
1

Accelerated Backpressure Algorithm
Michael Zargham, Alejandro Ribeiro, Ali Jadbabaie

Abstract—An Accelerated Backpressure (ABP) algorithm is de-
veloped using the Accelerated Dual Descent (ADD) method, a
distributed approximate Newton-like algorithm that only uses local
information. The construction is based on writing the Backpressure
algorithm as the solution to a network feasibility problem solved via
stochastic dual subgradient descent and applying stochastic ADD
in place of the stochastic gradient descent algorithm. The ABP
algorithm is proven to guarantee queue stability throughout the
network. Numerical experiments demonstrate a significant reduction
in total packets queued at steady state.

I. INTRODUCTION

This paper considers the problem of joint routing and schedul-
ing in packet networks. Packets are accepted from upper layers
as they are generated and marked for delivery to intended des-
tinations. To accomplish delivery of information nodes need to
determine routes and schedules capable of accommodating the
generated traffic. From a node-centric point of view, individual
nodes handle packets that are generated locally as well as packets
received from neighboring nodes. The goal of each node is to
determine suitable next hops for each flow conducive to successful
packet delivery.

A joint solution to this routing and scheduling problem is
offered by the Backpressure algorithm [1]. In Backpressure, nodes
keep track of the number of packets in their local queues for
each flow and share this information with neighboring agents.
Nodes compute the differences between the number of packets in
their queues and the number of packets in neighboring queues for
all flows and assign the transmission capacity of the link to the
flow with the largest queue differential. The term backpressure
is used because the algorithm emulates the physical behavior of
fluids under pressure. Regardless of interpretation and despite its
simplicity, Backpressure can be proved to be an optimal policy
in the following sense: if given arrival rates can be supported
by some routing-scheduling policy, they can be supported by
Backpressure. Notice that Backpressure relies on queue lengths
only and does not need knowledge or estimation of packet arrival
rates. It is also important to recognize that Backpressure is an
iterative algorithm. Packets are initially routed more or less at
random but as queues build throughout the network suitable routes
and schedules are eventually learned.

The main drawback of Backpressure is the slow convergence
rate of this iterative process for route discovery. This is better
understood through an alternative interpretation of Backpressure
as a dual stochastic subgradient descent algorithm [2], [3]. Joint
routing and scheduling can be formulated as the determination
of per-flow routing variables that satisfy link capacity and flow

This research is supported by Army Research Lab MAST Collaborative
Technology Alliance, AFOSR complex networks program, ARO P-57920-NS,
NSF CAREER CCF-0952867, and NSF CCF-1017454, ONR BRC N00014-12-1-
0997 and NSF-ECS-0347285. The authors are with the Department of Electrical
and Systems Engineering, University of Pennsylvania. Address: 200 South 33rd
st. Philadelphia, PA, 19104. Phone: 215-898-9241. Fax: 215-573-2068. Email:
{zargham, aribeiro, jadbabai}@seas.upenn.edu.

conservation constraints. In this model the packet transmission
rates are abstracted as continuous variables. To solve the resulting
feasibility problem we associate Lagrange multipliers with the
flow conservation constraints and proceed to implement subgra-
dient descent in the dual domain. This solution methodology leads
to distributed implementations and for that reason is commonly
utilized to find optimal operating points of wired [4]–[6] and
wireless communication networks [7]–[9]. More important to the
discussion here, the resulting algorithm turns out equivalent to
Backpressure with queue lengths taking the place of noisy ver-
sions of the corresponding dual variables. The slow convergence
rate of Backpressure is thus expected because the convergence
rate of subgradient descent is of order O(1/

√
k) when measured

with respect to the expected objective suboptimality of kth iterate,
[10]. Simple modifications can speed up the convergence rate
of Backpressure by rendering it equivalent to stochastic gradient
descent [11] which has a convergence rate of order O(1/k) for
the expected suboptimality of kth iterate.

To reduce the convergences times for Backpressure, we need
to incorporate information on the curvature of the dual function.
This could be achieved by using Newton’s method, but the
determination of dual Newton steps requires coordination among
all nodes in the network. To overcome this limitation, methods
to determine approximate Newton steps in a distributed manner
have been proposed. Early contributions on this regard are found
in [12], [13]. Both of these methods, however, are not fully
distributed because they require some level of global coordination.
Efforts to overcome this shortcoming include approximating the
Hessian inverse with the inverse of its diagonals [14], the use of
consensus iterations to approximate the Newton step [15], [16],
and the accelerated dual descent (ADD) family of algorithms
that uses a Taylor expansion of the Hessian inverse to compute
approximations to the Newton step [17]. Members of the ADD
family are indexed by a parameter N indicating that local Newton
step approximations are constructed at each node with information
gleaned from agents no more than N hops away. ADD is proven
to achieve an exponential convergence rate and demonstrated to
reduce the time to find optimal operating points – as measured
by the number of communication instances – by two orders of
magnitude with respect to regular subgradient descent.

This paper adapts the ADD family of algorithms to develop
variations of Backpressure that will always eventually clear the
queues. This extends our previous work which used a Lya-
punov drift based argument to show the queues do not be-
come unbounded, [18]. We begin by introducing the problem
of stabilizing queues in a communication network and review
the Backpressure algorithm of [1] used to solve this problem
– Section II. We proceed to demonstrate that the Backpressure
algorithm is equivalent to stochastic subgradient descent – Section
II-A. Restating the problem in an optimization framework, we
review the generalization to Soft Backpressure – Section II-C. We
construct an approximate stochastic dual Newton step using local
information and define the Accelerated Backpressure algorithm

2

Algorithm 1: Backpressure at node i
1 for t = 0, 1, 2, · · · do
2 Observe local queue lengths {qki (t)}k for all flows k
3 for all neighbors j ∈ ni do
4 Send queue lengths {qki (t)}k – Receive {qkj (t)}k
5 Determine flow with largest pressure:

k∗ij = argmax
k

[
qki (t)− qkj (t)

]+
6 Set routing variables to rkij(t) = 0 for all k 6= k∗ij and

r
k∗ij
ij (t) = CijI

{
q
k∗ij
i (t)− qk

∗
ij

j (t) > 0
}

Transmit r
k∗ij
ij (t) packets for flow k∗ij

7 end
8 end

(ABP) which routes packets using the dual variables as queue
priorities – Section III. Implementing the dual update with a
decaying step size, we prove the queues are always eventually
empty using a supermartingale argument – Section IV. Numerical
experiments demonstrate that the ABP algorithm stabilizes with
60% shorter queues than the Backpressure algorithm of [1] and
25% shorter queues than the Soft Backpressure algorithm of [11]
– Section V.

II. PRELIMINARIES

Consider a given network G = {V, E} where V is the set of
nodes and E ⊆ V×V is the set of links between nodes. Denote as
Cij the capacity of link (i, j) ∈ E and define the neighborhood
of i as the set ni = {j ∈ V|(i, j) ∈ E} of nodes j that can
communicate directly with i. There is also a set of information
flows K with the destination of flow k ∈ K being the node ok ∈ V .

At time index t terminal i 6= ok generates a random number
aki (t) packets to be delivered to ok. The random variables aki (t) ≥
0 are assumed independent and identically distributed across time
with expected value E

[
aki (t)

]
= aki . In the same time slot node i

routes rkij(t) ≥ 0 units of information through neighboring node
j ∈ ni and receives rkji(t) ≥ 0 packets from neighbor j.

The difference between the total number of received pack-
ets aki (t) +

∑
j∈ni r

k
ji(t) and the sum of transmitted packets∑

j∈ni r
k
ij(t) is added to the local queue – or subtracted if

this quantity is negative. Therefore, the number qki (t) of k-flow
packets queued at node i evolves according to

qki (t+ 1) =

[
qki (t) + aki (t) +

∑
j∈ni

rkji(t)− rkij(t)
]+

, (1)

where the projection [·]+ into the nonnegative reals is because the
number of packets in queue cannot become negative. We remark
that (1) is stated for all nodes i 6= ok because packets routed to
their destinations are removed from the system.

To ensure packet delivery it is sufficient to guarantee that all
queues qki (t + 1) remain stable. In turn, this can be guaranteed
if the average rate at which packets exit queues is less than
the rate at which packets are loaded into them. To state this
formally observe that the time average limit of arrivals satisfies
limt→∞

1
t

∑t
τ=0 a

k
i (τ) = E

[
aki (t)

]
:= aki and define the ergodic

limit rkij := limt→∞
1
t

∑t
τ=0 r

k
ij(τ). If the processes rkij(t)

controlling the movement of information through the network are
asymptotically stationary, queue stability follows if∑

j∈ni

rkij − rkji ≥ aki + ξ ∀ k, i 6= ok (2)

where ξ > 0 is a small constant. For future reference, define
the vector r := {rkij}k,i 6=ok,j , built by stacking all the routing
variables rkij . Since at most Cij packets can be transmitted by the
link (i, j) the routing variables rkij(t) always satisfy∑

k

rkij(t) ≤ Cij (3)

We emphasize that (3) holds for all times whereas (2) holds in
terms of time averages. The joint routing and scheduling problem
can be formally stated as the determination of nonnegative vari-
ables rkij(t) ≥ 0 that satisfy (3) for all times t and whose time
average limits rkij satisfy (2). The Backpressure algorithm solves
this problem by assigning all the capacity of the link (i, j) to the
flow with the largest queue differential qki (t)−qkj (t). Specifically,
for each link we determine the flow pressure

k∗ij = argmax
k

[
qki (t)− qkj (t)

]+
. (4)

If the maximum pressure maxk
[
qki (t)− qkj (t)

]+
> 0 is strictly

positive we set rkij(t) = Cij for k = k∗ij . Otherwise the link
remains idle during the time frame. The resulting algorithm is
summarized in Algorithm 1. The Backpressure algorithm works
by observing the queue differentials on each link and then
assigning the capacity for each link to the data type with the
largest positive queue differential, thus driving the time average
of the queue differentials to zero and stabilizing the queues as
a consequence. For the generalizations developed in this paper
it is necessary to reinterpret Backpressure as a dual stochastic
subgradient descent as we do in the following section.

