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Accelerated Dual Descent for Network
Flow Optimization

Michael Zargham, Alejandro Ribeiro, Asuman Ozdaglar, and Ali Jadbabaie

Abstract—We present a fast distributed solution to the convex
network flow optimization problem. Our approach uses a family
of dual descent algorithms that approximate the Newton direction
to achieve faster convergence rates than existing distributed
methods. The approximate Newton directions are obtained
through matrix splitting techniques and sparse Taylor approxi-
mations of the inverse Hessian. We couple this descent direction
with a distributed line search algorithm which requires the same
information as our descent direction to compute. We show that,
similarly to conventional Newton methods, the proposed algo-
rithm exhibits super-linear convergence within a neighborhood of
the optimal value. Numerical experiments corroborate that con-
vergence times are between one to two orders of magnitude faster
than existing distributed optimization methods. A connection with
recent developments that use consensus to compute approximate
Newton directions is also presented.

Index Terms—Convex functions, decentralized control, opti-
mization, networks.

I. INTRODUCTION

T HIS paper develops accelerated dual descent (ADD) algo-
rithms for solving the minimum convex cost network flow

problem using a limited number of local information exchanges
while guaranteeing superlinear convergence to a neighborhood
of the optimum. The convex min cost network flow problem
and the study of its dual problem are key building blocks in the
study of network optimization, [1, Ch. 1], [2]. Solutions to min
cost network flow problems have long been used in operations
research and transportation networks [3], [4]. In particular, see
the uncapacitated transshipment problem in [5]. Network flow
problems and their duals are also relevant to computer vision
[6] and the robust routing problem [7] where the objective is
to choose a routing strategy with minimal variance when the
edges are noisy communication channels. Furthermore, the net-
work flow problem is a key subproblem in wireless routing and
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resource allocation [8]. Our formulation is also a stepping stone
for the queue stabilization problem in a capacitated network
with multiple commodity types and stochastic arrival rates, [9],
[10]. In [11], we build on [12] to characterize the effects of in-
corporating capacity constraints in the minimum cost network
flow problem. In [13], we construct an accelerated backpressure
algorithm (ABP), which applies the ADD framework to solve
queue stabilization problem. ABP follows the form of back-
pressure but rather than routing based on differentials in queue
lengths, we route based on differentials in queue priorities which
are dual variables computed according to ADD.
Minimum convex cost network flow problems can be solved

in a distributed manner via dual subgradient descent, [1]. Nodes
keep track of variables associated with their outgoing edges and
undertake updates based on their local variables and variables
available at adjacent nodes. Analysis of subgradient methods for
distributed convex optimization can be found in [14] and [15]
with the latter taking into account uncertainty in the network
structure. However, practical applicability of the resulting algo-
rithms is limited by exceedingly slow convergence rates, [16].
An alternative distributed algorithm based on the Gauss Seidel
method is present in [17]. Like gradient descent, Gauss Seidel
is a first-order method.
The natural alternative to accelerate convergence is to use

second order Newton methods [18, Algorithm 9.2], but they
cannot be implemented in a distributed manner because matrix
inversion is a global operation. Early works on Newton type
methods for network optimization are found in [19] and [20].
Both of these methods, however, are not fully distributed
because they require some level of global coordination. Ef-
forts to overcome this shortcoming include approximating the
Hessian inverse with the inverse of its diagonals [21] and the
use of consensus iterations to approximate the Newton step
[22]. Improvements over subgradient methods can be achieved
through Nesterov type accelerated methods summarized in
[23]. These methods work well when the proximal operator
has a simple closed form. To be distributed we require that
the proximal operator be computable using local information,
which limits the convergence rates that can be achieved. Krylov
subspace methods, in particular conjugate gradient descent can
achieve second-order convergence when computed centrally,
see [24, Ch. 6]. Unfortunately, conjugate gradient and other
second-order Krylov subspace methods rely heavily on inner
products for an orthogonalization procedure which leads to im-
proved convergence rates, see [25, Ch. 9]. Even in the best case,
these inner products violate the communication limitations for
this problem, for example [20].
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The dual Hessian is a weighted Laplacian of the graph repre-
senting our communication network. Using this structure we can
approximate the dual Hessian inverse using local information.
Our particular insight is to consider a Taylor’s expansion of the
inverse Hessian [26, Sec. 5.8], which, being a polynomial with
the Hessian matrix as variable, can be implemented through
local information exchanges. More precisely, considering only
the zeroth order term in the Taylor’s expansion yields an approx-
imation to the Hessian inverse based immediately available in-
formation. The first-order approximation requires information
available at neighboring nodes and in general, the th-order
approximation necessitates information from nodes located
hops away. The resultant family of ADD algorithms permits
a tradeoff between the accuracy of the Hessian approximation
and communication cost. We use ADD- to represent the th
member of the ADD family which uses information from ter-
minals hops away. To guarantee global convergence of the
ADD- algorithm we further introduce an approximate back-
tracking line search based on the work in [27].
In Section II, we introduce the convex network flow opti-

mization problem formally and state our assumptions. Basic
results in Section III demonstrate the effect of our assumptions
on the dual formulation. We also review dual gradient descent
and dual Newtons method before proposing the ADD algorithm
in Section IV. In Section IV-B, we introduce our distributed
backtracking line search algorithm. The main result of the paper
is our proof that the ADD family follows three distinct con-
vergence phases, found in Section V. The first two phases are
akin to the linear and quadratic phases of Newtons method but
in the terminal phase the Newton error begins to accumulate.
In Section VI, we show that ADD can be implemented using
a consensus scheme. We conduct numerical experiments in
Section VII, demonstrating that ADD- leads to a significant
reduction in communication overhead as compared to gradient
descent and the consensus based method. We evaluate the
effect of using our distributed line search by comparing against
solutions generated using a centralized line search. Finally, in
Section VII-C we implement ADD-1 for the robust routing
problem from [7] demonstrating practical convergence times
where gradient descent is considered impractical.

