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Stability and Continuity of Centrality Measures in
Weighted Graphs

Santiago Segarra and Alejandro Ribeiro

Abstract—This paper presents a formal definition of stability
for node centrality measures in weighted graphs. It is shown
that the commonly used measures of degree, closeness and
eigenvector centrality are stable whereas betweenness centrality
is not. An alternative definition of the latter that preserves the
same centrality notion while satisfying the stability criteria is
introduced. Continuity is presented as a less stringent alternative
to stability. Betweenness centrality is shown to be not only
unstable but discontinuous. Numerical experiments in synthetic
random networks and real-world data show that, in practice,
stability and continuity imply different levels of robustness in
the presence of noisy data. In particular, the stable betweenness
centrality is shown to exhibit resilience against noise that is
absent in the discontinuous and unstable standard betweenness
centrality, while preserving a similar notion of centrality.

I. INTRODUCTION

In any graph or network, the topology determines an
influence structure among the nodes or agents. Peripheral
nodes have limited impact on the dynamics of the network
whereas central nodes have a major effect on the behavior of
the whole graph. Identifying the most important nodes in a
network helps in explaining the network’s dynamics, e.g. the
distribution of power in exchange networks [2] or migration in
biological networks [3], as well as in designing optimal ways
to externally influence the network, e.g. attack vulnerability of
networks [4]. Node centrality measures are tools designed to
identify such important agents. However, node importance is
a rather vague concept and can be interpreted in various ways,
giving rise to multiple coexisting centrality measures, the most
common being degree [5], [6], closeness [7], [8], eigenvector
[9], and betweenness [10] centrality. In degree centrality, the
importance or centrality of a node is measured by the number
of nodes it can immediately influence, i.e., its neighborhood. In
closeness centrality, importance is measured in terms of how
fast information can travel from a given node to every other
node in the network. In eigenvector centrality, a refinement
of degree centrality, the importance of a node is computed
as a function of the importance of its neighbors. Finally, in
betweenness centrality, the centrality of a node is given by the
frequency of this node belonging to the shortest path between
other two nodes in the network.

The ability of a centrality measure to be robust to noise
in the network data is of practical importance. In the past
decade, stability has been used as a parameter to compare
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the performance of different centrality measures [11]–[13]. In
these papers, an empirical approach was followed by com-
paring stability indicators measured in both random and real-
world networks for different centrality measures. However, no
formal theory was developed explaining the different behaviors
among measures. Our first contribution is a formal definition of
stability and continuity of centrality measures. We also show
that all frequently used measures are stable and continuous
with the exception of betweenness centrality. In addition, we
propose an alternative definition of betweenness centrality
which is stable. Finally, through numerical experiments in
synthetic and real-word networks, we demonstrate that stabil-
ity and continuity are different and important properties, and
show that the alternative definition of betweenness centrality
behaves better than the standard betweenness centrality while
preserving a similar notion of centrality.

Stability is formally defined in Section III. In order to
build such definition, we need to rely on a metric on the
space of weighted graphs with a common node and edge set.
In Sections III-A to III-D, we analyze the stability of the
most frequently used centrality measures and in Section IV
we propose an alternative definition of betweenness centrality
that guarantees stability while maintaining the same concept
of node centrality. The concept of continuity as a milder
requirement for robustness is introduced in Section V. In
Section VI, we illustrate how our formal definitions of stability
and continuity are correlated with practical robustness indica-
tors by analyzing the behavior of all the common centrality
measures as well as the stable betweenness centrality proposed
in random networks and two real-world networks: the network
of air traffic between airports in United States and the network
of interactions between sectors of the United States economy.

II. PRELIMINARIES

In the present paper we consider weighted and directed
graphs or networks. Formally, we define a graph G =
(V,E,W ) as a triplet formed by a finite set of n nodes
or vertices V , a set of directed edges E ⊂ V × V where
(x, y) ∈ E represents an edge from x ∈ V to y ∈ V , and
a set of positive weights W : E → R++ defined on each
edge. The weights can be associated to similarities between
nodes, i.e. the higher the weight the more similar the nodes are,
or dissimilarities, depending on the application. The graphs
considered here do not contain self-loops, i.e., (x, x) 6∈ E for
all x ∈ V . For any given sets V and E, denote by G(V,E) the
space of all graphs with V as node set and E as edge set.
This implies that two graphs G,H ∈ G(V,E) can only differ
in their weights.
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An alternative representation of a graph is through its
adjacency matrix A ∈ Rn×n. If there exists an edge from
node i to node j, then Aij takes the value of the corresponding
weight. Otherwise, Aij is null. Requiring graphs not to contain
self-loops is equivalent to requiring the diagonal of A to
consist of all zeros. Observe that if two graphs G,H ∈ G(V,E),
then the null entries of the corresponding adjacency matrices
must coincide.

In the definition of centrality measures, the concepts of path
and path length are important. Given a graph (V,E,W ) and
x, x′ ∈ V , a path P (x, x′) is an ordered sequence of nodes in
V ,

P (x, x′) = [x = x0, x1, . . . , xl−1, xl = x′], (1)

which starts at x and finishes at x′ and ei = (xi, xi+1) ∈ E
for i = 0, . . . , l−1. We say that P (x, x′) links or connects x to
x′. The links ei of a path are the edges connecting consecutive
nodes of the path in the direction given by the path. Specif-
ically when W is associated to dissimilarities, we define the
length of a given path P (x, x′) = [x = x0, . . . , xl = x′] as the
sum of the weights

∑l−1
i=0W (ei) encountered when traversing

its links in order. Given the graph G = (V,E,W ), we define
the shortest path function sG : V ×V → R+ where the shortest
path length sG(x, x′) between nodes x, x′ ∈ V is defined as

sG(x, x′) := min
P (x,x′)

l−1∑
i=0

W (xi, xi+1). (2)

Whenever there is no possible path linking x to x′ in a graph
G, we say that sG(x, x′) =∞.

III. NODE CENTRALITY AND STABILITY

Node centrality is a measure of the importance of a node
within a graph. This importance is based on the location of
the node within the graph and not on the intrinsic nature
of this node. More precisely, given a graph (V,E,W ), a
centrality measure C : V → R+ assigns a nonnegative
centrality value to every node such that the higher the value
the more central the node is. The centrality ranking imposed
by C on the node set V is in general more relevant than the
absolute centrality values. Very often, this centrality ranking
relies on an underlying characteristic of the nodes. E.g.,
airports which are hubs for some airline have high centrality
in an air transportation network. In this way, centrality detects
fundamental roles played by nodes within the graph. Ideally,
this detection should be invariant to small perturbations in the
edge weights.

To formalize this notion of robustness against perturbations,
we define the metric d(V,E) : G(V,E) × G(V,E) → R+ on the
space of graphs G(V,E) containing V as node set and E as
edge set, as follows

d(V,E)(G,H) :=
∑
e∈E
|W (e)−W ′(e)| =

∑
i,j

|Aij−A′ij |, (3)

where G = (V,E,W ) and H = (V,E,W ′), and have
adjacency matrices A and A′, respectively. To see that d(V,E) is
a well-defined metric, notice that it computes the `1 distance
between two vectors obtained by stacking the values in W

and W ′. The metric d(V,E) enables the formal definition of
stability presented next.

