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Demand Response Management in Smart Grids
With Heterogeneous Consumer Preferences
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Abstract—Consumer demand profiles and fluctuating renew-
able power generation are two main sources of uncertainty in
matching demand and supply. This paper proposes a model of
the electricity market that captures the uncertainties on both the
operator and user sides. The system operator (SO) implements
a temporal linear pricing strategy that depends on real-time
demand and renewable generation in the considered period com-
bining real-time pricing with time-of-use pricing. The announced
pricing strategy sets up a noncooperative game of incomplete
information among the users with heterogeneous, but correlated
consumption preferences. An explicit characterization of the opti-
mal user behavior using the Bayesian Nash equilibrium solution
concept is derived. This explicit characterization allows the SO
to derive pricing policies that influence demand to serve practical
objectives, such as minimizing peak-to-average ratio or attain-
ing a desired rate of return. Numerical experiments show that
the pricing policies yield close to optimal welfare values while
improving these practical objectives.

Index Terms—Demand response management (DRM), game
theory, renewable energy.

I. INTRODUCTION

MATCHING power production to power consumption is a
complex problem in conventional energy grids, exacer-

bated by the introduction of renewable sources, which, by their
very nature, exhibit significant output fluctuations. This prob-
lem can be mitigated with a system of smart meters that control
the power consumption of users by managing the energy cycles
of various devices while also enabling information exchange
between users and the system operator (SO) [1], [2]. The flow
of information between meters and the SO can be combined
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with sophisticated pricing strategies so as to encourage a better
match between power production and consumption [3]–[7].
The effort of operators to guide the consumption of end users
through suitable pricing policies is referred to as demand
response management (DRM) [8].

To implement DRM, we consider pricing mechanisms that
combine real-time pricing (RTP) with time-of-use (TOU)
pricing. That is, the price depends on total consumption at
each time slot (RTP) and, in addition, the SO divides the
operation cycle into time slots (TOU). The use of TOU
allows the SO to apply temporal policies based on its antic-
ipation of consumption and renewable source generation in
each time. The use of RTP transfers part of the risks and
benefits to consumers and encourages their adaptation to
power production. When producers use RTP, users agree to
a pricing function but actual prices are unknown a priori
because they depend on the realized aggregate demand. In
this context, users must reason strategically about the con-
sumption of others that will ultimately determine the realized
price. Game-theoretic models of user behavior then arise
naturally and various mechanisms and analyses have been
proposed [3], [4], [8]–[11]—also see [12], [13] for more com-
prehensive expositions. A common feature of these schemes
is that the SO and its users run an iterative algorithm to solve
a distributed optimization problem prior to the start of an
operating cycle. The outcome of this optimization results in
individual power targets that the users agree to consume once
the operating cycle starts.

This paper proposes an RTP mechanism for DRM in which
users agree to a linear price function that depends on the
total consumption and a parameter to incentivize the use of
energy produced from renewable sources. Both total consump-
tion and the amount of energy produced by renewable sources
are unknown a priori and users must decide their consump-
tion based on uncertain estimates made public by the SO.
Instead of running an iterative optimization algorithm prior
to the start of the operating cycle, we assume that this is
all the information exchange that occurs between users and
the SO (Section II). To determine their consumption levels,
users only rely on this information to anticipate the behav-
ior of others, be aware of their influence on price, and mind
renewable resource generation forecasts. We provide an analy-
sis of this pricing policy in which users’ anticipatory behaviors
are formally modeled as the actions of rational consumers
with heterogeneous preferences repeatedly taking actions in a
game with incomplete information (Section II-B). We define
the Bayesian Nash equilibria (BNE) in these games as the
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optimal user behavior, provide explicit characterizations of the
BNE, and use the resulting characterizations to show desirable
properties of the proposed RTP mechanism, e.g., the SO can
shape uncertain demand based on its expected renewable gen-
eration, or other policy parameters (Sections III and IV).
Given the price anticipating user behavior model, we propose
two pricing policies that, respectively, aim to achieve a tar-
get rate of return and minimize consumption peak-to-average
ratio (PAR) (Section V).

The proposed pricing schemes are compared to TOU and
flat pricing schemes in which price-taking users respond
to given price values at each time slot. In addition, we
consider the complete information efficient competitive equi-
librium benchmark where the SO maximizes welfare given all
the information and users maximize selfish utilities [9], [14].
We show analytically that the proposed RTP is equivalent
to TOU and efficient benchmark in expectation and the
inefficiency in price-anticipating behavior diminishes with
increasing number of users if the correlation among users
also diminishes. Numerical analyses verify that the proposed
RTP schemes improve user utility and reduce uncertainty in
demand facilitating higher forecast accuracy. Finally, the pro-
posed PAR-minimizing policy can indeed achieve its goal with
marginal loss to welfare (Section V-C). We discuss the policy
implications of these results in Section VI.

II. SMART GRID MODEL

An SO oversees a DRM model with N users denoted by the
set N := {1, . . . , N}, each equipped with a power consump-
tion scheduler. User i ∈ N is characterized by the individual
power consumption lih at time slot h ∈ H := {1, . . . , H}.
Accordingly, we represent the total consumption at time slot
h with Lh := ∑

i∈N lih.

A. System Operator Model

The total power consumption Lh results in the SO incurring
a production cost of Ch(Lh) units. Observe that the production
cost function Ch(Lh) depends on the time slot h and the total
power produced Lh. When the generation cost per unit is con-
stant, Ch(Lh) is a linear function of Lh. More often, increasing
the load Lh results in increasing unit costs as more expensive
energy sources are dispatched to meet the load. This results
in superlinear cost functions Ch(Lh) with a customary model
being the quadratic form1

Ch(Lh) = 1

2

κh

N
L2

h (1)

for given constant κh > 0 that depends on the time slot
h and that is normalized by the number of users N. The
cost in (1) has been experimentally validated for thermal
generators [15] and is otherwise widely accepted as a reason-
able approximation [4], [8], [9].

The SO utilizes an adaptive pricing strategy whereby users
are charged a slot-dependent price ph that varies linearly with
the average power consumption per capita L̄h := Lh/N—see

1It is possible to add linear and constant cost terms to Ch(Lh) and have
all the results in this paper still hold. We exclude these terms to simplify
notation.

Fig. 1. Illustration of information flow between the power provider and
consumers. The SO determines the pricing policy (2) and broadcasts it to the
users along with its prediction of mean of the renewable term ω̄h. Selfish users
respond optimally to realize demand L∗

h = ∑
i∈N l∗ih. The realized demand

L̄∗
h and realized renewable generation term ωh determine the price at time h.

operator box in Fig. 1. The SO dispatches power from renew-
able source plants such as wind farms and solar arrays, and
incorporates renewable source generation into the pricing strat-
egy by introducing a random variable ωh ∈ R that depends on
the amount of renewable power produced at time h denoted by
Gh—see [7] for models in which SO dispatches renewables.
The per-unit power price at time slot h ∈ H is set as

ph
(
L̄h;ωh

) = γh
(
L̄h + ωh/N

)
(2)

where γh > 0 is a policy parameter to be determined by the SO
based on its objectives and the renewable source related ran-
dom variable is normalized by the number of users. We present
how the operator can pick its policy parameter γh > 0 to min-
imize PAR or achieve a desired rate of return in Section V
after modeling and analyzing consumption behavior. The ran-
dom variable ωh is such that ωh = 0 when renewable sources
operate at their nominal benchmark capacity Ḡh

2; that is, the
generation Gh at time h equals Ḡh. If the realized produc-
tion exceeds this benchmark, Gh > Ḡh, the SO agrees to set
ωh < 0 to discount the energy price and share the windfall
brought about by favorable weather conditions. If the realized
production is below the benchmark, i.e., Gh < Ḡh, the SO
sets ωh > 0 to reflect the additional charge on the users. The
specific dependence of ωh with the realized renewable energy
production and the policy parameter γh are part of the supply
contract between the SO and its users.