II. PRELIMINARIES

Consider a network represented by a directed graph
with node set , and edge set
. The network is deployed to support a single infor-

mation flow specified by incoming rates at source nodes
and outgoing rates at sink nodes. Rate requirements are
collected in a vector , which to ensure problem feasibility has
to satisfy . Our goal is to determine a flow
vector , with denoting the amount of flow on
edge . Flow conservation is enforced as ,
where the node-edge incidence matrix defined

if edge leaves node
if edge enters node
otherwise.

The Algebraic connectivity of is the second smallest eigen-
value of the graph Laplacian . We define the penalty as a
convex scalar cost function denoting the cost of units
of flow traversing edge . The convex min-cost flow network
optimization problem is then defined as

minimize subject to (1)

Assumption 1: The network has the following properties:
a) Connected with algebraic connectivity lower bounded by
a constant .

b) Non-bipartite.
In Assumption 1(a), we quantify the ability of the network

to spread information via an algebraic connectivity bound. As-
sumption 1(b) that is non-bipartite guarantees that the nor-
malized Laplacian on the has largest eigenvalue strictly upper
bounded by 2. Due to our use of for dual variables, we use

to denote eigenvalues of a symmetric matrix and
we order them .
Assumption 2: The objective functions have the fol-

lowing properties for all :
a) Twice continuously differentiable, strongly convex and
satisfies .

b) Lipschitz Hessian Inverse
.

Assumption 2 restricts the allowable primal objective func-
tions to those which will yield a dual problem meeting the stan-
dard criteria for application of Newton’s method, [18Ch. 9.5].
These assumptions are sufficient for convergence but are not
necessary. Restricting to this case allows us to focus on the core
mechanisms of a Newton type method. For analysis of relax-
ations on these conditions, the reader is directed to [28] and [29].

III. NETWORK OPTIMIZATION

In this work, we focus our attention on solutions in the dual
domain. Computing the Lagrange dual of a convex minimiza-
tion with equality constraints yields maximization of a concave
function. In the case of (1) the Lagrange dual is given by

(2)

where the primal optimizers of the Lagrangian are defined

(3)

Due to the separability of the objective and
Assumption 2 we can compute the flow on edge
directly from the dual variables at node and according to

(4)

Superscript notation is used for elements of the vector
. The subscript is reserved for the time index , introduced

in the next subsection. For notational convenience we cast the
dual as minimization

(5)
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by minimizing the negation of the objective in (2). From this
point on we will consider solutions to the dual problem (5) and
use (4) to compute the associated primal optimal variables. To
further proceed we outline the consequences of Assumptions 1
and 2 with regards to the dual problem (5).
Lemma 1: The dual objective

has the following properties.
a) The dual Hessian is the weighted Laplacian

b) is strongly convex on the subspace and satisfies

c) and is a Lipschitz function of , i.e.,

where ; and are defined in Assumption 2.
Proof: See Appendix A for the proof of Lemma 1.

Lemma 1 recovers the key assumptions of Newton’s Method
defined in [18, Sec. 9.5], for the problem defined in (5). These
results are direct consequences of Assumptions 1 and 2.

A. Gradient Descent

The benchmark distributed solution to (1) is the dual sub-
gradient method. In our problem, is differentiable so we
have access to the gradient . Consider an itera-
tion index , an arbitrary initial vector and define iterates
generated by the following recursion:

for all (6)

where denotes the gradient of the dual
function at . A first important observation here is
that we can compute the gradient as with the
vector having components as determined by (4)
with , [30, Sec. 6.4]. A second important observation is
that because of the sparsity pattern of the node-edge incidence
matrix the th element of the gradient can be com-
puted as

(7)

The algorithm in (6) and (7) lends itself to distributed implemen-
tation. Each node maintains information about its dual iterates

and primal iterates of outgoing edges .
Gradient components are evaluated as per (7) using local
primal iterates for and primal iterates of
neighboring nodes for . Dual variables are then
updated as per (6). We proceed to update primal variables as per
(4). This update necessitates local multipliers and neigh-
boring multipliers .
Distributed implementation is appealing because it avoids the

cost and fragility of collecting all information at a centralized
location. However, practical applicability of gradient descent
algorithms is hindered by slow convergence rates; see, e.g., [31],
[32].

B. Newton’s Method

The Newton method is a scaled version of gradient descent.
In lieu of (6) iterates are given by

for all (8)

where is the Newton direction at iteration and is a prop-
erly selected step size. The Newton direction

(9)

where is the Hessian of the dual
function. From Lemma 1(a) we have

(10)

From the definition of in (1) it follows that the primal
Hessian is a diagonal matrix. From Assumption 1(a)
we know exists and can be computed locally be-
cause it is diagonal. From Lemma 1(a) we know that is a
weighted Laplacian of the connected graph and thus has rank

and zero eigenvalue associate with the eigenvector .
Since , the Newton direction can be represented ex-
actly using the pseudoinverse

(11)

However, the pseudoinverse is a dense matrix and com-
puting requires global information. We are therefore inter-
ested in approximations of the Newton direction requiring local
information only.

IV. ACCELERATED DUAL DESCENT

To define an approximate Newton direction, i.e., one for
which (9) is approximately true, we consider a finite number
of terms of a suitable Taylor’s expansion representation of the
Newton direction. In order to proceed with this approach we
first define a matrix splitting.
Definition 1: Define the Matrix Splitting ,

where diagonal matrix is constructed

(12)

and the matrix is

and (13)

This splitting is motivated by the fact that is a lazy
random walk. A lazy random is created by taking a random
walk matrix that has no self loops and replacing it with
the random walk matrix . The addition of self
loops eliminates periodicity giving us nonnegative eigenvalues.
In our case, the initial random walk matrix would be the

which is stochastic because is a
Laplacian as shown in Lemma 1(a). For more on the properties
of lazy random walks see [33, Ch. 1].
The matrix which is similar to our lazy

random walk is used in our construction of the approximate
Hessian inverse. A consequence of this choice for Definition
1 is that is nonnegative and has eigenvalues in [0,1]. The
Laplacian structure and connectedness of also guarantee that
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is positive definite because the diagonals of must be
positive. With our splitting, we can rewrite the Hessian as