A. Dual stochastic subgradient descent

Since the parameters that are important for queue stability
are the time averages rkij of the routing variables rkij(t) an
alternative view of the joint routing and scheduling problem is
the determination of variables rkij satisfying (2) and (3). This can
be formulated as the solution of an optimization problem. Let
fkij(r

k
ij) be arbitrary concave functions on R+ and consider the

optimization problem

r∗ := argmax
∑

k,i 6=ok,j

fkij(r
k
ij) (5)

s.t.
∑
j∈ni

rkij − rkji ≥ aki + ξ, ∀ k, i 6= ok,∑
k∈K

rkij ≤ Cij , ∀ (i, j) ∈ E .

where the optimization is over nonnegative variables rkij ≥ 0.
Since only feasibility is important for queue stability, solutions to
(5) ensure stable queues irrespectively of the objective functions
fkij(r

k
ij).

Since the problem in (5) is concave, it has null duality gap
and can be solved in dual domain using a descent algorithm.
We associate the multipliers λki with the constraints

∑
j∈ni r

k
ij −

rkji ≥ aki + ξ and keep the constraints
∑
k r

k
ij ≤ Cij implicit.

3

The Lagrangian associated with the optimization problem in (5)
is then defined as

L(r, λ) =
∑

k,i 6=ok,j

fkij(r
k
ij) +

∑
k,i 6=ok

λki

(∑
j∈ni

rkij − rkji − aki − ξ
)
,

(6)
where we have introduced the vector λ := {λi}ni=1 stacking the
n local multipliers λi := {λki }k:i 6=ok which in turn stack all the
multipliers at node i that are associated with different flows. The
Lagrange dual function is defined as

h(λ) := max∑
k r

k
ij≤Cij

L(r, λ). (7)

To compute a descent direction for h(λ) define the primal
Lagrangian maximizers as a function of λ,

Rkij(λ) := argmax∑
k r

k
ij≤Cij

L(r, λ). (8)

A descent direction for the dual function is available in the form
of the dual subgradient whose components ḡki (λ) are obtained
by evaluating the constraint slack associated with the Lagrangian
maximizers

ḡki (λ) :=
∑
j∈ni

Rkij(λ)−Rkji(λ)− aki − ξ. (9)

Since the Lagrangian L(r, λ) in (6) is separable in the routing
functions Rkij(λ) the determination of the maximizers Rkij(λ) :=
argmax∑

k r
k
ij≤Cij L(r, λ) can be decomposed into the maximiza-

tion of separate summands. Considering the coupling constraints∑
k r

k
ij ≤ Cij it suffices to consider variables {rkij}k for all flows

across a given link. After reordering terms it follows that we can
compute the routing on each edge (i, j),

Rkij(λ) = argmax
∑
k

fkij(r
k
ij) + rkij

(
λki − λkj

)
(10)

s.t.
∑
k∈K

rkij ≤ Cij .

Introducing a time index t, subgradients ḡki (λ(t)) could be com-
puted using (9) with Lagrangian maximizers Rkij(λ(t)) given by
(10). A subgradient descent iteration could then be defined to find
the variables r∗ that solve (5); see e.g., [19].

The problem in computing ḡki (λ) is that we don’t know the av-
erage arrival rates aki . We do observe, however, the instantaneous
rates aki (t) that are known to satisfy E

[
aki (t)

]
= aki . Therefore,

gki (λ, t) :=
∑
j∈ni

Rkij(λ)−Rkji(λ)− aki (t)− ξ, (11)

is a stochastic subgradient of the dual function in the sense that
its expected value E

[
gki (λ, t)

]
= ḡki (λ) is the subgradient defined

in (9). We can then minimize the dual function using a stochastic
subgradient descent algorithm. At time t we have multipliers λ(t)
and determine Lagrangian maximizers rkij(t) = Rkij(λ(t)) as per
(10). We then proceed to determine the stochastic subgradient
gki (t) = gki (λ(t), t) using (11) and update multipliers along the
stochastic subgradient direction,

λki (t+ 1) =
[
λki (t)− αtgki (λ(t), t)

]+
=
[
λki (t)− αtgki (t)

]+
,

(12)
where the projection [·]+ into the nonnegatives is to ensure the
dual variables stay feasible and αt is a stepsize sequence appro-
priately chosen so as to ensure convergence; see e.g., [11]. For

Algorithm 2: Backpressure as stochastic subgradient descent
1 Observe qki (0). Initialize λk

i (0) = qki (0) for all k and i 6= ok
2 for t = 0, 1, 2, · · · do
3 for all neighbors j ∈ n(i) do
4 Send duals {λk

i (t)}k – Receive duals {λk
j (t)}k

5 Determine flow with largest dual variable differential:

k∗ij = argmax
k

[
λk
i (t)− λk

j (t)
]+

6 Set routing variables to rkij(t) = 0 for all k 6= k∗ij and

r
k∗ij
ij (t) = CijI

{
λ
k∗ij
i (t)− λk∗ij

j (t) > 0
}

Transmit r
k∗ij
ij (t) packets for flow k∗ij

7 end
8 Send variables {rkij(t)}kj – Receive variables {rkji(t)}kj
9 Update multipliers {λk

i (t)}k along stochastic subgradient

λk
i (t+1) =

[
λk
i (t)−αt

(∑
j∈n(i)

rkij(t)+r
k
ji(t)−aki (t)−ξ

)]+
10 end

future reference define the local vector gi(t) := {gki (t)}k:i 6=ok that
stacks all the stochastic subgradients at node i that are associated
with different flows and the global vector g(t) := {gi(t)}ni=1 that
stacks the n local stochastic subgradient vectors gi(t).

Substituting gki (t) for its explicit expression in (11) with
rkij(t) = Rkij(λ(t)) yields the dual variable update

λki (t+1) =

[
λki (t)−αt

(∑
j∈ni

rkij(t)−rkji(t)−aki (t)−ξ
)]+

, (13)

which, except for the presence of the step size αt and the constant
ξ, is equivalent to the queue update in (1). Properties of the
descent algorithm in (13) vary with the selection of the functions
fkij(r

k
ij). Two cases of interest are when fkij(r

k
ij) = 0 and when

fkij(r
k
ij) are continuously differentiable, strongly concave, and

monotone decreasing on R+ but otherwise arbitrary. The former
allows an analogy with the backpressure as given by Algorithm
1 while the latter leads to a variation termed Soft Backpressure.

B. Backpressure as stochastic subgradient descent

The classical Backpressure algorithm, [1] can be recovered by
setting fkij(r

k
ij) = 0 for all links flows k and links (i, j). With

this selection the objective to be maximized in (10) becomes∑
k r

k
ij

(
λki (t)− λkj (t)

)
. To solve this maximization it suffices to

find the flow with the largest dual variable differential

k∗ij = argmax
k

[
λki (t)− λkj (t)

]+
. (14)

If the value of the corresponding maximum is nonpositive, i.e.,
maxk

[
λki (t)− λkj (t)

]+ ≤ 0, all summands in (10) are non-
positive and the largest objective in (10) is attained by making
rkij(t) = 0 for all flows k. Otherwise, since the sum of routing
variables rkij(t) must satisfy

∑
k∈K r

k
ij ≤ Cij the maximum

objective is attained by making rkij(t) = Cij for k = k∗ij and
rkij(t) = 0 for all other k.

The algorithm that follows from the solution of this max-
imization is summarized in Algorithm 2. The dual stochastic
subgradient descent is implemented using node level protocols.

4

Algorithm 3: Soft Backpressure at node i
1 Observe qki (0). Initialize λk

i (0) = qki (0) for all k and i 6= ok
2 for t = 0, 1, 2, · · · do
3 for all neighbors j ∈ n(i) do
4 Send duals {λk

i (t)}k – Receive duals {λk
j (t)}k

5 Compute µij such that∑
k

F k
ij

(
−
[
λk
i − λk

j − µij(λ)
]+)

= Cij

6 Transmit packets at rate

rkij(t) = F k
ij

(
−[λk

i (t)− λk
j (t)− µij]

+
)

7 end
8 Send variables {rkij(t)}kj – Receive variables {rkji(t)}kj
9 Update multipliers {λk

i (t)}k along stochastic subgradient

λk
i (t+1) =

[
λk
i (t)−αt

(∑
j∈ni

rkij(t)− rkji(t)− aki (t)− ξ
)]+

10 end

At each time instance nodes send their multipliers λki (t) to
their neighbors. After receiving multiplier information from its
neighbors, each node can compute the multiplier differentials
λki (t) − λkj (t) for each edge. The node then allocates the full
capacity of each outgoing link to whichever commodity has the
largest differential. Once the transmission rates rkij(t) are set they
are used for communication. Nodes also share these variables as
shown in Step 7 so that they can be used to compute the stochastic
gradient in (11). This stochastic gradients are used to update the
multipliers as shown in Step 8 [cf. (13)].

Comparing (4) with (14) we see that the assignments of flows
to links are the same if we identify multipliers λki (t) with queue
lengths. Furthermore, if we consider the Lagrangian update in
(13) with αt = 1 for all times t and ξ = 0 we see that they
too coincide. Thus, we can think of Backpressure as a particular
case of stochastic subgradient descent. From that point of view
algorithms 1 and 2 are identical. The only difference is that
since queues take the place of multipliers the update in Step 8
of Algorithm 2 is not necessary in Algorithm 1. The exchange
of routing variables {rkij(t)}kj in Step 7 that is necessary to
implement Step 8 is not needed as well.

C. Soft Backpressure

Assume that the functions fkij(r
k
ij) are continuously differen-

tiable, strongly convcave, and monotone decreasing on R+. In
this case the derivatives y = ∂fkij(x)/∂x ≤ 0 for all x ≥ 0 and
thus have inverse functions that we denote as

F kij(y) :=
[
∂fkij(x)/∂x

]−1
(y) ≥ 0, ∀y ≤ 0. (15)

The Lagrangian maximizers in (10) can be explicitly written
in terms of the derivative inverses F kij(y). Furthermore, the
maximizers are unique for all λ implying that the dual function
is differentiable. We detail these two statements in the following
proposition.

Proposition 1. If the functions fkij(r
k
ij) in (5) are continuously

differentiable, strongly convcave, and monotone decreasing on

λ2i

λ1i

λ3i

Node i

λ2j

λ1j

λ3j

Node j

r2ij = F 2
ij(−[λ2i − λ2j − µij(λ)]+)

r1ij = F 1
ij(−[λ1i − λ1j − µij(λ)]+)

r3ij = F 3
ij(−[λ3i − λ3j − µij(λ)]+)

edge (i, j)

Fig. 1. Flow variables rkij encoding packet transmission rates are computed from
dual variables at nodes i and j. For Backpressure and Soft Backpressure the
variables λki are equivalent to the queue lengths qki . For Accelerated Backpressure,
λki is a priority rating for qki . The constant µij(λ) is chosen so that the total rate∑

k r
k
ij stays below the edge’s capacity Cij .