The operator’s price function maps the amount of energy
demanded to the market price. This is a standard model in
pricing—see [16] for a similar formulation. A fundamental
observation here is that the prices ph(L̄h;ωh) in (2) become
known after the end of the time slot h. This is because prices
depend on the average demand per user L̄h and the value of ωh,
which is determined by the amount of renewable power avail-
able in time h. Both of these quantities are unknown a priori
as shown in Fig. 1.

2The nominal benchmark capacity at time slot h, Ḡh refers to the amount
of wind power expected to be available at time h in kWh. It can be determined
with respect to the predicted wind power which then determines an expected
generation capacity for the renewable generator [3].
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We assume that the SO uses a model on the renew-
able power generation—see [3] for the prediction of wind
generation—to predict the value of ωh at the beginning of
the time h. The expectation of the renewable term denoted
by ω̄h := Eωh [ωh] is computed with respect to the predicted
distribution Pωh and is made available to all users at the
beginning of the time. By including a term that depends on
renewable generation in the price function, the SO aims to use
the flexibility of consumption behavior to compensate for the
uncertainties in renewables in real time [3], [6], [7], [17].

A particular variable that is of interest is the net rev-
enue of the SO at time h defined as the difference between
its revenue Rh(Lh) := Lhph(Lh;ωh) and its cost Ch(Lh),
that is, NRh = Rh(Lh) − Ch(Lh). The SOs net revenue over
the horizon is the sum over its time slot net revenues,
NR := ∑

h∈H NRh. Another metric that measures the well-
being of the SO is the rate of return defined as the ratio of
revenue to cost, rh := Rh(Lh)/Ch(Lh).

B. Power Consumer Model

The consumption preferences of users are determined by
random variables gih > 0 that are possibly different across
users and time. When user i consumes lih units of power at
time slot h we assume that it receives a linear utility gihlih.
The user has a diminishing marginal utility from consumption
which is captured by the introduction of a quadratic penalty
αhl2ih. This quadratic penalty implies that even when the price
charged by the SO is zero, e.g., when γh = 0, it is not in the
user’s interest to consume infinite amounts of energy. Note
that, the decay variable αh may change across time but it is
assumed to be the same for all the users. For each unit of
power consumed, the SO charges the price ph(L̄h;ωh), which
results in user i incurring the total cost lihph(L̄h;ωh). The
utility of user i is then given by the difference between the
consumption return gihlih, the power cost lihph(L̄h;ωh) and
the overconsumption penalty αhl2ih

uih
(
lih, L̄h; gih, ωh

) = −lihph
(
L̄h;ωh

)+ gihlih − αhl2ih. (3)

Using the expressions for price in (2) and L̄h, we write (3) as

uih(lih, l−ih; gih, ωh)

= −lih

⎡

⎣γh

N

⎛

⎝
∑

j∈N
ljh + ωh

⎞

⎠

⎤

⎦+ gihlih − αhl2ih (4)

where we have also rewritten the utility of user i as
uih(lih, L̄h; gih, ωh) = uih(lih, l−ih; gih, ωh) to emphasize the
fact that it depends on the consumption l−ih := {ljh}j �=i of
other users. Note that, if the SOs policy parameter is set to
γh = 0, the utility of user i is maximized by lih = gih/2αh.
This quadratic utility form can also be used to capture target
consumption of users at each time [5].

The utility of user i depends on the powers l−ih that are
consumed by other users in the current slot. These l−ih power
consumptions depend partly on their respective preferences,
i.e., g−ih := {gjh}j �=i, which are, in general, unknown to
user i. We assume, however, that there is a probability dis-
tribution Pgh(gh) on the vector of consumption preferences

gh := [g1k, . . . , gNk]T from which these preferences are drawn
from. We further assume that Pgh is normal with mean ḡh1
where ḡh > 0 and 1 is an N × 1 vector with one in every
element, and covariance matrix �h

gh ∼ N(ḡh1,�h). (5)

We use the operator Egh to signify expectation with respect
to the distribution Pgh and σ h

ij := [[�h]]ij where the opera-
tor [[ · ]]ij indicates the (i, j)th entry of its matrix argument.
Having mean ḡh1 implies that all users have equal average
preferences in that Egh(gih) = ḡh for all i. If σ h

ij = 0 for
some pair i �= j, it means that the preferences of these users
are uncorrelated. In general, σ h

ij �= 0 to account for correlated
preferences due to, e.g., weather. It is assumed that prefer-
ences gh and gl for different time slots h �= l are independent,
e.g., the jump in consumption preference from off-peak to peak
time is independent.

The probability distributions Pωh and Pgh and the parame-
ters αh and γh are common knowledge among the SO and its
users. That is, the probability distribution Pgh in (5) is correctly
predicted by the SO based on past data by assumption and is
announced to the users—see [18] for a probabilistic model and
online tracking of user preferences and also see [7] for a lin-
ear price responsive users. The pricing parameter γh and the
operator’s belief on the renewable energy parameter ωh, Pωh

are also announced. In addition, user i knows its private value
of consumption preference gih.

A selfish user’s goal is to maximize the utility
uih(lih, l−ih; gih, ωh) in (4) given its partial knowledge on
consumptions of others l−ih. Given the selfish behavior of
users, the aggregate utility of the population is defined as the
sum of consumers’ utility functions, Uh({ljh}j∈N ; gh, ωh) :=∑

i∈N uih(lih, l−ih; gih, ωh). The aggregate utility over the hori-
zon is defined as U := ∑

h∈H Uh. The welfare of the system
at time h, Wh, considers the well-being of all the entities in
the system and is defined as the sum of the net revenue at
time h, NRh, with the aggregate utility Uh

Wh := NRh + Uh = −Ch(Lh) +
∑

i∈N
gihlih − αl2ih (6)

where the second equality follows from the definition because
the monetary costs to the users cancel out the revenue
of the SO. The welfare over the horizon is defined as
W := ∑

h∈H Wh.
The dependence of each user’s utility on the consumption

of other users sets up a game among the users with play-
ers i ∈ N and payoffs given in (4). The load consumption
that maximizes a player’s payoff requires strategic reasoning,
i.e., a model of behavior for other users that comes in the form
of a BNE strategy that we introduce in the next section.

III. CONSUMERS’ BAYESIAN GAME

User i’s load consumption at time h is determined by its
belief qih and strategy sih. The belief of i is a conditional prob-
ability distribution on gh given gih, qih(·) := Pgh(·|gih). We
use Eih[·] := Egh [·|gih] to indicate conditional expectation with
respect to belief qih of user i at time h. In order to second-guess
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the consumption of other users, user i forms beliefs on their
preferences given the common prior Pgh and self-preferences
up to time h {git}t<h. Observe that self-preferences of pre-
vious times are not relevant to belief at time h as they are
independent from the present preferences. Note further that if
renewable generation is correlated with the user preferences,
the user can refine its beliefs based on the prior Pωh . User i’s
load consumption at time h is determined by its strategy which
is a complete contingency plan that maps any possible local
preference that it may have to its consumption, sih : gih �→ R

for any gih, i.e., lih = sih(gih). In particular, for user i, its
best response strategy is to maximize expected utility with
respect to its belief qih given the strategies of other users
s−ih := {sjh}j �=i

BR(gih; s−ih) = arg max
lih

Eωh

[
Eih
[
uih(lih, s−ih; gih, ωh)

]]
. (7)

A BNE strategy profile s∗ := {sih}i∈N ,h∈H is a strategy in
which each user maximizes expected utility with respect to
its own belief given that other users play with respect to their
BNE strategy.

Definition 1: A BNE strategy s∗ is such that for all i ∈ N ,
h ∈ H, and {qih}i∈N ,h∈H

Eωh

[
Eih
[
uih
(
s∗

ih, s∗−ih; gih, ωh
)]]

≥ Eωh

[
Eih
[
uih
(
sih, s∗−ih; gih, ωh

)]]
. (8)

A BNE strategy (8) is computed using beliefs formed accord-
ing to Bayes’ rule. Note that, the BNE strategy profile is
defined for all time slots, that is, no user at any given
point of time has a profitable deviation to another strategy.
Equivalently, a BNE strategy is one in which users play best
response strategy given their individual beliefs as per (7) to
best response strategies of other users—see [16], [19], [20] for
a detailed explanation. As a result, a BNE strategy is defined
with the following fixed point equations:

s∗
ih(gih) = BR

(
gih; s∗−ih

)
(9)

for all i ∈ N , h ∈ H, and gih. Using the definition in (9), the
following result characterizes the unique BNE strategy.