(14)

The Hessian pseudo-inverse is given by

. For the
central term of this product we can use the Taylor’s expansion
identity , which is valid for any
vector orthogonal to the unstable eigenvectors of , [26, Ch.
5]. In our case the Laplacian structure of and Assumption
1(b) guarantee that , [33,
Ch. 1] so we are restricted to the dimensional subspace
orthogonal to . Fortunately is orthogonal to so we
define the approximate Newton direction as a truncated Taylor
expansion.
Definition 2: We define theApproximate Newton Direction

(15)

and the Approximate Hessian Inverse on

(16)

which naturally arises from the form of our approximate
Newton direction.
The approximate Newton algorithm is obtained by re-

placing the Newton step in (8) by its approximations
. The resultant algorithm is characterized by

the iteration

(17)

The choice of in (15) dictates how much information node
needs from the network to compute the th element of the ap-
proximate Newton direction —recall that node is associ-
ated with dual variable .
For the zeroth order approximation only the first term

of the sum in (15) is considered and it therefore suffices to
have access to the information in to compute the approx-
imate Newton step. Notice that the approximation in this case
reduces to implying that we approximate
by the inverse diagonals which coincides with the method in
[21]. The first-order approximation uses the first two terms
of the sum in (15) yielding .
The key observation here is that the sparsity pattern of ; it
is a weighted adjacency matrix. As a consequence, to compute
the th element of node needs to collect information that is
either locally available or available at nodes that share an edge
with . For the second-order approximation we add the term

to the approximation . The sparsity pat-

tern of is that of , which has nonzero en-
tries matching the 2-hop neighborhoods of each node. There-
fore, to compute the th element of node requires access

to information from neighboring nodes and from neighbors of
these neighbors. In general, the th-order approximation adds
a term of the form to the st-order approx-
imation. The sparsity pattern of this term is that of , which
coincides with the -hop neighborhood, and computation of
the local elements of the Newton step necessitates information
from hops away. We thus interpret (15) as a family of ap-
proximations indexed by that yields Hessian approximations
requiring information from -hop neighbors in the network.
This family of methods offers an explicit trade off between com-
munication cost and precision of the Newton direction. We an-
alyze convergence properties of these methods in the coming
sections.

A. Basic Properties

A basic guarantee for any iterative optimization algorithm
is to show that it eventually approaches a neighborhood of the
optimal solution. This is not immediate for ADD as defined by
(17) because the errors in the approximations to may
be significant. Notwithstanding, it is possible to prove that the

approximations are positive definite for all and from
there to conclude that the iterates in (17) eventually approach
a neighborhood of the optimal . This claim is summarized in
the following theorem, for proof see [30, Prop. A.24].
Theorem 1: Let denote the optimal argument of the dual

function of the optimization problem in (1) and consider
the ADD-N algorithm characterized by iteration (17) with
as in (15). Assume for all and that the network graph
is not bipartite. Then, for all sufficiently small

(18)

By continuity of (4), convergence of the dual variable to an
error neighborhood implies convergence of the primal variables
to an error neighborhood. Theorem 1 is the weakest conver-
gence proof we present but it is included because it serves as
a benchmark for algorithm performance. Also, Theorem 1 uses
a fixed step size which in many applications of interest is more
practical than implementing a line search method.
Definition 3: We define the Newton Error to be

(19)

This is a measure of the deviation from true Newton direction
because [cf. (9)] where is the true Newton di-
rection, which is equivalent to having in (19). Therefore,
the Newton step approximation error quantifies the deviation
of the approximate Newton steps with respect to the ac-
tual Newton step . An important property of ADD-N is that
the deviation can be bounded for an arbitrary network and a
given . This fact is proven in the following lemma.
Lemma 2: Define such that

is a uniform upper bound on the second largest eigenvalue mod-
ulus of . Then, the norms of the Newton approximation
errors defined in (19) satisfy

(20)
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Proof: We begin eliminating the summation from our ex-
pression of the Newton error by observing that a telescopic
property emerges.

We introduce the matrix , made up of
orthonormal columns spanning . We observe that

, and since we have . Our
descent occurs in so we restrict our analysis to this sub-
space. Recall that is the second largest eigenvalue
modulus of the matrix . We have

from the triangle inequality. Lemma
1[b] tells us that by choosing such
that and for all . Using the fact that

and the eigenvalue bound from [34] we have

(21)

where is the diameter of the graph . Equation (21)
shows by construction that there exists one such bound

, completing the proof.
Lemma 2 establishes the eigenvalue bound as a key co-

efficient capturing the ability of information to spread through
the network. Its appearance is natural because the accuracy of
our local approximations to the Newton step depend on the net-
work’s ability to percolate information. Another key observa-
tion about Lemma 2 is that the Newton step approximation error
is proportional to the norm of the dual gradient. Another way to
interpret Lemma 2 is to observe that the relative Newton error

is at worst a constant. Since the dual gradient norm
tends to zero as we approach the dual optimum argument,

the approximation error norm also approaches zero as it-
erations progress towards the optimum.
Analysis of the Newton’s method takes advantage of the con-

ditioning assumption in Assumption 1(a) by using the inverse
eigenvalue bounds

(22)

Since we do not use the exact pseudo inverse we need to prove
that these bounds hold for our approximate Hessian inverse.
Lemma 3: The approximate inverse Hessian remains well

conditioned in the subspace , i.e., for given ADD family
index and dual variable it holds that for all vectors

(23)

for any where and are defined in Lemma 1(b).