R+, the dual function h(λ) := max∑
k r

k
ij≤Cij L(r, λ) is differen-

tiable for all λ. Furthermore, the gradient component along the
λki direction is ḡki (λ) as defined in (11) with

Rkij(λ) = F kij

(
−
[
λki − λkj − µij(λ)

]+)
. (16)

where µij(λ) is either 0 if
∑
k F

k
ij

(
−
[
λki − λkj

]+) ≤ Cij or
chosen as the solution to the equation∑

k

F kij

(
−
[
λki − λkj − µij(λ)

]+)
= Cij . (17)

Proof. The dual problem (7) is convex because it is the Lagrange
dual of a concave maximization problem. Since f(r) is strongly
concave, the maximizers R(λ) generated by (10) are unique. Thus
ḡ(λ) is unique for any λ, ensuring that h(λ) is differentiable,
appendix A.4 [20].

To compute the maximizers R(λ), we consider the primal opti-
mization (10). Taking the Lagrange dual of the domain constraints
yields the extended Lagrangian,

L̄(r, µ) =
∑
k

fkij(r
k
ij) + rkij(λ

k
i −λkj) +µij(Cij −

∑
k

rkij). (18)

Considering the Karush-Kuhn-Tucker (KKT) optimality condi-
tions as defined in [20][Section 5.5] for (18) yields the equations

f ′ij,k(rkij) = −
[
λki − λkj − µij

]+
(19)∑

k

rkij ≤ Cij (20)

for all (i, j) ∈ E where f ′ij,k(x) = ∂fkij(x)/∂x. Applying the
definition of F kij(·) from equation (15) to (19) we get the desired
relation in (16). It remains to enforce (20) by selection of µij
which gives us condition (17). The assertion that

µij = 0 when
∑
k

F kij
(
−
[
λki − λkj

]+) ≤ Cij (21)

holds by complementary slackness, [20, Section 5.5]. �

While (17) does not have a closed form solution it can be
computed quickly numerically using a binary search because it is
a simple single variable root finding problem. We operate under
the assumption that computation time cost is small compared to
communication time cost.

5

The result in Proposition 1 combined with the stochastic
subgradient descent iteration in (13) yields the Soft Backpressure
algorithm summarized in Algorithm 3. Soft Backpressure is im-
plemented using node level protocols. At each time instance nodes
send their multipliers λki (t) to their neighbors. After receiving
multiplier information from its neighbors, each node can compute
the multiplier differentials λki (t) − λkj (t) for each edge. The
nodes then solve for µij on each of its outgoing edges to satisfy
(17). The capacity of each edge is then allocated to the different
commodities using the expression in (16). With the transmission
rates {rkij(t)}kj set, we proceed as in regular Backpressure. The
communication rates are used for communication and also shared
with neighbors as shown in Step 7. These variables determine the
stochastic gradient in (11) which is used to update the multipliers
as shown in Step 8 [cf. (13)].

Algorithm 3 is called Soft Backpressure because rather than
allocating all of an edge’s capacity to the data type with the largest
pressure λki − λkj , it divides the capacity among the different
data types based on their respective pressures via (16). This
expression has a reverse water filling interpretation; see [11].
We further observe that Soft Backpressure is solved using the
same information required of Backpressure, the lengths of the
queues for all data types on either end of the link whose flow
you are computing. This means that assuming a step size αt = 1
and constant ξ = 0, Algorithm 3 can be implemented without
computing the multipliers but rather by simply observing the
queue lengths qki (t) which are equal to the dual variables λki (t).

An important difference between Backpressure and Soft Back-
pressure is that the former is equivalent to stochastic subgradient
descent whereas the latter is tantamount to stochastic gradient
descent because the dual function is differentiable. This improves
the average convergence rate from O(1/

√
k) to O(1/k). In

practice, Soft Backpressure is still slow to converge, motivating
the ABP algorithm that we introduce in the following section.

III. ACCELERATED BACKPRESSURE

The backpressure-type algorithms of Section II exhibit slow
convergence because they use rate of change information, but have
no knowledge of curvature. In twice differentiable centralized
deterministic problems, second order methods such as Newton
method are used to take advantage of curvature information.
Direct application of Newton-type methods is not possible here
because: (i) the dual function is not twice differentiable; (ii) only
a stochastic gradient can be observed in accordance with (11);
(iii) the Newton direction requires data gathering and processing
at a central node. We solve (i) by introducing a generalized
Hessian; (ii) is resolved by the fact that the generalized Hessian is
deterministic in this case and (iii) is resolved by using a Taylor’s
expansion of the Hessian inverse to approximate the Newton
direction.

A. The Generalized Hessian

The dual function is not twice differentiable because the La-
grange dual defined in (7) has domain constraints which cause
lack of smoothness in its gradient – see propositions 2 and 3.
However, the second order behavior can be characterized by a
Generalized Hessian, which is analagous to a subgradient because
it may be taken from a set of values defined by the convex hull of
the left and right limits approaching the points of discontinuity.

g2i

g1i

g3i

a1i a2i a3i

d
(m)
i

Node i

g2j

g1j

g3j

a1j a2j a3j

d
(m)
j

Node j

g2l

g1l

g3l

a1l a2l a3l

d
(m)
l

Node l

r1ij

r1ji

r2ij

r2ji

r3ij

r3ji

r1il

r1li

r2il

r2li

r3il

r3li

d
(m−1)
id

(m−1)
i

d
(m−1)
jd

(m−1)
l

Fig. 2. The Update of the queue priorities λki is determined by the value of
the gradient component gki =

∑
j∈ni r

k
ji − rkij − aki − ξ which is determined

by the values of local and neighboring routing variables as well as the arrival
rates observed from upper layers. In Backpressure and Soft Backpressure the
gradient is just subtracted from λki . In Accelerated Backpressure the gradient is
used along with local curvature information to determine the approximate Newton
direction d(N)

i . This is accomplished by the embedded communication loop that
we summarize in Algorithm 5.

Definition 1 (Generalized Hessian [21]). We say that H(λ) is a
generalized Hessian of the dual function h(λ) = L(R(λ), λ) if
and only if

H(λ) ∈ ∂2L(R(λ), λ) = co

{
lim

λ̄→λ,λ̄∈Dg
∇2L(R(λ), λ)

}
(22)

where co{·} denotes convex hull and Dg is the set of points on
which L(R(λ), λ) is twice differentiable.

Writing H(λ) in block form we have,

H(λ) =

H11(λ) H12(λ) · · · H1n(λ)
H21(λ) H22(λ) . . . H2n(λ)

...
...

. . .
...

Hn1(λ) Hn2(λ) · · · Hnn(λ)

 . (23)

The matrix (23) has n × n blocks where each of the blocks
is a square matrix with dimension K equal to the number of
commodity types. The elements of the (i, j)th block are explicitly
given by [

Hij(λ)
]
kl

:=
∂2h(λ)

∂λki ∂λ
l
j

=
∂2L(R(λ), λ)

∂λki ∂λ
l
j

, (24)

where we expressed the dual function h(λ) = L(R(λ), λ) in terms
of the Lagrangian maximizers R(λ) in (8) to write the second
equality. As per (24), the (i, j)th block Hij is associated with
second derivatives with respect to dual variables of nodes i and
j. The (k, s)th element of each block is associated with second
derivatives with respect to commodities k and s.

Implicit in (24) is the differentiation of R(λ) with respect to
λ. It can be seen from (16) that Rkij(λ) is not differentiable at
the points where µij(λ) = λki − λkj . These points arise precisely
when the capacity constraint on edge (i, j) becomes active.

6

We show that Dg is a dense set by considering differentiability
of Rkij(λ) in two cases. First, consider the case with λ such that∑
k R

k
ij(λ) = Cij , then according to Proposition 1, Rkij(λ) is

may not be differentiable when λki −λkj = µij(λ), due to the [·]+
function. According to (15), when λki − λkj = µij(λ), we have
Rkij(λ) = F kij(0) = maxx f

k
ij(x). By monotonicity (decreasing)

of fkij(x) on R+, the optimal routing is the function Rkij(λ) = 0
which is differentiable with ∇Rkij(λ) = 0 for any λ such that
λki − λkj < µij(λ). Therefore, given λki − λkj = µij(λ) when
can choose λ̄ with λ̄ki = λki − ε for sufficiently small ε > 0 and
λ̄kj = λkj for all j 6= i ensuring Rkij(λ̄) is differentiable.

Second, assume we have λ such that
∑
k R

k
ij(λ) < Cij . Then

according to Proposition 1, µij = 0 and Rkij(λ) is differentiable
as long as λki 6= λkj . If λi = λj , there is a λ̄ with λ̄ki = λki +ε and
λ̄j = λj for all i 6= j which is differentiable for ε small enough to
ensure

∑
k R

k
ij(λ̄) < Cij ; by continuity of F kij(x) a sufficiently

small ε exists. Furthermore, when µij = 0 and λki < λkj , we have
λki − λkj < µij(λ) and Rkij(λ) = 0 which yields the property
that the discontinuities all occur between non-trivial functions of
λ and the zero function.

From Proposition 1, if the capacity constraint is not active,
the gradient ∇λRkij(λ) is a non-trivial function of λ, but when
the capacity constraints becomes active ∇λRkij(λ) is zero. Since
the points of discontinuity are transitions between the nonzero
gradients and zero gradients ∇λRkij(λ) = 0 the definition of
the set of Generalized Hessians in (22) allows us to select the
null derivative at these points to generate a specific Generalized
Hessian.

We proceed to compute this specific Generalized Hessian. The
set of commodities that are active across a particular edge are
important. Thus, for given λ and edge (i, j) ∈ E define

Kij(λ) = {k ∈ K : Rkij(λ) > 0}, (25)

as the set of commodities that are being transported across given
edge (i, j) for multipliers λ. Further define the capacity sharing
coefficients

sij(λ) =

{
1/|Kij(λ)| if µij(λ) > 0,

0 if µij(λ) = 0,
(26)

which take the value zero when the capacity constraint on
edge (i, j) is inactive, i.e., when

∑
k r

k
ij(λ) < Cij , and equals

the inverse cardinality 1/|Kij(λ)| of the set Kij(λ) when the
link capacity is saturated. Using these definitions computing the
generalized Hessian H(λ) is a straightforward but cumbersome
derivation that we relegate to Appendix A. The results are stated
in the following two propositions that concern the off-diagonal
blocks Hii(λ) and diagonal blocks Hii(λ), respectively.