Proposition 1: Consider the game defined by the payoff
in (4) at time h ∈ H. Let the information given to user i be its
preference gih, the common normal prior on preferences Pgh

as per (5) and the prior on renewable generation Pωh at each
time h. Then, the unique BNE strategy of user i is linear in
ω̄h, ḡh, and gih for all h ∈ H such that

s∗
ih(gih) = aih(ḡh − ω̄hγh/N) + bih(gih − ḡh) (10)

where the constants aih and bih are entries of the vectors ah =
[a1h, . . . , aNh]T and bh = [b1h, . . . , bNh]T which are given by

ah = ((N + 1)γh/N + 2αh)
−11, bh = ρhd(�h) (11)

with constant ρh = (2(γh/N + αh))
−1 and inference vector

d(�h) = (I + ρhγhS(�h)/N)−11 (12)

obtained from the pairwise inference matrix S(�h) defined as

[[S(�h)]]ii = 0, [[S(�h)]]ij = σ h
ij

/
σ h

ii ∀i ∈ N , j ∈ N \ i.

(13)

Proof: See the Appendix.
Proposition 1 shows that there exists a unique BNE strategy.

Furthermore, the unique BNE strategy is linear in self-
preference gih at each time slot. This is a direct consequence
of the fact that the utility in (4) has quadratic form and the
prior on preferences is normal (5). From the linear strat-
egy in (10), we observe that increase in mean preference ḡh

causes an increase in consumption when aih > bih. From the
first set of strategy coefficients in (11), ah, we observe that
the estimated effect of renewable power ω̄h has a decreas-
ing effect on individual consumption. This is expected since
increasing ω̄h implies an expected increase in the price which
lowers the incentive to consume. We remark that the users
only need the mean estimate ω̄h to respond optimally. Hence,
the SO does not need to send the distribution of ωh, Pωh to
the users.

Observe that the strategy coefficients aih and bih do not
depend on information specific to user i. A consequence of
this observation is that the SO knows the strategy functions
of all the rational users via the action coefficient equations
in (11). On the other hand, the realized load consumption lih
is a function of realized preference gih, i.e., l∗ih = s∗

ih(gih),
which is private. Hence, by knowing the strategy function
the SO cannot predict the consumption level of the users
with certainty. Nevertheless, the SO can use the BNE strat-
egy to estimate the expected total consumption in order
to achieve its policy design objectives as we discuss in
Section V.

The strategy coefficients ah and bh in (11) depend on the
inference vector d(�h) which is driven by the covariance
matrix �h. In order to identify the effect of correlation among
preferences on user behavior, we define the notion σ -correlated
preferences.

Definition 2: The preferences of users are σ -correlated at
time h if σ h

ij = σ for all i ∈ N and j ∈ N \ i and σ h
ii = 1 for

all i ∈ N where 0 ≤ σ ≤ 1.
In σ -correlated preferences, the correlation among users

varies according to the parameter σ . Hence, the definition
does not allow heterogeneous correlation among pairs. When
the parameter σ is varied, the preference correlation change
is ubiquitous. The inference vector d(�h) is well-defined for
σ -correlated preferences where 0 ≤ σ ≤ 1. We interpret the
effect of correlation on the users’ BNE strategies in the next
result.

Proposition 2: Denote the BNE strategy weights by aσ
h , bσ

h
when preferences are σ -correlated. Then, when σ ′′ > σ ′, we
have the following relationship:

aσ ′
ih = aσ ′′

ih and bσ ′
ih > bσ ′′

ih ∀i ∈ N . (14)

Proof: First note that ah in (11) does not depend on the
covariance matrix, hence, it remains the same. When the pref-
erences are σ -correlated, the off-diagonal elements of the
inference matrix S(�h) in (13) are equal to σ . As a result, we
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Fig. 2. Effect of preference distribution on performance metrics. (a) Aggregate utility Uh, (b) total consumption Lh, and (c) realized rate of return rh.
Each line represents the value of the performance metric with respect to three values of σij ∈ {0, 2, 4} as color coded in the legends. Solid lines represent
the average value over 100 instantiations. Dashed lines indicate the maximum and minimum values of 100 instantiations. Changes in user preferences do not
affect mean rate of return of the SO.

can write it as S(�h) = σ(11T −I) which allows us to express
the inference vector as d(�h) = (I+ρhγhσ(11T −I))−11. Use
the relationship that (I + c(11T − I))−11 = ((N − 1)c + 1)−11
for a constant c to obtain the following weights for aσ

h and bσ
h

in (11):

bσ
h = ρh((N − 1)γhρhσ/N + 1)−11. (15)

Equation (14) follows by comparing individual entries
of (15).

Proposition 2 shows that user i’s strategy is to place less
weight on self-preference gih when the correlation between the
users increases. If user i’s preference is higher than the mean,
gih > ḡh, then increasing correlation coefficient σ decreases
consumption of user i. When gih < ḡh, user i’s consump-
tion increases as σ is increased. The intuition is as follows.
Consider the case where gih > ḡh. As the correlation coef-
ficient increases, it is more likely that others’ preferences
are also above the mean. For instance, others’ preferences
are certainly above the mean when σ = 1, given gih > ḡh.
This implies that consumption willingness of others is similar
to i, which then means the price will be higher than what is
expected when the population’s preference is at the mean. As a
result, user i decreases its consumption. An identical reasoning
follows when gih < ḡh.

The increase in correlation coefficient enhances the abil-
ity of individuals to predict others’ preferences. Alternatively,
this increase in prediction ability can be achieved via com-
munication among individuals, e.g., sharing of preferences or
consumption levels. Hence, Proposition 2 states that if commu-
nication is such that the predictive abilities of the individuals
increase, then users decrease their weight on self-preferences
and relatively increase the weight on the mean estimate ḡh.
In [20], a similar result is shown to hold for the beauty contest
game where in contrast to the game considered here, individ-
uals have the incentive to increase their action when others
increase theirs.

We note that the strategy coefficients of all users are the
same when the preferences are σ -correlated; that is, aσ

ih = aσ
jh

and bσ
ih = bσ

jh for all i ∈ N and j ∈ N \ i. Furthermore,
the effect of γh on strategy coefficients is readily identified
from (15). BNE strategy coefficients aσ

h and bσ
h decrease with

respect to increasing γh. The downward trend on consump-
tion is conceivable since increasing γh means increasing the
elasticity of price with respect to total consumption.

We remark that similar analysis as in Proposition 2 follows
when σii is equal to some constant c > σ for all i ∈ N , that
is, it suffices that the diagonals of �h are equal.

IV. NUMERICAL EXAMPLES

We numerically explore the effects of the prefer-
ence distribution Pgh (Section IV-A), policy parameter γh

(Section IV-B), and prediction errors of renewable power
term ωh (Section IV-C) on aggregate utility Uh, total consump-
tion Lh, price ph in (2), and the SOs realized rate of return rh

defined in Section II-A.
In the numerical setup, there are H = 6 h and N = 10

users. The mean preference profile for the horizon is given as
ḡ := [ḡ1, . . . , ḡH] = [30, 35, 50, 40, 30, 30]. We choose the
preference covariance matrix �h to be identical for all times,
i.e., �h = � for h ∈ H. Furthermore, we consider σ -correlated
preferences with diagonal elements σii = 4 and the correlation
is set to σij = 2 for all users unless otherwise stated. Note that,
we consider σ -correlated preferences but use σij to refer to off-
diagonal elements of �. Users are selfish with utility in (4)
and the decay parameter chosen as αh = 1.5. The cost function
parameter value is κh = 1 for h ∈ H. For the baseline setup,
the policy parameter is set to γh = 0.6 for h ∈ H. Unless
stated otherwise, the renewable power term ωh comes from
normal distribution with mean ω̄h = 0 and variance σωh = 2
for h ∈ H.