Proof: Consider the definition of in (16) along with
the Taylor expansion of the pseudoinverse with in the invert-
ible subspace

(24)

Since each term is pos-
itive semidefinite due to our splitting choice in Definition 1 we
have

(25)

and from (3) we achieve the desired upper bound. Again con-
sider the definition of in equation (16), this time removing
the first term from the sum

(26)

Since each turn in the sum is positive semidefinite from our
splitting choice in Definition 1 we have

(27)

Recall that . From Assumption 1(b) tells us
where is the indicator vector

for node . Inverting and subbing
into (27), we recover the desired lower bound.
Lemma 3 guarantees uniform conditioning and strong con-

vexity of our approximate Hessian inverse on the subspace in
which we are descending. In fact, this property holds for vec-
tors in the span of as well but since we restrict our descent to
the subspace , we only need it to hold within that subspace.
This result guarantees that the conditioning of the approximate
Hessian inverse is at most a factor of 2 worse than the condi-
tioning of the Hessian itself.

B. Distributed Backtracking Line Search

Algorithms ADD-N for different differ in their informa-
tion dependence. Our goal is to develop a family of distributed
backtracking line searches parameterized by the same and
having the same information dependence. The idea is that the
thmember of the family of line searches is used in conjunction

with the th member of the ADD family to determine the step
and descent direction in (17). As with the ADD-N algorithm,
implementing the distributed backtracking line search requires
each node to get information from its -hop neighbors.
Centralized backtracking line searches are typically intended

as a method to find a stepsize that satisfies Armijo’s rule. This
rule requires the stepsize to satisfy the inequality

(28)

for given descent direction and search parameter .
The backtracking line search algorithm is then defined as
follows.
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Algorithm 1.

Consider the objective function and given variable value
and a descent direction and dual gradient .

The backtracking line search algorithm is:

Initialize

while

end

The scalars and are given parameters.

This line search algorithm is commonly used with Newton’s
method because it guarantees a strict decrease in the objective
and once in an error neighborhood it always selects al-
lowing for quadratic convergence, [18, Sec. 9.5].
In order to create a distributed version of the backtracking

line search we need a local version of the Armijo rule. We start
by decomposing the dual objective where
the local objectives are defined as

(29)

where the vector denotes the th row of the incidence matrix
. Observe that according to (29) and the sparsity pattern of
the local objective depends only on the local dual variable
and flow variables for links adjacent to .
Leveraging the definition in (29), we define an -parameter-

ized local Armijo rule.
Definition 4: Define the Local Armijo Rule to be the condi-

tion that step size must satisfy

(30)

for all where is the set of -hop neighbors of node ,
the scalar is the same as in (28), and
is a descent direction.
Each node is able to compute its own step size satisfying

(30) using information from its -hop neighborhood. we define
a distributed backtracking line search according to the following
algorithm.

Algorithm 2.

Given local objectives satisfying ,
descent direction and dual gradient .

for

Initialize

while

end

end

The scalars , and are given
parameters.

The distributed backtracking line search described in Algo-
rithm 2 works by allowing each node to execute its own modi-
fied version of Algorithm 1 using only information from -hop
neighbors. The ’s generated by Algorithm 2 are not a tradi-
tional step size because in general it does not preserve the de-
scent direction. To use Algorithm 2 with the ADD method we
need to restate the ADD- iteration as

(31)

where is a diagonal matrix containing the steps at time
. This would appear to undo the benefit of using an approx-
imate Newton descent direction but in fact we are guaranteed
to make progress toward the optimal as long as we are outside
a neighborhood of the optimal. Once inside that neighborhood

which recovers the update in (17) with a step size equal
to . These analytical results will be proven in the fol-
lowing section.

V. CONVERGENCE RATE

The basic guarantee in Theorem 1 is not stronger than con-
vergence results for gradient descent. Our goal is to show that
the approximate Newton method in (17) combined with the dis-
tributed line search in Algorithm 2 exhibits global convergence
and local quadratic convergence once sufficiently close to the
optimum. These properties are akin to corresponding properties
of centralized (exact) Newton algorithms and are presented in
the following theorem.
Theorem 2: Consider an ADD-N algorithm with iterates

as defined by (31) with approximate Newton step as
in (15) for given . The step size is selected according to
the approximate backtracking line search defined in Algorithm
2 with parameters

(32)

and . Define the constant
as a uniform upper bound on the largest eigenvalue modulus
of the product of splitting matrices . With the
conditioning constants and and the Lipschitz constant
as defined in Lemma 1:
1) Strict Decrease Phase: For gradient at iteration

satisfying

(33)

the dual objective is reduced by at least , i.e.,

(34)

2) Quadratic Phase: For gradient at iteration satisfying

(35)

the gradient norm the ADD-N algorithm converges quadrati-
cally, i.e.,

(36)
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3) Terminal Phase: For gradient at iteration satisfying

(37)

the ADD-N algorithm satisfies and thus re-
mains within the neighborhood. Further progress may be made
but is not guaranteed.
According to Theorem 2, ADD-N algorithms exhibit three

convergence phases with boundaries between them occurring
over ranges of the norm of the dual gradient . The first
phase occurs when the gradient norm is greater than

, during which there is a strict decrease in the dual ob-
jective. This strict decrease guarantees that the second phase is
reached. The second and third phases are characterized by a step
size selection [c.f. (31)] or equivalently [c.f.
(17)]. Our restriction that the is used
to guarantee we do not skip the second phase and go straight
to the third phase. During the second phase the residual,
decreases quadratically implying that the accuracy of as an
approximation of improves rapidly. The quadratic decrease
in the residual during the second phase implies that the third and
terminal phase is eventually reached. When the gradient norm
reaches convergence of ADD-N slows down
to a linear rate or can in rare cases stop. The first two phases par-
allel corresponding phases for the canonical centralized Newton
method, [18, Ch. 9]. The third phase is unique to ADD-N. It cor-
responds to a situation in which the errors in the approximation

of the Newton step become comparable to the
value of the step itself.
The complete proof of Theorem 2 is presented in