Proposition 2. Let Hij(λ) denote an off diagonal block of
the generalized Hessian H(λ) in (23) associated with the dual
function h(λ) defined in (7) and denote the derivative of the
inverse derivative function F kij(λ) of (15) as F ′ij,k = ∂F kij(λ)/∂λ.
The kth diagonal element of the Hessian block Hij(λ) is given
by[

Hij(λ)
]
kk

= F ′ij,k

[
Rkij(λ)

]
1
[
k ∈ Kij(λ)

][
1− sij(λ)

]
+F ′ji,k

[
Rkji(λ)

]
1
[
k ∈ Kji(λ)

][
1− sji(λ)

]
.

(27)

where Kij(λ) is the set of active commodities in the link i → j
defined in (25) and sij(λ) is the capacity sharing coefficient in
(26). The (k, l)th off diagonal element of Hij(λ) can be written
as [

Hij(λ)
]
kl

= −F ′ij,k
[
Rkij(λ)

]
1
[
k, l ∈ Kij(λ)

]
sij(λ)

−F ′ji,k
[
Rkji(λ)

]
1
[
k, l ∈ Kji(λ)

]
sji(λ). (28)

Proof. See Appendix A. �

Proposition 3. The diagonal blocks Hii(λ) of the generalized
Hessian H(λ) in (23) associated with the dual function h(λ)
defined in (7) are given by the sums of the off diagonal blocks
Hij(λ), i.e.,

Hii(λ) =
∑
j

Hij(λ) =
∑
j∈ni

Hij(λ). (29)

Proof. See Appendix A. �

The expression in (29) reduces computation of the diagonal
blocks of H(λ) to the computation of the off diagonal blocks.
Their validity endows the Hessian of the dual function with an
interpretation as a weighted block Laplacian. The expressions in
(27) and (28) look complicated but are actually simple. The terms
of the form F ′ij,k(Rkij(λ)) are just the derivatives of the inverse
derivative function in (15). If, e.g., we use quadratic functions
fkij(R

k
ij(λ)) = −(Rkij(λ))2/2 we just have F ′ij,k(Rkij(λ)) = −1.

The indicator function 1(k ∈ Kij(λ)) in (27) simply dis-
tinguishes between the values of λ for which commodity k is
transported from i to j from those for which it is not. The term
F ′ij,k(Rkij(λ))(1 − sij(λ)) is added to the Hessian component
[Hij]kk if and only if the commodity k is active in the link i→ j.
Likewise the term F ′ji,k(Rkji(λ))(1− sji(λ)) is added to Hessian
component [Hij]kk if and only if the commodity k is active in the
link j → i. The variables sij simply distinguish the case when
µij(λ) is null from when it is not, or, equivalently, the case when
some of the link capacity is left unused from the case when all
of the link capacity is allocated to some node. If some capacity is
unused in the link i → j we have µij(λ) = 0 and the derivative
F ′ij,k(Rkij) is not scaled. If all of the capacity in the link i → j

is used, the derivative F ′ij,k(Rkij) is scaled by (1− 1/|Kij(λ)|).
Likewise, the indicator functions 1(k, l ∈ Kij(λ)) and 1(k, l ∈
Kji(λ)) in (28) imply that the corresponding terms are added to
the Hessian component [Hij]kl only if both commodities, k and l
are active in the link i→ j or the link j → i. If some capacity is
left unused in the link i→ j we have sij(λ) = 0 and nothing is
added to the Hessian component [Hij]kl. If all of the capacity is
used we scale the derivative F ′ij,k(Rkij(λ)) by the inverse of the
number of active commodities on the link, 1/|Kij(λ)|. Likewise,
we add nothing to [Hij]kl if some capacity is left unused in the
link j → i and scale F ′ji,k(Rkji(λ)) by the inverse of the number
of active commodities on the link j → i otherwise.

Propositions 2 and 3 define a generalized Hessian for the dual
function h(λ) defined in (7). The components of the Hessian
depend on the primal Lagrangian maximizers Rkij(λ) as well as
the auxiliary variable µij(λ). As it follows from Proposition 1,
both of these quantities depend on the dual variable λ but are
independent of the arrival rates aki . This is because the gradient
dependence on the arrival rates is an additive constant [cf. (9)].
This simple fact is of fundamental importance here because it
allows exact computation of the generalized Hessian H(λ) and the

7

consequent implementation of a stochastic Newton algorithm in
which generalized Hessian inverses H−1(λ) premultiply stochas-
tic gradients gki (λ) instead of (regular) gradients ḡki (λ). Indeed,
consider time index t and current iterate λ(t) and recall that g(t)
stands for the stochastic subgradient with components given by
(11). The stochastic Newton method replaces the dual update in
(12) by the recursion

λ(t+ 1) =
[
λ(t)− αtH−1(t)g(t)

]+
, (30)

where we have used H−1(t) = H−1(λ(t)) to denote the inverse
of the generalized Hessian evaluated at λ(t). The deterministic
nature of the generalized Hessian H−1(t) when λ(t) is given
permits the definition of the dual stochastic Newton algorithm
in (30). This possibility notwithstanding, implementation of the
stochastic Newton method in (30) requires centralized computa-
tion of the generalized Hessian inverses H−1(t). The remaining
challenge addressed by ABP is to approximate the inversion of
H(λ) through local operations. We discuss this in the following
section.

B. Distributed Approximation of the stochastic Newton Step

We begin by pointing out that the generalized Hessian in (23)
with blocks as explicitly given in propositions 2 and 3 is block
sparse with a sparsity pattern that matches the adjacency matrix
of the network. We state this in the following lemma along with
the fact that the diagonal blocks Hii(λ) are positive semidefinite.

Lemma 1. The Dual Hessian, H(λ) in (23) associated with the
dual function h(λ) defined in (7) is block sparse with respect to
the graph G, i.e.,

Hij(λ) = 0 for all i 6= j, s.t. (i, j) 6∈ E . (31)

Furthermore, the diagonal blocks of Hii(λ) are positive semidef-
inite.

Proof. From (26),
∑
k 1(k ∈ Kij)sij = 1, combined with

(29), we have [Hii]kk ≥
∑
l[Hii]kl. Recall, F ′ij,k(rkij) ≤ 0

from (15) and the assumption that fkij(·) is monotone decreas-
ing. Therefore the diagonal elements are positive and according
to [22, Section 6.2] Hii is positive semidefinite by diagonal
dominance. Block sparsity arises trivially from the fact that
∂/∂λk

′

i′

(
−
[
λki − λkj − µij

]+)
= 0 for any k′ when i′ is not

i or j. �

Lemma 1 guarantees that all elements of the Hessian can
be computed using local information. Elements of the Hessian
require knowledge of the local action sets Kij(λ) from (25),
which are computed using the local flow values {rkij(λ)}k.
Furthermore, Lemma 1 states that the diagonal blocks Hii(λ)
are positive semidefinite, which in turn indicates that the nodes
depend positively on their own queues. This fits our intuition
because we expect penalties on a specific queue to become larger
when those queues grow.

In order to accelerate Backpressure and retain its distributed
nature we compute a dual update direction based on the ADD
family of algorithms defined in [23]. ADD relies on splitting
the dual Hessian and leverages its block sparsity pattern to
approximate its inverse. To be explicit, consider the dual iterate
λ(t) at time t and denote as H(t) = H(λ(t)) the corresponding
Hessian. Let I denote an identity matrix of proper dimension and

define the block diagonal matrix D(t) with diagonal blocks Dii(t)
defined in terms of the Hessian diagonal blocks Hii(t) as

Dii(t) = 2Hii(t) + I. (32)

The Hessian splitting separates the block diagonal matrix D(t)
for which we define a matrix B(t) := D(t) − H(t) so that we
can write

H(t) = D(t)−B(t) (33)

= D(t)
[
I −D−1(t)B(t)

]
.

For future reference observe that B(t) has the same sparsity
pattern of H(t). Denote the diagonal blocs of B(t) as Bii(t) =
Dii(t)−Hii(t) = I +Hii(t) and the off diagonal blocks of B(t)
as Bij(t) = −Hij(t)

The ADD-N algorithm approximates the Hessian inverse
H−1(t) by truncating the Taylor’s expansion of the term[
I −D− 1

2 (t)B(t)D−
1
2 (t)

]−1

at its N th term. Using H̄(N) to
denote such approximation we have

H̄(N)(t) =

N∑
m=0

[
D−1(t)B(t)

]m
D−1(t). (34)

Relying on the Hessian inverse approximation in (34) to substitute
H−1(t) in the stochastic Newton method in (30) yields the ABP-
N algorithm. Specifically, define the ABP-N direction as

d(N)(t) := − H̄(N)(t)g(t) (35)

= −
N∑
m=0

[
D−1(t)B(t)

]m
D−1(t)g(t),

and the ABP-N algorithm by recursive application of the iteration

λ(t+1) =
[
λ(t)−αtH̄(N)(t)g(t)

]+
=
[
λ(t)+αtd

(N)(t)
]+
. (36)

Equivalently, we can define the local components d(N)
i (t) of the

ABP direction d
(N)
i (t) = {d(N)

i (t)}ni=1 so that it is possible to
rewrite (36) for each of the multiplier components,

λi(t+ 1) =
[
λi(t) + αtd

(N)
i (t)

]+
. (37)

The important observation here is that the ABP-N direction
d

(N)
i (t) in (37) can be computed by node i by aggregating

information from, at most, N hops away. Indeed, observe that
B(t) has a sparsity pattern that matches the sparsity pattern of the
network, because this is true of H(t). Thus, when we consider
the second summand

[
D−1(t)B(t)

]1
in (35) we end up with a

matrix whose sparsity pattern is that of the underlying network.
When we consider the third term

[
D−1(t)B(t)

]2
the resulting

sparsity pattern is that of the network of two-hop neighbors.
Since determination of the ABP direction d(N)(t) necessitates
communication with the nodes that match this sparsity pattern, no
information from nodes farther than N hops away is necessary.

