗[θ|Hit]‖2 ≤ ‖θ‖2 <∞,

where the first inequality is a consequence of the fact that conditional expectation is a contrac-

tion and the second one is due to Assumption 1. Thus, by the Lp convergence theorem, E∗[θ|Hit]
converges in the L2 sense to E∗[θ|Hi].10 That is,

lim
t→∞
‖E∗[θ|Hit]− E∗[θ|Hi]‖2 = 0.

By a similar argument, relying on the fact that ς̃∗j is square integrable, for all j,

lim
t→∞

∥∥E∗[ς̃∗j |Hit]− E∗[ς̃∗j |Hi]
∥∥

2
= 0.

Therefore,

lim
t→∞

n∑
i=1

‖σ̃∗it − ς̃∗i ‖2 = 0.

10For a statement and proof of the Lp convergence theorem, see, for instance, Durrett (2010, p. 215).

21



Proof of Theorem 1

We first prove part (b) of the theorem. Let i, j be a pair of agents such that i observes the actions of

j infinitely often ν-almost surely. Consider the strategy σ†i : Hi → Ai defined as follows.

σ†i (hit) =


0 if t = 1,

ajt−1 if [gt−1]ji = 1,

σi(hit−1) otherwise.

The strategy σ†i describes the following plan of action: Agent i starts by choosing zero; she plays

the same action until observing some action taken by agent j, in which case agent i switches to

the observed action and continues choosing it until agent j’s action is observed again. We use this

strategy to prove the result in three steps. In step one, we show that σ̃†i converges in the L2 sense to

ς̃∗j . That is, if agent i follows strategy σ†i , her actions will asymptotically coincide with those of agent

j. In step two, we use this result to show that the limit of agent i’s expected payoff from following

σ∗i is not lower than what it would be, had she followed σ†i . In step three, we show that in a strongly

connected network the limits of all agents’ expected payoffs, and hence, the limits of their actions,

are the same.

Step one. Let τ < t. By the triangle inequality,∥∥∥σ̃†it − ς̃∗j ∥∥∥
2
≤
∥∥∥σ̃†it − σ̃∗jτ∥∥∥

2
+
∥∥σ̃∗jτ − ς̃∗j ∥∥2

(5)

We first use a truncation argument to bound the first term of (5). For τ ≤ r < t, let Brt be the event

defined as

Brt = {ω : [gr]ji = 1, and [gs]ji = 0 for all r < s < t} ,

and let Dτt be the event defined as

Dτt = {ω : [gr]ji = 0 for all τ ≤ r < t} .

Brt is the event that after observing the time r action of agent j, agent i does not observe agent

j’s action again until after time t. Dτt is the event that agent i does not observe agent j’s actions

between time periods τ and t. By definition,

Bτt ∪Bτ+1t · · · ∪Bt−1t ∪Dτt = Ω.

Therefore,11

E∗
[(
σ̃†it − σ̃

∗
jτ

)2
]

=

t−1∑
r=τ

E∗
[(
σ̃†it − σ̃

∗
jτ

)2
∣∣∣∣Brt]P∗(Brt) + E∗

[(
σ̃†it − σ̃

∗
jτ

)2
∣∣∣∣Dτt

]
P∗(Dτt)

=

t−1∑
r=τ

E∗
[(
σ̃∗jr − σ̃∗jτ

)2]P∗(Brt) + E∗
[(
σ̃†iτ − σ̃

∗
jτ

)2
]
P∗(Dτt), (6)

11We provide the proof for the case that P∗(Brt) > 0 for all τ ≤ r < t and P∗(Dτt) > 0 for all t. The proof can be
extended to other cases through obvious modifications.
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where in the second equality we are using the fact that σ̃∗jτ is independent of Dτt and of any of the

events {Brt}r∈[τ,t−1]. We have

t−1∑
r=τ

E∗
[(
σ̃∗jr − σ̃∗jτ

)2]P∗(Brt) ≤ max
r∈[τ,t−1]

E∗
[(
σ̃∗jr − σ̃∗jτ

)2] t−1∑
r=τ

P∗(Brt)

≤ max
r∈[τ,t−1]

E∗
[(
σ̃∗jr − σ̃∗jτ

)2]
= max

r∈[τ,t−1]

∥∥σ̃∗jr − σ̃∗jτ∥∥2

2
.