Sections V-A and V-B. Section V-A starts with a general-
ization of the descent lemma [30, Sec. A.5] and analyzes
the distributed backtracking line search of Section IV-B to
prove the existence of the strict decrease phase of Part (i).
In Section V-B we characterize the conditions for quadratic
convergence, which we leverage to prove parts (ii) and (iii).
These results do not require the distributed line search as they
simply require a fixed stepize which in the case of the
distributed line search is guaranteed.
Remark 1: Theorem 2 tells us that network structure affects

the performance of ADD-N algorithms through the eigenvalue
bound because the residual range during which
ADD-N experiences quadratic convergence is lower bounded
by . For small this range is significant. As
approaches 1, however, this range shrinks thereby slowing the
overall convergence rate. Thus, it is fair to say that ADD-N
works well in networks with small while networks with large
are difficult in that they require larger to experience the same
rate of convergence. From the bound in (21) we can infer topo-
logical conditions for this to happen. This bound approaches 1
if some of the following situations happen: i) The number of
nodes is large. ii) The graph diameter is large. iii)
While not directly obvious from (21), its derivation from [34]
indicates that tends toward 1 when then network has large
maximum degree, .
Poor performance for large and large matches

the intuition that convergence towards necessitates propa-
gation of information through the network. Poor performance

for large is counterintuitive but not incongruous with re-
sults on consensus on scale free networks, [35]. For a graph of
fixed size the network structure for which the bound in (21)
is smallest is the one with the minimum product
of maximum degree and diameter. Small world networks [36]
have small degree and small diameter by design. It has already
being observed that networks which have simultaneously low
diameter and low maximum degree have desirable properties in
engineered systems, such as fault tolerance and algebraic con-
nectivity, [37].

A. Strict Decrease Phase—Proof of Theorem 2, Part (i)

Traditional analysis of the centralized backtracking line
search of Algorithm 1 leverages a lower bound on the stepsize
to prove strict decrease. We take a similar approach here and

begin by finding a global lower bound on the stepsize
that holds for all nodes . Before proceeding with the Lemma,
we define some additional notation. The locally observable
gradient vector at node is given by

if
else

(38)

where is the extended neighborhood of node including
all hop neighbors. Further define the local update vector

(39)

and finally define a reduced Hessian by
setting to zero the rows and columns corresponding to nodes
outside of the neighborhood ,

if
else.

(40)

Since the elements of already satisfy for all
the resulting has the structure of a principal submatrix of
with the deleted rows left as zeros.
Lemma 4: Consider the distributed line search in Algorithm 2

with parameter , starting point , and descent direction
computed by the ADD-N algorithm [cf.

(15)]. The stepsize

satisfies the local Armijo rule in (30), i.e.,

for all network nodes and all .
Proof: See Appendix B.

According to Lemma 4 we have
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because is a lower bound on . Therefore, Algorithm 2 exits
with and any satisfies the exit condition in
(30); therefore,

Applying Lemma 3 with the definition of we get

(41)

Summing over all and applying , we have

(42)

Using the definition of the 2-normwe can write
. Counting the appearance of each

term in this sum we have that

. Since the network is connected it must be
, from which it follows

. Substituting this expression into (42) yields

Observe now that and substitute the lower
bound to obtain the desired relation. This completes
the proof of Theorem 2 part (i).

B. Quadratic and Terminal Convergence Phases—Proof of
Theorem 2, Parts (ii) and (iii)

The result in Theorem 2 part (i) guarantees global conver-
gence into any error neighborhood around the op-
timal value because the dual objective is strictly decreasing by,
at least, the noninfinitesimal quantity while we
remain outside of this neighborhood. In particular, we are guar-
anteed to reach a point inside the neighborhood

. Once this condition is met, we show that
convergence towards the optimum is quadratic. The first step in
proving that result is to show that step size is always
selected as claimed in the following lemma.
Lemma 5: Consider the distributed line search in Algorithm 2

with parameter , starting point , and descent direction
. If the search parameter is chosen

such that

and the norm of the dual gradient satisfies

then Algorithm 2 selects stepsize for all .
Proof: See Appendix C.

To complete the proof we return to the ADD-N update in (17)
and set . With this restriction we derive a generalization
of the descent lemma that allows us to capture the impact of the
approximation of the Newton direction on the convergence rate.

Lemma 6: Consider an ADD-N algorithm with iterates as
defined by (17), approximate Newton step as in (31),
and stepsize . The norm of the dual gradient is
reduced at each iteration according to the relation

(43)

where the Lipshitz constant, and strict convexity coefficient,
are defined in Lemma 1 and is a uniform bound eigenvalue

bound defined in (21).
Proof: Consider the gradient norm at iteration

and the definition of the Newton step approximation error
at iteration as given in (19). We can then write

because the last three terms in the right-hand side cancel each
other out. Apply now the triangle inequality to write

The expression can be rewritten as the
integral using the defini-
tions of and as the gradient and Hessian of the dual ob-
ject defined in (51). By Lipschitz continuity as required

in Lemma 1, this expression is less than , yielding

To bound the first term in the expression above consider the
definition of the approximate Newton step in
(19) combined with (22) to get . We conclude
that

To complete the proof just observe that according to Lemma 2
the error norm is bounded above by .
Lemma 6 shows that the reduction in the dual gradient at each

iteration, (62) has a linear term and a quadratic term. The first
(quadratic) term is the same term that appears in the analysis of
Newton’s method, [18, Ch. 9]. The second (linear) term corre-
sponds to the error in the step approximation due to the trun-
cation of the series in (15). Since the coefficient of
the linear term can be made small with respect to that of the
quadratic term for suitably selected .
Parts (ii) and (iii) of Theorem 2 are simple characterizations

of the values of the dual gradient for which the quadratic
and linear terms dominate (62), respectively. Let us begin by
characterizing the quadratic phase. Applying Lemma 6 we ob-
serve that when , we can rewrite the
relation from Lemma 6 as

(44)

Simplifying algebraically we have

(45)
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which coincides with the relationship in (36) that corresponds
to the claim in Part (ii) of Theorem 2. We claim quadratic con-
vergence because substituting into
(45) we guarantee that . Finally, in order guar-
antee the quadratic phase is realized we require that

which is achieved by limiting the line search parameter to
.