More to the point, observe that the ABP-0 direction can be
written as d(0) = −D−1gi and that for all N other than 0 we can
write the recursion

d(N)(t) = −D−1(t)g(t) +D−1(t)B(t)d(N−1)(t). (38)

Exploiting the fact that the sparsity pattern of B(t) is that of the
network and using the definitions of the local pieces d(N)

i of the
ABP direction and gi(t) of the gradient as well as the definition

8

Algorithm 4: Local computation of ABP direction

1 function dNi = ABP-N dir
(
{rkij , rkji}jk, {aki }k, {µij}j

)
2 Active sets Kij as per (25). Sharing coefficients sij as per (26)
3 Hessian blocks Hij as per (27) and (28). Blocks Hii as per (29)
4 Set Dii = 2Hii + I , Bii = I +Hii and Bij = −Hij

5 Stochastic gradients: gki =
∑
j∈ni

rkji − rkij − aki − ξ

6 Initialize ABP direction: d(0)i = −D−1
ii gi,

7 for m=1,. . . , N do
8 Send d(m−1)

i to j ∈ ni. Receive directions d(m−1)
j from j ∈ ni

9 Update ABP direction:
d
(m)
i = −D−1

ii gi(t) +
∑
j∈ni

D−1
ii Bijd

(m−1)
j

10 end
11 return d

(N)
i = d

(m)
i

of the blocks Dii and Bij the recursion in (38) is equivalent to
the componentwise recursions

d
(N)
i (t) = D−1

ii (t)gi(t) +
∑

j∈ni,j=i
D−1
ii (t)Bij(t)d

(N−1)
j (t), (39)

where the ABP-0 direction can also be computed locally as
d

(0)
i (t) = −D−1

ii (t)gi(t).
The expression in (39) results in a local function for the

computation of the local ABP direction di(t) that we shown
in Algorithm 4. The inputs to this function are routing rates
rkij = rkij(t) and rkji = rkji(t) for all neighbors j ∈ ni and
flows k; arrival rates aki = aki (t) for all flows k; and water levels
µij for all neighbors j ∈ ni. All of these variables are available
locally except for the incoming rates rkji that are communicated
from neighbors. These inputs are used to determine the active
sets Kij in (25) and the capacity sharing coefficients sij in (26)
as stated in Step 2. Observe that in (25) and (26) these sets and
coefficients are defined as functions of λ, which they are, but
that is suffices to know rkij , r

k
ji, and µij to compute them. These

preliminary computations are then used in Step 3 to determine
the local Hessian blocks Hij using the expressions (27) and
(28) of Proposition 2 and the Hessian blocks Hii using (29) in
Proposition 3. The values of the Hessian block are then used
to determine the corresponding blocks of the splitting matrices
in (33). These blocks are Dii = 2Hii + I , Bii = I + Hii

and Bij = −Hij , which are computed in Step 4. The local
components of the stochastic gradient gki are then computed as
dictated by (11). These preliminary computations lead to the core
of the algorithm in steps 6-10 that implement the recursion in
(39). Step 6 initializes the recursion by determining the value of
the ABP-0 direction d(0)

i = −D−1
ii gi. The update in Step 9 utilizes

local and neighboring components of the ABP-(m− 1) direction
to compute the local component of the ABP-m direction. To
have the neighboring components available for this computation
the local components of the ABP-(m − 1) direction have to be
shared between neighbors as stated in Step 8. The outcome of N
iterations of this loop is the ABP-N which is returned in Step
11. Observe that to implement this loop we require a total of N
communication exchanges with neighboring nodes.

ABP is summarized in Algorithm 5. The algorithm is identical
to Soft Backpressure up until Step 8 and is repeated for clarity.
The difference is that instead of updating the dual variables by
descending on the local stochastic gradient we descend along the

Algorithm 5: Accelerated Backpressure for node i
1 Observe qki (0). Initialize λk

i (0) = qki (0) for all k and i 6= ok
2 for t = 0, 1, 2, · · · do
3 for all neighbors j ∈ n(i) do
4 Send duals {λk

i (t)}k – Receive duals {λk
j (t)}k

5 Compute µij such that∑
k

F k
ij

(
−
[
λk
i − λk

j − µij(λ)
]+)

= Cij

6 Transmit packets at rate

rkij(t) = F k
ij

(
−[λk

i (t)− λk
j (t)− µij]

+
)

7 end
8 Send variables {rkij(t)}kj – Receive variables {rkji(t)}kj
9 d

(N)
i (t) = ABP-N dir

(
{rkij(t), rkji(t)}jk, {aki (t)}k, {µij}j

)
10 Update dual variables: λi(t+ 1) =

[
λi(t) + αtd

(N)
i (t)

]+
11 end

TABLE I
MAXIMUM COMMUNICATION COST PER NODE AND ITERATION,

RELATIVE TO THE MAXIMUM DEGREE ∆

Communication Computation

Backpressure O(∆) O(∆)

Soft Backpressure O(2∆) O(3∆)

Accelerated Backpressure O((N + 2)∆) O(N∆2 + 3∆)

local ABP-N direction d
(N)
i (t) (Step 10). The ABP-N direction

is computed with a call to Algorithm 4 to which the routing rates
rkij(t) and rkji(t), the arrival rates aki = aki (t), and the water levels
µij are passed as parameters (Step 8).

Implementation of each ABP-N iteration requires N + 2 com-
munications with each neighbor. These include the exchange of
duals and primals in steps 4 and 8 of Algorithm 5 and the N
exchanges of ABP directions in Step 9 of Algorithm 4. This is
an extra N communications per neighbor relative to the cost of
Soft Backpressure – which requires only exchanges of primals
and duals – and an extra N +1 communications relative to Back-
pressure – which requires exchange of primals only. Denoting
the maximum node degree as ∆ this gives communication costs
of order O((N + 2)∆), O(2∆), and O(∆) as summarized in
Table I. The computational cost of each Backpressure iteration
grows proportional to number of neighbors as we need to perform
primal computations for each link. For Soft Backpressure we have
primal and dual computations in steps 6 and 9 of Algorithm 3
each of which grows with the number of neighbors. We also need
to compute the water level µij as per Step 5 of Algorithm 3,
the complexity of which also scales linearly with the number
of neighbors. This yields a total complexity that scales in the
order of 3∆. For ABP-N we also have to implement N matrix
products at a cost of not more than ∆2 operations each. The
resulting computational costs are also summarized in Table I. We
emphasize that all these costs grows with the maximum degree ∆
rather than with the size of the network n. The communications
and computation costs of ABP grow with the parameter N . Larger
N generates a more accurate approximation of the Newton Step

9

at the cost of additional communication and computation. In
practice, implementations with N = 1 perform best in practice;
see Section V.

IV. STABILITY ANALYSIS

In order to claim the ABP algorithm is an alternative to the
Backpressure and Soft Backpressure algorithms, a guarantee that
it achieves queue stability is provided. We do so by combining
a Lyapunov drift analysis [2] with duality theory, in particular as
applied to stochastic subgradient descent, [10]. For compactness
we make use of matrix vector notation and annotate time as
subindices instead of arguments. The queue update equation in
(1) becomes

qt+1 = qt − g(λt) (40)

where qt = {qki (t)}, and g(λt) = {gki (λt)} both of which are
organized as (n − 1) stacks of |K|-dimensional vectors. For the
dual update in (36) we also remove the projection operator and
write

λt+1 = λt + αtdt (41)

where λt = λ(t) and dt = d(N)(t). We can remove the projection
in (36) because in problem (5) the capacity constraint is binding at
the optimal point, making the problem equivalent to the equality
constrained case. We proceed with our analysis using (41) and
start by proving important properties of stochastic gradients and
Hessians.

Lemma 2. The stochastic gradient is bounded

‖gt(λ)‖ ≤ γ, ∀t, ∀λ, (42)

every Generalized Hessian satisfies

‖H(λ)‖ ≤ Γ, ∀λ (43)

and the approximate inverse Hessian is bounded

0 < δ ≤ ‖H̄(λ)‖ ≤ N + 1, ∀λ (44)

where N is the communication parameter introduced in (34).

Proof. For gt(λ), consider (11) and recall our assumption that the
random portion of the arrivals has finite support. Then observing
from (8) that R(λ) lies in a compact polyhedral set

R(λ) ∈ C = {r ≥ 0 :
∑
k

rkij ≤ Cij , ∀(i, j) ∈ E}, (45)

implies that gt(λ) has a finite upper bound γ that holds for all λ
and all t.

In the case of H(λ), we follow the same logic as for gt(λ).
Consider any Generalized Hessian definition satisfying (22) and
the element-wise definition in (24). H(λ) is a function of R(λ)
because ∇h(λ) = ḡ(λ) defined in (9). From (25) and (26), Kij(λ)
and sij(λ) are computed from R(λ), so we can express

‖H(λ)‖ = ‖H̃(R(λ))‖ (46)

using Propositions 2 and 3. From the derivation of these propo-
sitions in Appendix A, H̃(r) is finite, for finite r for any
Generalized Hessian. Since R(λ) lies in the compact polyhedral
set from (45), we have

‖H(λ)‖ ≤ max
r∈C
‖H̃(r)‖ = Γ. (47)

In the case of H̄t(λ), we consider its construction for an arbitrary
Generalized Hessian H = H(λ). Observing equation (34) and
considering the splitting H = D − B, each term in the sum
(34) is positive definite with largest eigenvalue upper bounded by
maxi eig

(
(Dii)

−1
)
. Since

Dii = Hii + I � I

where Dii � 0 for any λ, we have ‖H̄(N)(λ)‖ ≤ N + 1.
Since each term in the sum from (34) is positive, we con-

sider the first term for which a lower bound δ is given by
mini eig(D−1

ii) = 1/(1 + maxi eig(Hii)) where maxi eig(Hii) is
precisely the maximum achievable eigenvalue of a diagonal block
of H(λ). Since each H(λ) can be expressed as H̃(R(λ)) the
maximum achievable value is finite for R(λ) ∈ C, guaranteeing
that our lower bound δ is strictly positive. �

Lemma 3. The dual function h(·) satisfies,

h(λ̂)− h(λ) ≤ ḡ(λ)′(λ− λ̂) +
Γ

2
‖λ− λ̂‖2 (48)

where Γ is the upper bound for all generalized Hessians defined
in Lemma 2.