Since {σ̃∗jt}t∈N is a convergent sequence in the (L2, ‖ · ‖2) space, it is also a Cauchy sequence. There-

fore, for any ε > 0, if τ is sufficiently large, then ‖σ̃∗jr − σ̃∗jτ‖2 ≤ ε√
8

for all r ≥ τ , implying that

t−1∑
r=τ

E∗
[(
σ̃∗jr − σ̃∗jτ

)2]P∗(Brt) ≤ ε2

8
. (7)

Next, we consider the second term of (6). By construction, σ̃†iτ ∈ {0} ∪ {σ̃∗jr}r∈[1,τ−1]. Thus,

E∗
[(
σ̃†iτ − σ̃

∗
jτ

)2
]
≤ max

{
E∗
[(
σ̃∗jτ
)2]

, max
r∈[1,τ−1]

E∗
[(
σ̃∗jr − σ̃∗jτ

)2]}
= max

{∥∥σ̃∗jτ∥∥2

2
, max
r∈[1,τ−1]

∥∥σ̃∗jr − σ̃∗jτ∥∥2

2

}
.

Since {σ̃∗jt}t∈N is a convergent sequence in the (L2, ‖ · ‖2) space, it is a also a bounded Cauchy se-

quence. Therefore, there exists some M > 0 such that for all τ ,

max

{∥∥σ̃∗jτ∥∥2

2
, max
r∈[1,τ−1]

∥∥σ̃∗jr − σ̃∗jτ∥∥2

2

}
≤M.

Finally, by Assumption 3, P∗(Dτt)→ 0 as t goes to infinity. Therefore, for any ε > 0, if t is sufficiently

large, then P∗(Dτt) ≤ ε2

8M , implying that

E∗
[(
σ̃†iτ − σ̃

∗
jτ

)2
]
P∗(Dτt) ≤

ε2

8
. (8)

Combining (7) and (8) with (6), we get that, for sufficiently large values of τ and t > τ ,∥∥∥σ̃†it − σ̃∗jτ∥∥∥
2

=

(
E∗
[(
σ̃†it − σ̃

∗
jτ

)2
])1

2
≤ ε

2
.

We next bound the second term of (5). By Proposition 2, for any arbitrary ε > 0, if τ is sufficiently

large, ∥∥σ̃∗jτ − ς̃∗j ∥∥2
≤ ε

2
.

Together with (5), the last two inequities show that if t is sufficiently large, then∥∥∥σ̃†it − ς̃∗j ∥∥∥
2
≤ ε.

Since ε > 0 was arbitrary, we can conclude that σ̃†it converges to ς̃∗j in the L2 sense as t goes to

infinity.
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Step two. We first prove that E∗
[
ui(σ̃

∗
it, σ̃

∗
−it, θ)

]
converges to E∗

[
ui(ς̃

∗
i , ς̃
∗
−i, θ)

]
. By the reverse tri-

angle inequality,∣∣∣∣∣(E∗ [(σ̃∗it − θ)2
])1

2 −
(
E∗
[
(ς̃∗i − θ)

2
])1

2

∣∣∣∣∣ =

∣∣∣∣ ‖σ̃∗it − θ‖2 − ‖ς̃∗i − θ‖2 ∣∣∣∣
≤ ‖(σ̃∗it − θ)− (ς̃∗i − θ)‖2 .

By Proposition 2, as t goes to infinity, σ̃∗it converges to ς̃∗i in the L2 sense. Therefore,

E∗
[
(σ̃∗it − θ)

2
]
−→ E∗

[
(ς̃∗i − θ)

2
]

as t→∞.