A. Effect of Consumption Preference Distribution

In Figs. 2(a)–(c), we plot aggregate utility Uh, total con-
sumption Lh, and realized rate of return rh with respect to time,
respectively. Each solid line is the mean value for the corre-
sponding metric over 100 realizations of the random variables
(gh, ωh) for each correlation value σij = {0, 2, 4}. Each dashed
plot refers to the maximum and minimum values among the
scenarios considered.

Mean preference ḡh has a significant effect on all of the per-
formance metrics except the realized profit. We observe that
as ḡh increases, e.g., from h = 1 to h = 2 or from h = 2
to h = 3, aggregate utility and total consumption increases
in Fig. 2(a) and (b), respectively. The price also increases
in peak hours with a jump in total consumption as per (2).
The increase in price does not automatically translate to an
increase in realized profit ratio in Fig. 2(c) since both revenue
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Fig. 3. Effect of policy parameter on performance metrics. (a) Total consumption Lh and (b) realized rate of return rh. Each solid line represents the average
value (over 100 realizations) of the performance metric with respect to three values of γ ∈ {0.5, 0.6, 0.7} where γh = γ for h ∈ H color coded in each figure.
Dashed lines mark minimum and maximum values over all scenarios. Total consumption decreases with increasing γ .

Fig. 4. Effect of prediction error of renewable power uncertainty ωh on performance metrics. (a) Aggregate utility
∑

h∈H Uh and (b) net revenue NR.
In both figures, the horizontal axis shows the prediction error for the renewable term in price, that is, ωh = ω and ω̄h = ω̄ for h ∈ H and it shows ω − ω̄.
Each point in the plots corresponds to the value of the metric at a single initialization. When the realized renewable term ω is larger than predicted ω̄,
net revenue increases.

and cost grow quadratically with total consumption. The corre-
lation value σij affects the minimum–maximum band that total
consumption moves in as shown in Fig. 2(b). Specifically, the
uncertainty in consumption is higher when user preferences
have higher correlation. This is reasonable since higher corre-
lation means that if one user’s realization of the preference is
higher than the mean preference ḡh, others’ preferences are
also likely to be higher, whereas in low correlation others
are likely to balance the high consumption preference of a
given user. This indicates that the SO can estimate consump-
tion behavior with higher accuracy and it requires less reserve
energy when the preferences are less correlated. We further
observe that the mean welfare over the horizon is not affected
by the correlation coefficient and is equal to $100, $99.8, and
$100.5 for σij values equal to 0, 2, and 4, respectively. Finally,
we observe that the difference between maximum and mini-
mum values of the rate of return decreases as ḡh increases
in Fig. 2(c).

B. Effect of Policy Parameter

Fig. 3(a) and (b) illustrates the effect of policy parame-
ter γh on total consumption Lh and realized rate of return rh,
respectively. We fix the policy parameter across time, that is,
γh = γ ∈ {0.5, 0.6, 0.7} for all h ∈ H. As before, solid

lines indicate average value over 100 instantiations (gh, ωh)

and dashed lines indicate minimum and maximum values over
these 100 runs.

Total consumption decreases as γ increases in Fig. 3(a) as
noted in the discussion following Proposition 2. Furthermore,
PAR in total consumption is not altered when γ is fixed over
the time horizon in Fig. 3(a) where PAR of the average total
consumption over all runs is 1.4 for each γ ∈ {0.5, 0.6, 0.7}.
As a policy to reduce PAR, the SO might choose to increase γ

when ḡh is high and lower γ when ḡh is low—see Section V.
In Fig. 3(b), we observe that the mean realized profit ratio is
in proportion with the policy parameter γ . This is expected
since both revenue and cost grow with the square of the total
consumption multiplied by constants γ and κh/2, respectively.
Hence, the rate of return is expected to be equal to 2γ /κh

which gives the mean rate of return in Fig. 3(b) for each γ

value. We further observe that the mean realized welfare over
the horizon W is not affected by the changes in γ , that is,
for γ ∈ {0.5, 0.6, 0.7} mean welfare is equal to $99, $99.8,
and $100.2, respectively. At the same time, mean user aggre-
gate utility U decreases, that is, for γ ∈ {0.5, 0.6, 0.7} it is
equal to $99, $93.8, and $89, respectively. Hence, the loss in
aggregate utility is compensated by the increase in SOs net
revenue.
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C. Effect of Uncertainty in Renewable Power

From the BNE strategy in (10), we observe that an increase in
the expectation ω̄h reduces the load of the users linearly. Hence,
the SO can use the response of its users to mitigate the effects
of fluctuations in renewable source generation. However, the
contract between the operator and users is such that the latter
are charged based on the realization of the random variable ωh.
We analyze the effect of prediction errors of the renewable term,
ω − ω̄, on the aggregate utility U and NR in Fig. 4(a) and (b),
respectively. Each point in the plots corresponds to the value
of the metric at a single initialization given ω̄ ∈ {−2, 0, 2}.
There are 100 initializations for each ω̄ value.

Fig. 4(a) shows that aggregate utility is higher when the
predicted renewable variable discounts price, i.e., ω̄ = −2.
This is regardless of the prediction error. We observe that
there is a small decrease in mean aggregate utility on aver-
age with increasing ω̄, i.e., average aggregate utility across
all runs is equal to $89.6, $89, and $88.3, respectively, for
ω̄ ∈ {−2, 0, 2}. We do not observe any correlation with
the prediction error of renewables and aggregate utility in
Fig. 4(a). Fig. 4(b) shows that NR is likely to be larger when
the realized value of ω is larger than ω̄. This is reasonable since
users respond to ω̄, however, when the realized ω is larger
than predicted ω̄, users pay more than what they expected.
Furthermore, given a fixed amount of prediction error ω − ω̄,
observe that an increase in the announced estimate ω̄ is bene-
ficial to the NR in Fig. 4(b). Finally, the mean welfare is not
affected by the announced estimate ω̄, that is, mean welfare
across all runs is equal to $100.2 for each ω̄ ∈ {−2, 0, 2}.

V. PRICING POLICY MECHANISMS

We propose desired rate of return and PAR minimization
as the two objectives according to which the SO determines
its pricing policy parameters {γh}h∈H given price anticipating
users. Below we first explain these two pricing schemes and
then compare them with flat and TOU pricing schemes.

1) Desired Rate of Return RTP: The SO can pick its
policy parameter γh to target an expected rate of return
r∗

h = E[Rh(Lh(γh))/Ch(Lh(γh))] at time h. Given its uncer-
tainty on user preferences gh, the SO can rely on the user
behavior determined by the BNE (10) to reason about total
load Lh(γh). The term Lh(γh) makes the SOs influence on
demand through the parameter γh explicit. In a budget balanc-
ing scheme, the SO would set desired rate of return to r∗

h = 1.
Otherwise, it is customary that r∗

h > 1—see [8], [10] for sim-
ilar pricing policies. Solving for the policy parameter γh to
attain an expected rate of return of r∗

h yields that γh = r∗
hκh/2

when the renewable generation term is ωh = 0 as per the
discussion in Section IV-B.

2) PAR Minimizing Price: The PAR of load profile {Lh}h∈H
is defined as the ratio of the maximum load over the opera-
tion cycle to the average load profile. The SO can pick the
policy parameter {γh}h∈H to minimize the expected PAR of
consumption behavior which is formulated as follows:

min{γh}h∈H
E

[
H maxh=1,...,H Lh(γh)

∑H
h=1 Lh(γh)

]

. (16)

In computing its expected PAR, the SO relies on the model
of rational user behavior in (10). From the perspective of the
SO, the total consumption at equilibrium Lh = ∑

i∈N s∗
ih(gih)

is a normal random variable with mean Nah(ḡh − ω̄hγh/N)

and variance b2
h(N + N(N − 1)σ ) when the preferences are

σ -correlated. We use Lh(γh) above to indicate that the distri-
bution of this normal random variable is parametrized by γh.
Similarly, the average consumption over the horizon is also a
normal random variable. Hence, the PAR expression inside the
expectation in (16) is a random variable that is the maximum
of jointly normal random variables divided by the sum of these
random variables both of which are parametrized by {γh}h∈H.
To the best of our knowledge, an exact expression for nei-
ther the density function nor the mean of this random variable
exists. Hence, we cannot hope to find a closed form solution
to the minimization in (16). Therefore, we use the evolution-
ary algorithm presented in [21] to determine the minimizing
policy profile {γ ∗

h }h∈H. The evolutionary algorithm starts with
a candidate set of policy profiles and iteratively evolves the
set based on the expected PAR achieved for each profile in
the set. For each policy profile {γh}h∈H considered in this set,
we evaluate the expected PAR using Monte Carlo sampling.