Proof. We begin with the statement of the generalized second
order Taylor expansion taken directly from item (iv) of section 2
in [24]. Given a once continuously differentiable function h(λ)
with gradient ḡ(λ) and set of generalized Hessians H(λ),

h(λ)− h(λ̂)− ḡ(λ)′(λ̂− λ) ∈ S(λ, λ̂) (49)

where the set S(λ, λ̂) is defined

S(λ, λ̂) =

{
1

2
(λ− λ̂)′H(λ− λ̂) : H ∈ ∪z∈[λ,λ̂]H(z)

}
. (50)

Consider the maximal element in s̄(λ, λ̂) = maxS(λ, λ̂),

s̄(λ, λ̂) = max
H∈∪z∈[λ,λ̂]H(z)

1

2
(λ− λ̂)′H(λ− λ̂). (51)

From the uniform upper bound on all generalized Hessians,
||H|| ≤ Γ, we have

s̄(λ, λ̂) ≤ Γ

2
(λ− λ̂)′(λ− λ̂). (52)

Since h(λ̂) − h(λ) − ḡ(λ)′(λ̂ − λ) belongs to the set S(λ, λ̂), it
can be no larger than the maximal element in that set,

h(λ̂)− h(λ)− ḡ(λ)′(λ̂− λ) ≤ s̄(λ, λ̂). (53)

Applying (52) to (53), completes the proof. �

Proposition 4. Consider the ABP algorithm implemented with
the dual step (41), decaying step size αt satisfying

∑
t αt = ∞,∑

t α
2
t <∞ and the ADD-N update direction d(N)

t as defined in
(35), then

lim
t→∞

‖ḡ(λt)‖ = 0 (54)

almost surely.

Proof. See Appendix B. �

Proposition 4 is the first step in our theoretic convergence
guarantee. By implementing a decaying step size when updating
the dual variables, convergence to the optimal dual variables is
achieved. Since the sequence of dual variables converges to the
optimal dual variables almost surely, our routing Rkij(λt) becomes

10

a feasible routing. We proceed to leverage this fact to ensure the
queues remain stable.

Proposition 5. Consider a dual variables process λt such that
the dual gradient ḡ(λt) satisfies

lim
t→∞

||ḡ(λt)|| = 0, a.s. (55)

Then, all queues empty infinitely often with probability one, i.e.,

lim inf
t→∞

qki (t) = 0, a.s., for all k, i 6= ok (56)

Proof. The result in (56) is true if for arbitrary time τ ≥ 0 and
arbitrary constant ε the queue length qki (t) is almost surely smaller
than ε at some point the future. To write this statement formally
define the stopped process

q̃ki (t) =

{
qki (t) if qki (u) > 0 for all τ ≤ u ≤ t,
0 else . (57)

The stopped process q̃ki (t) follows the queue length process qki (t)
until the queue length becomes null for the first time after time τ .
If and when the queue empties after time τ the process is stopped
and all subsequent values are set to q̃ki (t) = 0. With this definition
(56) is equivalent to

lim
t→∞

q̃ki (t) = 0, a.s., for all k, i 6= ok (58)

I.e., the definition of the stopped process allows replacement of
the limit infimum in (55) by a regular limit in (58).Without loss
of generality we consider τ = 0 in (57) to simplify notation.

Consider the queue update defined in equation (1) rewritten in
terms of the routing function in equation (8),

qki (t+ 1) = qki (t)−
∑
j∈ni

(
Rkij(λt)−Rkji(λt)− aki (t)

)
. (59)

Define a σ-algebra encoding the histories for the queues and dual
variables up to time t,

σt = {λτ , qτ | ∀τ ≤ t}. (60)

Taking expectation with respect to the arrival process and condi-
tioned on the past history as encoded by σt,

E
[
qki (t+ 1)

∣∣σt] = qki (t)−
∑
j∈ni

(
Rkij(λt)−Rkji(λt)−aki

)
(61)

where we recall E
[
aki (t)

]
= aki . Observe from definition (9)

ḡki (λt) + ξ =
∑
j∈ni

(
Rkij(λt)−Rkji(λt)− aki

)
. (62)

Substituting into (63) we have

E
[
qki (t+ 1)

∣∣σt] ≤ qki (t)− ḡki (λt)− ξ. (63)

From proposition 4 we know that ‖ḡ(λt)‖ converges to zero
almost surely, therefore there exists a T such that ‖ḡ(λt)‖ ≤ ξ−ε
for all t ≥ T for any ε ∈ (0, ξ). For any particular (i, k), we have
|ḡki (λt)| ≤ ‖ḡ(λt)‖, allowing us to conclude that

E
[
qki (t+ 1)

∣∣σt] ≤ qki (t)− ε, ∀t ≥ T (64)

for all qki (t) ≥ ε because qki (t) ≥ 0 for all t.
Recalling the definition of the stopped process in (57) it follows

from (64) that there exists a time T such that

E
[
q̃ki (t+ 1)

∣∣σt] < q̃ki (t) (65)

for all q̃ki (t) > 0, therefore q̃ki (t) converges to zero almost surely.
While qki (t) may move away from zero after q̃ki (t) converges, we
reinitialize the stopped martingale process to show that qki (t) must
eventually return to zero. �

Corollary 1. Consider the Accelerated Backpressure algorithm,
defined by (41) with d

(N)
t as defined in (35) and primal La-

grangian maximizers defined in (10). If the step size sequence
is chosen to satisfy

∑
t αt = ∞ and

∑
t α

2
t < ∞, all queues

become empty infinitely often with probability one,

lim inf
t→∞

qki (t) = 0, a.s., for all k, i 6= ok. (66)

Proof. From Proposition 4, we know that ||ḡ(λt)|| converges to
zero which allows application of Proposition 5. From Proposition
5 it is guaranteed that each queue has a limit infimum equal to
zero, which is equivalent to having each queue become empty
infinitely often. �

Corollary 1 is a sufficient condition for queue stability. In fact it
is a much stronger result because the queues are always eventually
cleared. This occurs because our dual variables converge to the
optimal priorities which yield a routing Rkij(λk) which forces the
queue lengths to decrease in Expectation whenever they are non-
zero.

V. NUMERICAL ANALYSIS

Numerical experiments are performed to compare the ABP al-
gorithm summarized in algorithms 4 and 5 with the Backpressure
and Soft Backpressure algorithms summarized in algorithms 2 and
3. In all algorithms we use a fixed step size αt = 1. Observe that
constant stepsizes are not covered by the guarantees of Section
IV. We use constant stepsizes here to understand this different
scenario. The objective function used for Soft Backpressure and
ABP is of the form

fkij(r
k
ij) = −1

2

(
rkij
)2

+ βkijr
k
ij . (67)

The quadratic terms increase the cost of routing a large number of
packets across a single link and help to eliminate myopic routing
choices that lead to sending packets in cycles. The linear terma
βkij are introduced to reward the transmission of packets to their
final destinations. In our experiments we set βkij = 10 for all
edges routing to their respective data type destinations, i.e., when
j = ok, and set βkij = 0 for all other i, j, k. With this choice for fkij
the derivative inverse function in (15) is simply F kij(y) = βkij−y.
This simple derivative inverse function simplifies implementation
of steps 5 and 6 of algorithms 5 and 3. In all algorithms we make
ξ = 0 and for ABP we further set the approximation parameter to
N = 1 so that ABP-1 is implemented. Of all the ABP algorithms,
ABP-1 is the one with smallest communication overhead. Higher
order members of the ABP family perform better than ABP-1.

We begin by considering the 10 node network shown in Figure
3 with individual link capacities Cij chosen uniformly at random
from the interval [10, 100]. We consider the problem of routing
5 data types having destinations that are chosen at random and
average arrival rates of 5 packets per unit of time for each data
type and node. This results in an average total load of 45 packets
per flow and 225 packets per unit of time for the network as a
whole. Recall that these arrival rates are unknown to nodes which
respond to the number of packets that are received in each time
slot. The number of packets that arrive in each time slot is selected

11

1

2

3

4

5

67

8 9

10

Fig. 3. Several numerical experiments for the ABP algorithm presented in this
section are performed on this 10 node network with 5 data types. The destinations
are unique for each data type and are chosen randomly.

0 100 200 300 400 500 600
0

1000

2000

3000

4000

5000

6000

7000

8000
Total Queued Packets

iteration

Σ
i,k

 q
ik

Backpressure
Soft Backpressure
Accelerated Backpressure

Fig. 4. Without access to arrival statistic, the ABP algorithm learns a routing strat-
egy that stabilizes the queues faster than the Soft Backpressure or Backpressure
algorithms, leading to fewer queued packets at steady state.

from the discrete uniform distribution over the set {0, 1, . . . , 10}.

Figure 4 shows the total number of packets queued in the
system as a function of elapsed time for a sample run. ABP-
1 stabilizes the queues after about 50 iterations while Soft
Backpressure requires in excess of 100 iterations. The number of
iterations that Backpressure needs to stabilize queues is difficult
to judge due to its volatility but it seems that it takes in the
order of 300 to 400 iterations for the queues to stop growing.
Easier to judge is the fact that ABP-1 stabilizes queues at a much
shorter length. The total number of packets queued never exceeds
1,110. Soft Backpressure stabilizes with around 4,000 packets in
the system, while Backpressure grows to more than 7,000 queued
packets before reducing the number of packets to about 5,000.
Further observe that in addition to having shorter queues, ABP-1
has smaller variations in queue lengths.

The reason why ABP-1 is able to achieve less volatility in
queue lengths is because the dual variables approach their optimal
values, which in turn leads to less variation in the routing variables
computed from them. This is not true of Backpressure and
Soft Backpressure whose dual variables have large oscillations
around their optimal values. This is illustrated in Figure 5. The
dominant feature of dual variables for Backpressure and Soft
Backpressure is their oscillatory behavior. For ABP-1 the dual
variables converge to their optimal values in about 50 iterations,
which explains why queues stabilize after this much time elapses.

0 100 200 300 400 500 600
0

500

1000
Backpressure

D
ua

ls
: λ

ik

0 100 200 300 400 500 600
0

200
400

600
800

Soft Backpressure

D
ua

ls
: λ

ik

0 100 200 300 400 500 600
0

20

40

Accelerated Backpressure

D
ua

ls
: λ

ik

iteration

Fig. 5. The Accelerated Backpressure algorithm converges to the optimal dual
variables yielding a consistent routing strategy rather than the oscillatory solutions
generated by Backpressure and Soft Backpressure.