A similar argument shows that

E∗
σ̃∗it − 1

n− 1

∑
j 6=i

σ̃∗jt

2 −→ E∗
ς̃∗i − 1

n− 1

∑
j 6=i

ς̃∗j

2 as t→∞,

thus implying that

E∗
[
ui(σ̃

∗
it, σ̃

∗
−it, θ)

]
−→ E∗

[
ui(ς̃

∗
i , ς̃
∗
−i, θ)

]
as t→∞. (9)

We can use the result of the step one to show, in a similar manner, that

E∗
[
ui(σ̃

†
it, σ̃

∗
−it, θ)

]
−→ E∗

[
ui(ς̃

∗
j , ς̃
∗
−i, θ)

]
as t→∞. (10)

On the other hand, since σ∗ is an equilibrium strategy profile, by Lemma 1, for all t,

E∗
[
ui(σ̃

∗
it, σ̃

∗
−it, θ)

∣∣Hit] ≥ E∗
[
ui

(
σ̃†it, σ̃

∗
−it, θ

) ∣∣∣Hit] ,
with P∗-probability one. Therefore,

E∗
[
ui(σ̃

∗
it, σ̃

∗
−it, θ)

]
≥ E∗

[
ui

(
σ̃†it, σ̃

∗
−it, θ

)]
.

Thus, taking limits of both sides of the above inequality as t→∞ and using (9) and (10),

E∗
[
ui(ς̃

∗
i , ς̃
∗
−i, θ)

]
≥ E∗

[
ui
(
ς̃∗j , ς̃

∗
−i, θ

)]
. (11)

Step three. By Assumption 3, there exists a sequence of agents i0, i1, i2, . . . , in starting and ending

with the same agent that includes each agent other than agent i0 exactly once, and such that, for all

k, agent ik observes ik+1 infinitely often ν-almost surely. For any k, thus by the result of step two,

E∗
[
ui(ς̃

∗
ik , ς̃

∗
−ik , θ)

]
≥ E∗

[
ui
(
ς̃∗ik+1

, ς̃∗−ik , θ
)]
. (12)

Summing over k and reindexing the right-hand side sum imply

n−1∑
k=0

E∗
[
ui(ς̃

∗
ik , ς̃

∗
−ik , θ)

]
≥

n∑
k=1

E∗
[
ui
(
ς̃∗ik , ς̃

∗
−ik−1

, θ
)]
.
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Expanding both sides of the inequality, all terms except for one cancel, resulting in

n−1∑
k=0

E∗
ς̃∗ik∑

j 6=k
ς̃∗ij

 ≥ n∑
k=1

E∗
ς̃∗ik ∑

j 6=k−1

ς̃∗ij

 .
Further simplification implies that

n∑
k=1

E∗
[
ς̃∗ik ς̃
∗
ik−1

]
≥

n∑
k=1

E∗
[(
ς̃∗ik
)2]

. (13)

On the other hand,
∑n

k=1 E∗[(ς̃∗ik − ς̃
∗
ik−1

)2] ≥ 0 with equality if and only if ς̃∗ik = ς̃∗ik−1
for all k with

P∗-probability one. Thus, using the fact that
∑n

k=1 E∗[(ς̃∗ik)
2] =

∑n
k=1 E∗[(ς̃∗ik−1

)2], we can conclude

that
n∑
k=1

E∗
[(
ς̃∗ik
)2] ≥ n∑

k=1

E∗
[
ς̃∗ik ς̃
∗
ik−1

]
, (14)

with equality if and only if ς̃∗ik = ς̃∗ik−1
for all k, P∗-almost surely; equation (13) implies that (14)

indeed holds with equality. Thus, for all i and j and with P∗-probability one,

ς̃∗i = ς̃∗j .

Together with Proposition 2, this completes the proof of part (b) of the theorem.

We now prove part (a). Since σ̃∗it converges to ς̃∗i in the L2 sense, it also converges in probability.

Therefore, by the continuous mapping theorem, ui(σ̃∗it, σ̃
∗
−it, θ) converges to ui(ς̃∗i , ς̃

∗
−i, θ) in proba-

bility. Together with (9), this implies that ui(σ̃∗it, σ̃
∗
−it, θ) converges to ui(ς̃∗i , ς̃

∗
−i, θ) in the L1 sense.12

This is true for any two agents. Moreover, by part (b) of the theorem, ui(ς̃∗i , ς̃
∗
−i, θ) = uj(ς̃

∗
j , ς̃
∗
−j , θ) for

all i, j ∈ N . This proves that, as t goes to infinity,∥∥ui(σ̃∗it, σ̃∗−it, θ)− uj(σ̃∗jt, σ̃∗−jt, θ)∥∥1
−→ 0,

for any i, j.

We next prove part (c). By part (b) of the theorem,
∑

j 6=i σ̃
∗
it − σ̃∗jt goes to zero for all i in the L2

sense. Therefore, by Corollary 1, we can conclude that σ̃∗it − E∗[θ|Hit] goes to zero in the L2 sense.