In both of the pricing schemes above the users are assumed
to be price anticipating and strategic as price value is not
known at time of their decision making as per the discus-
sion in Section II-A. Next, we present two pricing schemes,
flat and TOU pricing, in which the SO determines the price
value in advance.

3) Flat Price: Users are charged with a flat price (FLAT) p
during the horizon. Users respond by optimizing their utility
in (3) with price replaced by FLAT p, that is, they are price
takers. The optimal user response is obtained by solving the
first order conditions l∗ih = (gih − p)/2αh assuming a non-
negative solution, that is, gih > p for all i. The SO wants to
pick the price that maximizes the expected welfare over the
horizon E[W], p∗ = arg maxp E[W]. Note that, W depends on
price-taker user response which is random to the SO. However,
the SO can use the form of the price-taker user behavior to
solve explicitly for the p∗ based on Pgh . When αh = α and
κh = κ for all h ∈ H, we obtain the following expression for
the FLAT:

p∗ = κ
∑

h∈H ḡh

H(κ + 2α)
. (17)

Note that, the price scales linearly with the time average of
the mean preferences {ḡh}h∈H over the horizon. In order for
the FLAT to maximize welfare, the non-negative consumption
requirement, gih > p∗, needs to be satisfied for all i ∈ N and
h ∈ H. Given the optimal FLAT (17), this condition is equiva-
lent to g−∑h ḡh/H ≥ −2αg/κ where g := mini∈N ,h∈H{gih}.
Since the preferences have normal distribution the probability
that the condition will be violated is positive. In particular,
this probability is small when κ is small or α is large, or
when the minimum mean value over the whole horizon is
away from zero, minh∈H ḡh 
 0, and time average of the
mean preferences is relatively close to the minimum mean
preference.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON SMART GRID

4) TOU Price: Users are charged with hourly prices ph

that are determined by maximizing hourly expected wel-
fare (6), that is, p∗

h = argmaxp E[Wh], given that users
optimally respond to announced hourly prices by selecting
l∗ih = (gih − p∗

h)/2αh. Note that, the Wh in (6) does not
explicitly depend on price. Its dependence on ph comes from
the price-taker user response. Given the optimal behavior of
users, the price that maximizes expected welfare is explicitly
expressed as

p∗
h = κhḡh

κh + 2αh
. (18)

The price above scales linearly with the mean preference of the
time slot ḡh. The condition for non-negativity of consumption
lih ≥ 0 reduces to g

h
− ḡh ≥ −2αhg

h
/κh for all h ∈ H where

g
h

:= mini∈N gih. The probability of violating this requirement
is small when αh is large or κh is small. Furthermore, it is small
when the smallest mean preference is large minh∈H ḡh 
 0 or
when σii is relatively small. When the probability of violation
is high, the SO has to consider the probability that some users
might choose not to consume any deferrable loads for a given
time slot. In this case, the user behavior distribution will not
be normal from the perspective of the SO and the TOU will
not have the form in (18).

Next, we present the efficient competitive equilibrium price
with complete information (CCE) as a benchmark to compare
the aforementioned pricing schemes against.

A. Efficient Competitive Equilibrium

A competitive equilibrium is a tuple of prices pW :=
[pW

1 , . . . , pW
H ] and consumption profiles {lih}i∈N ,h∈H such that

each user picks the consumption to maximize its selfish utility
given the price, lWih = (gih − pW

h )/2αh and the market clears,
that is, total consumption demand is met by the SO [9], [10].
Note that, in a competitive equilibrium, users respond to
announced price value of the SO. A competitive equilibrium
is efficient when it maximizes welfare W. In order to compare
the aforementioned pricing schemes, we provide an explicit
characterization of the unique efficient competitive equilib-
rium under certain conditions on the values of the preferences
{gh}h∈H.

Proposition 3: Consider the welfare W with user utility
functions in (4) and SOs cost function in (1). There exists
a unique competitive equilibrium price pW := [pW

1 , . . . , pW
H ]

such that when price takers respond optimally by maximiz-
ing their selfish utility, lWih = (gih − pW

h )/2αh, the welfare W
is maximized. Furthermore, if the minimum preference value
g

h
:= mini∈N {gih} satisfies the following condition:

g
h
−
∑

j∈N
gjh/N ≥ −2αhg

h
/κh ∀h ∈ H (19)

then the competitive equilibrium price pW is characterized by

pW
h = κh

∑
i∈N gih

N(κh + 2αh)
∀h ∈ H. (20)

Proof: At the efficient competitive equilibrium, welfare
W is maximized and market clears, that is, demand equals
supply,

∑
i∈N lih = Qh where Qh is defined as the SOs

supply variable. We can translate this definition to the fol-
lowing optimization problem:

max{{lih}i∈N ,Qh}h∈H

∑

h∈H

(

−Ch(Qh) +
∑

i∈N
gihlih − αhl2ih

)

s.t.
∑

i∈N
lih = Qh h ∈ H

lih ≥ 0 i ∈ N , h ∈ H. (21)

Consider the Lagrangian of the above optimization problem
obtained by relaxing the market clearance constraint with the
corresponding price variables p := [p1, . . . , pH]

L({{lih}i∈N , Qh}h∈H, p
) =

∑

h∈H
−Ch(Qh) +

∑

i∈N
gihlih

− αhl2ih +
∑

h∈H
ph

(

Qh −
∑

i∈N
lih

)

.

(22)

When the Lagrangian (22) is maximized with respect to
the primal variables lih and Qh given Ch(Qh) in (1), we
respectively obtain the following conditions:

gih − 2αlih − ph = 0 ∀i ∈ N , h ∈ H (23)

−κhQh/N + ph = 0 h ∈ H. (24)

Note that, (23) enforces that users are price takers, lih =
(gih − ph)/2αh and (24) indicates that the optimal price is lin-
ear in Qh, ph = κhQh/N. By the Karush–Kuhn–Tucker (KKT)
optimality conditions, the feasibility conditions stated in (21)
has to be satisfied. From the power balance constraint, we get
that the optimal price is a linear function of total consumption,
that is, ph = κh

∑
i∈N lih/N for all h ∈ H. Now using the price

taker behavior and assuming lih ≥ 0, we obtain

ph = κh

N

∑

i∈N
(gih − ph)/2αh. (25)

Solving the above equation for ph, we get the competitive
equilibrium price in (20). When we plug in the price pW

h in (20)
into the price taker consumption lWih = (gih − pW

h )/2αh, the
consumption non-negativity assumption is satisfied given the
condition κh(gih − ∑

j∈N gjh/N) + 2αgih ≥ 0 for all i ∈ N .
Since the inequality in the condition has to be satisfied by all
the user preferences, this condition reduces to the condition
in (19).

The solution to (21) is a competitive equilibrium because
each user responds optimally lWih with respect to their selfish
utility by the KKT conditions (23) and the market clears at the
equilibrium price pW

h . Furthermore, the equilibrium is efficient
because W is maximized. Finally, the solution is unique as
the optimization in (21) is strictly concave with feasible linear
constraints.

The proposition provides a characterization of CCE pW
H

in (23) given the condition in (19) holds. The proof relies
on expressing the efficient competitive equilibrium as a wel-
fare maximization problem with the constraints that demand
matches supply and the consumption of users is non-negative.
The optimality conditions yield that the user consumption that
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maximizes welfare is equivalent to users maximizing their
selfish utility (4) given pW

h . This shows that the feasible opti-
mal consumption to the maximization problem is an efficient
competitive equilibrium.