For the terminal phase we consider
and subbing into (43) and simplifying we

have

(46)
which coincides with the relationship in Part (iii) of Theorem
2. We observe that the terminal phase does not guarantee fur-
ther progress towards the optimal. It does guarantee that we stay
within the neighborhood but in
practice we do not observe any cessation of progress in our nu-
merical experiments; see Section VII.

VI. CONSENSUS IMPLEMENTATION

We formulate ADD- as a consensus iteration truncated after
steps for the purpose of efficient distributed implementation.

Defining a consensus scheme to solve the Newton equation, (9)
we have the following update:

(47)

where the splitting is the splitting from Def-
inition 1. In this case we can limit communication costs by it-
eratively sharing information with 1-hop neighbors, rather than
needing to send information to entire -hop neighborhoods di-
rectly. Choosing the initial value to be results
in a sequence of approximations of the Newton direction as fol-
lows:

...

We observe that after consensus iterations our approximation
is the same approximation arrived at by usingADD- with
.

VII. NUMERICAL RESULTS

We use numerical experiments to verify the practicality of
the ADD-N algorithm. Our first key result is that the ADD-N
algorithm requires significantly fewer iterations to converge
than the gradient algorithm, [14] and can be executed with
much smaller communication overhead than the consensus
based Newton algorithm [22]. The second is that the distributed

Fig. 1. Primal objective (top), and primal feasibility (bottom),
with respect to number of local information exchanges for a sample network

optimization problem with 25 nodes and 75 edges. ADD converges an order of
magnitude faster than consensus-based Newton and two orders of magnitude
faster than gradient descent.

line search method outlined in Algorithm 2 can be substituted
for Algorithm 1 without loss of performance when using
the ADD-N algorithm to select a descent direction. Finally,
we consider the robust routing problem proposed in [7] and
demonstrate that our framework not only solves this problem
but that ADD-1 outperforms gradient descent by upwards of 2
orders of magnitude.

A. Parameter Selection and Communication Overhead

Fig. 1 shows convergence metrics in the primal domain for
a randomly generated network with 25 nodes and 75 edges.
Edges in the network are selected uniformly at random. The
flow vector is chosen to place sources a full from
the single sink. We use as our ob-
jective function. We show results for ADD-0 through ADD-3,
gradient descent, and consensus-based Newton. These algo-
rithms are implemented with the same fixed stepsize
in Figs. 1–5. We define communication cost in terms of in-
formation exchanges where one “information exchange” is a
transmit/receive event where each node updates any subset of
its local copies of variables belonging to its neighbors .
In Fig. 2, convergence of the dual objective is demonstrated

with respect to both dual iterations and number of local infor-
mation exchanges required. Different versions of ADD differ in
the number of communication instances required per iteration.
Although ADD-3 converges in few dual iterations that ADD-1,
it can be seen in Fig. 2 that ADD-1 converges with fewer total
information exchanges. In Fig. 1, the faster convergence relative
to communication cost for ADD- with smaller can also be
observed in the primal domain.
The communication costs per dual iteration for consensus-

based Newton and the gradient descent algorithm also differ
from ADD- . Fig. 1 demonstrates the algorithms’ progress
with respect to the number of times nodes exchange informa-
tion with their 1-hop neighbors. All versions of ADD are about
an order of magnitude faster than consensus-based Newton and
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Fig. 2. Dual objective with respect to dual iterations (top), Dual Objective
with respect to communication cost (bottom) for a sample network optimization
problem with 25 nodes and 75 edges: ADD converges two orders of magnitude
faster than gradient descent in both cases. The convergence rate increases with
respect to iterations as increases but when the increased communication is
accounted for we observe the best performance with small .

Fig. 3. Number of local information exchanges required per dual descent iter-
ation is shown for sample network optimization problem with 25 nodes and 75
edges. ADD-N has a fixed local communication requirement per iteration equal
to which yields more consistent convergence rates with respect to com-
munication requirements.

two orders of magnitude faster than gradient descent. As shown
in Fig. 3, ADD- has a fixed communication cost per iteration
while consensus can require arbitrarily many communications.
The number of communications per iteration is very large for the
first few iterations of consensus-based Newton. It is clear that
a major benefit of the ADD family is that unlike the consensus
based Newton algorithm, precious communication resources are
not wasted computing an extremely accurate Newton direction
in early iterations when the return on this investment is minimal.
Fig. 3 also shows that once the consensus Newton algorithm
reaches its local phase it requires a very small number of dual
iterations to remain below the error threshold. Intuitively, we ex-
pect the ADD-N algorithm to do as well as consensus Newton
even with small , once in the quadratic phase is reached.

Fig. 4. (a) Histogram shows the number of local communications required to
reach for gradient descent, consensus-based Newton and
ADD-2 for 50 trials of the network optimization problem on random graphs
with 25 nodes and 75 edges. ADD-2 converges faster and with much more con-
sistency than gradient descent or consensus-based Newton. (b) Histogram of
the number of local communications required to reach for
ADD-N with respect to parameter N, for 50 trials of the network optimization
problem on random graphs with 25 nodes and 75 edges. ADD-2 is shown to be
the best on average by about 10 indicating that with respect to communication
cost, larger is not necessarily better.