0 100 200 300 400 500 600
−800
−600
−400
−200

0
200
400

Network Balance

iteration

 Σ
i,k

 a
ik (t)

 −
 r ijk (t)

, w
he

re
 j=

o k

0 100 200 300 400 500 600
0

50

100

150

200

250
Time−Average Network Balance

iteration 1
/tΣ

τ Σ
i,k

 a
ik (τ)

 −
 r ijk (τ)

, w
he

re
 j=

o k

Backpressure
Soft Backpressure
Accelerated Backpressure

Fig. 6. A successful routing strategy is characterized by routing as many packets
out of the network as are arriving exogenously. While Soft Backpressure and soft
Backpressure can achieve this state on average, Accelerated Backpressure achieves
this balance on a per iteration basis.

The resulting stability in routing variables is illustrated in
Figure 6-top. Shown in this figure is the instantaneous value of
the queue imbalances

∑
j∈ni r

k
ij(t)− rkji(t)−aki (t) summed over

the whole network. Observe how ABP-1 succeeds in satisfying
these constraints for all times – this is not strictly true, there are
still random variations around

∑
j∈ni r

k
ij(t)− rkji(t)− aki (t) = 0

but they are small. For Backpressure and Soft Backpressure this
is not true instantaneously. It is true on average, as we show
in Figure 6-bottom, and this is sufficient to stabilize queues.
However, the instantaneous variations in this constraints make the
behavior of Backpressure and Soft Backpressure more erratic than
the behavior of ABP-1. The cost of achieving this more stable
behavior is the added communication overhead as summarized in
Table I.

The results in figures 4-6 are illustrative of a sample run. A
more comprehensive analysis involves studying statistics across a
number of realizations. We do so for the average queue balance
constraints in Figure 7, which we can interpret as a statistical
version of Figure 6-bottom. The averages in Figure 7 are across

12

0 50 100 150 200 250 300 350 400 450 500
−10

0

10

20

30

40

50
1000 Trial−Average Network Balance

iteration

1/
10

00
 Σ

z=
1

10
00

 IN
z(t)

 −
 O

U
T z(t)

Backpressure
Soft Backpressure
Accelerated Backpressure

Fig. 7. The rate of convergence for each algorithm is effectively how quickly
it can achieve a network balance. Performance can be difficult to judge in a
single realization so we compare the average across 1000 trials on barely feasible
networks.

0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

5000
Effect of Capacity Reduction on Queue Lengths

Capacity Fraction

Av
er

ag
e

To
ta

l P
ac

ke
ts

 Q
ue

ue
d

Backpressure
Soft Backpressure
Accelerated Backpressure

Fig. 8. The total packets queued are averaged over 100 realizations of packet
arrive sequences for each data point. The capacities of the edges are reduced by
50% and repeat the experiment until the problem becomes infeasible. Error bars
show ±1 standard deviation. Reduction in network capacity doesn’t significantly
effect performance until the problem is nearly infeasible.

1,000 trials. ABP-1 achieves queue balance after fewer than 50
iterations, while Soft Backpressure requires over 250 and Back-
pressure fails to achieve balance even after 500 iterations have
passed. While there are small quantitative differences between
figures 6-bottom and 7, their qualitative properties are the same.

Since network balance is equivalent to achieving a feasible
solution to the primal optimization problem, it is interesting to
consider what happens when the edge capacities are reduced,
shrinking the set of feasible routing strategies. To evaluate the
effect of edge capacities, we consider the queue stabilization prob-
lem with capacities C = ρC0 where [C0]ij are the capacities for
edge (i, j) and the capacity fraction ρ is halved until the problem
becomes infeasible, i.e., ρ = 1, 1/2, 1/4, etc. Since the arrival
rates are stochastic, the experiment is repeated 100 times for each
ρ and the mean and standard deviation are shown in Figure 8. The
results show that ABP has robust performance as the boundary
of feasibility is approached. Error bars which show ±1 standard
deviation, indicate that the ABP and Soft Backpressure solutions
are not significantly affected by the realization of packet arrivals
until the problem is nearly infeasible. Backpressure solutions had
standard deviation in excess of 50% of the mean, implying a
significant dependence on the specific packet arrival realization.

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

(ABP total Queued Packets)/(BP total Queued Packets)

N
um

be
r o

f R
ea

liz
at

io
ns

Relative Queued Backlogs by Algorithm

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

(ABP total Queued Packets)/(SBP total Queued Packets)

N
um

be
r o

f R
ea

liz
at

io
ns

Fig. 9. (top) Over 100 trials on random proximity networks, the total number
of packets queued at steady state under the ABP algorithm is on average about
40% the number left in queue by the Backpressure algorithm. (bottom) The Soft
Backpressure algorithm occasionally performs as well as Accelerated Backpressure
but on average Accelerated Backpressure reduces the steady state queued packets
by about 25%.

The analysis that we made for the specific network topology in
Figure 3 still hold for more general networks. To demonstrate
this statement we consider randomly generated networks. The
nodes are placed uniformly at random on [0, 1] × [0, 1] and are
connected if they fall within a connectivity radius of 0.4 of each
other. The arrival statistics, edge capacities and objective function
remain as before. From Figure 9, it is observed that the ABP
algorithm outperforms Soft Backpressure and Backpressure in
trials on 100 randomly generated proximity networks with 20
nodes. ABP has fewer steady state queued packets than Soft
Backpressure and Backpressure in every trial. The total number
of packets queued at steady state using ABP is on average about
40% less than the number of packets queued by Backpressure.
The Soft Backpressure algorithm occasionally performs as well
as ABP, but on average ABP reduces the total queued packets by
25%.

VI. CONCLUSION

The main contribution of this work is the introduction of
a locally computable approximation to the Newton method for
solving the queue stabilization problem. This method for packet
routing in networks is novel its use queue priorities in place of the
queue lengths themselves. This approach retains the distributed
information structure necessary for implementing the algorithm
efficiently at the node level. Node level protocols are presented
and it is proven that the ABP Algorithm stabilizes the queues
and drives them to zero infinitely often when applied with a

13

decaying step size. Numerical experiments demonstrate significant
reduction in queue lengths and the ability to stabilize queues in
significantly fewer iterations when implemented with a fixed unit
step size.

APPENDIX A: PROOF OF PROPOSITIONS 2 AND 3

Proof. We begin by computing the optimal flow rates Rkij(λ) from
the optimal queue priorities as defined in (16). Substituting into

∂L(R(λ), λ)

∂λki
=
∑
j∈ni

Rkji(λ)−Rkij(λ)− aki (68)

and differentiating with respect to λ we construct the Hessian.
Since aki is a constant the key is differentiating Rkij(λ) with
respect to λ. We can differentiate (16) using the chain rule yielding

∂Rkij(λ)

∂y
=
∂F kij(x)

∂x

∂

∂y

(
−
[
λki − λkj − µij

]+)
(69)

where y = λk
′

i′ for any k′, i′ 6= ok′ . The existence of ∂F kij(x)/∂x
is guaranteed by our assumptions on the edge costs fkij . Differen-
tiating −

[
λki − λkj − µij(λ)

]+
is done by considering two cases.

First, when the capacity constraint on edge (i, j) is inactive we
have µij(λ) = 0 from (21). In this case we have

∂

∂λki

(
−
[
λki − λkj − µij(λ)

]+)
=

{
−1 for λki > λkj
0 for λki ≤ λkj

(70)

and differentiating with respect to λkj , we have

∂

∂λkj

(
−
[
λki − λkj − µij(λ)

]+)
=

{
1 for λki > λkj
0 for λki ≤ λkj

. (71)

There is no cross dependence between commodities k and l
because µij = 0. Recall that a commodity is active on edge (i, j)
if λki > λkj , allowing us to substitute the condition λki > λkj for
k ∈ Kij in (70) and (71).

In the second case, the capacity constraint on edge (i, j) is
active and µij(λ) > 0. By our design in Proposition 1, µij(λ)
produces the reverse water filling effect, producing

∂

∂λki

(
−
[
λki − λkj − µij(λ)

]+)
=

1

|Kij(λ)|
− 1 (72)

and differentiating with respect to λkj , we have

∂

∂λki

(
−
[
λki − λkj − µij(λ)

]+)
= 1− 1

|Kij(λ)|
(73)

where Kij is the set of active commodities on the edge (i, j).
Unlike in the previous case, there are cross terms:

∂

∂λli

(
−
[
λki − λkj − µij(λ)

]+)
=

−1

|Kij(λ)|
, (74)

differentiating with respect to λlj , we have

∂

∂λli

(
−
[
λki − λkj − µij(λ)

]+)
=

1

|Kij(λ)|
. (75)

Discontinuities arise precisely when we transition from case one to
case two which corresponds to the capacity constraint becoming
active, i.e. an edge becoming saturated. In accordance with the
generalized Hessian definition in (22), we can select any value in
the convex hull of the limit points of our discontinuity. We proceed
by selecting values produced by case 1, because many of the terms
are null, greatly simplifying the computation. In fact case 1, also

contains discontinuities when a commodity becomes active on
an edge. In (70), our generalized Hessian definition allows us to
choose

∂

∂λki

(
−
[
λki − λkj − µij(λ)

]+)
= 0 (76)

when λki = λkj and the same holds for (71). To complete the
proof we must place all the partial derivatives in their appropriate
blocks. Observe that the blocks of H(λ) correspond to node pairs
(i, j). For pairs (i, j) 6∈ E the Hij = 0 because there are no terms
Rkij(λ) for these pairs. Consider Hij for (i, j) ∈ E , generated by

[Hij]kl =
∂

λki
glj(λ) =

∂

λki

(
Rlij(λ)−Rlji(λ)

)
(77)

which also holds in the case where l = k. For the diagonal blocks
more of our partial derivative terms appear,

[Hii]kl =
∂

λki
gli(λ) =

∑
j∈ni

∂

λki

(
Rlij(λ)−Rlji(λ)

)
(78)

which also holds in the case where l = k. Applying the definitions
of Kij(λ) from (25), sij(λ) from (26) and the partial derivatives
from (70)-(75), completes the construction of the generalized
Hessian. �

APPENDIX B: PROOF OF PROPOSITION 4

Proof. Applying Lemma 3, for λ = λt and λ̂ = λt+1, we have

h(λt+1) ≤ h(λt) + ḡ(λt)
′(λt+1 − λt) +

Γ

2
‖λt+1 − λt‖2. (79)