Definition 1 A centrality measure C is stable if, for every
vertex set V , edge set E and any two graphs G,H ∈ G(V,E),∣∣CG(x)− CH(x)

∣∣ ≤ KG d(V,E)(G,H), (4)

for every node x ∈ V , where KG is a constant for every graph
G, CG(x) is the centrality value of node x in graph G and
similarly for H .

The above definition states that a centrality measure is
stable if the difference in centrality values for a given node in
two different graphs is bounded by a constant KG times the
distance between these graphs. The constant KG only depends
on graph G and must be valid for every graph H to which G is
being compared. Moreover, the inclusion of KG in (4) ensures
that the stability of a centrality measure does not depend on
the appearance of a normalization term in the definition of the
measure. In particular, consider a graph H that is obtained
through noisy measurements of the weights of graph G. In this
case, any stable centrality measure ensures that the change in
centrality due to the noisy measurements is bounded for every
node. This generates a robust measure in the presence of noise
as we illustrate through examples in Section VI. Notice also
that if we consider CG(x) and CH(x) in (4) as function of
graphs G and H parametrized by node x, the definition of
stability can be viewed as the simultaneous requirement of
point-wise (since KG depends on G) Lipschitz continuity [14],
[15] for n different functions, one for each node x in V .

The metric between graphs d(V,E) could have been defined
based on a different norm – instead of the 1-norm – of the
vectorized edge weight differences between the graphs [cf.
(3)]. Nevertheless, the stability of a given centrality measure
C as defined in (4) is independent of this norm choice. More
specifically, the equivalence of norms [16] ensures that the
existence of a constant KG does not depend on the norm
chosen in the definition of d(V,E). In the following sections
we analyze the stability of the most frequently used centrality
measures.

A. Degree centrality

Degree centrality is a local measure of the importance of a
node within a graph. The degree centrality measure CD of a
node x in an undirected weighted graph (V,E,W ) is given
by the sum of the weights of the edges incident to node x,
that is,

CD(x) :=
∑

x′|(x,x′)∈E

W (x, x′). (5)

For directed graphs, degree centrality is usually unfolded into
two different measures: in-degree and out-degree centrality.
The out-degree centrality COD measure is computed as in (5),
whereas the in-degree centrality CID is computed as follows

CID(x) :=
∑

x′|(x′,x)∈E

W (x′, x). (6)

The degree centrality measure is applied to graphs where the
weights in W represent similarities between the nodes. In this
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way, a high degree centrality value of a given node means
that this node has a large number of neighbors and is closely
connected to them. Although the degree centrality measure has
a number of limitations related to its locality [17], it is stable
as we state next.

Proposition 1 The degree CD, out-degree COD and in-degree
CID centrality measures in (5) and (6) are stable as defined
in Definition 1 with KG = 1.

Proof: Consider two arbitrary graphs in G(V,E), G =
(V,E,W ) and H = (V,E,W ′). From the definition of degree
centrality (5), we obtain

|CG
D(x)− CH

D (x)| (7)

=

∣∣∣∣∣∣
∑

x′|(x,x′)∈E

W (x, x′)−
∑

x′|(x,x′)∈E

W ′(x, x′)

∣∣∣∣∣∣ .
Consolidating the summations in (7) and applying the triangle
inequality we obtain that

|CG
D(x)− CH

D (x)| ≤
∑

x′|(x,x′)∈E

|W (x, x′)−W ′(x, x′)| .

(8)

By summing the right hand side of (8) over all edges instead
of just a subset of them we obtain

|CG
D(x)− CH

D (x)| ≤
∑
e∈E
|W (e)−W ′(e)| . (9)

The right hand side of (9) is exactly d(V,E)(G,H) [cf. (3)],
showing inequality (4) for KG = 1. When considering directed
graphs, the proof can be replicated to show that the in-degree
CID and out-degree COD centrality measures are stable. �

A consequence of the stability property of degree centrality
shown in Proposition 1 is the limited effect that a perturbation
in the weights of a graph has on the centrality values. In
Section VI, we illustrate this in both synthetic and real-world
networks.

B. Closeness centrality

Closeness is a relevant centrality measure when we are
interested in how fast information can spread from one node
to every other node in a network. The most commonly used
definition of closeness centrality is the one in [7] where the
centrality CC(x) of a node x in a graph G = (V,E,W ) is
defined as the inverse of the sum of the shortest path lengths
from this node to every other node in the graph, i.e.

CC(x) :=

(∑
x′∈V

sG(x, x′)

)−1
. (10)

For (10) to make sense, the weights in W must represent
dissimilarities between the nodes. Moreover, in general, we
consider strongly connected graphs so that every shortest
path has finite length. This implies that (10) is well-defined.
However, as done in [18], we will work with the decentrality

version C̄C , where the lower the value the more central the
node, defined as

C̄C(x) :=
∑
x′∈V

sG(x, x′). (11)

Since we are ultimately interested in the centrality ranking
being impervious to perturbations, it is immediate that the
ranking stability of CC and of C̄C are equivalent since they
are related by a strictly decreasing function. In the following
proposition, we show stability of closeness decentrality.

Proposition 2 The closeness decentrality measure C̄C in (11)
is stable as defined in Definition 1 with KG = n.

In proving Proposition 2, we use the following lemma which
upper bounds the difference between a shortest path in two
different graphs by the distance between these graphs.

Lemma 1 Given two graphs G = (V,E,W ) and H =
(V,E,W ′) then, for every pair of nodes x, x′ ∈ V such that
x is connected to x′,

|sG(x, x′)− sH(x, x′)| ≤ d(V,E)(G,H), (12)

where sG and sH are the shortest path lengths defined in (2).

Proof: Consider two arbitrary graphs G = (V,E,W ) and
H = (V,E,W ′) and two connected nodes x, x′ ∈ V . Suppose
that one shortest path from x to x′ in G is given by the
path P (x, x′) = [x = x0, x1, . . . , xl = x′] and one shortest
path from x to x′ in H is given by P ′(x, x′) = [x =
x′0, x

′
1, . . . , x

′
l′ = x′]. Then, by the definition of shortest path

in (2), we have that

|sG(x, x′)− sH(x, x′)| = (13)∣∣∣∣∣∣
l−1∑
i=0

W (xi, xi+1)−
l′−1∑
i=0

W ′(x′i, x
′
i+1)

∣∣∣∣∣∣ .
Without loss of generality, assume that the graph G has a larger
shortest path, i.e., sG(x, x′) ≥ sH(x, x′). By this assumption,
the difference between the shortest path lengths in (13) is
nonnegative even without the absolute value. Hence, if instead
of considering the shortest path P (x, x′) in G we consider
a (possibly) different path such as P ′(x, x′), we can assure
that the difference between these two lengths is not going to
decrease. Then, it follows that

|sG(x, x′)−sH(x, x′)|≤

∣∣∣∣∣∣
l′−1∑
i=0

W (x′i, x
′
i+1)−W ′(x′i, x′i+1)

∣∣∣∣∣∣.
(14)

A direct application of the triangle inequality yields

|sG(x, x′)−sH(x, x′)|≤
l′−1∑
i=0

∣∣W (x′i, x
′
i+1)−W ′(x′i, x′i+1)