Another important conclusion of Fig. 1 is that even though
increasing in ADD decreases the number of iterations re-
quired, there is not a strict decrease in the number of commu-
nications. Indeed, as can be seen from Fig. 1, ADD-2 requires
fewer communications than ADD-3. This fact demonstrates an
inherent trade off between spending communication instances
to refine the Newton step versus using them to take a step.
We further examine this phenomenon in Fig. 4(b). These ex-
periments are on random graphs with 25 nodes and 75 edges
chosen uniformly at random. The flow vector is selected by
placing a source and a sink at away from each other.
We consider an algorithm to have converged when its residual

Fig. 4(a) summarizes the comparison between the ADD
family and existing methods. Using ADD-N for any small N,
is not only an order of magnitude faster than the next fastest
approach, consensus-based Newton but it is significantly more
consistent. This consistency is due to the fixed number of
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Fig. 5. Min, mean and max number of local communications required to reach
for gradient descent, consensus-based Newton and ADD,

computed for 35 trials each on random graphs with 25 nodes and 75 edges (1),
50 nodes and 350 edges (2), and 100 nodes and 1000 edges (3). Themin andmax
are on the same order of magnitude for ADD, demonstrating small variance.

dual iterations needed to approximate the Newton direction.
It would be more correct to say the consensus-based Newton
is inconsistent due to the wasted communication resources
demonstrated by the dual iterations per primal iteration peak
shown in Fig. 3. This inconsistency comes primarily from vari-
ations in the number of dual iterations required to approximate
the Newton direction. The behavior of ADD is also explored for
graphs of varying size and degree in Fig. 5. As the graph size
increases the performance gap between ADD and competing
methods increases. Consistency of ADD is also apparent since
the maximum, minimum, and average information exchanges
required to solve (1) for different network realizations are
similar. This is not the case for consensus-based Newton or for
gradient descent. Further note that ADD’s communication cost
increases only slightly with network size.

B. Distributed Line Search

We also use our numerical experiments to demonstrate that
the distributed version of the backtracking line search is func-
tionally equivalent to the centralized backtracking line search
when the descent direction is chosen by the ADDmethod. Fig. 6
shows an example of a network optimization problem with 25
nodes and 100 edges being solved using ADD-1 with the cen-
tralized and distributed backtracking line searches. The top plot
shows that the trajectory of primal objective is not significantly
affected by the choice line search. The middle plot shows that
primal feasibility is approached asymptotically at the same rate
for both algorithms. The bottom plot shows that a unit stepsize
is achieved in the same number of steps despite the fact that
in Algorithm 2 each node selects its own local line search pa-
rameter . Thanks to Lemma 4 we are guaranteed strict local
improvement eventually leading to local selection of step seize

for all which is equivalent to a global step size of
. Thus our implementation is truly distributed. In Fig. 7,

we look closer at the number of steps required to reach a unit
stepsize. We compare the distributed backtracking line search
to its centralized counterpart on networks with 25 nodes and
100 edges, 50 nodes and 200 edges, and 100 nodes and 400

Fig. 6. Distributed line search results in solution trajectories nearly equiva-
lent to those of the centralized line search. Top: the Primal Objective follows a
similar trajectory in both cases. Middle: Primal Feasibility is achieved asymp-
totically. Bottom: unit stepsize is achieved for all nodes in the same number of
steps it requires to achieve a global unit step size.

Fig. 7. Distributed line search reaches unit stepsize in two to three iterations.
Fifty simulations were done for each algorithm with , , and
and for Networks with 25 nodes and 100 edges (small), 50 nodes and 200 edges
(medium) and 100 nodes and 400 edges (large).

edges. For each network optimization problem generatedwe im-
plemented distributed optimization using ADD-1, ADD-2, and
ADD-3.Most trials required only two or three iterations to reach

for both the centralized and distributed line searches. The
variation came from the few trials which required significantly
more iterations. As might be expected, increasing causes the
distributed and centralized algorithms to behave closer to each
other. When we increase the size of the network most trials still
only require two to three iterations to reach but for the
cases which take more than two iterations we jump from around
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Fig. 8. The robust routing problem is solved efficiently by the ADD-1 algo-
rithm, while the gradient descent method and FISTA method both require 10 s
of thousands of iterations. The top figure shows the total variance of the routing
selected at iteration . The bottom figure shows whether the current routing is
feasible.

ten iterations in the 25-node networks to around 40 iterations in
100-node networks.

C. Robust Routing Problem

The robust routing problem is a network optimization
problem focusing on selecting an optimal routing when links
have uncertainties in their channel capacity [7]. Each edge has
a known variance and expected capacity . The objective
is to select a the flow variable that satisfies the
conservation of constraint with the minimum total variance,
when the expected flow arrivals are given by the vector :

s.t. (48)

We can recover the network flow problem by taking the local
coordinate transform . Defining the diagonal ma-
trices and we can state the robust
routing problem

s.t. (49)

We solve (49) by applying the ADD-1 algorithm and projecting
the primal variables onto the interval during each primal
update. While the effect of this projection is not considered an-
alytically in this work, the effect of capacity constraints is dis-
cussed at length in [11]. Fig. 8 shows a sample solution to (49)
on a proximity network with 50 nodes, 224 edges. The matrix
R is diagonal with values selected uniformly random on [0,1].
Sigma is diagonal with values are selected uniformly random
on [0,10]. The vector b has a single sink with all other nodes
being sources. This example emulates a wireless sensor network
streaming data to a base station.

Fig. 9. Given 100 hundred trials of the robust routing problem, we find that
after 100-iteration ADD-1 makes significantly more progress towards the op-
timal point than FISTA and gradient descent which have high values of infea-
sibility. After 1000-iteration ADD-1 was reached the optimal to machine pre-
cision in more than 60% of the trials while gradient descent and FISTA have
at best a feasibility threshold of and significant errors remaining in the
objective value.

In our example, ADD-1 is compared to gradient descent and
the fast iterative shrinking threshold algorithm (FISTA) pre-
sented in [38] and updated for distributed implementation in
[39]. Distributed FISTA represents the state of the art for fast
distributed gradient methods, when methods requiring network-
wide message passing are excluded, see Section I. In Fig. 8,
FISTA is a significant improvement over gradient descent but
it still requires an order of magnitude more iterations to reach
feasibility than ADD-1. The experiment is re-
peated 100 times and the progress of each algorithm is examined
as a histogram after 100 and 1000 iterations; see Fig. 9. After
100-iteration ADD-1 had reached for nearly
20% of the trials while neither gradient nor FISTA had reached
that threshold for any trials. After 1000 iterations ADD-1 had
reached feasibility with 60% at machine precision and over 95%
smaller than . Furthermore, relative error in the objective
also had over 60% at machine precision and over 95% smaller
than . As with the ADD-1 method the error in the objec-
tive is on the same order as the feasibility, . These exper-
iments demonstrate that while FISTA significantly accelerates
gradient descent, it is still fundamentally a first-order method.
The ADD-1 algorithm solves the robust routing problem an
order of magnitude faster than FISTA.