On the other hand, since Hit ↑ Hi, we have that E∗[θ|Hit] converges to E∗[θ|Hi] in the L1 sense.

Therefore, σ̃∗it converges to E∗[θ|Hi] in the L1 sense. Another use of the result of part (b) completes

the proof.

12This is due to a variant of the dominated convergence theorem that can be found, among other places, as Theorem
5.5.2. in Durrett (2010).
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Proof of Theorem 2

Before proving the theorem, we first prove a technical lemma.

Lemma 3. Let (X,B) be a measurable space, and let (P, d) be the metric space where P is the collec-

tion of all probability measures on (X,B) and d is the total variation distance. Let F1 and F2 be two

arbitrary sub σ-algebras of B, let F be the σ-algebra generated by the union of F1 and F2, and let f

be an arbitrary bounded random variable. The set

Q =
{
P ∈ P : EP [f |F1] = EP [f |F2] 6= EP [f |F ]

}
,

is nowhere dense in the metric space (P, d).

Proof. To prove the lemma, we use Dynkin’s π-λ theorem. Let us first construct the appropriate λ

and π-systems. For any P ∈ P, define

ΛP =

{
B ∈ B :

∫
B
fdP =

∫
B
EP [f |F1]dP =

∫
B
EP [f |F2]dP

}
.

We first verify that for any P ∈ P, the set ΛP is a λ-system of subsets of X. (i) By the law of total

expectation X ∈ ΛP . (ii) Let Bc denote the complement of B in X. If B ∈ ΛP , then∫
Bc
fdP =

∫
X
fdP −

∫
B
fdP =

∫
X
EP [f |F1]dP −

∫
B
EP [f |F1]dP =

∫
Bc
EP [f |F1]dP.

We also have a similar equality forF2. Therefore,Bc ∈ ΛP . (iii) IfB1, B2, . . . is a sequence of subsets

of X in ΛP such that Bi ∩Bj = ∅ for all i 6= j, then by the countable additivity of the integral,∫
∪∞i=1B

fdP =

∞∑
i=1

∫
Bi

fdP =

∞∑
i=1

∫
Bi

EP [f |F1]dP =

∫
∪∞i=1B

EP [f |F1]dP.

We also have a similar equality for F2. Therefore, ∪∞i=1Bi ∈ ΛP . This proves that ΛP is a λ-system.

Consider next the set Π defined as

Π = {A1 ∩A2 : A1 ∈ F1, A2 ∈ F2} .

F1 and F2 are σ-algebras; thus, Π is nonemepty and closed under intersections. This proves that Π

is indeed a π-system of subsets of X. It is also easy to verify that σ(Π) = σ(F1 ∪ F2) = F .

Define the set R ⊇ Q as

R =
{
P ∈ P : EP [f |F1] = EP [f |F2]

}
.

We consider the following two cases: If R is nowhere dense in P, then Q is nowhere dense in P,

and we have the desired result. If, on the other hand, R is not nowhere dense in P, then it must

be somewhere dense in it. Let U be the collection of all open subsets u of P, such that there exists

no nonempty open set v contained in u such that v and R are disjoint. We prove that Q is nowhere
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dense in R by showing that any such u contains an open subset that is disjoint from Q. Let u be

an arbitrary set in U , and let bε be an open ball of radius ε in the interior of u. In what follows, we

first show that for every Q ∈ bε, we have Π ⊆ ΛQ. Let A1 ∈ F1 and A2 ∈ F2 be arbitrary sets with

C = A1 ∩A2. Since A1 ∈ F1, by the definition of conditional expectation, for all Q ∈ bε,∫
A1

fdQ =

∫
A1

EQ[f |F1]dQ.