∣∣.
(15)
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Finally, if on the right hand side of (15) instead of summing
over the links in P ′(x, x′) we sum over all edges in the set
E, we obtain another upper bound given by

|sG(x, x′)−sH(x, x′)| ≤
∑
e∈E
|W (e)−W ′(e)| . (16)

The right hand side of (16) is exactly d(V,E)(G,H) [cf. (3)],
concluding the proof. �

We can now leverage Lemma 1 to show the stability of
closeness decentrality.
Proof of Proposition 2: Given two strongly connected graphs
G = (V,E,W ) and H = (V,E,W ′), from the definition of
C̄C in (11) we have that

|C̄G
C (x)− C̄H

C (x)| =

∣∣∣∣∣∑
x′∈V

sG(x, x′)−
∑
x′∈V

sH(x, x′)

∣∣∣∣∣ .
(17)

Consolidating the summations in (17) and applying the triangle
inequality we obtain that

|C̄G
C (x)− C̄H

C (x)| ≤
∑
x′∈V

|sG(x, x′)− sH(x, x′)| . (18)

Using the result in Lemma 1 we conclude that

|C̄G
C (x)− C̄H

C (x)| ≤
∑
x′∈V

d(V,E)(G,H) = n d(V,E)(G,H),

(19)

showing inequality (4) for KG = n. �

Some alternative definitions of closeness centrality exist
[19], [20] including that in [8] where the measure in (11) is
normalized by n− 1. However, since normalization constants
can be absorbed into KG, stability does not depend on the
appearance of normalization terms.

Remark 1 If we adopt the convention that ∞−∞ = 0, then
the result in Lemma 1 is true even when nodes x and x′ are
not connected. This, in turn, implies that Proposition 2 can
be shown for general graphs and the requirement of strong
connectivity can be dropped.

C. Betweenness centrality

Centrality can be interpreted as the possibility of a node to
control the communication or the optimal flow within a graph.
Betweenness centrality takes this position by giving higher
centrality values to nodes that fall within the shortest path of
many pairs of nodes. Formally, given a graph G = (V,E,W )
and three arbitrary nodes x, x′, x′′ ∈ V , denote by σx′x′′ the
number of shortest paths from x′ to x′′, i.e. the number of
paths P (x′, x′′) of length sG(x′, x′′), and by σx′x′′(x) the
number of these shortest paths that go through node x. For
convenience, we define σxx = 1 for all x ∈ V . Notice that
since G might be directed, we can have that σx′x′′ 6= σx′′x′

for some x′, x′′ ∈ V . The betweenness centrality CB(x) for
any given node x ∈ V is defined as [10]

CB(x) :=
∑

x′,x′′∈V
x′ 6=x 6=x′′

σx′x′′(x)

σx′x′′
. (20)

In (20), we compute the betweenness centrality value of a node
x ∈ V by sequentially looking at the shortest paths between
any two nodes distinct from x and summing the proportion of
shortest paths that contain node x. As was the case for close-
ness centrality, the weights in W should denote dissimilarities
for CB to be a reasonable measure of centrality. Sometimes
(20) is normalized by the number of pairs in the network or
the maximum centrality value achievable [10], [21], [22] such
that CB(x) takes values in the interval [0, 1]. However, we
are interested in comparing centrality values between different
nodes within a network and these comparisons are invariant to
any normalization. Moreover, the stability property does not
depend on normalizing constants since these can get absorbed
by KG [cf. (4)]. Hence, we omit the normalizing constant in
definition (20).

Despite its extensive use in the study of both technological
[23] and social [24] networks, the betweenness centrality
measure is not stable as we show next.

Proposition 3 The betweenness centrality measure CB in (20)
is not stable in the sense of Definition 1.

Proof: Consider the undirected graphs G = (V,E,W ) and
H = (V,E,W ′) depicted in Fig. 1. Since the sum in (3)
is done over the set of directed edges, it is immediate that
d(V,E)(G,H) = 4ε.

For any ε > 0, according to (20) we have that CG
B (x1) = 9

since the node x1 is part of one of the two shortest paths from
any node in {x3, x5, x6} to any node in {x4, x7, x8} and vice
versa, where the other path goes through x2. However, for that
same ε, CH

B (x1) = 0 since x1 is not an intermediate node in
any shortest path in graph H . This implies that,

|CG
B (x1)− CH

B (x1)|
d(V,E)(G,H)

=
9

4ε
. (21)

Note that constant KG in (4) cannot depend on ε since this
is not a parameter of the graph G. Thus, for any candidate
constant KG there exists a small enough ε > 0 such that
the above ratio is greater than the proposed KG. Thus, such
constant cannot exist and CB is not stable. �

The instability of the betweenness centrality measure entails
an undesirable behavior when applied to synthetic and real-
world networks as shown in Section VI. Also, the result in
Proposition 3 motivates an alternative definition of between-
ness centrality presented in Section IV.

D. Eigenvector centrality

The eigenvector centrality CE of a node, just as the de-
gree centrality, depends on its neighbors. However, it does
not depend on the number of neighbors but rather on how
important its neighbors are. The importance of its neighbors
in turn depends on how important their neighbors are, and
so on. In this way, a node with a few important neighbors
has larger eigenvector centrality than a node with various
neighbors of limited importance. Following this premise, for
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Fig. 1: Instability of betweenness centrality CB . The distance between G and H vanishes with decreasing ε, however CG
B (x1) =

9 and CH
B (x1) = 0 for every ε > 0.

a given graph G = (V,E,W ) with adjacency matrix A where
weights denote similarities, we may write for every node x

CE(x) :=
1

λ

∑
(x,x′)∈E

W (x, x′)CE(x′), (22)

for some constant λ. In (22), the centrality value of a node is
defined as a weighted average of the centrality values of its
neighbors. In terms of the adjacency matrix, we have that

CE(xi) =
1

λ

∑
j

AijCE(xj). (23)

We may rewrite (23) in matrix form to obtain [9]

λCE = ACE , (24)

where CE = [CE(x1), . . . , CE(xn)]T . From (24) it is imme-
diate that CE is an eigenvector of the adjacency matrix A. In
order to ensure that the components of CE are real numbers,
A must be symmetric which corresponds to graph G being
undirected. Although some extensions have been proposed
for directed graphs [25], the most commonly used version of
eigenvector centrality requires the graph to be undirected. The
solution of (24) is not uniquely determined, since every pair
(λ,CE) of eigenvalues and eigenvectors solves the equation.
However, for connected graphs the Perron-Frobenius Theorem
ensures that the eigenvector corresponding to the maximal
eigenvalue contains all positive components; see Lemma 2
below. Thus, CE in (24) is defined as the normalized dominant
eigenvector of A where the corresponding graph G must be
connected and undirected. As a consequence, CE(x) is upper
bounded by 1 for every node x. Eigenvector centrality is a
stable measure as the following proposition shows.

Proposition 4 The eigenvector centrality measure CE in (24)
is stable as defined in Definition 1 with

KG =
4

λn − λn−1
, (25)

where λn > λn−1 ≥ . . . ≥ λ1 are the eigenvalues of the
adjacency matrix of graph G.

In proving Proposition 4, we will use as lemmas two known
results from linear algebra. The first result is the Perron-
Frobenius Theorem which we restate below in a form that
is useful for our proof.