The condition in (19) is required due to the non-negativity
constraint on user consumption. The condition implies that
the minimum realized preference g

h
in the population can-

not be too small with respect to the realized mean preference∑
i∈N gih/N. The condition is akin to the condition for TOU

pricing except that here we replace ḡh with the mean of real-
ized preferences

∑
i∈N gih/N. As a result the discussion for

TOU pricing on parameters that make the probability of viola-
tion small applies to (19) verbatim. For increasing αh, ḡh and
decreasing κh, the violation probability is small. If the correla-
tion σ among users increases, the probability of violating the
condition decreases. We expect to have high correlation among
user preferences that have means larger than zero—e.g., the
electric vehicle charging demand profiles in [18].

The CCE in (20) gives us a benchmark to compare the
proposed pricing schemes that operate under incomplete infor-
mation of the preferences. In [14], the authors proposed a
decentralized algorithm that converges to an efficient compet-
itive equilibrium when the SO does not know the preferences
of its users. In [9], a taxing scheme, which incentivizes users
to truthfully reveal their preferences and aligns Nash equilib-
rium behavior with the competitive equilibrium is proposed. In
this paper, we consider unilateral information feeding from the
SO to the users, hence, the SO only has estimates of the pref-
erences of the users. Next, we compare the presented pricing
schemes.

B. Analytical Comparison Among Pricing Policies

We expand the RTP price by substituting in the BNE strat-
egy in (10) given σ -correlated preferences for the term L̄h

in (2)

ph(Lh;ωh) = γh(Nḡh + ωh(γh/N + 2αh))

N((N + 1)γh/N + 2αh)

+ γhbσ
h

N

∑

i∈N
gih − ḡh (26)

where the coefficient bσ
h is a single element of the vector bσ

h
in (15). The first term above is obtained by grouping and
simplifying all the terms that relate to the first term in user
behavior (10) and the term ωh/N in (2). When we take the
expectation of the price above, the second term is nulled and
we replace ωh with ω̄h in the first term. As expected, increas-
ing the expectation of ωh means an expected increase in price.
Furthermore, when ω̄h = 0, we observe that increasing γh

increases the price by decreasing the relative weight of the
2αh term in the denominator. When ω̄h = 0 and γh = κh, the
expected price in (26) is equal to κhḡh/((N + 1)κh/N + 2αh)

which is smaller than the TOU price in (18) since it has a
larger denominator. That is, we expect the TOU price be larger
than RTP when γh = κh. However, the SO can solve for γh

that equates the expected price of RTP with the TOU price.
Moreover, the expectation of competitive price in (20), that is,
expectation prior to the realization of the preferences, is equal

to the TOU price in (18). Consequently, the RTP price can be
made in expectation equal to the expectation of the CCE price
by selecting γh. Since in both TOU and CCE pricing schemes,
users respond optimally to the given price, we expect that users
in TOU will behave on average the same as the users in CCE.
The same argument cannot be made between the RTP pricing
scheme and CCE pricing as user behavior differs in the two
schemes. Finally, note that FLAT is equal to the time aver-
age of TOU. That is, FLAT is not equal to the CCE price
unless all preferences are distributed according to the same
mean [22].

Next, we consider the effect of population size N on
RTP (26), FLAT (17), TOU price (18), and CCE (20). First
note that flat and TOU prices are not affected by the num-
ber of users. As N grows, the expectation of RTP price, i.e.,
the first term of (26), converges to γhḡh/(γh + 2αh) which is
identical to TOU price when γh = κh. Furthermore, when
the covariance matrix �h is diagonal, that is, σ = 0, the
RTP price in (26) converges to TOU price almost surely
by the strong law of large numbers. The convergence still
holds when the correlation coefficient σ is positive but decays
with N [23]. The same set of conditions can be used to
show that the CCE price in (20) converges to TOU price
almost surely. Since the users in TOU pricing scheme are
price takers and by definition TOU price maximizes expected
welfare, it is not surprising that TOU price becomes closer
to the competitive equilibrium as N grows. On the other
hand, the same argument is not that straightforward for price
anticipating users. Yet, observe that as N grows RTP price
approaches a value that depends on mean prior preference.
As a result, price anticipating users become price takers as a
single user’s influence on price diminishes. As N grows, RTP
schemes approach the competitive equilibrium given diminish-
ing correlation among preferences. This discussion relates to
inefficiency in markets [24], [25] and to the competitive limit
theorems for Cournot markets [16], [26].

C. Numerical Comparison Among Pricing Policies

In Fig. 5(a)–(c), we numerically compare the pricing
schemes with respect to their influence on welfare W, PAR
of total consumption, and total consumption over the horizon∑

h∈H Lh, respectively. We use the same setup described in
Section IV unless otherwise stated. We choose the desired
rate of return in RTP to be r∗

h = 1.5 which yields γh =
r∗

hκh/2 = 0.75. For PAR pricing, we let γh ∈ [0.5, 1.5]. The
optimal policy parameters are found to be [γ ∗

1 , . . . , γ ∗
6 ] =

[0.55, 0.5, 1.5, 0.78, 0.54, 0.6]. The PAR minimizing choices
of high policy parameter in the peak time h = 3 when ḡ3 = 50
and lower γh other times supports the intuition developed from
Fig. 3(b). The FLAT determined according to (17) is equal to
p∗ = $0.09/kWh. The TOU and CCE prices are determined
according to (18) and (20), respectively. The TOU price pro-
file is equal to p∗ = [0.075, 0.088, 0.125, 0.1, 0.075, 0.075]
$/kWh. Each point in Fig. 5(a)–(c) corresponds to the value
attained in the performance metric in that scenario out of
the 100 instantiations for a given pricing model. We indi-
cate the mean value over the 100 scenarios with a colored
dashed line, each color corresponding to a pricing model
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Fig. 5. Comparison of different pricing schemes with respect to (a) welfare W, (b) PAR of total consumption, and (c) total consumption
∑

h∈H Lh. In (a)–(c),
each point corresponds to the value of the metric for that scenario and dashed lines correspond to the average value of these points over all scenarios with
colors associating the point with the pricing scheme in the legend. The PAR-minimizing policy performs better than others in minimizing PAR of consumption
while at the same time being comparable to CCE in welfare.

indicated in the legend. We remark that the non-negativity
conditions of FLAT, TOU, and CCE are satisfied in all of the
instantiations.

As per the discussion above, the average CCE price across
the scenarios is equal to the TOU price. The mean RTP price
over the 100 scenarios treads below the TOU price and is
equal to p̄RTP = [0.06, 0.07, 0.1, 0.08, 0.06, 0.06] $/kWh. In
comparison, PAR pricing achieves a lower mean price for low
preference hours and higher price in the high preference hours,
p̄PAR = [0.05, 0.05, 0.16, 0.08, 0.05, 0.05]$/kWh. In addition,
the variance of the RTP and PAR prices are low with the
standard deviation less than $0.003. We note that some of the
variation observed in metrics for RTP and PAR are due to
the uncertainty introduced by the renewable energy term ωh.

In Fig. 5(a), we observe that PAR attains the lowest mean
welfare $99.4, and CCE and TOU have the highest mean
welfare $100.6. The RTP pricing scheme is close to the
CCE welfare with mean welfare $100.4. The FLAT pric-
ing has a mean welfare $100.1 that is in between PAR and
RTP mean welfares. In addition, the breakdown of welfare to
aggregate utility and net revenue changes depending on price-
anticipating or price-taking behavior model, e.g., for PAR,
mean aggregate utility U is equal to $83.5 whereas for CCE
it is $75.5. This means the SOs net revenue is higher in
price-taking models.

In Fig. 5(b), we see that PAR pricing achieves the lowest
mean PAR of consumption value 1.17 with small deviation
from the mean across runs 0.03. CCE, RTP, and TOU attain
mean PAR consumption values close to each other around
1.4 but TOU pricing has a higher standard deviation 0.05.
As can be expected FLAT has the largest mean PAR of
consumption value 1.53 and high deviation 0.05 across runs
as it does not adjust to varying consumption preferences of
the users.