Therefore, ∫
A1\C

fdQ+

∫
C
fdQ =

∫
A1\C

EQ[f |F1]dQ+

∫
C
EQ[f |F1]dQ. (15)

On the other hand, since R is dense in bε, for any Q ∈ bε, there exists a sequence {Qk}k∈N such that

Qk ∈ bε ∩ R for all k, and Qk converges in the total variation distance to Q. Therefore, EQk [f |F1]

converges in Q-probability to EQ[f |F1].13 Therefore, since f is bounded and Qk converges in total

variation distance to Q, ∫
A2

EQk [f |F1]dQk −→
∫
A2

EQ[f |F1]dQ, (16)

and ∫
A2

fdQk −→
∫
A2

fdQ. (17)

Moreover, for all k, ∫
A2

fdQk =

∫
A2

EQk [f |F2]dQk =

∫
A2

EQk [f |F1]dQk, (18)

where the first equality is by the definition of conditional expectation and the assumption that

A2 ∈ F2, and the second equality is a consequence of the fact that Qk ∈ R. Equations (16)–(18)

imply that ∫
A2

fdQ =

∫
A2

EQ[f |F1]dQ.

And hence, ∫
A2\C

fdQ+

∫
C
fdQ =

∫
A2\C

EQ[f |F1]dQ+

∫
C
EQ[f |F1]dQ. (19)

We use (15) and (19) to conclude that
∫
C fdQ =

∫
C EQ[f |F1]dQ for all Q ∈ bε. Pick some arbitrary

Q ∈ bε. If Q(A1) = 0 or Q(A1) = 1, by boundedness of f we are done. If 0 < Q(A1) < 1, for any

δ ∈ (0, 1) construct the measure Q̂δ over (X,B) as follows: for any B ∈ B,

Q̂δ(B) = (1 + δQ(Ac1))Q(B ∩A1) + (1− δQ(A1))Q(B ∩Ac1).

It is easy to verify that Q̂δ is indeed a probability measure. We next show thatEQ̂δ [f |F1] = EQ[f |F1].

13This follows a result of Landers and Rogge (1976) (cf. Theorem 3.3. of Crimaldi and Pratelli (2005)).
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Let B ∈ F1 be arbitrary.∫
B
fdQ̂δ =

∫
B∩A1

fdQ̂δ +

∫
B∩Ac1

fdQ̂δ

= (1 + δQ(Ac1))

∫
B∩A1

fdQ+ (1− δQ(A1))

∫
B∩Ac1

fdQ

= (1 + δQ(Ac1))

∫
B∩A1

EQ[f |F1]dQ+ (1− δQ(A1))

∫
B∩Ac1

EQ[f |F1]dQ

=

∫
B∩A1

EQ[f |F1]dQ̂δ +

∫
B∩Ac1

EQ[f |F1]dQ̂δ

=

∫
B
EQ[f |F1]dQ̂δ, (20)

where the third equality follows from the assumption that EQ[f |F1] is a conditional expectation

of f given F1 and the fact that B ∩ A1 ∈ F1 and B ∩ Ac1 ∈ F1. Since EQ[f |F1] is F1-measurable,

equation (20) proves that EQ[f |F1] is a version of EQ̂δ [f |F1]. Let B1 = A1 \ C and B2 = A2 \ C.

Equations (15) and (19) imply that∫
B1

[f − EQ[f |F1]] dQ =

∫
B2

[f − EQ[f |F1]] dQ. (21)

Since B1 ∩A1 = B1,∫
B1

[
f − EQ̂δ [f |F1]

]
dQ̂δ = (1 + δQ(Ac1))

∫
B1

[f − EQ[f |F1]] dQ. (22)

Likewise, since B2 ∩Ac1 = B2,∫
B2

[
f − EQ̂δ [f |F1]

]
dQ̂δ = (1− δQ(A1))

∫
B2

[f − EQ[f |F1]] dQ. (23)

On the other hand, if δ is sufficiently small, Q̂δ ∈ bε. Therefore, by (15) and (19),∫
B1

[
f − EQ̂δ [f |F1]

]
dQ̂δ =

∫
B2

[
f − EQ̂δ [f |F1]

]
dQ̂δ. (24)

Equations (21)–(24) imply that∫
B1

[f − EQ[f |F1]] dQ =

∫
B2

[f − EQ[f |F1]] dQ = 0. (25)

Thus, by (15), ∫
C
fdQ =

∫
C
EQ[f |F1]dQ.