Lemma 2 [Perron-Frobenius Theorem] Let A ≥ 0 be
irreducible. Then there is a unique positive real number r
such that:

(i) There is a real vector v > 0 with Av = rv.
(ii) The geometric and algebraic multiplicities of r are one.

(iii) For each eigenvalue s of A we have that |s| ≤ r.

Proof: See [26, Chapter 2, Theo. 1.4]. �

The second result studies the behavior of eigenvectors when
a symmetric matrix is perturbed.

Lemma 3 [Eigenvector Perturbation Theorem] Let A and
A+E in Rn×n be symmetric with eigenvalues λn ≥ . . . ≥ λ1
and µn ≥ . . . ≥ µ1. If

|λi − λj | ≥ β > ||E||2, i 6= j, (26)

then A and A + E have normalized eigenvectors uj and vj

corresponding to λj and µj such that

||uj − vj ||2 ≤ γ(1 + γ2)1/2, (27)

where γ = ||E||2/(β − ||E||2).

Proof: See [27, Theorem 3.3.7]. �

We now use the results in Lemmas 2 and 3 to show the
stability of the eigenvector centrality measure.
Proof of Proposition 4: Consider an arbitrary undirected,
connected graph G = (V,E,W ) with adjacency matrix A
and another undirected graph H = (V,E,W ′) with the same
set of edges and adjacency matrix B. The following result
relating the distance between G and H and the norm of the
difference of adjacency matrices will be useful for the rest of
the proof.

Claim 1 The distance between the graphs upper bounds the
2−norm of the difference between the adjacency matrices, i.e.

d(V,E)(G,H) ≥ ||B −A||2. (28)

Proof : From the definition of d(V,E) in terms of adjacency
matrices (3), we may write that

d(V,E)(G,H) =
∑
i,j

|Bij −Aij | ≥
√∑

i,j

(Bij −Aij)2

=
√

Trace ((B −A)T (B −A)), (29)

where the inequality is given by the relation between the `1
and `2 vector norms. Noticing that (B − A)T (B − A) is a
positive semi-definite matrix and the fact that the trace equals
the sum of the eigenvalues, it follows that

d(V,E)(G,H) ≥
√
λmax ((B −A)T (B −A)). (30)
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Observing that the right hand side of (30) is exactly ||B−A||2
concludes the proof. �

Continuing with the main proof of Proposition 4, denote
by λn ≥ . . . ≥ λ1 the eigenvalues of A with correspond-
ing eigenvectors vn, . . . ,v1 and, similarly for B where the
eigenvalues are µi and the associated eigenvectors ui, for
i = 1, . . . , n. From the connectedness of graphs G and H , it
follows that matrices A and B are irreducible (cf. [26, Chapter
2, Theo. 2.7]). Thus, by Lemma 2, the dominant eigenvalues
of both matrices λn and µn must be simple. Denote by δ
the distance from the dominant eigenvalue in A to the second
largest eigenvalue, i.e. δ := λn − λn−1. For simplicity, we
divide the proof of Proposition 4 into two cases. In the first
case, we assume that

||B −A||2 ≥
δ

4
. (31)

For this case, pick an arbitrary node x ∈ V and, given that
the eigenvector centrality is bounded between 0 and 1 we can
write that

|CG
E (x)− CH

E (x)| ≤ 1 =
4

δ

δ

4
≤ 4

δ
||B −A||2

≤ 4

δ
d(V,E)(G,H), (32)

where we used (31) and (28). This shows inequality (4) for
KG = 4/δ in the first case studied.

Consider as a second scenario the situation where

||B −A||2 <
δ

4
. (33)

Notice that this implies that (26) is satisfied for j = n, β = δ
and E = B −A. For any given node x ∈ V , we have that

|CG
E (x)− CH

E (x)| = |vn(x)− un(x)| ≤ ||vn − un||2, (34)

where the equality comes from the definition of eigenvector
centrality [cf. (24)] and the inequality is a trivial fact from
vector algebra. Combining the result of Lemma 3 with (34),
we can write

|CG
E (x)− CH

E (x)| (35)

≤ ||B −A||2
(δ − ||B −A||2)

(
1 +

||B −A||22
(δ − ||B −A||2)2

)1/2

=
(δ2 − 2δ ||B −A||2 + 2 ||B −A||22)1/2

(δ − ||B −A||2)2
||B −A||2.

Using the assumed relation in (33), the numerator in the
right hand side of (35) can be upper bounded by δ and the
denominator can be lower bounded by (δ/2)2. Thus, it follows
that

|CG
E (x)− CH

E (x)| ≤ 4δ

δ2
||B −A||2 ≤

4

δ
d(V,E)(G,H),

(36)

where we used (28) in the last inequality. This shows inequal-
ity (4) for KG = 4/δ in the second case analyzed. Since
for every pair of graphs G and H , either (31) or (33) must
be satisfied, inequality (4) for KG = 4/δ is true in general,
showing that the eigenvector centrality measure is stable. �

Notice that the constants KG found for degree centrality [cf.
Proposition 1] and closeness centrality [cf. Proposition 2] only
depend on the number of nodes n and are independent of the
weight structure of the graph G. However, this is not the case
for eigenvector centrality, where the constant KG depends on
the eigenvalues of the adjacency matrix which are a function
of the weights of the graph. This difference does not impact
the practical implementation of eigenvector centrality as we
see in Section VI.

Among the four centrality measures studied – degree, close-
ness, betweenness, and eigenvector –, betweenness centrality
is the only measure that fails to be stable. This motivates the
alternative definition for a stable betweenness centrality that
we develop in the following section.

Remark 2 Even though the metric definition in (3) and the
stability analysis performed was based on graphs that share
the same set of nodes and edges and only differ in the edge
weights, the same framework can be modified minimally to
accommodate for topological perturbations. For example, if
two similarity graphs G and H only differ in the fact that the
latter has an extra edge, we may consider that both graphs
contain this extra edge with the particularity that this edge
has weight 0 in G. In this way, we may interpret G and
H as sharing the same set of vertices and edges and the
framework developed can be applied. More generally, if we
want to account for edge additions or deletions in similarity
graphs, we may consider an edge of weight 0 as equal to an
absent edge. Moreover, to accommodate for modifications in
the number of nodes, we may model a node deletion as the
deletion of all the edges connecting this node to the rest of
the graph.

IV. STABLE BETWEENNESS CENTRALITY

A consequence of the instability of betweenness centrality
shown in Proposition 3 is that perturbations in the weights
of a graph have major impacts on the centrality ranking of
the nodes; see Section VI. Thus, in this section we present
an alternative centrality measure that preserves the centrality
notion of betweenness centrality while being stable.