Define the dual optimality gap

Lt = h(λt)− h(λ∗). (80)

Subtracting h(λ∗) from both sides of (79), using the definition
in (80), and observing that according to the dual ABP update in
(41) we have λt+1 − λt = −αtH̄(λt)gt(λt) we can write

Lt+1 ≤ Lt−αtḡ(λt)
′H̄(λt)gt(λt) +

Γ

2
‖αtH̄(λt)gt(λt)‖2. (81)

Further recall the upper bound ‖H̄(λ)‖ ≤ 2 on the norm of
the approximate Hessian inverse as well as the upper bound
‖gt(λ)‖ ≤ γ on the norm of the stochastic gradient, both derived
in Lemma 2. Using these bounds in the third summand on the
right hand side we simplify (81) to

Lt+1 ≤ Lt − αtḡ(λt)
′H̄(λt)gt(λt) +

Γ

2
α2
t (N + 1)2γ2. (82)

Let λ0:t stand in for the history of the dual variables process up
until time t and consider the expectation E

[
Lt+1

∣∣λ0:t

]
of the

duality gap at time t+ 1 given this past history. With λ0:t given,
λt in particular is given in (82). Since the duality gap Lt and the
Hessian estimate H(λt) depend on λt only, H(λt) and Lt are
also given in (82) and the only random variable left in the right
hand side is gt(λt). Thus, it follows from (82) that the conditional
expectation E

[
Lt+1

∣∣λ0:t

]
can be bounded as

E
[
Lt+1

∣∣λ0:t

]
(83)

≤ Lt − αtḡ(λt)
′H̄(λt)E

[
gt(λt)

∣∣λ0:t

]
+

Γ

2
α2
t (N + 1)2γ2.

14

By definition, the stochastic gradient gt(λt) is such that
E
[
gt(λt)

∣∣λ0:t

]
= E

[
gt(λt)

∣∣λt] = ḡ(λt). Substituting this
equality in (83) yields

E
[
Lt+1

∣∣λ0:t

]
≤ Lt − αtḡ(λt)

′H̄(λt)ḡ(λt) +
Γ

2
α2
t (N + 1)2γ2.

(84)

Observe that the quadratic form ḡ(λt)
′H̄(λt)ḡ(λt) is positive

definite since the smallest eigenvalue of H̄(λ) is bounded by
a nonnegative constant δ as shown in Lemma 2. Using this
eigenvalue lower bound further reduces (84) to

E
[
Lt+1

∣∣Ft] ≤ Lt − αtδ‖ḡ(λt)‖+
Γ

2
α2
t (N + 1)2γ2. (85)

The sequences Lt, αtδ‖ḡ(λt)‖, and Γ
2α

2
t (N + 1)2γ2 are nonneg-

ative. The sequence Γ
2α

2
t (N + 1)2γ2 is also summable because

square summability is a condition on the step size sequence
αt. These properties allow application of the supermartingale
convergence theorem, see e.g., [25, Theorem E.7.4]. Given non-
negative stochastic processes Vt ≥ 0, Xt ≥ 0 and Yt ≥ 0 and a
sigma algebra Ft measuring the processes up until time t. If the
processes are such that

E
[
Vt+1

∣∣Ft] ≤ Vt −Xt + Yt, (86)

and the process Yt is summable with probability 1 then Xt is
almost surely summable and that the limit of Vt exists almost
surely, i.e.,

lim
t→∞

Vt = V∞,

∞∑
t=1

Xt <∞, a.s. (87)

Identifying Ft with λ0:t, Vt with Lt, Xt with αtδ‖ḡ(λt)‖ and Yt
with Γ/2α2

t (N + 1)2γ2 it follows from (87) that

lim
t→∞

Lt = L∞,

∞∑
t=0

αtδ‖ḡ(λt)‖2 <∞, a.s. (88)

We prove that L∞ not only exists but is zero for almost all
realizations. To do so, consider a realization for which L∞ 6= 0.
Then, the limit must be strictly positive because the sequence
Lt is nonnegative. In turn, this implies that there exists a time
τ such that for all t ≥ τ we have Lt ≥ κ1 for some positive
constant κ1 > 0. Since Lt = h(λt) − h(λ∗) this means that
h(λt) ≥ h(λ∗) + κ1 for all times t ≥ τ . Recall now that for a
differentiable convex function we can have ∇h(λ) = 0 only when
λ = λ∗; this is true even if h(λ) is not differentiable, as long as
we reinterpret ∇h(λ) as a subgradient. Using this fact it follows
that if h(λt) ≥ h(λ∗) + κ1 for all t ≥ τ there must be a constant
κ2 > 0 such that

‖∇h(λt)‖ ≥ κ2 > 0, for all t ≥ τ. (89)

Observe now that by definition ḡ(λt) = ∇h(λt). Thus, we can
use (89) to lower bound the series in (88) as

∞∑
t=0

αtδ‖ḡ(λt)‖2 ≥
∞∑
t=τ

αtδ‖ḡ(λt)‖2 ≥ κ2
2δ

∞∑
t=τ

αt. (90)

Since the step size sequence is nonsummable by assumption, we
have that

∑∞
t=τ αt =∞ which, upon substitution in (90) yields

∞∑
t=0

αtδ‖ḡ(λt)‖2 =∞ (91)

Since we know that (91) is true in, at most, a set of zero measure,
and also true whenever L∞ 6= 0, it must be that L∞ 6= 0 in a
set of zero probability. Thus, we must have L∞ = 0 a.s. Further
using the definition of Lt = h(λt)− h(λ∗) we conclude

lim
t→∞

h(λt) = h(λ∗), a.s. (92)

As we already pointed out the dual function is differentiable
according to Proposition 1. It then must satisfy the first order
optimality condition ḡ(λ∗) = ∇h(λ∗) = 0. Thus, the almost sure
convergence of h(λt) to h(λ∗) stated in (92) implies almost sure
convergence of ḡ(λ∗) = ∇h(λ∗) to 0 as stated in (54). �

REFERENCES

[1] L. Tassiulas and A. Ephremides. Stability properties of constrained queueing
systems and scheduling policies for maximum throughput in multihop radio
networks. IEEE Transactions on Automatic Control, 37:1936–1948, 1992.

[2] L. Georgiadis, M. J. Neely, and L. Tassiulas. Resource allocation and cross-
layer control in wireless networks. Foundations and Trends in Networking,
1:1–144, 2006.

[3] M. J. Neely, E. Modiano, and C. E. Rohrs. Dynamic power allocation and
routing for time varying wireless networks. IEEE Journal on Selected Areas
in Communications, Special Issue on Wireless Ad-Hoc Networks, 23:89–103,
2005.

[4] F.P. Kelly, A.K. Maulloo, and D.K. Tan. Rate control for communication
networks: shadow prices, proportional fairness, and stability. Journal of the
Operational Research Society, 49:237–252, 1998.

[5] S. Low and D.E. Lapsley. Optimization flow control, I: Basic algorithm and
convergence. IEEE/ACM Transactions on Networking, 7(6):861–874, 1999.

[6] A. Eryilmaz and R. Srikant. Joint congestion control, routing, and mac for
stability and fairness in wireless networks. Selected Areas in Communica-
tions, IEEE Journal on, 24(8):1514–1524, Aug 2006.

[7] M. Chiang, S.H. Low, A.R. Calderbank, and J.C. Doyle. Layering as
optimization decomposition: A mathematical theory of network architectures.
Proceedings of the IEEE, 95(1):255–312, 2007.

[8] M. J. Neely. Energy optimal control for time varying wireless networks.
IEEE Transactions on Information Theory, 52:2915–2934, 2006.

[9] A. Ribeiro and G. Giannakis. Separation principles in wireless networking.
IEEE Transactions on Information Theory, 58:4488–4505.

[10] A. Nedić and A. Ozdaglar. Distributed subradient methods for multi-agent
optimization. IEEE Transactions on Automatic Control, forthcoming, 2008.

[11] A. Ribeiro. Stochastic soft backpressure algorithms for routing and schedul-
ing in wireless ad-hoc networks. In IEEE International Workshop on
Computational Advances in Multi-Sensor Adaptive Processing, 2009.

[12] Bertsekas and Gafni. Projected newton methods and optimization of multi-
commodity flow. IEEE Transactions on Automatic Control, 28:1090–1096,
1983.

[13] J. G. Klincewicz. A newton method for convex separable network flow
problems. Bell Laboratories, 1983.

[14] S. Authuraliya and S. Low. Optimization flow control with newton-like
algorithm. Telecommunications Systems, 15:345–358, 2000.

[15] A. Jadbabaie, A. Ozdaglar, and M. Zargham. A distributed newton method
for network optimization. In Proceedings of IEEE CDC, 2009.

[16] Ermin Wei, A. Ozdaglar, and A. Jadbabaie. A distributed newton method
for network utility maximization. Automatic Control, IEEE Transactions on,
58(9):2162–2175, Sept 2013.

[17] M. Zargham, A. Ribeiro, A. Ozdaglar, and A. Jadbabaie. Accelerated dual
descent for network flow optimization. IEEE Transactions on Automatic
Control, 59(4):905–920, April 2014.

[18] M. Zargham, A. Ribeiro, , and A. Jadbabaie. Accelerated backpressure
algorithm. Proceedings of the IEEE GLOBECOM, 2013.

[19] A. Ribeiro and G. B. Giannakis. Separation theorems of wireless networking.
IEEE Transactions on Information Theory, 2007.

[20] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, Cambridge, UK, 2004.

[21] J. Sun and H. Kuo. Applying a newton method to strictly convex separable
network quadratic programs. SIAM Journal of Optimization, 8, 1998.

[22] A. Berman and R. J. Plemmons. Nonnegative Matrices in the Mathematical
Sciences. Academic Press, New York, 1979.

[23] M. Zargham, A. Ribeiro, A. Ozdaglar, and A. Jadbabaie. Accelerated dual
descent for network optimization. In Proceedings of IEEE ACC, 2011.

[24] A. Guerraggio, D. Luc, and N. Minh. Second-order optimality conditions for
c1 multiobjective programming problems. ACTA Mathematica Vietnamica,
26(3):257–268, 2001.

[25] V. Solo and X. Kong. Adaptive Signal Processing Algorithms: Stability and
Performance. Prentice-Hall, 1995.