When we compare the total consumption over the whole
horizon in Fig. 5(c), we observe that RTP and PAR pricing
have means 561 and 558 kWh, respectively, that are close
to each other. This is due to the fact that the average of PAR
pricing policy parameters is

∑
h γh/H = 0.75 which is equal to

policy parameter of RTP. CCE, TOU, and FLAT attain a lower
consumption mean $537. In addition, the deviation of total
consumption across runs is smaller for RTP and PAR models
with deviation equal to 9.8 kWh compared to the standard

deviation of total consumption in TOU and FLAT that is equal
to 11.4 kWh. This indicates that the forecast certainty of the
SO is higher when users anticipate price.

In sum, the proposed PAR minimizing pricing achieves a
low PAR by incentivizing users to shift their consumption to
off-peak times. This shift does not hurt the welfare of the sys-
tem compared to other pricing schemes and is beneficial to the
aggregate utility of the users compared to CCE and other price-
taking schemes. Furthermore, users are facing similar prices.
Hence, the increase in aggregate utility is due to the increased
total consumption in RTP and PAR, that is, users consume
more but pay similar amounts of money. In both RTP and
PAR, the price anticipation of the users helps to reduce total
consumption variance, increasing the demand predictability.
Finally, PAR and RTP by design admit renewable integration
via the term ωh in (2) as discussed in Section IV-C.

VI. CONCLUSION AND POLICY IMPLICATIONS

We considered a DRM model where users with unknown
and heterogeneous marginal utilities respond to real time
prices announced by the SO ahead of each time slot. The pric-
ing mechanism is such that the SO announces a pricing func-
tion that linearly increases with total consumption per capita
and decreases with increasing renewable energy generation in
that time slot. The pricing provides the SO with the versatil-
ity to charge hourly prices that incentivizes users to behave
according to its goals. However, the users’ consumption pref-
erences are random to the SO and it may be that the users
behave in a manner that trumps the SOs intentions in order to
achieve their selfish goals. Our analysis shows that this would
not happen if agents, selfish as they may be, act rationally.

In particular, from the perspective of the SO, the PAR of
demand is reduced when the SO implements a PAR minimiz-
ing price, i.e., users shift their consumption to time slots in
which it is cheaper for SO to produce. The variance in demand
caused by randomness in user preferences at each time slot
reduces, increasing the demand forecast accuracy of the SO.
From the perspective of a regulator invested in the well-being
of the system, the proposed tariff by the SO is fair to the
users [27] and the welfare is expected to be close to the effi-
cient welfare. Furthermore, the renewable penetration is likely
to increase given accurate forecasts of renewable generation
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due to deferrable loads serving as a buffer that absorbs the
fluctuations of renewable generation. From the perspective of
the users, the proposed tariff is expected to increase user util-
ity, i.e., users can consume the same amounts but at a cheaper
price.

It has to be observed that the aforementioned implications
depend on specific modeling choices, namely, the assump-
tion of rational user behavior, the consideration of perfect
knowledge of the preference distribution gh, and the use of
a quadratic form for the SOs cost. These choices may be sim-
plistic, but the results outlined here still provide meaningful
guidelines if these restrictions are lifted. Consider, e.g., the
case in which users are sub-rational and recall that we consid-
ered two models of rational behavior: price taking and price
anticipating. If the users respond to announced price values,
they would be price takers and the price is in expectation equal
to the competitive equilibrium price. If the users are selfish and
anticipate their contribution to price function, then the price
is shown to approach the competitive price as N grows under
certain conditions, and otherwise numerical results indicate
that welfare reduction is tolerable. These models of behavior
capture the two extremes of user behavior, and therefore, sub-
rational behavior is likely to exhibit a behavior that falls in
between these two extremes.

Regarding the assumption of perfect knowledge of the user
preference distribution Pgh it is likely that the SO will have
some uncertain estimates, and that the difference between the
two is a random noise term. When the SO utilizes such noisy
predictions of the mean preference ḡh, the rational users will
discount the weight on the public information based on the
uncertainty of the SO in their responses. While the overall
performance of the system will degrade, the generalization
will not affect the overall implications of the analysis. As
for the use of quadratic energy costs, it is better to con-
sider a model in which the cost for each device can be
modeled as a linear function of the power dispatched from
each device. In this case, the cost model is an increasing
piecewise linear function of total consumption as power is
dispatched from more costly generators with increasing total
consumption [7]. The quadratic cost function is a tractable
approximation for the piecewise linear cost function and cap-
tures the fundamental property that higher energy production
requires dispatching from more costly sources. The quantita-
tive specifics may change for piecewise linear functions but
the qualitative conclusions will be similar.

APPENDIX

A. Proof of Proposition 1

Our plan is to propose a linear strategy as in (10) and use
the fixed point equations of BNE in (9) to solve for the linear
strategy coefficients. First, we obtain the best response func-
tion. In order to compute the best response in (7) we take the
derivative of conditional expected utility with respect to lih,
equate the resultant to zero and solve for lih

BR(gih; s−ih) =
gih − γh

(
ω̄h +∑

j �=i Eωh

[
Eih
[
sjh
]])

/N

2(γh/N + αh)
. (27)

Next, we use the best response expression in (27) in the
BNE (9) and substitute the proposed linear strategy in (10)
for the corresponding terms to get the following fixed point
equation:

aih(ḡh − ω̄hγh) + bih(gih − ḡh)

= ρh

⎛

⎝gih − γh

⎛

⎝ω̄h +
∑

j �=i

Eih
[
ajh(ḡh − ω̄h)

+ bjh
(
gjh − ḡh

)]
⎞

⎠

⎞

⎠ (28)

for all i ∈ N where we used the definition of ρh. Given the
normal prior on gh, we have Eih[gjh] = (1 − σ h

ij /σ
h
ii )ḡh +

(σ h
ij /σ

h
ii )gih. Substituting the term for the expectation

aih(ḡh − ω̄hγh) + bih(gih − ḡh)

= ρhgih − ρhγh

⎛

⎝ω̄h +
∑

j �=i

ajh(ḡh − ω̄h)

+ bjh

((

1 − σ h
ij

σ h
ii

)

ḡh + σ h
ij

σ h
ii

gih − ḡh

)⎞

⎠.

(29)

Next, we add and subtract ρhḡh to the right-hand side and
group the terms that multiply gih − ḡh and ḡh − ω̄hγh

aih(ḡh − ω̄hγh) + bih(gih − ḡh)

= ρh

⎛

⎝1 − γh

∑

j �=i

ajh

⎞

⎠(ḡh − ω̄hγh)

+ ρh

⎛

⎝1 − γh

∑

j �=i

σ h
ij

σ h
ii

bjh

⎞

⎠(gih − ḡh). (30)

Equating the terms that multiply (ḡh − ω̄hγh) and (gih − ḡh)

for all i ∈ N , we get the following equations for ah and bh:

aih = ρh

⎛

⎝1 − γh

∑

j �=i

ajh

⎞

⎠, bih = ρh

⎛

⎝1 − γh

∑

j �=i

σ h
ij

σ h
ii

bjh

⎞

⎠

(31)

for all i ∈ N . We write the equations above in vector form
(
I + ρhγh(11T − I)

)
ah = ρh1 (32)

(I + ρhγhS(�h))bh = ρh1 (33)

where in (33) we used the definition of the inference
matrix (13). Action coefficient aih is obtained from (32) by
multiplying both sides by (I+ρhγh(11T − I))−1 and using the
following identity:
(
I + ρhγh

(
11T − I

))−1
1 = ((N − 1)ρhγh + 1)−11. ‘(34)

The action coefficient bih is obtained from (33) by multiplying
both sides of the equation by (I + ρhγhS(�h))

−1. Hence, we
showed that there exists a BNE strategy that is linear as in (10).