Given an arbitrary graph G = (V,E,W ) and a node x ∈ V ,
define a new graph Gx = (V x, Ex,W x) with V x = V \{x},
Ex = E \{(x′, x′′) |x′ = x or x′′ = x}, and W x = W |Ex .
I.e., the graph Gx is constructed by deleting from G the node
x and every edge directed to or from it. Define the stable
betweenness centrality CSB(x) of any node x ∈ V as

CSB(x) :=
∑

x′,x′′∈V
x′ 6=x 6=x′′

sGx(x′, x′′)− sG(x′, x′′). (37)

Note that every term in the above summation is nonnegative
since shortest paths in the graph Gx cannot be shorter than
the corresponding paths in G. Measure CSB quantifies the
centrality of a given node x by the change in the length of
shortest paths once this node is removed. Intuitively, if a node
is part of many shortest paths, when we remove this node the
corresponding paths will increase in length and result in a high
centrality value. In this sense, measure CSB is similar to the
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original betweenness centrality measure CB . However, how
critical a given node is in connecting the network depends on
the best alternative path if this node fails. As was the case
for CB , definition (37) should be applied to graphs where the
weights represent dissimilarities between nodes. In contrast to
the traditional centrality measure, CSB is stable as shown after
the following remark.

Remark 3 To guarantee that CSB in (37) will achieve finite
values, we must require that the graph being studied is 2-
connected or biconnected [28]. In this way, the shortest path
length sGx(x′, x′′) is finite for all triplets x, x′, x′′ ∈ V . An
alternative is to adopt the convention that ∞ −∞ = 0 and
in such a case no assumption needs to be made about the
connectivity of the graph [cf. Remark 1].

Proposition 5 The stable betweenness centrality measure
CSB in (37) is stable as defined in Definition 1 with KG =
2n2.

In proving this proposition, we use the following lemma.

Lemma 4 Given two arbitrary graphs G = (V,E,W ) and
H = (V,E,W ′) we have that

d(V,E)(G,H) ≥ d(V x,Ex)(G
x, Hx), (38)

for all x ∈ V .

Proof: Use the definition of d(V,E) in (3) and separate all the
terms that involve x to write

d(V,E)(G,H) =
∑
e∈E
|W (e)−W ′(e)| (39)

=
∑

(x′,x′′)∈E
x′ 6=x 6=x′′

|W (x′, x′′)−W ′(x′, x′′)|

+
∑

(x′,x′′)∈E
x=x′ or x=x′′

|W (x′, x′′)−W ′(x′, x′′)|

The first term in the rightmost side of the equality in (39)
is, by definition, the distance d(V x,Ex)(G

x, Hx). We can then
rewrite (39) as

d(V,E)(G,H) = d(V x,Ex)(G
x, Hx) (40)

+
∑

(x′,x′′)∈E
x=x′ or x=x′′

|W (x′, x′′)−W ′(x′, x′′)|,

The result in (38) follows because the second term in (40) is
nonnegative. �

We now use Lemmas 1 and 4 to prove Proposition 5.
Proof of Proposition 5: Given two biconnected graphs G =
(V,E,W ) and H = (V,E,W ′) we have that for an arbitrary
node x ∈ V ,

|CG
SB(x)− CH

SB(x)| =
∣∣∣ ∑
x′,x′′∈V
x′ 6=x 6=x′′

sGx(x′, x′′)− sG(x′, x′′)−

∑
x′,x′′∈V
x′ 6=x 6=x′′

sHx(x′, x′′)− sH(x′, x′′)
∣∣∣. (41)

Rearranging terms and using the triangle inequality we obtain

|CG
SB(x)− CH

SB(x)| ≤ (42)∑
x′,x′′∈V
x′ 6=x 6=x′′

|sH(x′, x′′)− sG(x′, x′′)|+|sGx(x′, x′′)− sHx(x′, x′′)|

Applying Lemma 1 to (42) we have that

|CG
SB(x)−CH

SB(x)| (43)

≤
∑

x′,x′′∈V
x′ 6=x6=x′′

d(V,E)(G,H) + d(V x,Ex)(G
x, Hx)

≤ n2
(
d(V,E)(G,H) + d(V x,Ex)(G

x, Hx)
)
.

Using now Lemma 4 we obtain that

|CG
SB(x)− CH

SB(x)| ≤ 2n2 d(V,E)(G,H), (44)

showing inequality (4) for KG = 2n2 and concluding the
proof. �

To compare the stable betweenness centrality measure CSB

with the traditional measure CB , consider the graphs G and
H in Fig. 2 where 0 < ε � 1 � M , i.e., ε is a small
modification to the reference edge weight of 1 and M is a
large modification. For the traditional betweenness centrality
we have CG

B (x1) = CH
B (x1) = 18 because x1 is part of 18

shortest paths in both networks [cf. proof of Proposition 3].
However, intuition suggests that x1 is more central to graph
H than it is to graph G. A failure of this node in graph
H would compromise the graph dynamics deeply since all
the flows that passed through x1 are now required to pass
through the much costlier edges that run through x2. Graph
G, however, is more resilient to a failure of x1 because the
flows can pass through x2 instead of x1 at similar cost. Thus,
it is reasonable to expect x1 to be less central to G than it
is to H . The stable betweenness centrality CSB captures this
notion. If node x1 is deleted from G, the 18 shortest paths of
which x1 was originally a part of, have their length increased
by 2ε. Consequently, CG

SB(x1) = 36 ε. The centrality of node
x1 is limited by the existence of a comparable path through
node x2. However, if node x1 is deleted from H , the 18
shortest paths have their length increased by 2M resulting in
CH

SB(x1) = 36M � CG
SB(x1), which corresponds with our

intuition. The centrality of x1 depends on the quality of the
best alternative.

Remark 4 Computing the betweenness centrality CB for
every node in a graph with n nodes and m weighted edges
requires O(nm + n2 log n) computations [29]. For CSB , we
can use the Floyd-Warshall [30], [31] or the Johnson [32]
algorithm to compute all-pairs shortest paths in a graph. The
latter is more suitable for sparse graphs with a computational
complexity of O(nm + n2 log n). In a naive computation of
CSB for every node in the graph, we can compute the shortest
paths for all pairs of nodes in the original network and in every
network generated when deleting one node at a time. This
requires n + 1 implementations of Johnson algorithm with a
total complexity of O(n2m+n3 log n), i.e., a factor of n more
than the traditional betweenness centrality. A faster algorithm
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Fig. 2: Implementation example of betweenness CB and stable betweenness CSB centrality. The betweenness centrality value
of x1 is equal for both graphs, CG

B (x1) = CH
B (x1) = 18. However, the stable betweenness is different, CG

SB(x1) = 36 ε and
CH

SB(x1) = 36M . The stable betweenness centrality value of x1 depends on the quality of the best alternative path.

could exist since, when a node is deleted from the network,
only the shortest paths originally containing this node need to
be recomputed. The development of this algorithms is beyond
the scope of this paper.

V. CONTINUITY OF CENTRALITY MEASURES

Continuity is a subtler notion of how impervious a centrality
measure is to noise. Specifically, we define a continuous
centrality measure as one in which the centrality values of
every node in a given graph are continuous functions of the
weights in the edges of this graph as we formally state next.

Definition 2 Let G = (V,E,W ) be an arbitrary graph with
adjacency matrix A. For every matrix B such that Bij = 0
if Aij = 0 and B + A ≥ 0 element-wise, define the graph
H = (V,E,W ′) whose adjacency matrix is A + B. Then, a
centrality measure C is continuous if for every x ∈ V ,

CH(x)→ CG(x) as ||B||2 → 0, (45)

where CG(x) is the centrality of node x in graph G and
similarly for H .