A similar argument shows that for all Q ∈ bε,∫
C
fdQ =

∫
C
EQ[f |F2]dQ,
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Therefore,A1∩A2 ∈ ΛQ for everyQ ∈ bε. SinceA1 andA2 were arbitrary, this shows that Π ∈ ΛQ for

allQ ∈ bε. Therefore, by the Dynkin’s π-λ theorem, σ(Π) = F ⊆ ΛQ forQ ∈ bε; that is, for anyA ∈ F ,∫
A
fdQ =

∫
A
EP [f |F1]dQ =

∫
A
EP [f |F2]dQ.

Together with the fact thatEQ[f |F1] andEQ[f |F2] are both measurable with respect toF , this shows

that EQ[f |F ] = EQ[f |F1] = EQ[f |F2] for all Q ∈ bε. Thus, bε and Q are disjoint. Recall that the set

u ∈ U was arbitrary. Therefore, for any set u in U , there exists some v contained in u such that v and

Q are disjoint. This shows that Q is nowhere dense in P.

Proof of Theorem 2 In light of part (c) of Theorem 1′, in order to prove the theorem it is sufficient

to show that there exists a residual set R ⊆ P such that for all P ∈ R,

EP

[
θ
∣∣IσPi ] = EP

[
θ
∣∣IσP ] for all i ∈ N.

For any pair of agents i, j ∈ N , define Mij ⊆ P as

Mij =
{
P ∈ P : EP

[
θ
∣∣IσPi ] = EP

[
θ
∣∣IσPj ] 6= EP

[
θ
∣∣IσPij ]} ,

where IσPij is the σ-algebra generated by the union of IσPi and IσPj . We first prove that Mij is a

meager set. Let Dt ⊂ P be the set of all probability measures P such that P (sτ ) = I{sτ=s} for some

s ∈ S and all τ > t, where I is the indicator function. When the state and the private signals are

realized according to some P belonging to Dt, then the signal profiles generated after time t are

constant and thus completely uninformative. Trivially, it is true that

P =

∞⋃
t=1

Dt.

Let Mijt = Mij ∩Dt. Then, by the above equality,

Mij =

∞⋃
t=1

Mijt.

Therefore, for Mij to be a meager set, it is sufficient that Mijt is a meager subset of Dt for any t. We

prove this by proving that the set Qijt ⊇Mijt defined below is meager.

Qijt =
{
P ∈ Dt : EP

[
θ
∣∣IσP ′i

]
= EP

[
θ
∣∣IσP ′j

]
6= EP

[
θ
∣∣IσP ′ij

]
for some P ′ ∈ Dt

}
Note that, for all P ∈ Dt, the signal profiles generated by P after time t are constant. Therefore, for

all i, any strategy profile σ, and any P ∈ Dt, we have that IσPi is a sub σ-algebra of St, the Borel σ-

algebra generated by the signal profiles up to time t. Given two arbitrary sub σ-algebras Sit,Sjt ⊆ St
and the σ-algebra generated by their union Sijt, define

Sijt(Sit,Sjt) =
{
P ∈ Dt : EP

[
θ|Sit

]
= EP [θ|Sjt] 6= EP [θ|Sijt]

}
,
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Qijt is a subset of the union of the above sets over all σ-algebra pairs Sit,Sjt. Since S is finite and

for P ∈ Dt the signals are constant after time t, the σ-algebra St is finite. Therefore, there are

finitely many such Sijt sets. Consequently, it is sufficient to show that any Sijt is meager in Dt

in order to conclude that Qijt, and hence Mijt, are meager in Dt. Note that the set Dt is the set of

probability measures over Θ×St and θ is a bounded random variable over this set. Moreover, Sit,Sjt
are two arbitrary fixed sub σ-algebras of the Borel σ-algebra of Θ×St. Therefore, we can directly use

Lemma 3 to conclude that Sijt(Sit,Sjt) is nowhere dense in Dt; therefore, Mij is a meager subset of

P.

The above argument shows that for any pair of agents i, j ∈ N , the set Mij is a meager subset of

P. We can use this result to argue similarly that for any i, j, k ∈ N , the set Mijk defined below is a

meager subset of P.

Mijk =
{
P ∈ P : EP

[
θ
∣∣IσPi ] = EP

[
θ
∣∣IσPj ] = EP

[
θ
∣∣IσPk ] 6= EP

[
θ
∣∣IσPijk]} ,

where IσPijk is the σ-algebra generated by the union of IσPi , IσPj , and IσPk . Proceeding inductively we

can prove the lemma.
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