To prove uniqueness, we first show that the game defined
by payoff in (4) is a Bayesian potential game with potential
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function v({lih}i∈N ; gh, ωh)—see [28] for a definition—and
then argue that the function is strictly concave which implies
unique solution for the original game. Define the symmetric
matrix Qh ∈ R

N×N where [[Qh]]ii = 1 for all i = 1, . . . , N
and [[Qh]]ij = ρh for all i ∈ N and j ∈ N \ i. Let
lh := [l1h, . . . , lNh]. For the stage game h ∈ H with payoffs ui

in (4), there exists a potential function given by

v(lh; gh, ωh) = −(γh + αh)lTh Qhlh + lTh
(
gh − γhωh1T). (35)

Note that, ∂v(lh)/∂lih = ∂uih(lh)/∂lih. Hence, the stage game
user payoffs (4) and information on gh is a Bayesian potential
game with potential function in (35) in [28, Lemma 6].

This result implies that the equilibrium of the Bayesian
potential game with function v(lh; gh, ωh) is the same as the
equilibrium of the stage game at time h with payoffs uih in (4).
It can be shown that Qh is positive definite for all h ∈ H by
Sylvester’s criterion which states that if each m by m upper
left sub-matrix of a symmetric matrix has a positive determi-
nant for all m = 1, . . . , N then the matrix is positive definite.
This implies that Bayesian potential function is strictly con-
cave with a unique maximizer. Hence, the equilibrium is
unique.

REFERENCES

[1] N. Pavlidou, A. J. H. Vinck, J. Yazdani, and B. Honary,
“Smart meters for power grid: Challenges, issues, advantages and status,”
Renew. Sustain. Energy Rev., vol. 15, no. 6, pp. 2736–2742, 2011.

[2] Q. Zhu, Z. Han, and T. Basar, “A differential game approach to dis-
tributed demand side management in smart grid,” in Proc. IEEE Int.
Conf. Commun. (ICC), Ottawa, ON, Canada, Jun. 2012, pp. 3345–3350.

[3] C. Wu, H. Mohsenian-Rad, J. Huang, and A. Y. Wang, “Demand
side management for wind power integration in microgrid using
dynamic potential game theory,” in Proc. IEEE GLOBECOM Workshops,
Houston, TX, USA, 2011, pp. 1199–1204.

[4] I. Atzeni, L. Ordonez, G. Scutari, D. Palomar, and J. Fonollosa,
“Demand-side management via distributed energy generation and stor-
age optimization,” IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 866–876,
Jun. 2013.

[5] L. Jiang and S. H. Low, “Multi-period optimal energy procurement
and demand response in smart grid with uncertain supply,” in Proc.
IEEE Conf. Decis. Control (CDC), Orlando, FL, USA, Dec. 2011,
pp. 4348–4353.

[6] R. Sioshansi and W. Short, “Evaluating the impacts of real time pric-
ing on the usage of wind power generation,” IEEE Trans. Power Syst.,
vol. 24, no. 2, pp. 516–524, May 2009.

[7] A. Papavasiliou and S. Oren, “Large-scale integration of deferrable
demand and renewable energy sources,” IEEE Trans. Power Syst.,
vol. 29, no. 1, pp. 489–499, Jan. 2014.

[8] A. Mohsenian-Rad, V. W. Wong, J. Jatskevich, R. Schober, and
A. Leon-Garcia, “Autonomous demand-side management based on
game-theoretic energy consumption scheduling for the future smart
grid,” IEEE Trans. Smart Grid, vol. 1, no. 3, pp. 320–331, Dec. 2010.

[9] P. Samadi, H. Mohsenian-Rad, R. Schober, and V. W. Wong, “Advanced
demand side management for the future smart grid using mecha-
nism design,” IEEE Trans. Smart Grid, vol. 3, no. 3, pp. 1170–1180,
Sep. 2012.

[10] N. Li, L. Chen, and S. H. Low, “Optimal demand response based on
utility maximization in power networks,” in Proc. IEEE Power Energy
Soc. Gen. Meeting, San Diego, CA, USA, Jul. 2011, pp. 1–8.

[11] P. Yang, G. Tang, and A. Nehorai, “A game-theoretic approach for opti-
mal time-of-use electricity pricing,” IEEE Trans. Power Syst., vol. 28,
no. 2, pp. 884–892, May 2013.

[12] J. Lunén, S. Werner, and V. Koivunen, “Distributed demand-side opti-
mization with load uncertainty,” in Proc. IEEE Int. Conf. Acoust.
Speech Signal Process. (ICASSP), Vancouver, BC, Canada, May 2012,
pp. 5229–5232.

[13] W. Saad, Z. Han, H. V. Poor, and T. Basar, “Game-theoretic methods for
the smart grid: An overview of microgrid systems, demand-side man-
agement, and smart grid communications,” IEEE Signal Process. Mag.,
vol. 29, no. 5, pp. 86–105, Sep. 2012.

[14] P. Samadi, A. Mohsenian-Rad, R. Schober, V. W. Wong, and
J. Jatskevich, “Optimal real-time pricing algorithm based on utility max-
imization for smart grid,” in Proc. IEEE Int. Conf. Smart Grid Commun.,
Gaithersburg, MD, USA, 2010, pp. 415–420.

[15] A. J. Wood and B. F. Wollenberg, Power Generation, Operation, and
Control. Hoboken, NJ, USA: Wiley, 2012.

[16] X. Vives, “Strategic supply function competition with private informa-
tion,” Econometrica, vol. 79, no. 6, pp. 1919–1966, 2011.

[17] L. Gan, A. Wierman, U. Topcu, N. Chen, and S. H. Low, “Real-time
deferrable load control: Handling the uncertainties of renewable gener-
ation,” in Proc. 4th Int. Conf. Future Energy Syst., Berkeley, CA, USA,
Jan. 2013, pp. 113–124.

[18] N. Y. Soltani, S. J. Kim, and G. B. Giannakis, “Real-time load elasticity
tracking and pricing for electric vehicle charging,” IEEE Trans. Smart
Grid, vol. 6, no. 3, pp. 1303–1313, 2015.

[19] C. Eksin, P. Molavi, A. Ribeiro, and A. Jadbabaie, “Bayesian quadratic
network game filters,” IEEE Trans. Signal Process., vol. 62, no. 9,
pp. 2250–2264, May 2014.

[20] A. Calvó-Armengol and J. Beltran, “Information gathering in organi-
zations: Equilibrium, welfare, and optimal network structure,” J. Eur.
Econ. Assoc., vol. 7, no. 1, pp. 116–161, 2009.

[21] O. K. Erol and I. Eksin, “A new optimization method: Big bang–big
crunch,” Adv. Eng. Softw., vol. 37, no. 2, pp. 106–111, 2006.

[22] S. Borenstein and S. P. Holland, “On the efficiency of competitive elec-
tricity markets with time-invariant retail prices,” RAND J. Econ., vol. 36,
no. 3, pp. 469–493, Nov. 2007.

[23] R. Lyons, “Strong laws of large numbers for weakly correlated random
variables,” Michigan Math. J., vol. 35, no. 3, pp. 353–359, 1988.

[24] R. Johari and J. N. Tsitsiklis, “Parameterized supply function bidding:
Equilibrium and efficiency,” Oper. Res., vol. 59, no. 5, pp. 1079–1089,
2011.

[25] C. Barreto, E. Mojica-Nava, and N. Quijano, “Design of mechanisms for
demand response programs,” in Proc. IEEE Conf. Decis. Control (CDC),
Florence, Italy, Dec. 2013, pp. 1828–1833.

[26] X. Vives, “Private information, strategic behavior, and efficiency in
Cournot markets,” RAND J. Econ., vol. 33, no. 2, pp. 361–376, 2002.

[27] Z. Baharlouei, M. Hashemi, H. Narimani, and H. Mohsenian-Rad,
“Achieving optimality and fairness in autonomous demand response:
Benchmarks and billing mechanisms,” IEEE Trans. Smart Grid, vol. 4,
no. 2, pp. 1–8, Jun. 2013.

[28] T. Ui, “Bayesian potentials and information structures: Team decision
problems revisited,” Int. J. Econ. Theory, vol. 5, no. 3, pp. 271–291,
2009.

Ceyhun Eksin (S’11) received the B.S. degree
in control engineering from Istanbul Technical
University, Istanbul, Turkey, the M.S. degree in
industrial engineering from Boğaziçi University,
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