In the above definition, matrix B can be interpreted as a
perturbation defined on the edges of graph G. A continuous
centrality measure ensures that as this perturbation vanishes,
the centrality values tend to those in graph G. Continuity is a
weaker notion than stability since the latter implies the former
as we show next.

Proposition 6 If a centrality measure C is stable as in
Definition 1 then it is continuous as in Definition 2.

Proof: By the equivalence of matrix norms [33], it is imme-
diate that as ||B||2 → 0 then d(V,E)(G,H)→ 0 where B, G
and H are defined as in Definition 2. Thus, if a given measure
C is stable, it must satisfy (4) which implies that∣∣CG(x)− CH(x)

∣∣→ 0 as ||B||2 → 0, (46)

which is equivalent to the definition in (45), concluding the
proof. �

Given the close relation between the concepts of stability
and Lipschitz continuity (cf. Section III), the result in Proposi-
tion 6 is not surprising: for centrality measures stability implies
continuity just like, in calculus, Lipschitz continuity implies
continuity.

As stated in Section III, a centrality measure is a function of
a graph that assigns a nonnegative real number to each node.
This broad definition enables the existence of a wide variety
of measures. In particular, there can exist centrality measures
which are continuous but not stable, as we show next.

Proposition 7 If a centrality measure C is continuous as in
Definition 2 then it need not be stable as in Definition 1.

Proof: For an arbitrary graph G = (V,E,W ), consider the
degree squared centrality measure CDS such that for every
node x ∈ V ,

CG
DS(x) :=

∑
x′|(x,x′)∈E

(
W (x, x′)

)2
. (47)

In the above measure, for every node we assign a centrality
value equal to the sum of the squares of the weights of incident
edges instead of just summing the weights as in degree central-
ity. This is a valid centrality measure which is continuous but
not stable. Continuity follows immediately from the fact that
CDS is defined as the sum of quadratic – hence, continuous
– functions of the weights in the graph. Thus, vanishing
perturbations of the weights must have vanishing effect on
CDS .

To see that CDS is not stable, consider two particular undi-
rected graphs G = (V,E,W ) and H = (V,E,W ′) with two
nodes, V = {x, x′} and weights W (x, x′) = W (x′, x) = 1
and W ′(x, x′) = W ′(x′, x) = 1+δ for δ > 0. From definition
(3) we have that d(V,E)(G,H) = 2δ and from (47), we obtain
CG

DS(x) = 1 and CH
DS(x) = (1 + δ)2. Thus, for CDS to be

stable the following must be fulfilled [cf. (4)],

|1− (1 + δ)2| ≤ KG 2δ (48)

δ2 + 2δ ≤ KG 2δ

δ

2
+ 1 ≤ KG

However, KG is a constant that does not depend on δ since
this is not a parameter of graph G. Thus, for any candidate
constant KG, there exists a δ big enough such that (48) is
violated, showing that CDS is not stable, concluding the proof.
�

Proposition 6 guarantees that degree, closeness, eigenvector
and stable betweenness centrality are continuous centrality
measures. Proposition 7 leaves open the question of whether
betweenness centrality, which is not stable, is continuous or
not. The result below shows that it is not.
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Fig. 3: Comparison of stability indicators when type 1 noise (p1 = 1, δ1 = 0.01) is introduced in random networks for all
centrality measures: degree (green circle), closeness (purple right triangle), betweenness (orange upwards triangle), eigenvector
(yellow left triangle), and stable betweenness (cyan downwards triangle). (a) Mean of the maximum change recorded when
perturbing a random network as a function of network size. (b) Mean of the average node ranking change recorded when
perturbing a random network as a function of network size. (c) Probability that the maximum change in the ranking exceeds
3 positions as a function of the network size. (d) Probability that the maximum change in the ranking exceeds 5 positions as
a function of the network size. (e) Histogram of the maximum change recorded when perturbing random networks with 150
nodes. (f) Probability that the top 5 ranking remains unchanged when perturbing a network.

Proposition 8 The betweenness centrality measure CB in (20)
is not continuous as defined in Definition 2.

Proof: The same counter-example used in the proof of Propo-
sition 3 can be used to show failure of continuity. As ε→ 0,
we have that ||B||2 → 0. However,

∣∣CG
B (x)− CH

B (x)
∣∣ → 9,

violating Definition 2. �

Being not only unstable but discontinuous further hinders
practical applicability of CB . Given that CSB captures a
similar notion but does so while being stable, thus continuous,
makes it an appealing alternative. The numerical experiments
in the following section further illustrate how the undesirable
structural properties of betweenness centrality translate into
lack of robustness when applied to synthetic and real-world
data.

VI. NUMERICAL EXPERIMENTS

Stability and continuity regulate the behavior of centrality
measures in the presence of noise. We empirically validate
three facts: the behavior of betweenness centrality in the
presence of noise is fundamentally different from the other
measures (Section VI-A), continuity and stability encode dif-
ferent robustness properties (Section VI-B), and the stable
betweenness alternative CSB retains the same centrality notion
as the original CB (Section VI-C).

For a given node set V of size n ≥ 10, we define a
random network as one where an undirected edge (x, x′)
belongs to E with probability q = 10/n. The weight of
this edge is randomly picked from a uniform distribution
in [0.5, 1.5]. We consider these weights to be indication of
dissimilarities. Notice that the centrality rankings obtained by
applying a centrality measure based on dissimilarities – e.g.,
closeness – and one based on similarities – e.g., degree – on
the same graph are not comparable. Thus, for every random
graph we generate a similarity based graph with the same
nodes and edges but where the weights are computed as 2
minus the edges in the original dissimilarity graph. In this
way, all weights in the similarity graphs are also contained
in [0.5, 1.5] and all centrality rankings can be compared.
Closeness, betweenness and stable betweenness centralities
will be applied to dissimilarity networks while eigenvector
and degree centrality will be applied to similarity networks.

As real-world data, we use two networks, one contains
information about the air traffic between the most popular
airports in Unites States (U.S.) [34] while the second network
records interactions between sectors of the U.S. economy
[35]. More precisely, in the undirected airport network GA =
(VA, EA,WA), the node set VA is composed of 25 popular
airports in U.S., an edge (x, x′) exists between two airports
x, x′ ∈ VA if there is a regularly scheduled flight between
them, and the weight of this edge WA(x, x′) is equal to
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the number of passenger seats – either occupied or empty
– between both destinations in a given year. The economic
network GI = (VI , EI ,WI), contains as nodes the 61 indus-
trial sectors of the economy as defined by the North American
Industry Classification System (NAICS). There exists an edge
(x, x′) ∈ EI if part of the output of sector x is used as input
to sector x′, and the weight WI(x, x′) is given by how much
output of x – in dollars – is productive input of x′. We consider
both WA(x, x′) and WI(x, x′) as measures of similarity and
use the inverses 1/WA(x, x′) and 1/WI(x, x′) as weights for
the centrality measures that require dissimilarity graphs.