VIII. CONCLUSION

A family of accelerated dual descent (ADD) algorithms to
find optimal network flows in a distributed manner was intro-
duced. Members of this family are characterized by a single pa-
rameter determining the accuracy in the approximation of the
dual Newton step. This same parameter controls the communi-
cation cost of individual algorithm iterations. We proved for any
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there is a phase during which convergence toward the optimal
is quadratic. ADD-1 andADD-2 outperform gradient descent by
two orders of magnitude and a related consensus-based Newton
method by one order of magnitude.
This work has been extended into the stochastic case by [40]

and to the capacity constrained case in [11]. We have also used
the ADD as a foundation for Accelerated backpressure [13]
which stabilizes queues in capacitated multi-commodity com-
munication networks with stochastic packet arrival rates. Fi-
nally, since the ADD algorithm approximates Newton’s method
without computing the inverse it could be investigated as a com-
putationally efficient alternative.

APPENDIX A
PROOF OF LEMMA 1

a) Consider given dual and primal variables, and
consider the second-order approximation of the primal
objective centered at the current primal iterates

(50)

We consider the optimization problem sub-
ject to , which is a quadratic maximization ap-
proximating (1). The dual of the approximate problem is
also quadratic

(51)

The dual Hessian is com-
puted by differentiating (51) twice with respect to .
Finally, we observe that our approximation is exact
the primal dual point . That is and

. Since our approximation is constructed for
arbitrary , recovers the
desired relation.

b) From part a) we have .
We can get the lower bound by choosing to
correspond with the eigenvector of with the
largest eigenvalue defined in Assumption 2(a). Then

. Since
, thus where is is the alge-

braic connectivity defined in Assumption 1(a). Likewise
we construct the lower bound by selecting to
correspond with the eigenvector of and get
that because holds from the fact
that is the unweighted graph Laplacian of .

c) From part a) we have .
Considering a change of coordinates
and the definition of the matrix norm as

we have
upper bounded by
because holds from the fact that

is the unweighted graph Laplacian of .
Since is diagonal, the matrix norm

reduces to
. Which is finite

and positive from Assumption 2(a). Applying Assump-
tion 2(b), we have

(52)

We can differentiate (4) because which
also guarantees us positivity and the upper bound

(53)

and in turn (53) guarantees that is Lipschitz contin-
uous with constant for each . Applying this to (52)
we have

(54)

and we conclude that is Lipschitz with constant
. Thus, completing the proof.

APPENDIX B
PROOF OF LEMMA 4

From the mean value theorem centered at we can write the
dual function’s value as

where the vector for some ; see, e.g.,
[18, Sec. 9.1]. We use the relation which follows
from taking principal sub matrices of a positive semi-definite
matrix and the bound which follows from (22), to
transform this equality into the bound

Introduce now a splitting of the term to generate con-
venient structure for our upper bound on

Further apply the definition of the local update vector
and use the well-conditioning of the approximate in-

verse Hessian as per Lemma 3 to claim that
and define the upper bound on as

Factoring common terms in this upper bound yields

Substituting for where ,
the second term vanishes from this expression yielding the in-
equality
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Observing that , the proof is
completed.

APPENDIX C
PROOF OF LEMMA 5

Recall from (38), the local gradient is a sparse vector
with nonzero elements for . Due the fact
that the local objective in (29) depends only on values in

, we have where is
a dummy variable for . Applying the Lipschitz dual Hessian
assumption to the local update vector we get

(55)

Also, recall the -local version of the Hessian defined
in (40). Since the elements of already satisfy for all

the resulting has the structure of a principal sub-
matrix of with the deleted rows left as zeros. Since the norm

in (55) is the maximum eigenvalue
modulus of the matrix , it is larger than
the norm because the latter is
the maximum over a subset of the eigenvalues of the former.
Combining this observation with (55) yields

(56)

Interpret the dual update as a function of defined as

(57)

Differentiating with respect to and using the definition of the
local gradient we get the derivative of as

(58)
Differentiating with respect to a second time and using the
definition of in (40) yields

(59)

Return now to (56) and replace the matrix norm on the
right hand side with left and right multiplication by the unit
vector . This yields

. Applying the derivatives

in (59), we can simplify to .
Integrating the above expression with respect to results in

which upon a second integration with respect to yields

Substitute and the definitions of the derivatives and
given in (58) and (59) to get

According to (40) the reduced Hessian has the structure of
a principal submatrix of the Hessian and it follows
that and that as a consequence

Incorporating the local update we obtain the
upper bound for local objective improvement

Recall the sparsity pattern of the local gradient to write

(60)

and split the right-hand side of (60) to generate

(61)
Substitute now (61) into (60) and the result updates our

upper bound

. Using the expression for the
quadratic form in (60) to substitute the last term in the previous
equation yields

(62)

We consider the first term in (62) rewriting

since is symmetric. A change of coordi-

nates combined with the upper bound from

Lemma 3 reveals that which
subbed into (62) gives us

(63)

We consider the second term in (63) and note
that from the definition of it follows that

. Applying the
telescoping sum trick that we applied in the proof of Lemma
2 we have . By
positive semi definiteness of we can conclude that

and subbing into (63) we have

(64)
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Reorganizing terms we have

Use to write

The bracketed portion simply sums to zero. Thus, we have
. Substituting the

definition of in (57) into this equation we arrive at
which means

that the exit condition (30) in Algorithm 2 is met with
for all nodes . Therefore all nodes exit Algorithm 2 with

from which it follows that the selected stepsize is
.
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