A. Robustness indicators

We first analyze the robustness of the centrality rankings
when random networks are perturbed by random noise. Our
specification of random noise has two parameters: the prob-
ability of perturbation p and the amplitude of perturbation
δ. Given a network, we build a perturbed version of it by
modifying every edge weight with probability p. The perturbed
edge weights are multiplied by a uniform random number in
[1 − δ, 1 + δ]. In our simulations, we analyze two kinds of
noise: type 1 noise has parameters p1 = 1 and δ1 = 0.01
while type 2 noise has parameters p2 = 0.1 and δ2 = 0.1.
The first noise affects every edge but modifies the weight by
a maximum of 1% whereas the second type of noise affects
on average one out of every ten edges but modifies the weight
up to 10%.

For the following experiment, we generate 100 random
networks of n nodes, where n varies from 10 to 200 in
multiples of 10. We then generate two perturbed versions of
each of these networks by applying both types of noises. For
every network, we generate a centrality ranking of the nodes,
i.e. we sort the nodes in decreasing order of centrality value,
and compare it with the centrality ranking of the perturbed
versions of that network. We perform this comparison for the
rankings output by the four commonly used centrality mea-
sures – degree, closeness, betweenness and eigenvector – as
well as the stable betweenness centrality measure introduced
in Section IV.

A number of stability indicators are analyzed when per-
turbing the networks with both types of noise; see Figs. 3 and
4. We consider these indicators as empirical manifestations
of the theoretical definition of stability [cf. Definition 1]. For
type 1 noise, we begin by analyzing the maximum variation
in ranking position experienced by a node when perturbing
the network. In Fig. 3a we plot the mean of this indicator
among the networks analyzed as a function of the network
size. For example, for a network with 100 nodes, the type 1
perturbation generates a maximum change of 1.8 positions on
average for the CD ranking, 2.6 positions on average for the
CC ranking, 5.9 positions on average for the CB ranking, 2.0
positions on average for the CE ranking, and 2.7 positions for
the CSB ranking. All measures experience an approximately
linear increase of the maximum change with the size of the
network, but the rate of increase is fastest for CB , generating
big performance differences between the measures for larger
networks. Moreover, the behavior of degree and eigenvector

centrality as well as the behavior of closeness and stable
betweenness centrality are similar to each other. This is not
surprising since they depend upon similar properties of the
network. Both closeness and stable betweenness are defined in
terms of shortest paths. Also, both degree and eigenvector cen-
tralities depend on a notion of neighborhood of each node. For
the former, centrality coincides with the graph theoretic notion
of neighborhood whereas for the latter, centrality depends on
a neighborhood weighted by its influence. In Fig. 3b we plot
the mean average change when perturbing the network with
type 1 noise. I.e., the expected ranking variation of any given
node in the network. The trend is very similar to the one for
maximum variation in ranking. E.g., for a network containing
150 nodes, on average every node experiences a change in
1 position for betweenness centrality while the change is
around 0.5 positions for closeness and stable betweenness
and 0.3 for degree and eigenvector centralities. Apart from
computing the mean rank variations across networks, we
are interested in the distributions of these variations for the
different centrality measures. Thus, we plot the probability
that the maximum change in the ranking generated by a
perturbation of type 1 is greater than 3 positions (Fig. 3c) and
5 positions (Fig. 3d) as a function of the network size. E.g.,
for networks of 60 nodes, there is a 0.5 probability that the
betweenness centrality ranking undergoes a variation greater
than 3 positions while this probability is less than 0.1 for
all other measures. Moreover, for over 90% of the networks
of 180 nodes, the betweenness centrality ranking undergoes
a variation greater than 5 positions when perturbed while
this percent is smaller than 10% for the other measures. To
facilitate the understanding of Figs. 3a, 3c, and 3d, in Fig. 3e
we present the histogram of the maximum change found in the
rankings when perturbing a network for the particular case of
networks with 150 nodes for all measures. The mean of these
histograms correspond to the markers for networks with 150
nodes in Fig. 3a. In this way, the mean of the green histogram
corresponds to the green circle, the orange histogram to the
orange upwards triangle and so on. To relate the histogram
with Fig. 3c, notice that the green histogram has a frequency
of 7 for changes of 4 positions and zero frequency for larger
changes. Since we consider 100 sample networks of each size,
this translates into a 0.07 probability of observing changes
greater than 3 positions for networks of size 150 nodes, which
corresponds to the green circle in Fig. 3c. The same is true for
Fig. 3d, but considering changes greater than 5 positions in the
histogram. It is immediate that only the orange histogram has a
considerable portion of its weight for changes of 6 positions or
more, translating into a big difference in probabilities between
the orange marker and the rest in Fig. 3d. Having a longer
tail, the silhouette of the orange CB histogram is essentially
different from the rest. E.g., for one of the studied networks,
the CB ranking presents a change of 19 positions when the
perturbation is introduced whereas the largest variation for all
other measures combined is of 8 positions. This is an empirical
example of instability as shown in Proposition 3.

Another indicator that we analyze is the position where
the change in the ranking occurs. A change towards the last
positions of the ranking is irrelevant whereas a change varying
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Fig. 4: Comparison of stability indicators when type 2 noise (p2 = 0.1, δ2 = 0.1) is introduced in random networks for all
centrality measures: degree (green circle), closeness (purple right triangle), betweenness (orange upwards triangle), eigenvector
(yellow left triangle), and stable betweenness (cyan downwards triangle). (a) Mean of the maximum change recorded when
perturbing a random network as a function of network size. (b) Mean of the average node ranking change recorded when
perturbing a random network as a function of network size. (c) Probability that the maximum change in the ranking exceeds
10 positions as a function of the network size.
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Fig. 5: Comparison of stability indicators in real-world networks for all centrality measures: degree (green circle), closeness
(purple right triangle), betweenness (orange upwards triangle), eigenvector (yellow left triangle), and stable betweenness (cyan
downwards triangle). (a) Probability that the maximum change in the ranking of the airport network GA exceeds 1 position as
a function of the perturbation size. (b) Histogram of the maximum change recorded when perturbing the airport network GA

with δ = 0.035. (c) Probability that the maximum change in the ranking when perturbing the economic network G′I exceeds
3 positions as a function of the perturbation size.

the positions of the most central nodes carries important
implications. In Fig. 3f, we plot the probability that the top 5
nodes in the ranking retain their positions after perturbing the
network with type 1 noise. Observe that there is no clear trend
with the size of the network but probabilities oscillate around
different values for different centrality measures. In this way,
we can state that for around 75% to 95% of the networks
there is no change in the top 5 centrality ranking computed
with all measures except for betweenness centrality where this
percentage falls to around 60% on average.

The same conclusions can be extracted when perturbing
the networks with type 2 noise; see Fig. 4. Even though
the difference between CB and the rest of the measures is
not as marked as with type 1 noise, it is immediate that
betweenness centrality entails the largest maximum change
for every network size (Fig. 4a) as well as the largest average
change (Fig. 4b). Also, the probabilities of having changes in
the ranking greater than 10 positions is consistently around
0.25 larger in CB compared to centralities based in shortest
paths – CC and CSB – while this probability is negligible for

CD and CE (Fig. 4c).

Similar behaviors in the presence of noise can be observed
when analyzing the real-world data; see Fig. 5. Notice that
for graphs GA and GI , the network size is fixed. Thus, we
analyze performance metrics as a function of the magnitude
of the perturbation. A perturbation magnitude of δ implies
that every weight in the network is multiplied by a random
number in [1 − δ, 1 + δ]. For every perturbation level, we
generate 100 perturbed networks. In Fig. 5a, we compute the
probability of observing a change in the ranking of more than
1 position as a function of the magnitude of the perturbation.
As expected, the probability of observing a change in the
network increases with the perturbation magnitude. Moreover,
for a fixed magnitude of perturbation, larger probabilities
of variations are observed in the rankings generated by CB

compared to those generated by all other measures. E.g., for a
perturbation of 0.035, 85% of the rankings generated by CB

presented a change greater than 1 position whereas among the
other measures, CSB presented the greater variation with only
50% of the analyzed networks. To clarify this plot, in Fig. 5b
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Fig. 6: Average change in ranking for degree, degree squared
and floor degree centrality measures under two types of noise.
For small perturbations (blue), degree squared behaves similar
to degree centrality. For larger perturbations (red), degree
squared behaves similar to floor degree centrality.

we present the histogram of maximum changes observed for a
perturbation of δ = 0.035. For example, all networks analyzed
presented either no change or a change of only one position
for CD, thus, the corresponding marker for degree centrality in
Fig. 5a is at null probability for δ = 0.035. Similarly, only 15
networks out of the 100 analyzed presented either no change
or just 1 position change for CB , resulting in the probability
of 0.85 for changes greater than one position plotted in Fig.
5a. As was the case for random networks [cf. Fig. 3e], the
histogram corresponding to measure CB presents a longer tail
than the rest which is an empirical proof of instability. We
applied this same procedure to the second real-world network
GI . Notice that GI is directed, thus, in order to compare
all centrality measures including eigenvector centrality, we
symmetrized GI into G′I by generating undirected edges with
weights equal to the mean of the weights in both directions. In
Fig. 5c we plot the probability that G′I experiences a change
of more than 3 positions in the ranking for varying perturba-
tion magnitudes. As expected, this probability is consistently
highest for CB , and the difference with other measures is
maximized for perturbation of δ = 0.02 and smaller.

B. Effects of continuity and stability

The previous experiment points towards the conclusion that,
in practice, stable and continuous centrality measures output
centrality rankings with variations which are less meaningful
and smaller in magnitude than those obtained with non contin-
uos and non stable measures such as betweenness centrality.
Given that betweenness centrality is neither continuous nor
stable and the rest of the measures analyzed are both stable
and continuous, it is unclear the lack of which property is
responsible for the low robustness of betweenness centrality.
In order to answer this question, we compare three centrality
measures: degree centrality CD which is both continuous
and stable, degree squared centrality CDS as defined in (47)

TABLE I: Average and maximum variation of centrality rank-
ing across different measures for networks with 100 nodes.
The upper triangular part of the table informs the average
variation while the lower triangular part informs the maximum
variation for the corresponding pair of measures in the rows
and columns.

CD CC CB CE CSB CDS

CD 0 11.3 11.6 7.3 13.1 5.3
CC 43.8 0 10.3 9.9 12.7 8.5
CB 44.7 41.6 0 14.6 4.2 8.3
CE 30.0 38.9 55.5 0 16.6 8.5
CSB 51.1 51.3 18.9 61.5 0 10.0
CDS 22.3 34.4 34.3 33.7 42.4 0

which is continuous but not stable, and floor degree centrality
CFD which is neither continuous nor stable and we define
as follows. For every node x ∈ V in an arbitrary graph
(V,E,W ), we have that

CFD(x) :=
∑

x′|(x,x′)∈E

floor
(
W (x, x′)

)
. (49)

The fact that CFD is a non-continuous centrality measure is
immediate from the discontinuity in the definition of the floor
function. In Fig. 6 we plot the average change in rankings
output by the three measures when perturbing networks of
different sizes. The results for small noise uniform across
edges (type 1) is plotted in blue while the result for larger
and sparser noise (type 2) is plotted in red. As expected,
degree centrality has the higher robustness followed by degree
squared and floor degree being the less robust of the three
measures under both types of noise. However, notice that for
noise of small magnitude (type 1) the degree squared behaves
more similar to degree centrality, showing a robust behavior
in the presence of noise. For larger magnitudes of noise (type
2), degree squared centrality has a similar behavior to the
unstable floor degree centrality. This points towards the fact
that continuity provides robustness under small perturbations
while the stronger concept of stability provides robustness
for more general perturbations. This follows intuitively from
the fact that continuity is defined in terms of vanishing
perturbations whereas stability is defined for perturbations of
arbitrary magnitude.

C. Ranking similarity across measures

In order to compare the centrality rankings across different
measures, we pick 100 random networks of size 100 nodes
and compute the average and maximum change for a pair of
rankings output by different measures; see Table I. E.g., in
these 100 samples the mean average ranking variation of nodes
ranked by the degree CD and the eigenvector CE centralities is
7.3 positions. Moreover, the mean maximum variation between
two given rankings output by the betweenness CB and the
closeness CC centrality is 41.6 positions. Notice that the
smallest variations – both in average and maximum – are
achieved when comparing the rankings of the betweenness
CB and the stable betweenness CSB centrality measures.
This is empirical proof that both measures encode a similar
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TABLE II: Comparison of the centrality rankings for the economic network GI . The ranking output by CSB is the closest
one to the CB ranking. CB and CSB share the top 3 ranking while these three economic sectors are not contained in the top
5 ranking of any other measure.

Rank CB CSB CC COD CID

1 Real estate Professional serv. Professional serv. Professional serv. Food & Beverage
2 Construction Real Estate Oil and gas extraction Real Estate Real Estate
3 Professional serv. Construction Petroleum products Oil and gas extraction Petroleum products
4 Wholesale trade Petroleum products Administrative serv. FR banks, credits Chemical products
5 FR banks, credits FR banks, credits Real estate Administrative serv. Construction

centrality concept, as was our objective when defining stable
betweenness centrality in Section IV. Further observe that
the variations between these two rankings are even smaller
than the ones between degree CD and degree squared CDS

centralities, two measures with closely related definitions [cf.
(5) and (47)].

To complete the analysis, we use the economic network GI

to illustrate the fact that the centrality concept in the proposed
measure CSB closely resembles the one in the traditional
betweenness centrality CB ; see Table II. To avoid introducing
artifacts through symmetrization, we consider the original
network GI instead of the symmetrized version G′I , hence,
the eigenvector centrality is not informed. Stable betweenness
centrality CSB provides the ranking closer to the one output
by CB . Both measures share the top 3 economic sectors and
4 out of 5 sectors in the top 5. In contrast, none of the other
measures – closeness, out-degree, and in-degree – contain the
three sectors preferred by CB in their top 5 ranking.

VII. CONCLUSION

Stability, as a formal characterization of the robustness of
node centrality measures, was introduced. The most commonly
used centrality measures were shown to be stable with the
exception of betweenness centrality, thus, a stable alternative
definition was proposed. A milder continuity property was
introduced and betweenness centrality was shown not to be
continuous. We illustrated the stability difference between be-
tweenness centrality and the rest of the measures by studying
indicators in both random and real-world networks. Moreover,
by proposing alternative definitions of degree centrality, the
practical differences between continuity and stability were
exemplified. Finally, by comparing the centrality rankings
output by different measures, it was shown that stable between-
ness preserves the centrality notion encoded in traditional
betweenness but has the additional practical advantage of
stability.
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